101
|
Feeney M, Frigerio L, Cui Y, Menassa R. Following vegetative to embryonic cellular changes in leaves of Arabidopsis overexpressing LEAFY COTYLEDON2. PLANT PHYSIOLOGY 2013; 162:1881-96. [PMID: 23780897 PMCID: PMC3729768 DOI: 10.1104/pp.113.220996] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/06/2013] [Indexed: 05/21/2023]
Abstract
Embryogenesis in flowering plants is controlled by a complex interplay of genetic, biochemical, and physiological regulators. LEAFY COTYLEDON2 (LEC2) is among a small number of key transcriptional regulators that are known to play important roles in controlling major events during the maturation stage of embryogenesis, notably, the synthesis and accumulation of storage reserves. LEC2 overexpression causes vegetative tissues to change their developmental fate to an embryonic state; however, little information exists about the cellular changes that take place. We show that LEC2 alters leaf morphology and anatomy and causes embryogenic structures to form subcellularly in leaves of Arabidopsis (Arabidopsis thaliana). Chloroplasts accumulate more starch, the cytoplasm fills with oil bodies, and lytic vacuoles (LVs) appear smaller in size and accumulate protein deposits. Because LEC2 is responsible for activating the synthesis of seed storage proteins (SSPs) during seed development, SSP accumulation was investigated in leaves. The major Arabidopsis SSP families were shown to accumulate within small leaf vacuoles. By exploiting the developmental and tissue-specific localization of two tonoplast intrinsic protein isoforms, the small leaf vacuoles were identified as protein storage vacuoles (PSVs). Confocal analyses of leaf vacuoles expressing fluorescently labeled tonoplast intrinsic protein isoforms reveal an altered tonoplast morphology resembling an amalgamation of a LV and PSV. Results suggest that as the LV transitions to a PSV, the tonoplast remodels before the large vacuole lumen is replaced by smaller PSVs. Finally, using vegetative and seed markers to monitor the transition, we show that LEC2 induces a reprogramming of leaf development.
Collapse
|
102
|
Zhang H, Wan Q, Ye W, Lv Y, Wu H, Zhang T. Genome-wide analysis of small RNA and novel microRNA discovery during fiber and seed initial development in Gossypium hirsutum. L. PLoS One 2013; 8:e69743. [PMID: 23922789 PMCID: PMC3726788 DOI: 10.1371/journal.pone.0069743] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 06/14/2013] [Indexed: 12/20/2022] Open
Abstract
Cotton is the source of the most important, renewable natural textile fiber and oil in the world. MicroRNAs (miRNAs) are endogenous, non-coding, approximately 18-24 nucleotides long RNAs and function in the negative regulation of their target genes. Two mostly overlapping libraries of small RNA molecules were constructed and sequenced, and served as repetition sets of data to identify miRNAs involved in fiber initiation and seed development. The D genome sequence of Gossypium raimondii was used in conjunction with EST sequences to predict miRNA precursors. Overall, 93 new miRNA precursors were identified, of which 28 belonged to 10 known families and the other 65 were considered to be novel miRNAs. Seven hundred EST sequences were proposed to be candidate target genes which involved in the regulation of a diverse group of genes with diverse functions and transcription factors. Some of the novel miRNAs and candidate target genes were validated by the Northern blot and rapid amplification of 5' cDNA ends (5' RACE).
Collapse
Affiliation(s)
- Hua Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Center/the Ministre of Education, Cotton Research Institute, Nanjing Agricultural University, Nanjing, China
| | - Qun Wan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Center/the Ministre of Education, Cotton Research Institute, Nanjing Agricultural University, Nanjing, China
| | - Wenxue Ye
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Center/the Ministre of Education, Cotton Research Institute, Nanjing Agricultural University, Nanjing, China
| | - Yuanda Lv
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Center/the Ministre of Education, Cotton Research Institute, Nanjing Agricultural University, Nanjing, China
| | - Huaitong Wu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Center/the Ministre of Education, Cotton Research Institute, Nanjing Agricultural University, Nanjing, China
| | - Tianzhen Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Center/the Ministre of Education, Cotton Research Institute, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
103
|
Lin YL, Lai ZX. Evaluation of suitable reference genes for normalization of microRNA expression by real-time reverse transcription PCR analysis during longan somatic embryogenesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 66:20-5. [PMID: 23454294 DOI: 10.1016/j.plaphy.2013.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 02/05/2013] [Indexed: 05/02/2023]
Abstract
Accurate profiling of microRNAs (miRNAs) is an essential step for understanding both developmental and physiological functions of miRNAs. Real-time quantitative PCR (qPCR) is being widely used in miRNA expression studies, but choosing a suitable reference gene is a crucial factor for correct analysis of results. To date, there has been no systematic evaluation of qPCR reference genes for the study of miRNAs during somatic embryogenesis (SE) in the longan tree (Dimocarpus longan). Here, the most stably expressed miRNAs in synchronized longan tree embryogenic cultures at different developmental stages were determined using the geNorm and NormFinder algorithms. Validation qPCR experiments were performed for 24 miRNAs together with a snRNA (U6 snRNA), a rRNA (5S rRNA), and three housekeeping genes. It was found that small RNAs had better expression stability than protein-coding genes, and dlo-miR24 was identified as the most reliable reference gene, followed by dlo-miR168a*, dlo-miR2089*-1 and 5S rRNA. dlo-miR24 was recommended as a normalizer if only a single reference gene was to be used, while the combination of dlo-miR156c, dlo-2089*-1 and 5S rRNA was preferred to normalize miRNA expression data during longan SE.
Collapse
Affiliation(s)
- Yu Ling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | | |
Collapse
|
104
|
Plant microRNAs and development. J Genet Genomics 2013; 40:217-30. [PMID: 23706297 DOI: 10.1016/j.jgg.2013.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 03/15/2013] [Accepted: 04/02/2013] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) are a class of about 20-24 nt small non-coding RNAs that can regulate their target gene expression transcriptionally and posttranscriptionally. There are an increasing number of studies describing the identification of new components and regulatory mechanisms involved in the miRNA biogenesis and effector pathway as well as new functions of miRNAs in plant development. This review mainly focuses on the components involved in this pathway, and the developmental defects associated with the corresponding mutations. Some functions of important miRNAs in plant development, together with the modes of miRNA action, are also discussed in this review to describe the recent advance in this area.
Collapse
|
105
|
Lin Y, Lai Z. Comparative analysis reveals dynamic changes in miRNAs and their targets and expression during somatic embryogenesis in longan (Dimocarpus longan Lour.). PLoS One 2013; 8:e60337. [PMID: 23593197 PMCID: PMC3623967 DOI: 10.1371/journal.pone.0060337] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 02/25/2013] [Indexed: 01/27/2023] Open
Abstract
Somatic embryogenesis (SE), which resembles zygotic embryogenesis, is an essential component of the process of plant cell differentiation and embryo development. Although microRNAs (miRNAs) are important regulators of many plant develop- mental processes, their roles in SE have not been thoroughly investigated. In this study, we used deep-sequencing, computational, and qPCR methods to identify, profile, and describe conserved and novel miRNAs involved in longan (Dimocarpus longan) SE. A total of 643 conserved and 29 novel miRNAs (including star strands) from more than 169 miRNA families were identified in longan embryogenic tissue using Solexa sequencing. By combining computational and degradome sequencing approaches, we were able to predict 2063 targets of 272 miRNAs and verify 862 targets of 181 miRNAs. Target annotation revealed that the putative targets were involved in a broad variety of biological processes, including plant metabolism, signal transduction, and stimulus response. Analysis of stage- and tissue-specific expressions of 20 conserved and 4 novel miRNAs indicated their possible roles in longan SE. These miRNAs were dlo-miR156 family members and dlo-miR166c* associated with early embryonic culture developmental stages; dlo-miR26, dlo-miR160a, and families dlo-miR159, dlo-miR390, and dlo-miR398b related to heart-shaped and torpedo- shaped embryo formation; dlo-miR4a, dlo-miR24, dlo-miR167a, dlo-miR168a*, dlo-miR397a, dlo-miR398b.1, dlo-miR398b.2, dlo-miR808 and dlo-miR5077 involved in cotyledonary embryonic development; and dlo-miR17 and dlo-miR2089*-1 that have regulatory roles during longan SE. In addition, dlo-miR167a, dlo-miR808, and dlo-miR5077 may be required for mature embryo formation. This study is the first reported investigation of longan SE involving large-scale cloning, characterization, and expression profiling of miRNAs and their targets. The reported results contribute to our knowledge of somatic embryo miRNAs and provide insights into miRNA biogenesis and expression in plant somatic embryo development.
Collapse
Affiliation(s)
- Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry, Fuzhou, Fujian, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry, Fuzhou, Fujian, China
- * E-mail:
| |
Collapse
|
106
|
Wang F, Perry SE. Identification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development. PLANT PHYSIOLOGY 2013; 161:1251-64. [PMID: 23314941 PMCID: PMC3585594 DOI: 10.1104/pp.112.212282] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 01/10/2013] [Indexed: 05/18/2023]
Abstract
FUSCA3 (FUS3) is a B3 domain transcription factor that is a member of the LEAFY COTYLEDON (LEC) group of genes. The LEC genes encode proteins that also include LEC2, a B3 domain factor related to FUS3, and LEC1, a CCAAT box-binding factor. LEC1, LEC2, and FUS3 are essential for plant embryo development. All three loss-of-function mutants in Arabidopsis (Arabidopsis thaliana) prematurely exit embryogenesis and enter seedling developmental programs. When ectopically expressed, these genes promote embryo programs in seedlings. We report on chromatin immunoprecipitation-tiling array experiments to globally map binding sites for FUS3 that, along with other published work to assess transcriptomes in response to FUS3, allow us to determine direct from indirect targets. Many transcription factors associated with embryogenesis are direct targets of FUS3, as are genes involved in the seed maturation program. FUS3 regulates genes encoding microRNAs that, in turn, control transcripts encoding transcription factors involved in developmental phase changes. Examination of direct targets of FUS3 reveals that FUS3 acts primarily or exclusively as a transcriptional activator. Regulation of microRNA-encoding genes is one mechanism by which FUS3 may repress indirect target genes. FUS3 also directly up-regulates VP1/ABI3-LIKE1 (VAL1), encoding a B3 domain protein that functions as a repressor of transcription. VAL1, along with VAL2 and VAL3, is involved in the transition from embryo to seedling development. Many genes are responsive to FUS3 and to VAL1/VAL2 but with opposite regulatory consequences. The emerging picture is one of complex cross talk and interactions among embryo transcription factors and their target genes.
Collapse
|
107
|
|
108
|
Abstract
Abscisic acid (ABA) is one of the "classical" plant hormones, i.e. discovered at least 50 years ago, that regulates many aspects of plant growth and development. This chapter reviews our current understanding of ABA synthesis, metabolism, transport, and signal transduction, emphasizing knowledge gained from studies of Arabidopsis. A combination of genetic, molecular and biochemical studies has identified nearly all of the enzymes involved in ABA metabolism, almost 200 loci regulating ABA response, and thousands of genes regulated by ABA in various contexts. Some of these regulators are implicated in cross-talk with other developmental, environmental or hormonal signals. Specific details of the ABA signaling mechanisms vary among tissues or developmental stages; these are discussed in the context of ABA effects on seed maturation, germination, seedling growth, vegetative stress responses, stomatal regulation, pathogen response, flowering, and senescence.
Collapse
Affiliation(s)
- Ruth Finkelstein
- Department of Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106 Address
- correspondence to e-mail:
| |
Collapse
|
109
|
Luo JL, Zhao N, Lu CM. [Plant Trihelix transcription factors family]. YI CHUAN = HEREDITAS 2012; 34:1551-60. [PMID: 23262102 DOI: 10.3724/sp.j.1005.2012.01551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Trihelix transcription factor family has raised great concerns only in recent years. It was named after its conserved DNA binding domain containing three tandem helix (helix-loop-helix-loop-helix), which could bind specifically with GT element, a light-responsive DNA element. So, this family is also known as GT factors. At the early stage of study, the knowledge of this family was only confined to their functions in regulation of light-responsive genes. However, recent researches indicated that Trihelix family also plays important roles in different growth and development processes involving flowers, stomata, trichomes, embryos, and seeds, as well as roles in response to abiotic and biotic stresses. This review mainly focused on the structural characteristics, classification, and the latest functional research progresses on the Trihelix family.
Collapse
Affiliation(s)
- Jun-Ling Luo
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | | | | |
Collapse
|
110
|
Körbes AP, Machado RD, Guzman F, Almerão MP, de Oliveira LFV, Loss-Morais G, Turchetto-Zolet AC, Cagliari A, dos Santos Maraschin F, Margis-Pinheiro M, Margis R. Identifying conserved and novel microRNAs in developing seeds of Brassica napus using deep sequencing. PLoS One 2012; 7:e50663. [PMID: 23226347 PMCID: PMC3511302 DOI: 10.1371/journal.pone.0050663] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 10/24/2012] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are important post-transcriptional regulators of plant development and seed formation. In Brassica napus, an important edible oil crop, valuable lipids are synthesized and stored in specific seed tissues during embryogenesis. The miRNA transcriptome of B. napus is currently poorly characterized, especially at different seed developmental stages. This work aims to describe the miRNAome of developing seeds of B. napus by identifying plant-conserved and novel miRNAs and comparing miRNA abundance in mature versus developing seeds. Members of 59 miRNA families were detected through a computational analysis of a large number of reads obtained from deep sequencing two small RNA and two RNA-seq libraries of (i) pooled immature developing stages and (ii) mature B. napus seeds. Among these miRNA families, 17 families are currently known to exist in B. napus; additionally 29 families not reported in B. napus but conserved in other plant species were identified by alignment with known plant mature miRNAs. Assembled mRNA-seq contigs allowed for a search of putative new precursors and led to the identification of 13 novel miRNA families. Analysis of miRNA population between libraries reveals that several miRNAs and isomiRNAs have different abundance in developing stages compared to mature seeds. The predicted miRNA target genes encode a broad range of proteins related to seed development and energy storage. This work presents a comparative study of the miRNA transcriptome of mature and developing B. napus seeds and provides a basis for future research on individual miRNAs and their functions in embryogenesis, seed maturation and lipid accumulation in B. napus.
Collapse
Affiliation(s)
- Ana Paula Körbes
- PPGGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- PPGBCM, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ronei Dorneles Machado
- PPGBCM, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Frank Guzman
- PPGGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mauricio Pereira Almerão
- PPGBCM, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiz Felipe Valter de Oliveira
- PPGGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Guilherme Loss-Morais
- PPGBCM, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andreia Carina Turchetto-Zolet
- PPGGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- PPGBCM, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Alexandro Cagliari
- PPGGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Felipe dos Santos Maraschin
- PPGGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marcia Margis-Pinheiro
- PPGGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- PPGBCM, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rogerio Margis
- PPGGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- PPGBCM, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| |
Collapse
|
111
|
Tang X, Bian S, Tang M, Lu Q, Li S, Liu X, Tian G, Nguyen V, Tsang EWT, Wang A, Rothstein SJ, Chen X, Cui Y. MicroRNA-mediated repression of the seed maturation program during vegetative development in Arabidopsis. PLoS Genet 2012; 8:e1003091. [PMID: 23209442 PMCID: PMC3510056 DOI: 10.1371/journal.pgen.1003091] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Accepted: 09/30/2012] [Indexed: 11/19/2022] Open
Abstract
The seed maturation program only occurs during late embryogenesis, and repression of the program is pivotal for seedling development. However, the mechanism through which this repression is achieved in vegetative tissues is poorly understood. Here we report a microRNA (miRNA)–mediated repression mechanism operating in leaves. To understand the repression of the embryonic program in seedlings, we have conducted a genetic screen using a seed maturation gene reporter transgenic line in Arabidopsis (Arabidopsis thaliana) for the isolation of mutants that ectopically express seed maturation genes in leaves. One of the mutants identified from the screen is a weak allele of ARGONAUTE1 (AGO1) that encodes an effector protein for small RNAs. We first show that it is the defect in the accumulation of miRNAs rather than other small RNAs that causes the ectopic seed gene expression in ago1. We then demonstrate that overexpression of miR166 suppresses the derepression of the seed gene reporter in ago1 and that, conversely, the specific loss of miR166 causes ectopic expression of seed maturation genes. Further, we show that ectopic expression of miR166 targets, type III homeodomain-leucine zipper (HD-ZIPIII) genes PHABULOSA (PHB) and PHAVOLUTA (PHV), is sufficient to activate seed maturation genes in vegetative tissues. Lastly, we show that PHB binds the promoter of LEAFY COTYLEDON2 (LEC2), which encodes a master regulator of seed maturation. Therefore, this study establishes a core module composed of a miRNA, its target genes (PHB and PHV), and the direct target of PHB (LEC2) as an underlying mechanism that keeps the seed maturation program off during vegetative development. Seed development can be conceptually divided into two phases: namely the morphogenesis phase, in which cell division is active and all the major organs are formed, and the maturation phase, in which cells enlarge and storage reserves are synthesized and accumulated. Expression of the seed maturation program is tightly controlled such that it only occurs during the late phase of seed development. To uncover the molecular mechanisms underlying the repression of seed genes during vegetative development, we performed a reporter-assisted genetic screen, and one mutant identified is a weak allele of ARGONAUTE1 (AGO1) that displays ectopic seed gene expression. We then performed a series of transgenic and genetic analyses to search for the molecular mechanisms underlying the mutant phenotype. We first demonstrate that the decrease in miR166 in ago1 is a major cause of the mutant phenotype. Further, we show that the targets of miR166, type III HD-ZIP transcription factors PHB and PHV, are sufficient for derepressing seed maturation genes in seedlings, likely by binding directly to the promoter of a master regulator gene of maturation. Thus, this work establishes a miRNA–mediated pathway that represses the embryonic program and also establishes PHB/PHV as direct activators of the maturation program.
Collapse
Affiliation(s)
- Xurong Tang
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario, Canada
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Shaomin Bian
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario, Canada
- Department of Biology, Western University, London, Ontario, Canada
| | - Mingjuan Tang
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario, Canada
| | - Qing Lu
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario, Canada
| | - Shengben Li
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Xigang Liu
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Gang Tian
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario, Canada
- Department of Biology, Western University, London, Ontario, Canada
| | - Vi Nguyen
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario, Canada
| | - Edward W. T. Tsang
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan, Canada
| | - Aiming Wang
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario, Canada
| | - Steven J. Rothstein
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
- Howard Hughes Medical Institute, University of California Riverside, Riverside, California, United States of America
- * E-mail: (YC); (XC)
| | - Yuhai Cui
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario, Canada
- Department of Biology, Western University, London, Ontario, Canada
- * E-mail: (YC); (XC)
| |
Collapse
|
112
|
Bozorov TA, Baldwin IT, Kim SG. Identification and profiling of miRNAs during herbivory reveals jasmonate-dependent and -independent patterns of accumulation in Nicotiana attenuata. BMC PLANT BIOLOGY 2012; 12:209. [PMID: 23134682 PMCID: PMC3502350 DOI: 10.1186/1471-2229-12-209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/04/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plant microRNAs (miRNAs) play key roles in the transcriptional responses to environmental stresses. However, the role of miRNAs in responses to insect herbivory has not been thoroughly explored. To identify herbivory-responsive miRNAs, we identified conserved miRNAs in the ecological model plant Nicotiana attenuata whose interactions with herbivores have been well-characterized in both laboratory and field studies. RESULTS We identified 59 miRNAs from 36 families, and two endogenous trans-acting small interfering RNAs (tasiRNA) targeted by miRNAs. We characterized the response of the precursor and mature miRNAs to simulated attack from the specialist herbivore Manduca sexta by quantitative PCR analysis and used ir-aoc RNAi transformants, deficient in jasmonate biosynthesis, to identify jasmonate-dependent and -independent miRNA regulation. Expression analysis revealed that groups of miRNAs and tasiRNAs were specifically regulated by either mechanical wounding or wounding plus oral secretions from M. sexta larvae, and these small RNAs were accumulated in jasmonate-dependent or -independent manners. Moreover, cDNA microarray analysis indicated that the expression patterns of the corresponding target genes were correlated with the accumulation of miRNAs and tasiRNAs. CONCLUSIONS We show that a group of miRNAs and tasiRNAs orchestrates the expression of target genes involved in N. attenuata's responses to herbivore attack.
Collapse
Affiliation(s)
- Tohir A Bozorov
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, Jena, D-07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, Jena, D-07745, Germany
| | - Sang-Gyu Kim
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, Jena, D-07745, Germany
| |
Collapse
|
113
|
Li T, Chen J, Qiu S, Zhang Y, Wang P, Yang L, Lu Y, Shi J. Deep sequencing and microarray hybridization identify conserved and species-specific microRNAs during somatic embryogenesis in hybrid yellow poplar. PLoS One 2012; 7:e43451. [PMID: 22952685 PMCID: PMC3430688 DOI: 10.1371/journal.pone.0043451] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 07/20/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND To date, several studies have indicated a major role for microRNAs (miRNAs) in regulating plant development, but miRNA-mediated regulation of the developing somatic embryo is poorly understood, especially during early stages of somatic embryogenesis in hardwood plants. In this study, Solexa sequencing and miRNA microfluidic chips were used to discover conserved and species-specific miRNAs during somatic embryogenesis of hybrid yellow poplar (Liriodendron tulipifera×L. chinense). METHODOLOGY/PRINCIPAL FINDINGS A total of 17,214,153 reads representing 7,421,623 distinct sequences were obtained from a short RNA library generated from small RNAs extracted from all stages of somatic embryos. Through a combination of deep sequencing and bioinformatic analyses, we discovered 83 sequences with perfect matches to known miRNAs from 33 conserved miRNA families and 273 species-specific candidate miRNAs. MicroRNA microarray results demonstrated that many conserved and species-specific miRNAs were expressed in hybrid yellow poplar embryos. In addition, the microarray also detected another 149 potential miRNAs, belonging to 29 conserved families, which were not discovered by deep sequencing analysis. The biological processes and molecular functions of the targets of these miRNAs were predicted by carrying out BLAST search against Arabidopsis thaliana GenBank sequences and then analyzing the results with Gene Ontology. CONCLUSIONS Solexa sequencing and microarray hybridization were used to discover 232 candidate conserved miRNAs from 61 miRNA families and 273 candidate species-specific miRNAs in hybrid yellow poplar. In these predicted miRNAs, 64 conserved miRNAs and 177 species-specific miRNAs were detected by both sequencing and microarray hybridization. Our results suggest that miRNAs have wide-ranging characteristics and important roles during all stages of somatic embryogenesis in this economically important species.
Collapse
Affiliation(s)
- Tingting Li
- The Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Jinhui Chen
- The Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Shuai Qiu
- The Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Yanjuan Zhang
- The Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Pengkai Wang
- The Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Liwei Yang
- The Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Ye Lu
- The Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Jisen Shi
- The Key Laboratory of Forest Genetics and Gene Engineering of the Ministry of Education, Nanjing Forestry University, Nanjing, China
- * E-mail:
| |
Collapse
|
114
|
Zhang J, Zhang S, Han S, Wu T, Li X, Li W, Qi L. Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis. PLANTA 2012; 236:647-57. [PMID: 22526500 DOI: 10.1007/s00425-012-1643-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 03/28/2012] [Indexed: 05/02/2023]
Abstract
MicroRNAs (miRNAs) are emerging as essential regulators of biological processes. Somatic embryogenesis is one of the most important techniques for gymnosperm-breeding programs, but there is little understanding of its underlying mechanism. To investigate the roles of miRNAs during somatic embryogenesis in larch, we constructed a small RNA library from somatic embryos. High-throughput sequencing of the library identified 83 conserved miRNAs from 35 families, 16 novel miRNAs, and 14 plausible miRNA candidates, with a high proportion specific to larch or gymnosperms. qRT-PCR analysis demonstrated that both the conserved and novel or candidate miRNAs were expressed in larch. Several miRNA precursor sequences were obtained via RACE. We predicted 110 target genes using bioinformatics, and validated 9 of them by 5' RACE. 11 conserved miRNA families including 17 miRNAs with critical functions in plant development and six target mRNAs were detected by qRT-PCR in the larch SE. Stage-specific expression of miRNAs and their targets indicate their possible modulation on SE of larch: miR171a/b might exert function on PEMs, while miR171c acts in the induction process of larch SE; miR397 and miR398 mainly involved in modulation of PEM propagation and transition to single embryo; miR162 and miR168 exert their regulatory function during total SE process, especially during stages 5-8; miR156, miR159, miR160, miR166, miR167, and miR390 might play regulatory roles during cotyledonary embryo development. These findings indicate that larch and possibly other gymnosperms have complex mechanisms of gene regulation involving specific and common miRNAs operating post-transcriptionally during embryogenesis.
Collapse
Affiliation(s)
- Junhong Zhang
- Laboratory of Cell Biology, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China.
| | | | | | | | | | | | | |
Collapse
|
115
|
Wu HJ, Ma YK, Chen T, Wang M, Wang XJ. PsRobot: a web-based plant small RNA meta-analysis toolbox. Nucleic Acids Res 2012; 40:W22-8. [PMID: 22693224 PMCID: PMC3394341 DOI: 10.1093/nar/gks554] [Citation(s) in RCA: 340] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Small RNAs (smRNAs) in plants, mainly microRNAs and small interfering RNAs, play important roles in both transcriptional and post-transcriptional gene regulation. The broad application of high-throughput sequencing technology has made routinely generation of bulk smRNA sequences in laboratories possible, thus has significantly increased the need for batch analysis tools. PsRobot is a web-based easy-to-use tool dedicated to the identification of smRNAs with stem-loop shaped precursors (such as microRNAs and short hairpin RNAs) and their target genes/transcripts. It performs fast analysis to identify smRNAs with stem-loop shaped precursors among batch input data and predicts their targets using a modified Smith–Waterman algorithm. PsRobot integrates the expression data of smRNAs in major plant smRNA biogenesis gene mutants and smRNA-associated protein complexes to give clues to the smRNA generation and functional processes. Besides improved specificity, the reliability of smRNA target prediction results can also be evaluated by mRNA cleavage (degradome) data. The cross species conservation statuses and the multiplicity of smRNA target sites are also provided. PsRobot is freely accessible at http://omicslab.genetics.ac.cn/psRobot/.
Collapse
Affiliation(s)
- Hua-Jun Wu
- The State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | |
Collapse
|
116
|
Liu C, Axtell MJ, Fedoroff NV. The helicase and RNaseIIIa domains of Arabidopsis Dicer-Like1 modulate catalytic parameters during microRNA biogenesis. PLANT PHYSIOLOGY 2012; 159:748-58. [PMID: 22474216 PMCID: PMC3406889 DOI: 10.1104/pp.112.193508] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/30/2012] [Indexed: 05/18/2023]
Abstract
Dicer-Like1 (DCL1), an RNaseIII endonuclease, and Hyponastic Leaves1 (HYL1), a double-stranded RNA-binding protein, are core components of the plant microRNA (miRNA) biogenesis machinery. hyl1 null mutants accumulate low levels of miRNAs and display pleiotropic developmental phenotypes. We report the identification of five new hyl1 suppressor mutants, all of which are alleles of DCL1. These new alleles affect either the helicase or the RNaseIIIa domains of DCL1, highlighting the critical functions of these domains. Biochemical analysis of the DCL1 suppressor variants reveals that they process the primary transcript (pri-miRNA) more efficiently than wild-type DCL1, with both higher K(cat) and lower K(m) values. The DCL1 variants largely rescue wild-type miRNA accumulation levels in vivo, but do not rescue the MIRNA processing precision defects of the hyl1 null mutant. In vitro, the helicase domain confers ATP dependence on DCL1-catalyzed MIRNA processing, attenuates DCL1 cleavage activity, and is required for precise MIRNA processing of some substrates.
Collapse
|
117
|
Kim JM, To TK, Seki M. An epigenetic integrator: new insights into genome regulation, environmental stress responses and developmental controls by histone deacetylase 6. PLANT & CELL PHYSIOLOGY 2012; 53:794-800. [PMID: 22253092 DOI: 10.1093/pcp/pcs004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Histone acetylation ranks with DNA methylation as one of major epigenetic modifications in eukaryotes. Deacetylation of histone N-terminal tails is intimately correlated with gene silencing and heterochromatin formation. In Arabidopsis, histone deacetylase 6 (HDA6) is a well-studied histone deacetylase that functions in gene silencing. Recently, it has been reported that HDA6 cooperates with DNA methylation on its direct target locus in the gene silencing mechanism. HDA6 has the multifaceted role in regulation of genome maintenance, development and environmental stress responses in plants. Elucidation of HDA6 function provides important information for understanding of epigenetic regulation in plants. In this review, we highlight recent progress in elucidating the HDA6-mediated gene silencing mechanisms and deciphering the biological function of HDA6.
Collapse
Affiliation(s)
- Jong-Myong Kim
- Plant Genomic Network Research Team, RIKEN Plant Science Center, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | | | | |
Collapse
|
118
|
Neelakandan AK, Wang K. Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. PLANT CELL REPORTS 2012; 31:597-620. [PMID: 22179259 DOI: 10.1007/s00299-011-1202-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 05/23/2023]
Abstract
In vitro cell and tissue-based systems have tremendous potential in fundamental research and for commercial applications such as clonal propagation, genetic engineering and production of valuable metabolites. Since the invention of plant cell and tissue culture techniques more than half a century ago, scientists have been trying to understand the morphological, physiological, biochemical and molecular changes associated with tissue culture responses. Establishment of de novo developmental cell fate in vitro is governed by factors such as genetic make-up, stress and plant growth regulators. In vitro culture is believed to destabilize the genetic and epigenetic program of intact plant tissue and can lead to chromosomal and DNA sequence variations, methylation changes, transposon activation, and generation of somaclonal variants. In this review, we discuss the current status of understanding the genomic and epigenomic changes that take place under in vitro conditions. It is hoped that a precise and comprehensive knowledge of the molecular basis of these variations and acquisition of developmental cell fate would help to devise strategies to improve the totipotency and embryogenic capability in recalcitrant species and genotypes, and to address bottlenecks associated with clonal propagation.
Collapse
|
119
|
Kaplan-Levy RN, Brewer PB, Quon T, Smyth DR. The trihelix family of transcription factors--light, stress and development. TRENDS IN PLANT SCIENCE 2012; 17:163-71. [PMID: 22236699 DOI: 10.1016/j.tplants.2011.12.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 05/07/2023]
Abstract
GT factors are the founding members of the trihelix transcription factor family. They bind GT elements in light regulated genes, and their nature was uncovered in a burst of activity in the 1990s. Study of the trihelix family then slowed. However, interest is now re-awakening. Genomic studies have revealed 30 members of this family in Arabidopsis and 31 in rice, falling into five clades. Newly discovered functions involve responses to salt and pathogen stresses, the development of perianth organs, trichomes, stomata and the seed abscission layer, and the regulation of late embryogenesis. Thus the time is ripe for a review of the genomic and functional information now emerging for this neglected family.
Collapse
Affiliation(s)
- Ruth N Kaplan-Levy
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Vic 3800, Australia
| | | | | | | |
Collapse
|
120
|
Barr MS, Willmann MR, Jenik PD. Is there a role for trihelix transcription factors in embryo maturation? PLANT SIGNALING & BEHAVIOR 2012; 7:205-9. [PMID: 22353863 PMCID: PMC3405702 DOI: 10.4161/psb.18893] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The development of the angiosperm seed includes the accumulation of storage products, the loss of most of its water and the establishment of dormancy. While much is known about the pathways that initiate maturation during mid-embryogenesis or repress it after germination, only recently has it been shown that other mechanisms repress the program during early embryogenesis.Two recent reports have shown that microRNAs are critical regulators of maturation in Arabidopsis early embryogenesis. Two closely related trihelix transcription factors, ASIL1 and ASIL2, were identified as probable partially redundant repressors of early maturation downstream of the microRNA-synthesizing enzyme DICER-LIKE1. An overlap between the genes upregulated in asil1-1 and dcl1-15 mutants support this conclusion. ASIL2 orthologs are found across seed plants, indicating that their role in maturation might be conserved. ASIL1 arose from the ancestral ASIL2 clade by a gene duplication event in the Brassicaceae, although it is not clear whether its function has diverged.
Collapse
Affiliation(s)
| | | | - Pablo D. Jenik
- Department of Biology; Franklin & Marshall College; Lancaster, PA USA
- * Correspondence to: Pablo D. Jenik;
| |
Collapse
|
121
|
|
122
|
Gao MJ, Li X, Lui H, Gropp GM, Lydiate DD, Wei S, Hegedus DD. ASIL1 is required for proper timing of seed filling in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2011; 6:1886-1888. [PMID: 22231199 PMCID: PMC3337171 DOI: 10.4161/psb.6.12.18709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In flowering plants, seed development and seed filling are intricate genetically programmed processes that correlate with changes in metabolite levels and that are spatially and temporally regulated by a complex signaling network mediated mainly by sugars and hormones. ASIL1, a member of the plant-specific trihelix family of DNA-binding transcription factors, was isolated based on its interaction with the GT-element of the Arabidopsis thaliana 2S albumin At2S3 promoter. Mutation of ASIL1 derepressed expression of a subset of embryonic genes resulting in accumulation of 2S albumin and embryo-specific lipids in leaves. It was recently reported that mutation of ASIL1 led to early embryo development in Arabidopsis. In this study, we demonstrated that ASIL1 acts as a temporal regulator of seed filling. In developing siliques, mutation of ASIL1 led to earlier expression of master regulatory genes LEC2, FUS3 and ABI3 as well as genes for seed storage reserves. Moreover, the 12S globulin accumulated to a much higher level in the developing seeds of asil1-1 compared to wild type. To our knowledge, this is the first evidence that ASIL1 not only functions as a negative regulator of embryonic traits in seedlings but also contributes to the maintenance of precise temporal control of seed filling. Thus, ASIL1 represents a novel component of the regulatory framework controlling embryonic gene expression in Arabidopsis.
Collapse
Affiliation(s)
- Ming-Jun Gao
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK Canada.
| | | | | | | | | | | | | |
Collapse
|
123
|
Ambros V. MicroRNAs and developmental timing. Curr Opin Genet Dev 2011; 21:511-7. [PMID: 21530229 DOI: 10.1016/j.gde.2011.04.003] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 12/22/2022]
Abstract
MicroRNAs regulate temporal transitions in gene expression associated with cell fate progression and differentiation throughout animal development. Genetic analysis of developmental timing in the nematode Caenorhabditis elegans identified two evolutionarily conserved microRNAs, lin-4/mir-125 and let-7, that regulate cell fate progression and differentiation in C. elegans cell lineages. MicroRNAs perform analogous developmental timing functions in other animals, including mammals. By regulating cell fate choices and transitions between pluripotency and differentiation, microRNAs help to orchestrate developmental events throughout the developing animal, and to play tissue homeostasis roles important for disease, including cancer.
Collapse
Affiliation(s)
- Victor Ambros
- UMass Medical School, Molecular Medicine, 373 Plantation St, Worcester, MA 01605, USA.
| |
Collapse
|