101
|
Su C, Gao X, Yang W, Zhao Y, Fu X, Cui X, Zhang C, Xin L, Ren Y, Li L, Shui W, Yang X, Wei M, Yang J. Phosphorylation of Tudor-SN, a novel substrate of JNK, is involved in the efficient recruitment of Tudor-SN into stress granules. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:562-571. [PMID: 28011284 DOI: 10.1016/j.bbamcr.2016.12.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/12/2016] [Accepted: 12/18/2016] [Indexed: 12/24/2022]
Abstract
Posttranslational modifications of certain stress granule (SG) proteins are closely related to the assembly of SGs, a type of cytoplasmic foci structure. Our previous studies revealed that the Tudor staphylococcal nuclease (Tudor-SN) protein participates in the formation of SGs. However, the functional significance of potential Tudor-SN modifications during stress has not been reported. In this study, we demonstrated that the Tudor-SN protein was phosphorylated at threonine 103 (T103) upon stimulation with arsenite. In addition, c-Jun N-terminal kinase (JNK) was found to be responsible for Tudor-SN phosphorylation at the T103 site. We further illustrated that either a T103A mutation or the suppression of phosphorylation of T103 by the JNK inhibitor SP600125 inhibited the efficient recruitment of Tudor-SN into SGs. In addition, the T103A mutation could affect the physical binding of Tudor-SN with the G3BP (Ras-GAP SH3 domain-binding protein) protein but not with the HuR (Hu antigen R) protein and AGTR1-3'UTR (3'-untranslated region of angiotensin II receptor, type 1) mRNA cargo. These data suggested that JNK-enhanced Tudor-SN phosphorylation promotes the interaction between Tudor-SN and G3BP and facilitates the efficient recruitment of Tudor-SN into SGs under conditions of sodium arsenite-induced oxidative stress. This finding provides novel insights into the physiological function of Tudor-SN modification.
Collapse
Affiliation(s)
- Chao Su
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Laboratory of Molecular Immunology, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | - Xingjie Gao
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Laboratory of Molecular Immunology, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | - Wendong Yang
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | - Yali Zhao
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | - Xue Fu
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoteng Cui
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | - Chunyan Zhang
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | - Lingbiao Xin
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | - Yuanyuan Ren
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | - Lixin Li
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Wenqing Shui
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Xi Yang
- Department of Immunology, University of Manitoba, 471 Apotex Centre, 750 McDermot Avenue, Winnipeg R3E 0T5, Canada
| | - Minxin Wei
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin 300070, China.
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Laboratory of Molecular Immunology, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
102
|
Zamyatnin AA. Plant Proteases Involved in Regulated Cell Death. BIOCHEMISTRY (MOSCOW) 2016; 80:1701-15. [PMID: 26878575 DOI: 10.1134/s0006297915130064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Each plant genome encodes hundreds of proteolytic enzymes. These enzymes can be divided into five distinct classes: cysteine-, serine-, aspartic-, threonine-, and metalloproteinases. Despite the differences in their structural properties and activities, members of all of these classes in plants are involved in the processes of regulated cell death - a basic feature of eukaryotic organisms. Regulated cell death in plants is an indispensable mechanism supporting plant development, survival, stress responses, and defense against pathogens. This review summarizes recent advances in studies of plant proteolytic enzymes functioning in the initiation and execution of distinct types of regulated cell death.
Collapse
Affiliation(s)
- A A Zamyatnin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| |
Collapse
|
103
|
Zhang X, Jia R, Zhou J, Wang M, Yin Z, Cheng A. Capsid-Targeted Viral Inactivation: A Novel Tactic for Inhibiting Replication in Viral Infections. Viruses 2016; 8:E258. [PMID: 27657114 PMCID: PMC5035972 DOI: 10.3390/v8090258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/08/2016] [Accepted: 09/15/2016] [Indexed: 12/18/2022] Open
Abstract
Capsid-targeted viral inactivation (CTVI), a conceptually powerful new antiviral strategy, is attracting increasing attention from researchers. Specifically, this strategy is based on fusion between the capsid protein of a virus and a crucial effector molecule, such as a nuclease (e.g., staphylococcal nuclease, Barrase, RNase HI), lipase, protease, or single-chain antibody (scAb). In general, capsid proteins have a major role in viral integration and assembly, and the effector molecule used in CTVI functions to degrade viral DNA/RNA or interfere with proper folding of viral key proteins, thereby affecting the infectivity of progeny viruses. Interestingly, such a capsid-enzyme fusion protein is incorporated into virions during packaging. CTVI is more efficient compared to other antiviral methods, and this approach is promising for antiviral prophylaxis and therapy. This review summarizes the mechanism and utility of CTVI and provides some successful applications of this strategy, with the ultimate goal of widely implementing CTVI in antiviral research.
Collapse
Affiliation(s)
- Xingcui Zhang
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| | - Jiakun Zhou
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| |
Collapse
|
104
|
Tudor staphylococcal nuclease: biochemistry and functions. Cell Death Differ 2016; 23:1739-1748. [PMID: 27612014 DOI: 10.1038/cdd.2016.93] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 08/01/2016] [Indexed: 12/17/2022] Open
Abstract
Tudor staphylococcal nuclease (TSN, also known as Tudor-SN, SND1 or p100) is an evolutionarily conserved protein with invariant domain composition, represented by tandem repeat of staphylococcal nuclease domains and a tudor domain. Conservation along significant evolutionary distance, from protozoa to plants and animals, suggests important physiological functions for TSN. It is known that TSN is critically involved in virtually all pathways of gene expression, ranging from transcription to RNA silencing. Owing to its high protein-protein binding affinity coexistent with enzymatic activity, TSN can exert its biochemical function by acting as both a scaffolding molecule of large multiprotein complexes and/or as a nuclease. TSN is indispensible for normal development and stress resistance, whereas its increased expression is closely associated with various types of cancer. Thus, TSN is an attractive target for anti-cancer therapy and a potent tumor marker. Considering ever increasing interest to further understand a multitude of TSN-mediated processes and a mechanistic role of TSN in these processes, here we took an attempt to summarize and update the available information about this intriguing multifunctional protein.
Collapse
|
105
|
Lokdarshi A, Conner WC, McClintock C, Li T, Roberts DM. Arabidopsis CML38, a Calcium Sensor That Localizes to Ribonucleoprotein Complexes under Hypoxia Stress. PLANT PHYSIOLOGY 2016; 170:1046-59. [PMID: 26634999 PMCID: PMC4734562 DOI: 10.1104/pp.15.01407] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/30/2015] [Indexed: 05/18/2023]
Abstract
During waterlogging and the associated oxygen deprivation stress, plants respond by the induction of adaptive programs, including the redirected expression of gene networks toward the synthesis of core hypoxia-response proteins. Among these core response proteins in Arabidopsis (Arabidopsis thaliana) is the calcium sensor CML38, a protein related to regulator of gene silencing calmodulin-like proteins (rgsCaMs). CML38 transcripts are up-regulated more than 300-fold in roots within 6 h of hypoxia treatment. Transfer DNA insertional mutants of CML38 show an enhanced sensitivity to hypoxia stress, with lowered survival and more severe inhibition of root and shoot growth. By using yellow fluorescent protein (YFP) translational fusions, CML38 protein was found to be localized to cytosolic granule structures similar in morphology to hypoxia-induced stress granules. Immunoprecipitation of CML38 from the roots of hypoxia-challenged transgenic plants harboring CML38pro::CML38:YFP followed by liquid chromatography-tandem mass spectrometry analysis revealed the presence of protein targets associated with messenger RNA ribonucleoprotein (mRNP) complexes including stress granules, which are known to accumulate as messenger RNA storage and triage centers during hypoxia. This finding is further supported by the colocalization of CML38 with the mRNP stress granule marker RNA Binding Protein 47 (RBP47) upon cotransfection of Nicotiana benthamiana leaves. Ruthenium Red treatment results in the loss of CML38 signal in cytosolic granules, suggesting that calcium is necessary for stress granule association. These results confirm that CML38 is a core hypoxia response calcium sensor protein and suggest that it serves as a potential calcium signaling target within stress granules and other mRNPs that accumulate during flooding stress responses.
Collapse
Affiliation(s)
- Ansul Lokdarshi
- Department of Biochemistry and Cellular and Molecular Biology (A.L., W.C.C., C.M., D.M.R.) and Program in Genome Science and Technology (T.L., D.M.R.), University of Tennessee, Knoxville, Tennessee 37996
| | - W Craig Conner
- Department of Biochemistry and Cellular and Molecular Biology (A.L., W.C.C., C.M., D.M.R.) and Program in Genome Science and Technology (T.L., D.M.R.), University of Tennessee, Knoxville, Tennessee 37996
| | - Carlee McClintock
- Department of Biochemistry and Cellular and Molecular Biology (A.L., W.C.C., C.M., D.M.R.) and Program in Genome Science and Technology (T.L., D.M.R.), University of Tennessee, Knoxville, Tennessee 37996
| | - Tian Li
- Department of Biochemistry and Cellular and Molecular Biology (A.L., W.C.C., C.M., D.M.R.) and Program in Genome Science and Technology (T.L., D.M.R.), University of Tennessee, Knoxville, Tennessee 37996
| | - Daniel M Roberts
- Department of Biochemistry and Cellular and Molecular Biology (A.L., W.C.C., C.M., D.M.R.) and Program in Genome Science and Technology (T.L., D.M.R.), University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
106
|
Hafrén A, Lõhmus A, Mäkinen K. Formation of Potato Virus A-Induced RNA Granules and Viral Translation Are Interrelated Processes Required for Optimal Virus Accumulation. PLoS Pathog 2015; 11:e1005314. [PMID: 26641460 PMCID: PMC4671561 DOI: 10.1371/journal.ppat.1005314] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/09/2015] [Indexed: 11/24/2022] Open
Abstract
RNA granules are cellular structures, which play an important role in mRNA translation, storage, and degradation. Animal (+)RNA viruses often co-opt RNA granule proteins for viral reproduction. However, the role of RNA granules in plant viral infections is poorly understood. Here we use Potato virus A (PVA) as a model potyvirus and demonstrate that the helper component-proteinase (HCpro), the potyviral suppressor of RNA silencing, induces the formation of RNA granules. We used confocal microscopy to demonstrate the presence of host RNA binding proteins including acidic ribosomal protein P0, argonaute 1 (AGO1), oligouridylate-binding protein 1 (UBP1), varicose (VCS) and eukaryotic initiation factor iso4E (eIF(iso)4E) in these potyvirus-induced RNA granules. We show that the number of potyviral RNA granules is down-regulated by the genome-linked viral protein (VPg). We demonstrated previously that VPg is a virus-specific translational regulator that co-operates with potyviral RNA granule components P0 and eIF(iso)4E in PVA translation. In this study we show that HCpro and varicose, components of potyviral RNA granules, stimulate VPg-promoted translation of the PVA, whereas UBP1 inhibits this process. Hence, we propose that PVA translation operates via a pathway that is interrelated with potyviral RNA granules in PVA infection. The importance of these granules is evident from the strong reduction in viral RNA and coat protein amounts that follows knock down of potyviral RNA granule components. HCpro suppresses antiviral RNA silencing during infection, and our results allow us to propose that this is also the functional context of the potyviral RNA granules we describe in this study.
Collapse
Affiliation(s)
- Anders Hafrén
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Andres Lõhmus
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Kristiina Mäkinen
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
107
|
Gutierrez-Beltran E. Genome-wide analysis of uncapped mRNAs under heat stress in Arabidopsis. GENOMICS DATA 2015; 5:7-8. [PMID: 26484210 PMCID: PMC4583619 DOI: 10.1016/j.gdata.2015.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/14/2015] [Indexed: 11/06/2022]
Abstract
Recently, we have showed that Tudor Staphylococcal Nuclease (TSN or Tudor-SN) proteins (TSN1 and TSN2) are localized in cytoplasmic messenger ribonucleoprotein (mRNP) complexes called stress granules (SG) and processing bodies (PB) under heat stress in Arabidopsis. One of the primary functions of these mRNP complexes is mRNA decay, which generates uncapped mRNAs by the action of endonucleases and decapping enzymes (Thomas et al., 2011) [1]. In order to figure out whether TSN proteins could be implicated in mRNA decay, we isolated uncapped and total mRNAs of Wild type (WT; Col and Ler) and TSN double knock-out (tsn1tsn2) seedlings grown under heat stress (39 °C for 40 min) and control (23 °C) conditions. Here, we provide the experimental procedure to reproduce the results (NCBI GEO accession number GSE63522) published by Gutierrez-Beltran et al. (2015) in The Plant Cell [2].
Collapse
Affiliation(s)
- Emilio Gutierrez-Beltran
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| |
Collapse
|
108
|
Gutiérrez-Beltran E, Bozhkov PV, Moschou PN. Tudor Staphylococcal Nuclease plays two antagonistic roles in RNA metabolism under stress. PLANT SIGNALING & BEHAVIOR 2015; 10:e1071005. [PMID: 26237081 PMCID: PMC4883894 DOI: 10.1080/15592324.2015.1071005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Adaptation to stress entails a repertoire of molecular pathways that remodel the proteome, thereby promoting selective translation of pro-survival proteins. Yet, translation of other proteins, especially those which are harmful for stress adaptation is, on the contrary, transiently suppressed through mRNA decay or storage. Proteome remodeling under stress is intimately associated with the cytoplasmic ribonucleoprotein (RNP) complexes called stress granules (SGs) and processing bodies (PBs). The molecular composition and regulation of SGs and PBs in plants remain largely unknown. Recently, we identified the Arabidopsis Tudor Staphylococcal Nuclease (TSN, Tudor-SN or SND1) as a SG- and PB-associated protein required for mRNA decapping under stress conditions. Here we show that SGs localize in close proximity to PBs within plant cells that enable the exchange of molecular components. Furthermore, we provide a meta-analysis of mRNA degradome of TSN-deficient plants suggesting that TSN might inhibit the degradation of mRNAs which are involved in stress adaptation. Our results establish TSN as a versatile mRNA regulator during stress.
Collapse
Affiliation(s)
- Emilio Gutiérrez-Beltran
- Department of Plant Biology and Department of Chemistry and Biotechnology; Uppsala BioCenter; Swedish University of Agricultural Sciences and Linnean Center for Plant Biology; Uppsala, Sweden
- Correspondence to: Emilio Gutiérrez-Beltran;
| | - Peter V Bozhkov
- Department of Plant Biology and Department of Chemistry and Biotechnology; Uppsala BioCenter; Swedish University of Agricultural Sciences and Linnean Center for Plant Biology; Uppsala, Sweden
| | - Panagiotis N Moschou
- Department of Plant Biology and Department of Chemistry and Biotechnology; Uppsala BioCenter; Swedish University of Agricultural Sciences and Linnean Center for Plant Biology; Uppsala, Sweden
| |
Collapse
|