101
|
Skousen JL, Merriam SME, Srivannavit O, Perlin G, Wise KD, Tresco PA. Reducing surface area while maintaining implant penetrating profile lowers the brain foreign body response to chronically implanted planar silicon microelectrode arrays. PROGRESS IN BRAIN RESEARCH 2011; 194:167-80. [PMID: 21867802 DOI: 10.1016/b978-0-444-53815-4.00009-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A consistent feature of the foreign body response (FBR), irrespective of the type of implant, is persistent inflammation at the biotic-abiotic interface signaled by biomarkers of macrophage/microglial activation. Since macrophage-secreted factors shape the foreign body reaction, implant designs that reduce macrophage activation should improve biocompatibility and, with regard to recording devices, should improve reliability and longevity. At present, it is unclear whether the goal of seamless integration is possible or whether electrode developers can modulate specific aspects of the FBR by intentionally manipulating the constitutive properties of the implant. To explore this area, we studied the chronic brain FBR to planar solid silicon microelectrode arrays and planar lattice arrays with identical penetrating profiles but with reduced surface area in rats after an 8-week indwelling period. Using quantitative immunohistochemistry, we found that presenting less surface area after equivalent iatrogenic injury is accompanied by significantly less persistent macrophage activation, decreased blood brain barrier leakiness, and reduced neuronal cell loss. Our findings show that it is possible for implant developers to modulate specific aspects of the FBR by intentionally manipulating the constitutive properties of the implant. Our results also support the theory that the FBR to implanted electrode arrays, and likely other implants, can be explained by the presence of macrophages at the biotic-abiotic interface, which act as a sustained delivery source of bioactive agents that diffuse into the adjacent tissue and shape various features of the brain FBR. Further, our findings suggest that one method to improve the recording consistency and lifetime of implanted microelectrode arrays is to design implants that reduce the amount of macrophage activation at the biotic-abiotic interface and/or enhance the clearance or impact of their released factors.
Collapse
Affiliation(s)
- John L Skousen
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | | |
Collapse
|
102
|
In Vivo Electrical Conductivity across Critical Nerve Gaps Using Poly(3,4-ethylenedioxythiophene)-Coated Neural Interfaces. Plast Reconstr Surg 2010; 126:1865-1873. [DOI: 10.1097/prs.0b013e3181f61848] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
103
|
A comparison of the tissue response to chronically implanted Parylene-C-coated and uncoated planar silicon microelectrode arrays in rat cortex. Biomaterials 2010; 31:9163-72. [DOI: 10.1016/j.biomaterials.2010.05.050] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 05/20/2010] [Indexed: 11/21/2022]
|
104
|
1/f neural noise reduction and spike feature extraction using a subset of informative samples. Ann Biomed Eng 2010; 39:1264-77. [PMID: 21086046 DOI: 10.1007/s10439-010-0201-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/03/2010] [Indexed: 10/18/2022]
Abstract
This article describes a study on neural noise and neural signal feature extraction, targeting real-time spike sorting with miniaturized microchip implementation. Neuronal signature, noise shaping, and adaptive bandpass filtering are reported as the techniques to enhance the signal-to-noise ratio (SNR). A subset of informative samples of the waveforms is extracted as features for classification. Quantitative and comparative experiments with both synthesized and animal data are included to evaluate different feature extraction approaches. In addition, a preliminary hardware implementation has been realized using an integrated circuit.
Collapse
|
105
|
Mercanzini A, Reddy ST, Velluto D, Colin P, Maillard A, Bensadoun JC, Hubbell JA, Renaud P. Controlled release nanoparticle-embedded coatings reduce the tissue reaction to neuroprostheses. J Control Release 2010; 145:196-202. [DOI: 10.1016/j.jconrel.2010.04.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 04/26/2010] [Accepted: 04/27/2010] [Indexed: 11/28/2022]
|
106
|
McCreery D, Pikov V, Troyk PR. Neuronal loss due to prolonged controlled-current stimulation with chronically implanted microelectrodes in the cat cerebral cortex. J Neural Eng 2010; 7:036005. [PMID: 20460692 PMCID: PMC2921317 DOI: 10.1088/1741-2560/7/3/036005] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Activated iridium microelectrodes were implanted for 450-1282 days in the sensorimotor cortex of seven adult domestic cats and then pulsed for 240 h (8 h per day for 30 days) at 50 Hz. Continuous stimulation at 2 nC/phase and with a geometric charge density of 100 microC cm(-2) produced no detectable change in neuronal density in the tissue surrounding the microelectrode tips. However, pulsing with a continuous 100% duty cycle at 4 nC/phase and with a geometric charge density of 200 microC cm(-2) induced loss of cortical neurons over a radius of at least 150 microm from the electrode tips. The same stimulus regimen but with a duty cycle of 50% (1 s of stimulation, and then 1 s without stimulation repeated for 8 h) produced neuronal loss within a smaller radius, approximately 60 microm from the center of the electrode tips. However, there also was significant loss of neurons surrounding the unpulsed electrodes, presumably as a result of mechanical injury due to their insertion into and long-term residence in the tissue, and this was responsible for most of the neuronal loss within 150 microm of the electrodes pulsed with the 50% duty cycle.
Collapse
Affiliation(s)
- Douglas McCreery
- Neural Engineering Program, Huntington Medical Research Institutes, Pasadena, CA 91105, USA.
| | | | | |
Collapse
|
107
|
Grand L, Wittner L, Herwik S, Göthelid E, Ruther P, Oscarsson S, Neves H, Dombovári B, Csercsa R, Karmos G, Ulbert I. Short and long term biocompatibility of NeuroProbes silicon probes. J Neurosci Methods 2010; 189:216-29. [PMID: 20399227 DOI: 10.1016/j.jneumeth.2010.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/12/2010] [Accepted: 04/08/2010] [Indexed: 12/01/2022]
Affiliation(s)
- László Grand
- Institute for Psychology, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Marin C, Fernández E. Biocompatibility of intracortical microelectrodes: current status and future prospects. FRONTIERS IN NEUROENGINEERING 2010; 3:8. [PMID: 20577634 PMCID: PMC2889721 DOI: 10.3389/fneng.2010.00008] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Accepted: 05/05/2010] [Indexed: 11/17/2022]
Abstract
Rehabilitation of sensory and/or motor functions in patients with neurological diseases is more and more dealing with artificial electrical stimulation and recording from populations of neurons using biocompatible chronic implants. As more and more patients have benefited from these approaches, the interest in neural interfaces has grown significantly. However an important problem reported with all available microelectrodes to date is long-term viability and biocompatibility. Therefore it is essential to understand the signals that lead to neuroglial activation and create a targeted intervention to control the response, reduce the adverse nature of the reactions and maintain an ideal environment for the brain-electrode interface. We discuss some of the exciting opportunities and challenges that lie in this intersection of neuroscience research, bioengineering, neurology and biomaterials.
Collapse
Affiliation(s)
- Cristina Marin
- Institute of Bioengineering, University Miguel Hernández Elche, Spain
| | | |
Collapse
|
109
|
Sommakia S, Rickus JL, Otto KJ. Effects of adsorbed proteins, an antifouling agent and long-duration DC voltage pulses on the impedance of silicon-based neural microelectrodes. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2009:7139-42. [PMID: 19963693 DOI: 10.1109/iembs.2009.5332456] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The successful use of implantable neural microelectrodes as neuroprosthetic devices depends on the mitigation of the reactive tissue response of the brain. One of the factors affecting the ultimate severity of the reactive tissue response and the in vivo electrical properties of the microelectrodes is the initial adsorption of proteins onto the surface of the implanted microelectrodes. In this study we quantify the increase in microelectrode impedance magnitude at physiological frequencies following electrode immersion in a 10% bovine serum albumin (BSA) solution. We also demonstrate the efficacy of a common antifouling molecule, poly(ethylene glycol) (PEG), in preventing a significant increase in microelectrode impedance. In addition, we show the feasibility of using long-duration DC voltage pulses to remove adsorbed proteins from the microelectrode surface.
Collapse
Affiliation(s)
- Salah Sommakia
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47906, USA.
| | | | | |
Collapse
|
110
|
Winslow BD, Tresco PA. Quantitative analysis of the tissue response to chronically implanted microwire electrodes in rat cortex. Biomaterials 2010; 31:1558-67. [DOI: 10.1016/j.biomaterials.2009.11.049] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 11/17/2009] [Indexed: 10/20/2022]
|
111
|
Leach JB, Achyuta AKH, Murthy SK. Bridging the Divide between Neuroprosthetic Design, Tissue Engineering and Neurobiology. FRONTIERS IN NEUROENGINEERING 2010; 2:18. [PMID: 20161810 PMCID: PMC2821180 DOI: 10.3389/neuro.16.018.2009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 12/28/2009] [Indexed: 11/19/2022]
Abstract
Neuroprosthetic devices have made a major impact in the treatment of a variety of disorders such as paralysis and stroke. However, a major impediment in the advancement of this technology is the challenge of maintaining device performance during chronic implantation (months to years) due to complex intrinsic host responses such as gliosis or glial scarring. The objective of this review is to bring together research communities in neurobiology, tissue engineering, and neuroprosthetics to address the major obstacles encountered in the translation of neuroprosthetics technology into long-term clinical use. This article draws connections between specific challenges faced by current neuroprosthetics technology and recent advances in the areas of nerve tissue engineering and neurobiology. Within the context of the device-nervous system interface and central nervous system implants, areas of synergistic opportunity are discussed, including platforms to present cells with multiple cues, controlled delivery of bioactive factors, three-dimensional constructs and in vitro models of gliosis and brain injury, nerve regeneration strategies, and neural stem/progenitor cell biology. Finally, recent insights gained from the fields of developmental neurobiology and cancer biology are discussed as examples of exciting new biological knowledge that may provide fresh inspiration toward novel technologies to address the complexities associated with long-term neuroprosthetic device performance.
Collapse
Affiliation(s)
- Jennie B. Leach
- Department of Chemical and Biochemical Engineering, University of MarylandBaltimore, MD, USA
| | | | - Shashi K. Murthy
- Department of Chemical Engineering, Northeastern UniversityBoston, MA, USA
| |
Collapse
|
112
|
Frampton JP, Hynd MR, Shuler ML, Shain W. Effects of Glial Cells on Electrode Impedance Recorded from Neural Prosthetic Devices In Vitro. Ann Biomed Eng 2010; 38:1031-47. [DOI: 10.1007/s10439-010-9911-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
113
|
Merfeld DM, Priesol A, Lee D, Lewis RF. Potential solutions to several vestibular challenges facing clinicians. J Vestib Res 2010; 20:71-7. [PMID: 20555169 PMCID: PMC2888506 DOI: 10.3233/ves-2010-0347] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Among other problems, patients with vestibular problems suffer imbalance, spatial disorientation, and blurred vision. These problems lead to varying degrees of disability and can be debilitating. Unfortunately, a large number of patients with vestibular complaints cannot be diagnosed with the clinical tests available today. Nor do we have treatments for all patients that we can diagnose. These clinical problems provide challenges to and opportunities for the field of vestibular research. In this paper, we discuss some new diagnostic and treatment options that could become available for tomorrow's patients. As a new diagnostic, we have begun measuring patient's perceptual direction-detection thresholds. Preliminary results appear encouraging; patients diagnosed with bilateral loss have yaw rotation thresholds almost ten times greater than normals, while patients diagnosed with migraine associated vertigo have roll tilt thresholds well below normal at 0.1 Hz. As a new treatment, we have performed animal studies looking at responses evoked by electrical stimulation provided by a vestibular prosthesis. Results measuring the VOR demonstrate promise and preliminary studies of balance and perception are also encouraging. While electrical stimulation is a standard means of stimulation, optical stimulation is also being investigated as a way to improve prosthetic stimulation specificity.
Collapse
Affiliation(s)
- Daniel M Merfeld
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
114
|
The Electrochemistry of Charge Injection at the Electrode/Tissue Interface. IMPLANTABLE NEURAL PROSTHESES 2 2010. [DOI: 10.1007/978-0-387-98120-8_4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
115
|
Moxon K, Morizio J, Chapin J, Nicolelis M, Wolf P. Designing a Brain-Machine Interface for Neuroprosthetic Control. ACTA ACUST UNITED AC 2009. [DOI: 10.1201/9781420039054.pt2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
116
|
Long-Term Recordings of Multiple, Single-Neurons for Clinical Applications: The Emerging Role of the Bioactive Microelectrode. MATERIALS 2009. [PMCID: PMC5525202 DOI: 10.3390/ma2041762] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In 1999 we reported an important demonstration of a working brain-machine interface (BMI), in which recordings from multiple, single neurons in sensorimotor cortical areas of rats were used to directly control a robotic arm to retrieve a water reward. Subsequent studies in monkeys, using a similar approach, demonstrated that primates can use a BMI device to control a cursor on a computer screen and a robotic arm. Recent studies in humans with spinal cord injuries have shown that recordings from multiple, single neurons can be used by the patient to control the cursor on a computer screen. The promise is that one day it will be possible to use these control signals from neurons to re-activate the patient’s own limbs. However, the ability to record from large populations of single neurons for long periods of time has been hampered because either the electrode itself fails or the immunological response in the tissue surrounding the microelectrode produces a glial scar, preventing single-neuron recording. While we have largely solved the problem of mechanical or electrical failure of the electrode itself, much less is known about the long term immunological response to implantation of a microelectrode, its effect on neuronal recordings and, of greatest importance, how it can be reduced to allow long term single neuron recording. This article reviews materials approaches to resolving the glial scar to improve the longevity of recordings. The work to date suggests that approaches utilizing bioactive interventions that attempt to alter the glial response and attract neurons to the recording site are likely to be the most successful. Importantly, measures of the glial scar alone are not sufficient to assess the effect of interventions. It is imperative that recordings of single neurons accompany any study of glial activation because, at this time, we do not know the precise relationship between glial activation and loss of neuronal recordings. Moreover, new approaches to immobilize bioactive molecules on microelectrode surfaces while maintaining their functionality may open new avenues for very long term single neuron recording. Finally, it is important to have quantitative measures of glial upregulation and neuronal activity in order to assess the relationship between the two. These types of studies will help rationalize the study of interventions to improve the longevity of recordings from microelectrodes.
Collapse
|
117
|
Bossi S, Kammer S, Dörge T, Menciassi A, Hoffmann KP, Micera S. An implantable microactuated intrafascicular electrode for peripheral nerves. IEEE Trans Biomed Eng 2009; 56:2701-6. [PMID: 19758853 DOI: 10.1109/tbme.2009.2031169] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Important advancements have been recently achieved in the field of neural interfaces to restore lost sensory and motor functions. The aim of this letter was to develop an innovative approach to increase the selectivity and the lifetime of polyimide-based intrafascicular electrodes. The main idea was to obtain a neural interface that is able to restore a good signal quality by improving the electrical connection between the active sites and the surrounding axons. The high flexibility of polyimide-based neural interfaces allows to embed microactuators in the interface core and achieve desired microdisplacements of the active sites. Nearly equiatomic nickel-titanium alloy was selected as a microactuator because of its shape memory effect. A single TiNi thin film was obtained by dc magnetron sputtering, and was segmented into four distinct sectors. This solution allowed the independent actuation of the different active sites (multiactuation). A corrugated profile was impressed to the new actuated intraneural (ACTIN) interface. The active sites were positioned in correspondence to the peaks of the corrugation, thus maximizing the effects of the single actuations. The technological results, the electrical properties, the thermal behavior, and eventually, the actuation performances of the current ACTIN prototype are shown and discussed. The actuation cycle was thermally compatible for biomedical applications. Promising results were obtained from the current ACTIN prototype with an average controlled movement of 7 microm of the peaks.
Collapse
Affiliation(s)
- Silvia Bossi
- Advanced Robotics Technology and Systems Laboratory, Scuola Superiore Sant'Anna, Pontedera I-56025, Italy.
| | | | | | | | | | | |
Collapse
|
118
|
McConnell GC, Rees HD, Levey AI, Gutekunst CA, Gross RE, Bellamkonda RV. Implanted neural electrodes cause chronic, local inflammation that is correlated with local neurodegeneration. J Neural Eng 2009; 6:056003. [PMID: 19700815 DOI: 10.1088/1741-2560/6/5/056003] [Citation(s) in RCA: 298] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Prosthetic devices that are controlled by intracortical electrodes recording one's 'thoughts' are a reality today, and no longer merely in the realm of science fiction. However, widespread clinical use of implanted electrodes is hampered by a lack of reliability in chronic recordings, independent of the type of electrodes used. One major hypothesis has been that astroglial scar electrically impedes the electrodes. However, there is a temporal discrepancy between stabilization of scar's electrical properties and recording failure with recording failure lagging by 1 month. In this study, we test a possible explanation for this discrepancy: the hypothesis that chronic inflammation, due to the persistent presence of the electrode, causes a local neurodegenerative state in the immediate vicinity of the electrode. Through modulation of chronic inflammation via stab wound, electrode geometry and age-matched control, we found that after 16 weeks, animals with an increased level of chronic inflammation were associated with increased neuronal and dendritic, but not axonal, loss. We observed increased neuronal and dendritic loss 16 weeks after implantation compared to 8 weeks after implantation, suggesting that the local neurodegenerative state is progressive. After 16 weeks, we observed axonal pathology in the form of hyperphosphorylation of the protein tau in the immediate vicinity of the microelectrodes (as observed in Alzheimer's disease and other tauopathies). The results of this study suggest that a local, late onset neurodegenerative disease-like state surrounds the chronic electrodes and is a potential cause for chronic recording failure. These results also inform strategies to enhance our capability to attain reliable long-term recordings from implantable electrodes in the CNS.
Collapse
Affiliation(s)
- George C McConnell
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, 30332, USA
| | | | | | | | | | | |
Collapse
|
119
|
Yaeli S, Binyamin E, Shoham S. Form-function relations in cone-tipped stimulating microelectrodes. FRONTIERS IN NEUROENGINEERING 2009; 2:13. [PMID: 19680467 PMCID: PMC2726034 DOI: 10.3389/neuro.16.013.2009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 07/20/2009] [Indexed: 11/30/2022]
Abstract
Metal microelectrodes are widely used in neuroscience research, and could potentially replace macroelectrodes in various neuro-stimulation applications where their small size, specificity, and their ability to also measure unit activity are desirable. The design of stimulating microelectrodes for specific applications requires knowledge on how tip geometry affects function, but several fundamental aspects of this relationship are not yet well understood. This study uses a combined experimental and physical finite elements simulation approach to formulate three new relationships between the geometrical and electrical properties of stimulating cone-tipped tungsten microelectrodes: (1) The empirical relationship between microelectrode 1-kHz impedance and the exposed tip surface area is best approximated by an inverse square-root function (as expected for a cone-tipped resistive interface). (2) Tip angle plays a major role in determining current distribution along the tip, and as a consequence crucially affects the charge injection capacity of a microelectrode. (3) The critical current for the onset of corrosion is independent of tip surface area in sharp microelectrodes.
Collapse
Affiliation(s)
- Steve Yaeli
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology Israel
| | | | | |
Collapse
|
120
|
|
121
|
Flavopiridol reduces the impedance of neural prostheses in vivo without affecting recording quality. J Neurosci Methods 2009; 183:149-57. [PMID: 19560490 DOI: 10.1016/j.jneumeth.2009.06.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 06/17/2009] [Accepted: 06/18/2009] [Indexed: 02/04/2023]
Abstract
We hypothesized that re-entry into the cell cycle may be associated with reactive gliosis surrounding neural prostheses, and that administration of a cell cycle inhibitor (flavopiridol) at the time of surgery would reduce this effect. We investigated the effects of flavopiridol on recording quality and impedance over a 28-day time period and conducted histology at 3 and 28 days post-implantation. Flavopiridol reduced the expression of a cell cycle protein (cyclin D1) in microglia surrounding probes at the 3-day time point. Impedance at 1 kHz was decreased by drug administration across the study period compared to vehicle controls. Correlations between recording (SNR, units) and impedance metrics revealed a small, but statistically significant, inverse relationship between these variables. However, the relationship between impedance and recording quality was not sufficiently strong for flavopiridol to result in an improvement in SNR or the number of units detected. Our data indicate that flavopiridol is an effective, easily administered treatment for reducing impedance in vivo, potentially through inhibiting microglial encapsulation of implanted devices. This strategy may be useful in stimulation applications, where reduced impedance is desirable for achieving activation thresholds and prolonging the lifetime of the implanted power supply. While improvements in recording quality were not observed, a combination of flavopiridol with a second strategy which enhances neuronal signal detection may enhance these results in future studies.
Collapse
|
122
|
Abstract
Repositioning microelectrodes post-implantation is emerging as a promising approach to achieve long-term reliability in single neuronal recordings. The main goal of this study was to (a) assess glial reaction in response to movement of microelectrodes in the brain post-implantation and (b) determine an optimal window of time post-implantation when movement of microelectrodes within the brain would result in minimal glial reaction. Eleven Sprague-Dawley rats were implanted with two microelectrodes each that could be moved in vivo post-implantation. Three cohorts were investigated: (1) microelectrode moved at day 2 (n = 4 animals), (2) microelectrode moved at day 14 (n = 5 animals) and (3) microelectrode moved at day 28 (n = 2 animals). Histological evaluation was performed in cohorts 1-3 at four-week post-movement (30 days, 42 days and 56 days post-implantation, respectively). In addition, five control animals were implanted with microelectrodes that were not moved. Control animals were implanted for (1) 30 days (n = 1), (2) 42 days (n = 2) and (3) 56 days (n = 2) prior to histological evaluation. Quantitative assessment of glial fibrillary acidic protein (GFAP) around the tip of the microelectrodes demonstrated that GFAP levels were similar around microelectrodes moved at day 2 when compared to the 30-day controls. However, GFAP expression levels around microelectrode tips that moved at day 14 and day 28 were significantly less than those around control microelectrodes implanted for 42 and 56 days, respectively. Therefore, we conclude that moving microelectrodes after implantation is a viable strategy that does not result in any additional damage to brain tissue. Further, moving the microelectrode downwards after 14 days of implantation may actually reduce the levels of GFAP expression around the tips of the microelectrodes in the long term.
Collapse
Affiliation(s)
- Paula Stice
- Department of Bioengineering, Arizona State University, Tempe, AZ 85287-9709, USA
| | | |
Collapse
|
123
|
Ward MP, Rajdev P, Ellison C, Irazoqui PP. Toward a comparison of microelectrodes for acute and chronic recordings. Brain Res 2009; 1282:183-200. [PMID: 19486899 DOI: 10.1016/j.brainres.2009.05.052] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 04/27/2009] [Accepted: 05/20/2009] [Indexed: 11/28/2022]
Abstract
Several variations of microelectrode arrays are used to record and stimulate intracortical neuronal activity. Bypassing the immune response to maintain a stable recording interface remains a challenge. Companies and researchers are continuously altering the material compositions and geometries of the arrays in order to discover a combination that allows for a chronic and stable electrode-tissue interface. From this interface, they wish to obtain consistent quality recordings and a stable, low impedance pathway for charge injection over extended periods of time. Despite numerous efforts, no microelectrode array design has managed to evade the host immune response and remain fully functional. This study is an initial effort comparing several microelectrode arrays with fundamentally different configurations for use in an implantable epilepsy prosthesis. Specifically, NeuroNexus (Michigan) probes, Cyberkinetics (Utah) Silicon and Iridium Oxide arrays, ceramic-based thin-film microelectrode arrays (Drexel), and Tucker-Davis Technologies (TDT) microwire arrays are evaluated over a 31-day period in an animal model. Microelectrodes are compared in implanted rats through impedance, charge capacity, signal-to-noise ratio, recording stability, and elicited immune response. Results suggest significant variability within and between microelectrode types with no clear superior array. Some applications for the microelectrode arrays are suggested based on data collected throughout the longitudinal study. Additionally, specific limitations of assaying biological phenomena and comparing fundamentally different microelectrode arrays in a highly variable system are discussed with suggestions on how to improve the reliability of observed results and steps needed to develop a more standardized microelectrode design.
Collapse
Affiliation(s)
- Matthew P Ward
- Weldon School of Biomedical Engineering, Purdue University, MJIS 2083, 206 S Martin Jischke Drive West Lafayette, IN 47907 USA.
| | | | | | | |
Collapse
|
124
|
Polikov VS, Su EC, Ball MA, Hong JS, Reichert WM. Control protocol for robust in vitro glial scar formation around microwires: essential roles of bFGF and serum in gliosis. J Neurosci Methods 2009; 181:170-7. [PMID: 19447137 DOI: 10.1016/j.jneumeth.2009.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 04/30/2009] [Accepted: 05/03/2009] [Indexed: 10/20/2022]
Abstract
Previously, we reported an in vitro cell culture model that recreates many of the hallmarks of glial scarring around electrodes used for recording in the brain; however, the model lacked the reproducibility necessary to establish a useful characterization tool. This methods paper describes a protocol, modeled on protocols typically used to culture neural stem/precursor cells, that generates a predictable positive control of an intense scarring reaction. Six independent cell culture variables (growth media, seeding density, bFGF addition day, serum concentration in treatment media, treatment day, and duration of culture) were varied systematically and the resulting scars were quantified. The following conditions were found to give the highest level of scarring: Neurobasal medium supplemented with B27, 10% fetal bovine serum at treatment, 10 ng/ml b-FGF addition at seeding and at treatment, treatment at least 6 days after seeding and scar growth of at least 5 days. Seeding density did not affect scarring as long as at least 500,000 cells were seeded per well, but appropriate media, bFGF, and serum were essential for significant scar formation-insights that help validate the in vitro-based approach to understanding glial scarring. With the control protocol developed in this study producing a strong, reproducible glial scarring positive control with every dissection, this culture model is suitable for the in vitro study of the mechanisms behind glial scarring and neuroelectrode failure.
Collapse
Affiliation(s)
- Vadim S Polikov
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | | | | | | |
Collapse
|
125
|
Purcell EK, Seymour JP, Yandamuri S, Kipke DR. In vivo evaluation of a neural stem cell-seeded prosthesis. J Neural Eng 2009; 6:026005. [PMID: 19287078 DOI: 10.1088/1741-2560/6/2/026005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neural prosthetics capable of recording or stimulating neuronal activity may restore function for patients with motor and sensory deficits resulting from injury or degenerative disease. However, overcoming inconsistent recording quality and stability in chronic applications remains a significant challenge. A likely reason for this is the reactive tissue response to the devices following implantation into the brain, which is characterized by neuronal loss and glial encapsulation. We have developed a neural stem cell-seeded probe to facilitate integration of a synthetic prosthesis with the surrounding brain tissue. We fabricated parylene devices that include an open well seeded with neural stem cells encapsulated in an alginate hydrogel scaffold. Quantitative and qualitative data describing the distribution of neuronal, glial, and progenitor cells surrounding seeded and control devices are reported over four time points spanning 3 months. Neuronal loss and glial encapsulation associated with cell-seeded probes were mitigated during the initial week of implantation and exacerbated by 6 weeks post-insertion compared to control conditions. We hypothesize that graft cells secrete neuroprotective and neurotrophic factors that effect the desired healing response early in the study, with subsequent cell death and scaffold degradation accounting for a reversal of these results later. Applications of this biohybrid technology include future long-term neural recording and sensing studies.
Collapse
Affiliation(s)
- E K Purcell
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Ave., Ann Arbor, MI 48109-2099, USA.
| | | | | | | |
Collapse
|
126
|
Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J Neurosci 2009; 28:11830-8. [PMID: 19005048 DOI: 10.1523/jneurosci.3879-08.2008] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
127
|
Ludwig KA, Miriani RM, Langhals NB, Joseph MD, Anderson DJ, Kipke DR. Using a common average reference to improve cortical neuron recordings from microelectrode arrays. J Neurophysiol 2008; 101:1679-89. [PMID: 19109453 DOI: 10.1152/jn.90989.2008] [Citation(s) in RCA: 247] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we propose and evaluate a technique known as common average referencing (CAR) to generate a more ideal reference electrode for microelectrode recordings. CAR is a computationally simple technique, and therefore amenable to both on-chip and real-time applications. CAR is commonly used in EEG, where it is necessary to identify small signal sources in very noisy recordings. To study the efficacy of common average referencing, we compared CAR to both referencing with a stainless steel bone-screw and a single microelectrode site. Data consisted of in vivo chronic recordings in anesthetized Sprague-Dawley rats drawn from prior studies, as well as previously unpublished data. By combining the data from multiple studies, we generated and analyzed one of the more comprehensive chronic neural recording datasets to date. Reference types were compared in terms of noise level, signal-to-noise ratio, and number of neurons recorded across days. Common average referencing was found to drastically outperform standard types of electrical referencing, reducing noise by >30%. As a result of the reduced noise floor, arrays referenced to a CAR yielded almost 60% more discernible neural units than traditional methods of electrical referencing. CAR should impart similar benefits to other microelectrode recording technologies-for example, chemical sensing-where similar differential recording concepts apply. In addition, we provide a mathematical justification for CAR using Gauss-Markov theorem and therefore help place the application of CAR into a theoretical context.
Collapse
Affiliation(s)
- Kip A Ludwig
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
| | | | | | | | | | | |
Collapse
|
128
|
Gabriel G, Gómez R, Bongard M, Benito N, Fernández E, Villa R. Easily made single-walled carbon nanotube surface microelectrodes for neuronal applications. Biosens Bioelectron 2008; 24:1942-8. [PMID: 19056255 DOI: 10.1016/j.bios.2008.09.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 09/24/2008] [Accepted: 09/25/2008] [Indexed: 11/28/2022]
Abstract
The present work examines the feasibility of a simple method for using single-walled carbon nanotubes (SWNT) to fabricate multielectrode arrays (MEA) for electrophysiological recordings. A suspension of purified SWNTs produced by arc discharged was directly deposited onto standard platinum electrodes. The in vitro impedance and electrochemical characterizations demonstrated the enhanced electrical properties of the SWNT microelectrode array. To test its functionality we performed extracellular ganglion cell recordings in isolated superfused rabbit retinas. Our results showed that SWNT based electrode arrays have potential advantages over metal electrodes and can be successfully used to record the single and multi-unit activity of ganglion cell populations.
Collapse
Affiliation(s)
- Gemma Gabriel
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Bellaterra, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
129
|
Abstract
Biomaterials are widely used to help treat neurological disorders and/or improve functional recovery in the central nervous system (CNS). This article reviews the application of biomaterials in (i) shunting systems for hydrocephalus, (ii) cortical neural prosthetics, (iii) drug delivery in the CNS, (iv) hydrogel scaffolds for CNS repair, and (v) neural stem cell encapsulation for neurotrauma. The biological and material requirements for the biomaterials in these applications are discussed. The difficulties that the biomaterials might face in each application and the possible solutions are also reviewed in this article.
Collapse
Affiliation(s)
- Yinghui Zhong
- Neurological Biomaterials and Therapeutics, Laboratory for Neuroengineering, Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA 30332, USA
| | | |
Collapse
|
130
|
Seymour JP, Kipke DR. Fabrication of polymer neural probes with sub-cellular features for reduced tissue encapsulation. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2008; 2006:4606-9. [PMID: 17947102 DOI: 10.1109/iembs.2006.260528] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Intracortical microelectrodes currently have great potential as a neural prosthesis in patients with neurodegenerative disease or spinal cord injury. In an effort to improve the consistency of neural probe performance, many modifications to probe design are focused on reducing the tissue encapsulation. Since researchers have shown that small polymer fibers (less than 7-microm diameter) induce a small to non-existent encapsulation layer in the rat subcutis, we have proposed a neural probe design with similarly small diameter structures. This paper discusses the fabrication and design parameters of a microscale neural probe with a sub-cellular lattice structure. We developed a microfabrication process using SU-8 and parylene-C to create the relatively thick probe shank and thin lateral arms. The stiff penetrating shank (70-microm by 42-microm) had an SU-8 core that allowed control over stiffness and simplified the process. Parylene-only structures lateral to the shank could be defined with a 4-microm feature-size to meet our sub-cellular criterion. We fabricated four varying geometries for implantation into the neocortex of seven Sprague-Dawley rats. Our in vivo testing verifies that despite the flexible substrate and small dimensions (4-microm x 5-microm), these devices are mechanically robust and practical as neural probes. These devices provide an important tool for neural engineers to investigate the tissue response around sub-cellular structures and potentially improve device efficacy.
Collapse
Affiliation(s)
- John P Seymour
- Biomed. Eng. Dept., Michigan Univ., Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
131
|
Johnson MD, Langhals NB, Kipke DR. Neural interface dynamics following insertion of hydrous iridium oxide microelectrode arrays. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2008; 2006:3178-81. [PMID: 17947012 DOI: 10.1109/iembs.2006.260521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Studies examining traumatic brain injury have suggested a 'window of opportunity' exists for therapeutic agents to mitigate edema and cellular toxicity effectively. However, successful therapy also relies on identifying the extent of blood-brain barrier disruption, which is associated with excessive extra-cellular concentrations of ions, excitatory amino acids, and serum proteins. The following study investigates the use of pH-selective hydrous iridium oxide microelectrodes to assess trauma following insertion of a neural probe. Electrochemical activation of iridium microelectrode arrays was performed in either acidic (0.5 M H2SO4) or weak basic (0.3 M Na2HPO4, pH=8.56) solutions. Both oxides demonstrated super-Nernstian pH sensitivity (-88.5 mV/pH and -77.1 mV/pH, respectively) with little interference by other cations. Data suggest that acid-grown oxide provides better potential stability than base-grown oxide (sigma=2.8 versus 4.9 mV over 5 hours). Implantation of these electrodes into motor cortex and dorsal striatum revealed significant acidosis during and following insertion. Variability in the spatiotemporal pH profile included micro-scale inhomogeneities along the probe shank and significant differences in the averaged pH response between successive insertions using the same depth and speed. This diagnostic technology has important implications for intervention therapies in order to more effectively treat acute surgical brain trauma.
Collapse
|
132
|
Moxon KA, Hallman S, Aslani A, Kalkhoran NM, Lelkes PI. Bioactive properties of nanostructured porous silicon for enhancing electrode to neuron interfaces. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2008; 18:1263-81. [PMID: 17939885 DOI: 10.1163/156856207782177882] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many different types of microelectrodes have been developed for use as a direct brain-machine interface (BMI) to chronically recording single-neuron action potentials from ensembles of neurons. Unfortunately, the recordings from these microelectrode devices are not consistent and often last for only on the order of months. For most microelectrode types, the loss of these recordings is not due to failure of the electrodes, but most likely due to damage to surrounding tissue that results in the formation of non-conductive glial scar. Since the extracellular matrix consists of nanostructured fibrous protein assemblies, we have postulated that neurons may prefer a more complex surface structure than the smooth surface typical of thin-film microelectrodes. This porous structure could then act as a drug-delivery reservoir to deliver bioactive agents to aid in the repair or survival of cells around the microelectrode, further reducing the glial scar. We, therefore, investigated the suitability of a nanoporous silicon surface layer to increase the biocompatibility of our thin film ceramic-insulated multisite electrodes. In vitro testing demonstrated increased extension of neurites from PC12 pheochromocytoma cells on porous silicon surfaces compared to smooth silicon surfaces. Moreover, the size of the pores and the pore coverage did not interfere with this bioactive surface property, suggesting that large highly porous nanostructured surfaces can be used for drug delivery. The most porous nanoporous surfaces were then tested in vivo and found to be more biocompatible than smooth surface, producing less glial activation and allowing more neurons to remain close to the device. Collectively, these results support our hypothesis that nanoporous silicon may be an ideal material to improve biocompatibility of chronically implanted microelectrodes. The next step in this work will be to apply these surfaces to active microelectrodes, use them to deliver bioactive agents, and test that they do improve neural recordings.
Collapse
Affiliation(s)
- K A Moxon
- Drexel, University, School of Biomedical Engineering, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
133
|
|
134
|
Continuous high-frequency stimulation in freely moving rats: Development of an implantable microstimulation system. J Neurosci Methods 2008; 167:278-91. [DOI: 10.1016/j.jneumeth.2007.08.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 08/23/2007] [Accepted: 08/23/2007] [Indexed: 11/21/2022]
|
135
|
Williams JC, Hippensteel JA, Dilgen J, Shain W, Kipke DR. Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants. J Neural Eng 2007; 4:410-23. [PMID: 18057508 DOI: 10.1088/1741-2560/4/4/007] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A series of animal experiments was conducted to characterize changes in the complex impedance of chronically implanted electrodes in neural tissue. Consistent trends in impedance changes were observed across all animals, characterized as a general increase in the measured impedance magnitude at 1 kHz. Impedance changes reach a peak approximately 7 days post-implant. Reactive responses around individual electrodes were described using immuno- and histo-chemistry and confocal microscopy. These observations were compared to measured impedance changes. Several features of impedance changes were able to differentiate between confined and extensive histological reactions. In general, impedance magnitude at 1 kHz was significantly increased in extensive reactions, starting about 4 days post-implant. Electrodes with extensive reactions also displayed impedance spectra with a characteristic change at high frequencies. This change was manifested in the formation of a semi-circular arc in the Nyquist space, suggestive of increased cellular density in close proximity to the electrode site. These results suggest that changes in impedance spectra are directly influenced by cellular distributions around implanted electrodes over time and that impedance measurements may provide an online assessment of cellular reactions to implanted devices.
Collapse
Affiliation(s)
- Justin C Williams
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA.
| | | | | | | | | |
Collapse
|
136
|
Oweiss KG. A MIMO channel approach for characterizing electrode-tissue interface in long-term chronic microelectrode array recordings. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2006:3357-60. [PMID: 17946563 DOI: 10.1109/iembs.2006.260055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Characterizing the encapsulation layer caused by glial scar formation surrounding microelectrode arrays in chronic implants has been the subject of extensive research. Typically, an equivalent circuit model is used to characterize the reactive tissue response by nonlinearly fitting the electrical impedance spectroscopy (EIS) data. This model assumes a time invariant adjacent layer of encapsulation tissue to have the same structure on every electrode site. In this paper, an alternative approach is proposed based on modeling the encapsulation layer as a time varying communication channel. The channel is characterized by a multi-input multi-output (MIMO) transfer function with time varying coefficients. This model circumvents spatial resolution limitations of existing EIS equivalent circuit models. It further allows capturing the observed changes in neural signal quality over time. We show that "equalizing" the channel using this model can yield a substantial improvement in signal quality. With tendency towards high-density electrode arrays for cortical implantation, the proposed model is better suited to equalize the fading channel and interpret the recorded signals with higher accuracy. We also show conceptually how patterned waveforms can periodically be used to probe the channel if adverse effects can be avoided. This can potentially improve the channel estimator performance, particularly when cell migration occurs.
Collapse
Affiliation(s)
- Karim G Oweiss
- Dept. of Electr. & Comput. Eng., Michigan State Univ., East Lansing, MI 48824, USA.
| |
Collapse
|
137
|
Troyk PR, Detlefsen DE, Cogan SF, Ehrlich J, Bak M, McCreery DB, Bullara L, Schmidt E. "Safe" charge-injection waveforms for iridium oxide (AIROF) microelectrodes. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2004:4141-4. [PMID: 17271213 DOI: 10.1109/iembs.2004.1404155] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Use of anodic bias improves the charge-injection limits of activated iridium oxide (AIROF) microelectrodes. Asymmetric waveforms, in which the charge balancing anodic phase is delivered at a lower current density and longer pulse width, has been found to allow for higher values of anodic bias voltages, thus maximizing the AIROF charge-injection capacity. Limiting the voltage excursion of the AIROF below the value at which electrolysis of water occurs is essential to maintaining the long-term viability of implanted electrodes. However, maintaining the electrodes at an anodic bias state while keeping the electrode voltage within these electrochemically "safe" limits complicates the topology of the electronic driver circuitry. We present two possible driver topologies that use compliance-voltage limitation in combination with cathodic current modification.
Collapse
Affiliation(s)
- P R Troyk
- Illinois Institute of Technology, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Merrill DR, Tresco PA. Impedance characterization of microarray recording electrodes in vitro. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2004:4349-52. [PMID: 17271267 DOI: 10.1109/iembs.2004.1404210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mechanisms underlying performance degradation of electrodes chronically implanted in the central nervous system (CNS) remain unclear. Several components of the normal brain wound healing response were evaluated to determine if their presence correlates with increased electrical impedance that may be a factor in loss of device performance. Microelectrode recording arrays were electrically characterized in vitro in the presence of saline, culture media with 10% fetal bovine serum (FBS), and various CNS cell types isolated from Sprague-Dawley rats and cultured in media with 10% FBS. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were performed using a three-electrode system. Potential cycling during CV caused an immediate decrease in electrical impedance, which increased with time toward the pre-cycling value, with the effect of cycling remaining significant for several days. The addition of serum caused a significant but not substantial increase in impedance. The inclusion of various cell types known to participate in the brain wound healing response caused a significant increase in impedance immediately after seeding on the order of 50%, and this value increased or remained constant for up to several weeks. It is unclear whether the magnitude of increased impedance is sufficient to account for loss of device performance.
Collapse
Affiliation(s)
- Daniel R Merrill
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
139
|
McConnell GC, Schneider TM, Owens DJ, Bellamkonda RV. Extraction force and cortical tissue reaction of silicon microelectrode arrays implanted in the rat brain. IEEE Trans Biomed Eng 2007; 54:1097-107. [PMID: 17554828 DOI: 10.1109/tbme.2007.895373] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Micromotion of implanted silicon multielectrode arrays (Si MEAs) is thought to influence the inflammatory response they elicit. The degree of strain that micromotion imparts on surrounding tissue is related to the extent of mechanical integration of the implanted electrodes with the brain. In this study, we quantified the force of extraction of implanted four shank Michigan electrodes in adult rat brains and investigated potential cellular and extracellular matrix contributors to tissue-electrode adhesion using immunohistochemical markers for microglia, astrocytes and extracellular matrix deposition in the immediate vicinity of the electrodes. Our results suggest that the peak extraction force of the implanted electrodes increases significantly from the day of implantation (day 0) to the day of extraction (day 7 and day 28 postimplantation) (1.68 +/- 0.54 g, 3.99 +/- 1.31 g, and 4.86 +/- 1.49 g, respectively; mean +/- SD; n = 4). For an additional group of four shank electrode implants with a closer intershank spacing we observed a significant increase in peak extraction force on day 28 postimplantation compared to day 0 and day 7 postimplantation (5.56 +/- 0.76 g, 0.37 +/- 0.12 g and 1.87 +/- 0.88 g, respectively; n = 4). Significantly, only glial fibrillary acidic protein (GFAP) expression was correlated with peak extraction force in both electrode designs of all the markers of astroglial scar studied. For studies that try to model micromotion-induced strain, our data implies that adhesion between tissue and electrode increases after implantation and sheds light on the nature of implanted electrode-elicited brain tissue reaction.
Collapse
Affiliation(s)
- George C McConnell
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA 30332, USA.
| | | | | | | |
Collapse
|
140
|
Fitzsimmons NA, Drake W, Hanson TL, Lebedev MA, Nicolelis MAL. Primate reaching cued by multichannel spatiotemporal cortical microstimulation. J Neurosci 2007; 27:5593-602. [PMID: 17522304 PMCID: PMC6672750 DOI: 10.1523/jneurosci.5297-06.2007] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 04/05/2007] [Accepted: 04/09/2007] [Indexed: 11/21/2022] Open
Abstract
Both humans and animals can discriminate signals delivered to sensory areas of their brains using electrical microstimulation. This opens the possibility of creating an artificial sensory channel that could be implemented in neuroprosthetic devices. Although microstimulation delivered through multiple implanted electrodes could be beneficial for this purpose, appropriate microstimulation protocols have not been developed. Here, we report a series of experiments in which owl monkeys performed reaching movements guided by spatiotemporal patterns of cortical microstimulation delivered to primary somatosensory cortex through chronically implanted multielectrode arrays. The monkeys learned to discriminate microstimulation patterns, and their ability to learn new patterns and new behavioral rules improved during several months of testing. Significantly, information was conveyed to the brain through the interplay of microstimulation patterns delivered to multiple electrodes and the temporal order in which these electrodes were stimulated. This suggests multichannel microstimulation as a viable means of sensorizing neural prostheses.
Collapse
Affiliation(s)
- N. A. Fitzsimmons
- Departments of Neurobiology
- Center for Neuroengineering, Duke University, Durham, North Carolina 27100
| | - W. Drake
- Departments of Neurobiology
- Center for Neuroengineering, Duke University, Durham, North Carolina 27100
| | - T. L. Hanson
- Departments of Neurobiology
- Center for Neuroengineering, Duke University, Durham, North Carolina 27100
| | - M. A. Lebedev
- Departments of Neurobiology
- Center for Neuroengineering, Duke University, Durham, North Carolina 27100
| | - M. A. L. Nicolelis
- Departments of Neurobiology
- Biomedical Engineering, and
- Psychological and Brain Sciences and
- Center for Neuroengineering, Duke University, Durham, North Carolina 27100
| |
Collapse
|
141
|
Zhong Y, Bellamkonda RV. Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes. Brain Res 2007; 1148:15-27. [PMID: 17376408 PMCID: PMC1950487 DOI: 10.1016/j.brainres.2007.02.024] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 02/09/2007] [Accepted: 02/11/2007] [Indexed: 10/23/2022]
Abstract
Glial scar formation around implanted silicon neural probes compromises their ability to facilitate long-term recordings. One approach to modulate the tissue reaction around implanted probes in the brain is to develop probe coatings that locally release anti-inflammatory drugs. In this study, we developed a nitrocellulose-based coating for the local delivery of the anti-inflammatory drug dexamethasone (DEX). Silicon neural probes with and without nitrocellulose-DEX coatings were implanted into rat brains, and inflammatory response was evaluated 1 week and 4 weeks post implantation. DEX coatings significantly reduced the reactivity of microglia and macrophages 1 week post implantation as evidenced by ED1 immunostaining. CS56 staining demonstrated that DEX treatment significantly reduced chondroitin sulfate proteoglycan (CSPG) expression 1 week post implantation. Both at 1-week and at 4-week time points, GFAP staining for reactive astrocytes and neurofilament (NF) staining revealed that local DEX treatment significantly attenuated astroglial response and reduced neuronal loss in the vicinity of the probes. Weak ED1, neurocan, and NG2-positive signal was detected 4 weeks post implantation for both coated and uncoated probes, suggesting a stabilization of the inflammatory response over time in this implant model. In conclusion, this study demonstrates that the nitrocellulose-DEX coating can effectively attenuate the inflammatory response to the implanted neural probes, and reduce neuronal loss in the vicinity of the coated probes. Thus anti-inflammatory probe coatings may represent a promising approach to attenuate astroglial scar and reduce neural loss around implanted neural probes.
Collapse
Affiliation(s)
- Yinghui Zhong
- Neurological Biomaterials and Therapeutics, Laboratory for Neuroengineering, Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA 30332
| | - Ravi V. Bellamkonda
- Neurological Biomaterials and Therapeutics, Laboratory for Neuroengineering, Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA 30332
| |
Collapse
|
142
|
Abstract
The design of effective visual prostheses for the blind represents a challenge for biomedical engineers and neuroscientists. Significant progress has been made in the miniaturization and processing power of prosthesis electronics; however development lags in the design and construction of effective machine-brain interfaces with visual system neurons. This review summarizes what has been learned about stimulating neurons in the human and primate retina, lateral geniculate nucleus and visual cortex. Each level of the visual system presents unique challenges for neural interface design. Blind patients with the retinal degenerative disease retinitis pigmentosa (RP) are a common population in clinical trials of visual prostheses. The visual performance abilities of normals and RP patients are compared. To generate pattern vision in blind patients, the visual prosthetic interface must effectively stimulate the retinotopically organized neurons in the central visual field to elicit patterned visual percepts. The development of more biologically compatible methods of stimulating visual system neurons is critical to the development of finer spatial percepts. Prosthesis electrode arrays need to adapt to different optimal stimulus locations, stimulus patterns, and patient disease states.
Collapse
Affiliation(s)
- Ethan D Cohen
- Division of Physics, Office of Science and Engineering Labs, Center for Devices and Radiological Health, HFZ130, 12725 Twinbrook Pkwy, Rockville, MD 20852, USA.
| |
Collapse
|
143
|
Lago N, Yoshida K, Koch KP, Navarro X. Assessment of biocompatibility of chronically implanted polyimide and platinum intrafascicular electrodes. IEEE Trans Biomed Eng 2007; 54:281-90. [PMID: 17278585 DOI: 10.1109/tbme.2006.886617] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Longitudinal intrafascicular electrodes (LIFEs) are electrodes designed to be placed inside the peripheral nerve to improve stimulation selectivity and to increase the recording signal-to-noise ratio. We evaluated the functional and morphological effects of either Pt wire LIFEs or polyimide-based thin-film LIFEs implanted in the rat sciatic nerve for 3 mo. The newly designed thin-film LIFEs are more flexible, can be micromachined and allow placement of more active electrode sites than conventional Pt LIFEs. Functional results at 1 mo indicated an initial decline in the nerve conduction velocity and in the amplitude of muscle responses, which recovered during the following 2 mo towards normal values. Morphological results showed that both types of LIFEs induced a mild scar response and a focal but chronic inflammatory reaction, which were limited to a small area around the electrode placed in the nerve. Both types of LIFEs can be considered biocompatible and cause reversible, minimal nerve damage.
Collapse
Affiliation(s)
- Natalia Lago
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autónoma de Barcelona, E08193 Bellaterra, Spain
| | | | | | | |
Collapse
|
144
|
Stice P, Gilletti A, Panitch A, Muthuswamy J. Thin microelectrodes reduce GFAP expression in the implant site in rodent somatosensory cortex. J Neural Eng 2007; 4:42-53. [PMID: 17409479 DOI: 10.1088/1741-2560/4/2/005] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of this study was to test the hypothesis that neural implants with reduced cross-sectional areas will have less glial scarring associated with implantation injury in long-term experiments. In this study, we implanted nine adult rats with two different implants of 12 microm (n = 6), and 25 microm (n = 6) diameters (cross-sectional areas of 68 microm(2), 232 microm(2) respectively) and the expression of glial fibrilliary acidic protein (GFAP) was assessed after 2 weeks and 4 weeks of implantation. In order to facilitate implantation, the 12 microm diameter implants were coated with poly-glycolic acid (PGA), a biodegradable polymer that degraded within minutes of implantation. In n = 3 animals, 25 microm diameter implants also coated with PGA were implanted and assessed for GFAP expression at the end of 4 weeks of implantation. Statistical analysis of the GFAP expression around the different implants demonstrated that after 2 weeks of implantation there is no statistically significant difference in GFAP expression between the 12 microm and the 25 microm diameter implants. However, after 4 weeks of implantation the implant site of 12 microm diameter implants exhibited a statistically significant reduction in GFAP expression when compared to the implant sites of the 25 microm diameter implants (both with and without the PGA coating). We conclude that in neural implants that are tethered to the skull, implant cross-sectional areas of 68 microm(2) and smaller could lead to a reduced glial scarring under chronic conditions. Future studies with longer implant durations can confirm if this observation remains consistent beyond 4 weeks.
Collapse
Affiliation(s)
- Paula Stice
- Harrington Department of Bioengineering, Arizona State University, Tempe, AZ 85287-9709, USA
| | | | | | | |
Collapse
|
145
|
Abstract
Implantable neural microsystems provide an interface to the nervous system, giving cellular resolution to physiological processes unattainable today with non-invasive methods. Such implantable microelectrode arrays are being developed to simultaneously sample signals at many points in the tissue, providing insight into processes such as movement control, memory formation, and perception. These electrode arrays have been microfabricated on a variety of substrates, including silicon, using both surface and bulk micromachining techniques, and more recently, polymers. Current approaches to achieving a stable long-term tissue interface focus on engineering the surface properties of the implant, including coatings that discourage protein adsorption or release bioactive molecules. The implementation of a wireless interface requires consideration of the necessary data flow, amplification, signal processing, and packaging. In future, the realization of a fully implantable neural microsystem will contribute to both diagnostic and therapeutic applications, such as a neuroprosthetic interface to restore motor functions in paralyzed patients.
Collapse
Affiliation(s)
- Karen C Cheung
- Department of Electrical & Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
146
|
Biran R, Martin DC, Tresco PA. The brain tissue response to implanted silicon microelectrode arrays is increased when the device is tethered to the skull. J Biomed Mater Res A 2007; 82:169-78. [PMID: 17266019 DOI: 10.1002/jbm.a.31138] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The influence of tethering silicon microelectrode arrays on the cortical brain tissue reaction was compared with that of untethered implants placed in the same location by identical means using immunoflourescent methods and cell type specific markers over indwelling periods of 1-4 weeks. Compared with untethered, freely floating implants, tethered microelectrodes elicited significantly greater reactivity to antibodies against ED1 and GFAP over time. Regardless of implantation method or indwelling time, retrieved microelectrodes contained a layer of attached macrophages identified by positive immunoreactivity against ED1. In the tethered condition and in cases where the tissue surrounding untethered implants had the highest levels of ED1+ and GFAP+ immunoreactivity, the neuronal markers for neurofilament 160 and NeuN were reduced. Although the precise mechanisms are unclear, the present study indicates that simply tethering silicon microelectrode arrays to the skull increases the cortical brain tissue response in the recording zone immediately surrounding the microelectrode array, which signals the importance of identifying this important variable when evaluating the tissue response of different device designs, and suggests that untethered or wireless devices may elicit less of a foreign body response.
Collapse
Affiliation(s)
- Roy Biran
- The Keck Center for Tissue Engineering, Department of Bioengineering, College of Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
147
|
He W, McConnell GC, Bellamkonda RV. Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays. J Neural Eng 2006; 3:316-26. [PMID: 17124336 DOI: 10.1088/1741-2560/3/4/009] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neural electrodes could significantly enhance the quality of life for patients with sensory and/or motor deficits as well as improve our understanding of brain functions. However, long-term electrical connectivity between neural tissue and recording sites is compromised by the development of astroglial scar around the recording probes. In this study we investigate the effect of a nanoscale laminin (LN) coating on Si-based neural probes on chronic cortical tissue reaction in a rat model. Tissue reaction was evaluated after 1 day, 1 week, and 4 weeks post-implant for coated and uncoated probes using immunohistochemical techniques to evaluate activated microglia/macrophages (ED-1), astrocytes (GFAP) and neurons (NeuN). The coating did not have an observable effect on neuronal density or proximity to the electrode surface. However, the response of microglia/macrophages and astrocytes was altered by the coating. One day post-implant, we observed an approximately 60% increase in ED-1 expression near LN-coated probe sites compared with control uncoated probe sites. Four weeks post-implant, we observed an approximately 20% reduction in ED-1 expression along with an approximately 50% reduction in GFAP expression at coated relative to uncoated probe sites. These results suggest that LN has a stimulatory effect on early microglia activation, accelerating the phagocytic function of these cells. This hypothesis is further supported by the increased mRNA expression of several pro-inflammatory cytokines (TNF-alpha, IL-1 and IL-6) in cultured microglia on LN-bound Si substrates. LN immunostaining of coated probes immediately after insertion and retrieval demonstrates that the coating integrity is not compromised by the shear force during insertion. We speculate, based on these encouraging results, that LN coating of Si neural probes could potentially improve chronic neural recordings through dispersion of the astroglial scar.
Collapse
Affiliation(s)
- Wei He
- Neurological Biomaterials and Therapeutics, Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | | | | |
Collapse
|
148
|
Johnson MD, Kao OE, Kipke DR. Spatiotemporal pH dynamics following insertion of neural microelectrode arrays. J Neurosci Methods 2006; 160:276-87. [PMID: 17084461 DOI: 10.1016/j.jneumeth.2006.09.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 09/19/2006] [Accepted: 09/22/2006] [Indexed: 12/18/2022]
Abstract
Insertion trauma is a critical issue when assessing intracortical electrophysiological and neurochemical recordings. Previous reports document a wide variety of insertion techniques with speeds ranging from 10 microm/s to 10 m/s. We hypothesize that insertion speed has an effect on tissue trauma induced by implantation of a neural probe. In order to monitor the neural interface during and after probe insertion, we have developed a silicon-substrate array with hydrous iridium oxide microelectrodes for potentiometric recording of extracellular pH (pH(e)), a measure of brain homeostasis. Microelectrode sites were sensitive to pH in the super-Nernstian range (-85.9 mV/pH unit) and selective over other analytes including ascorbic acid, Na(+), K(+), Ca(2+), and Mg(2+). Following insertion, arrays recorded either triphasic or biphasic pH(e) responses, with a greater degree of prolonged acidosis for insertions at 50 microm/s than at 0.5 mm/s or 1.0 mm/s (p<0.05). Spatiotemporal analysis of the recordings also revealed micro-scale variability in the pH(e) response along the array, even when using the same insertion technique. Implants with more intense acidosis were often associated histologically with blood along the probe tract. The potentiometric microsensor array has implications not only as a useful tool to measure extracellular pH, but also as a feedback tool for delivery of pharmacological agents to treat surgical brain trauma.
Collapse
Affiliation(s)
- Matthew D Johnson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
149
|
Schwartz AB, Cui XT, Weber DJ, Moran DW. Brain-Controlled Interfaces: Movement Restoration with Neural Prosthetics. Neuron 2006; 52:205-20. [PMID: 17015237 DOI: 10.1016/j.neuron.2006.09.019] [Citation(s) in RCA: 412] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brain-controlled interfaces are devices that capture brain transmissions involved in a subject's intention to act, with the potential to restore communication and movement to those who are immobilized. Current devices record electrical activity from the scalp, on the surface of the brain, and within the cerebral cortex. These signals are being translated to command signals driving prosthetic limbs and computer displays. Somatosensory feedback is being added to this control as generated behaviors become more complex. New technology to engineer the tissue-electrode interface, electrode design, and extraction algorithms to transform the recorded signal to movement will help translate exciting laboratory demonstrations to patient practice in the near future.
Collapse
Affiliation(s)
- Andrew B Schwartz
- Department of Neurobiology, Center for the Neural Basis of Cognition, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | |
Collapse
|
150
|
Xie K, Wang S, Aziz TZ, Stein JF, Liu X. The physiologically modulated electrode potentials at the depth electrode–brain interface in humans. Neurosci Lett 2006; 402:238-43. [PMID: 16697525 DOI: 10.1016/j.neulet.2006.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 03/10/2006] [Accepted: 04/08/2006] [Indexed: 10/24/2022]
Abstract
To study the modulated electrical potential specifically related to the electrode-brain interface (EBI) in deep brain stimulation (DBS) under physiological condition, we quantitatively identified the physiologically modulated electrode potentials by decomposing the local field potentials (LFPs) recorded from 11 patients (18 electrodes in four different brain regions) who underwent DBS, and correlated them with simultaneously recorded physiological signals of blood pressure (BP) and respiration. Results showed that electrode potentials were modulated by BP and respiration and could be detected as a specific component of the compound LFP signals with a mean (+/-S.D.) amplitude of 6.9+/-1.7 microV. The detection rate and amplitude of the modulated electrode potentials were independent from brain regions and neurological disorders. The current approach can be used to study the changes in properties of the EBI under physiological condition and to investigate the effects of the EBI on the 'crossing' current of either the neural signals to be recorded or the electrical pulses for neurostimulation.
Collapse
Affiliation(s)
- Kangning Xie
- University Laboratory of Physiology, University of Oxford, Parks Road, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|