101
|
Kuehl R, Morata L, Meylan S, Mensa J, Soriano A. When antibiotics fail: a clinical and microbiological perspective on antibiotic tolerance and persistence of Staphylococcus aureus. J Antimicrob Chemother 2020; 75:1071-1086. [PMID: 32016348 DOI: 10.1093/jac/dkz559] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen causing a vast array of infections with significant mortality. Its versatile physiology enables it to adapt to various environments. Specific physiological changes are thought to underlie the frequent failure of antimicrobial therapy despite susceptibility in standard microbiological assays. Bacteria capable of surviving high antibiotic concentrations despite having a genetically susceptible background are described as 'antibiotic tolerant'. In this review, we put current knowledge on environmental triggers and molecular mechanisms of increased antibiotic survival of S. aureus into its clinical context. We discuss animal and clinical evidence of its significance and outline strategies to overcome infections with antibiotic-tolerant S. aureus.
Collapse
Affiliation(s)
- Richard Kuehl
- Service of Infectious Diseases, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Laura Morata
- Service of Infectious Diseases, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Sylvain Meylan
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
- Division de Maladies Infectieuses, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Josep Mensa
- Service of Infectious Diseases, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Alex Soriano
- Service of Infectious Diseases, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
| |
Collapse
|
102
|
Liu Y, Jia Y, Yang K, Wang Z. Heterogeneous Strategies to Eliminate Intracellular Bacterial Pathogens. Front Microbiol 2020; 11:563. [PMID: 32390959 PMCID: PMC7192003 DOI: 10.3389/fmicb.2020.00563] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
Antibiotic tolerance in bacterial pathogens that are genetically susceptible, but phenotypically tolerant to treatment, represents a growing crisis for public health. In particular, the intracellular bacteria-mediated antibiotic tolerance by acting as “Trojan horses” play a critical and underappreciated role in the disease burden of bacterial infections. Thus, more intense efforts are required to tackle this problem. In this review, we firstly provide a brief overview of modes of action of bacteria invasion and survival in macrophage or non-professional phagocytic cells. Furthermore, we summarize our current knowledge about promising strategies to eliminate these intracellular bacterial pathogens, including direct bactericidal agents, antibiotic delivery to infection sites by various carriers, and activation of host immune functions. Finally, we succinctly discuss the challenges faced by bringing them into clinical trials and our constructive perspectives.
Collapse
Affiliation(s)
- Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Yuqian Jia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Kangni Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
103
|
Richter A, Feßler AT, Böttner A, Köper LM, Wallmann J, Schwarz S. Reasons for antimicrobial treatment failures and predictive value of in-vitro susceptibility testing in veterinary practice: An overview. Vet Microbiol 2020; 245:108694. [PMID: 32456814 DOI: 10.1016/j.vetmic.2020.108694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/19/2020] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
Abstract
The choice of the most suitable antimicrobial agent for the treatment of an animal suffering from a bacterial infection is a complex issue. The results of bacteriological diagnostics and the in-vitro antimicrobial susceptibility testing (AST) provide guidance of potentially suitable antimicrobials. However, harmonized AST methods, veterinary-specific interpretive criteria and quality control ranges, which are essential to conduct AST in-vitro and to evaluate the corresponding results lege artis, are not available for all antimicrobial compounds, bacterial pathogens, animal species and sites of infection of veterinary relevance. Moreover, the clinical benefit of an antimicrobial agent (defined as its in vivo efficacy) is not exclusively dependent on the in-vitro susceptibility of the target pathogen. Apart from the right choice of an antibacterial drug with suitable pharmacokinetic properties and an appropriate pharmaceutical formulation, the success of treatment depends substantially on its adequate use. Even if this is ensured and in-vitro susceptibility confirmed, an insufficient improvement of clinical signs might be caused by biofilm-forming bacteria, persisters, or specific physicochemical conditions at the site of infection, such as pH value, oxygen partial pressure and perfusion rate. This review summarizes relevant aspects that have an impact on the predictive value of in-vitro AST and points out factors, potentially leading to an ineffective outcome of antibacterial treatment in veterinary practice. Knowing the reasons of inadequate beneficial effects can help to understand possible discrepancies between in-vitro susceptibility and in vivo efficacy and aid in undertaking strategies for an avoidance of treatment failures.
Collapse
Affiliation(s)
- Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany.
| | - Andrea T Feßler
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | | | | - Jürgen Wallmann
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
104
|
Peyrusson F, Van Wessem A, Dieppois G, Van Bambeke F, Tulkens PM. Cellular pharmacokinetics and intracellular activity of the bacterial fatty acid synthesis inhibitor, afabicin desphosphono against different resistance phenotypes of Staphylococcus aureus in models of cultured phagocytic cells. Int J Antimicrob Agents 2020; 55:105848. [DOI: 10.1016/j.ijantimicag.2019.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/06/2019] [Accepted: 11/13/2019] [Indexed: 11/30/2022]
|
105
|
Li L, Wang H, Jia D, Wang P. Synthesis of Gemini‐QA
N
‐Chloramine Biocides for Antibacterial Applications. ChemistrySelect 2019. [DOI: 10.1002/slct.201903585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lingdong Li
- School of Petroleum and Chemical EngineeringDalian University of Technology, State Key Laboratory of Fine Chemicals 2 Dagong Road, Liaodongwan New District Panjin 124221 China
| | - Hande Wang
- School of Petroleum and Chemical EngineeringDalian University of Technology, State Key Laboratory of Fine Chemicals 2 Dagong Road, Liaodongwan New District Panjin 124221 China
| | - Dongxue Jia
- School of Petroleum and Chemical EngineeringDalian University of Technology, State Key Laboratory of Fine Chemicals 2 Dagong Road, Liaodongwan New District Panjin 124221 China
| | - Pengfei Wang
- School of Petroleum and Chemical EngineeringDalian University of Technology, State Key Laboratory of Fine Chemicals 2 Dagong Road, Liaodongwan New District Panjin 124221 China
| |
Collapse
|
106
|
Yang Z, Zheng J, Chan CF, Wong IL, Heater BS, Chow LM, Lee MM, Chan MK. Targeted delivery of antimicrobial peptide by Cry protein crystal to treat intramacrophage infection. Biomaterials 2019; 217:119286. [DOI: 10.1016/j.biomaterials.2019.119286] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 11/15/2022]
|
107
|
Hu F, Qi G, Kenry, Mao D, Zhou S, Wu M, Wu W, Liu B. Visualization and In Situ Ablation of Intracellular Bacterial Pathogens through Metabolic Labeling. Angew Chem Int Ed Engl 2019; 59:9288-9292. [DOI: 10.1002/anie.201910187] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Fang Hu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Guobin Qi
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Kenry
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Duo Mao
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Shiwei Zhou
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Min Wu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Wenbo Wu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
108
|
Hu F, Qi G, Kenry, Mao D, Zhou S, Wu M, Wu W, Liu B. Visualization and In Situ Ablation of Intracellular Bacterial Pathogens through Metabolic Labeling. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fang Hu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Guobin Qi
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Kenry
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Duo Mao
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Shiwei Zhou
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Min Wu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Wenbo Wu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
109
|
Intracellular Penetration and Effects of Antibiotics on Staphylococcus aureus Inside Human Neutrophils: A Comprehensive Review. Antibiotics (Basel) 2019; 8:antibiotics8020054. [PMID: 31060222 PMCID: PMC6628357 DOI: 10.3390/antibiotics8020054] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 04/25/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are important assets in defense against invading bacteria like staphylococci. However, (dysfunctioning) neutrophils can also serve as reservoir for pathogens that are able to survive inside the cellular environment. Staphylococcus aureus is a notorious facultative intracellular pathogen. Most vulnerable for neutrophil dysfunction and intracellular infection are immune-deficient patients or, as has recently been described, severely injured patients. These dysfunctional neutrophils can become hide-out spots or “Trojan horses” for S. aureus. This location offers protection to bacteria from most antibiotics and allows transportation of bacteria throughout the body inside moving neutrophils. When neutrophils die, these bacteria are released at different locations. In this review, we therefore focus on the capacity of several groups of antibiotics to enter human neutrophils, kill intracellular S. aureus and affect neutrophil function. We provide an overview of intracellular capacity of available antibiotics to aid in clinical decision making. In conclusion, quinolones, rifamycins and sulfamethoxazole-trimethoprim seem very effective against intracellular S. aureus in human neutrophils. Oxazolidinones, macrolides and lincosamides also exert intracellular antibiotic activity. Despite that the reviewed data are predominantly of in vitro origin, these findings should be taken into account when intracellular infection is suspected, as can be the case in severely injured patients.
Collapse
|
110
|
Rifampicin-Loaded Mesoporous Silica Nanoparticles for the Treatment of Intracellular Infections. Antibiotics (Basel) 2019; 8:antibiotics8020039. [PMID: 30979069 PMCID: PMC6628058 DOI: 10.3390/antibiotics8020039] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 11/16/2022] Open
Abstract
Infectious diseases remain a major burden in today’s world, causing high mortality rates and significant economic losses, with >9 million deaths per year predicted by 2030. Invasion of host cells by intracellular bacteria poses treatment challenges due to the poor permeation of antimicrobials into the infected cells. To overcome these limitations, mesoporous silica nanoparticles (MSNP) loaded with the antibiotic rifampicin were investigated as a nanocarrier system for the treatment of intracellular bacterial infection with specific interest in the influence of particle size on treatment efficiency. An intracellular infection model was established using small colony variants (SCV) of S. aureus in macrophages to systemically evaluate the efficacy of rifampicin-loaded MSNP against the pathogen as compared to a rifampicin solution. As hypothesized, the superior uptake of MSNP by macrophages resulted in an enhanced treatment efficacy of the encapsulated rifampicin as compared to free antibiotic. This study provides a potential platform to improve the performance of currently available antibiotics against intracellular infections.
Collapse
|
111
|
Blumentrath CG, Müller G, Teichmann D, Tiesmeier J, Petridou J. Relapse of typhoid fever following delayed response to meropenem: A case report and review of previously published cases indicating limited clinical efficacy of meropenem for the treatment of typhoid fever. GERMAN MEDICAL SCIENCE : GMS E-JOURNAL 2019; 17:Doc01. [PMID: 30837820 PMCID: PMC6388674 DOI: 10.3205/000267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 12/21/2018] [Indexed: 11/30/2022]
Abstract
In times of emerging multi-drug resistance among Gram-negative bacteria (including Salmonella enterica, Serovar Typhi), we observed relapse of typhoid fever following delayed response to treatment with meropenem, suggestive for limited clinical efficacy of the drug. Three previously published cases supported our suspicion. Within this context, we discuss the case details with a focus on potential explanations for insufficient clinical response to meropenem (e.g. limited intracellular penetration, phenomena of tolerance and persistence). Meropenem is a last-resort antimicrobial agent for the treatment of multi-drug resistant Gram-negative infections. Reliable clinical data evaluating the efficacy of meropenem for the treatment of typhoid fever are urgently needed. Future clinical studies evaluating typhoid fever outcome should also investigate the impact of (i) intracellular penetration of antibiotics, and (ii) tolerance and persistence on outcome.
Collapse
Affiliation(s)
- Christian G Blumentrath
- Clinic for Cardiology, Angiology and Intensive Care Medicine, Klinikum Lippe Detmold, Germany
| | - Gernot Müller
- Department of Infectious Diseases and Tropical Medicine, Städtisches Klinikum Dresden, Germany
| | - Dieter Teichmann
- Department of Infectious Diseases and Tropical Medicine, Städtisches Klinikum Dresden, Germany
| | - Jens Tiesmeier
- Institute of Anaesthesiology, Intensive Care and Emergency Medicine, General Hospital Lübbecke-Rahden, Germany
| | - Jasmina Petridou
- Institute of Medical Microbiology, University Hospital Minden, Germany
| |
Collapse
|
112
|
|
113
|
Ong KS, Mawang CI, Daniel-Jambun D, Lim YY, Lee SM. Current anti-biofilm strategies and potential of antioxidants in biofilm control. Expert Rev Anti Infect Ther 2018; 16:855-864. [PMID: 30308132 DOI: 10.1080/14787210.2018.1535898] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Biofilm formation is a strategy for microorganisms to adapt and survive in hostile environments. Microorganisms that are able to produce biofilms are currently recognized as a threat to human health. Areas covered: Many strategies have been employed to eradicate biofilms, but several drawbacks from these methods had subsequently raised concerns on the need for alternative approaches to effectively prevent biofilm formation. One of the main mechanisms that drives a microorganism to transit from a planktonic to a biofilm-sessile state, is oxidative stress. Chemical agents that could target oxidative stress regulators, for instance antioxidants, could therefore be used to treat biofilm-associated infections. Expert commentary: The focus of this review is to summarize the function and limitation of the current anti-biofilm strategies and will propose the use of antioxidants as an alternative method to treat, prevent and eradicate biofilms. Studies have shown that water-soluble and lipid-soluble antioxidants can reduce and prevent biofilm formation, by influencing the expression of genes associated with oxidative stress. Further in vivo work should be conducted to ensure the efficacy of these antioxidants in a biological environment. Nevertheless, antioxidants are promising anti-biofilm agents, and thus is a potential solution for biofilm-associated infections in the future.
Collapse
Affiliation(s)
- Kuan Shion Ong
- a School of Science , Monash University Malaysia , Bandar Sunway , Selangor , Malaysia.,b Tropical Medicine and Biology Multidisciplinary Platform , Monash University Malaysia , Bandar Sunway , Selangor , Malaysia
| | | | | | - Yau Yan Lim
- a School of Science , Monash University Malaysia , Bandar Sunway , Selangor , Malaysia
| | - Sui Mae Lee
- a School of Science , Monash University Malaysia , Bandar Sunway , Selangor , Malaysia.,b Tropical Medicine and Biology Multidisciplinary Platform , Monash University Malaysia , Bandar Sunway , Selangor , Malaysia
| |
Collapse
|
114
|
Kamaruzzaman NF, Kendall S, Good L. Targeting the hard to reach: challenges and novel strategies in the treatment of intracellular bacterial infections. Br J Pharmacol 2017; 174:2225-2236. [PMID: 27925153 PMCID: PMC5481648 DOI: 10.1111/bph.13664] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/20/2016] [Accepted: 10/06/2016] [Indexed: 12/22/2022] Open
Abstract
Infectious diseases continue to threaten human and animal health and welfare globally, impacting millions of lives and causing substantial economic loss. The use of antibacterials has been only partially successful in reducing disease impact. Bacterial cells are inherently resilient, and the therapy challenge is increased by the development of antibacterial resistance, the formation of biofilms and the ability of certain clinically important pathogens to invade and localize within host cells. Invasion into host cells provides protection from both antibacterials and the host immune system. Poor delivery of antibacterials into host cells causes inadequate bacterial clearance, resulting in chronic and unresolved infections. In this review, we discuss the challenges associated with existing antibacterial therapies with a focus on intracellular pathogens. We consider the requirements for successful treatment of intracellular infections and novel platforms currently under development. Finally, we discuss novel strategies to improve drug penetration into host cells. As an example, we discuss our recent demonstration that the cell penetrating cationic polymer polyhexamethylene biguanide has antibacterial activity against intracellular Staphylococcus aureus. LINKED ARTICLES This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc.
Collapse
Affiliation(s)
- Nor Fadhilah Kamaruzzaman
- Department of Pathology and Pathogen BiologyRoyal Veterinary College, University of LondonNW10TUUK
- Faculty of Veterinary MedicineUniversiti Malaysia KelantanLocked Bag 36, Pengkalan Chepa16100Kota BharuKelantanMalaysia
| | - Sharon Kendall
- Department of Pathology and Pathogen BiologyRoyal Veterinary College, University of LondonNW10TUUK
| | - Liam Good
- Department of Pathology and Pathogen BiologyRoyal Veterinary College, University of LondonNW10TUUK
| |
Collapse
|
115
|
Sim E, Ryan A. Drug metabolism and antibiotic resistance in micro-organisms. Br J Pharmacol 2017; 174:2159-2160. [DOI: 10.1111/bph.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 11/27/2022] Open
Affiliation(s)
- Edith Sim
- Department of Pharmacology; University of Oxford; Oxford UK
- Faculty of Science, Engineering and Computing; Kingston University; Kingston-on-Thames Surrey UK
| | - Ali Ryan
- Faculty of Science, Engineering and Computing; Kingston University; Kingston-on-Thames Surrey UK
| |
Collapse
|
116
|
Abstract
Understanding the interplay between bacterial pathogens and antimicrobials is a key to realize the control over infections causing morbidity and mortality. An important current issue of contemporary medicine and microbiology is the search for new strategies for adequate therapy of infectious diseases associated with rapidly emerging multidrug-resistant (MDR) pathogens. Recently, a great deal of progress has been made in the field of nanobiotechnology towards the development of various nanoantimicrobials (NAMs) as novel therapeutic solution. Current microbiological studies, employing either synthetic antibiotics or natural antimicrobial, have demonstrated the ability of NAMs to tackle the issue of MDR by reverting the mechanisms of resistance. The present review critically discusses the various factors that can contribute to modulate the effects of NAMs on microbes. It includes essential features of NAMs including but not limited to composition, surface charge, loading capacity, size, hydrophobicity/philicity, controlled release and functionalization. In contrast, how microbial structural differences, biofilm formation, persister cells and intracellular pathogens contribute towards sensitivity or resistance towards antimicrobials is comprehensively analysed. These multilateral factors should be considered earnestly in order to make NAMs a successful alternative of the conventional antibiotics.
Collapse
Affiliation(s)
- Bushra Jamil
- a Department of Biosciences, Faculty of Sciences , COMSATS Institute of Information Technology , Islamabad , Pakistan
| | - Muhammad Imran
- a Department of Biosciences, Faculty of Sciences , COMSATS Institute of Information Technology , Islamabad , Pakistan
| |
Collapse
|