101
|
Sükei T, Palma E, Urbani L. Interplay between Cellular and Non-Cellular Components of the Tumour Microenvironment in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:5586. [PMID: 34771746 PMCID: PMC8583132 DOI: 10.3390/cancers13215586] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and lethal cancers worldwide. Currently, treatments available for advanced HCC provide dismal chances of survival, thus there is an urgent need to develop more effective therapeutic strategies. While much of the focus of recent decades has been on targeting malignant cells, promising results have emerged from targeting the tumour microenvironment (TME). The extracellular matrix (ECM) is the main non-cellular component of the TME and it profoundly changes during tumorigenesis to promote the growth and survival of malignant cells. Despite this, many in vitro models for drug testing fail to consider the TME leading to a high failure rate in clinical trials. Here, we present an overview of the function and properties of the ECM in the liver and how these change during malignant transformation. We also discuss the relationship between immune cells and ECM in the TME in HCC. Lastly, we present advanced, 3D culture techniques of cancer modelling and argue that the incorporation of TME components into these is essential to better recapitulate the complex interactions within the TME.
Collapse
Affiliation(s)
- Tamás Sükei
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK; (T.S.); (E.P.)
- Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| | - Elena Palma
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK; (T.S.); (E.P.)
- Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| | - Luca Urbani
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK; (T.S.); (E.P.)
- Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| |
Collapse
|
102
|
Ma Y, Nenkov M, Schröder DC, Abubrig M, Gassler N, Chen Y. Fibulin 2 Is Hypermethylated and Suppresses Tumor Cell Proliferation through Inhibition of Cell Adhesion and Extracellular Matrix Genes in Non-Small Cell Lung Cancer. Int J Mol Sci 2021; 22:11834. [PMID: 34769264 PMCID: PMC8584407 DOI: 10.3390/ijms222111834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/24/2022] Open
Abstract
Fibulins (FBLNs), interacting with cell adhesion receptors and extracellular matrix (ECM) components, play multiple roles in ECM structures and tissue functions. Abnormal expression of FBLN2, one of the fibulin family members, contributes to tumor initiation and development. However, the function of FBLN2 in human non-small cell lung cancer (NSCLC) has not yet been elucidated. In this study, we found that FBLN2 was downregulated in 9 out of 11 lung cancer cell lines compared to normal bronchial epithelial cells, which was associated with DNA hypermethylation. Primary lung squamous cell carcinoma expressed significantly more FBLN2 protein compared to adenocarcinoma (p = 0.047). Ectopic expression of FBLN2 led to decreased cell proliferation, migration and invasion, accompanied by inactivated MAPK/ERK and AKT/mTOR pathways, while FBLN2 siRNA knockdown resulted in an opposite biological behaviour in NSCLC cells. Additionally, overexpression of FBLN2 led to dysregulation of cell adhesion molecules, ECM markers and a panel of lysate/exosome-derived-microRNAs, which are involved in cell adhesion and ECM remodelling. Taken together, our data indicate that FBLN2 is methylated and exerts a tumor suppressor function through modulation of MAPK/ERK and AKT pathways and regulation of cell adhesion and ECM genes. Moreover, FBLN2 might be a potential biomarker for the sub-classification of NSCLC.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuan Chen
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (Y.M.); (M.N.); (D.C.S.); (M.A.); (N.G.)
| |
Collapse
|
103
|
Curvello R, Kast V, Abuwarwar MH, Fletcher AL, Garnier G, Loessner D. 3D Collagen-Nanocellulose Matrices Model the Tumour Microenvironment of Pancreatic Cancer. Front Digit Health 2021; 3:704584. [PMID: 34713176 PMCID: PMC8521838 DOI: 10.3389/fdgth.2021.704584] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/29/2021] [Indexed: 01/18/2023] Open
Abstract
Three-dimensional (3D) cancer models are invaluable tools designed to study tumour biology and new treatments. Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest types of cancer, has been progressively explored with bioengineered 3D approaches by deconstructing elements of its tumour microenvironment. Here, we investigated the suitability of collagen-nanocellulose hydrogels to mimic the extracellular matrix of PDAC and to promote the formation of tumour spheroids and multicellular 3D cultures with stromal cells. Blending of type I collagen fibrils and cellulose nanofibres formed a matrix of controllable stiffness, which resembled the lower profile of pancreatic tumour tissues. Collagen-nanocellulose hydrogels supported the growth of tumour spheroids and multicellular 3D cultures, with increased metabolic activity and matrix stiffness. To validate our 3D cancer model, we tested the individual and combined effects of the anti-cancer compound triptolide and the chemotherapeutics gemcitabine and paclitaxel, resulting in differential cell responses. Our blended 3D matrices with tuneable mechanical properties consistently maintain the growth of PDAC cells and its cellular microenvironment and allow the screening of anti-cancer treatments.
Collapse
Affiliation(s)
- Rodrigo Curvello
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, VIC, Australia
| | - Verena Kast
- Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden E.V., Dresden, Germany
| | - Mohammed H Abuwarwar
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Anne L Fletcher
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Gil Garnier
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, VIC, Australia.,Department of Chemical Engineering, Bioresource Processing Research Institute of Australia (BioPRIA), Monash University, Clayton, VIC, Australia
| | - Daniela Loessner
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, VIC, Australia.,Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC, Australia.,Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Science, Monash University, Clayton, VIC, Australia
| |
Collapse
|
104
|
Rens EG, Edelstein-Keshet L. Cellular Tango: how extracellular matrix adhesion choreographs Rac-Rho signaling and cell movement. Phys Biol 2021; 18. [PMID: 34544056 DOI: 10.1088/1478-3975/ac2888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022]
Abstract
The small GTPases Rac and Rho are known to regulate eukaryotic cell shape, promoting front protrusion (Rac) or rear retraction (Rho) of the cell edge. Such cell deformation changes the contact and adhesion of cell to the extracellular matrix (ECM), while ECM signaling through integrin receptors also affects GTPase activity. We develop and investigate a model for this three-way feedback loop in 1D and 2D spatial domains, as well as in a fully deforming 2D cell shapes with detailed adhesion-bond biophysics. The model consists of reaction-diffusion equations solved numerically with open-source software, Morpheus, and with custom-built cellular Potts model simulations. We find a variety of patterns and cell behaviors, including persistent polarity, flipped front-back cell polarity oscillations, spiral waves, and random protrusion-retraction. We show that the observed spatial patterns depend on the cell shape, and vice versa.
Collapse
Affiliation(s)
- Elisabeth G Rens
- Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands.,Department of Mathematics, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
105
|
De Santis S, Porcelli F, Sotgiu G, Crescenzi A, Ceccucci A, Verri M, Caricato M, Taffon C, Orsini M. Identification of remodeled collagen fibers in tumor stroma by FTIR Micro-spectroscopy: A new approach to recognize the colon carcinoma. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166279. [PMID: 34600082 DOI: 10.1016/j.bbadis.2021.166279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/22/2022]
Abstract
The tumor stroma plays a pivotal role in colon cancer genesis and progression. It was observed that collagen fibers in the extracellular matrix (ECM) of cancer stroma, undergo a strong remodeling. These fibrous proteins result more aligned and compact than in physiological conditions, creating a microenvironment that favors cancer development. In this work, micro-FTIR spectroscopy was applied to investigate the chemical modifications in the tumor stroma. Using Fuzzy C-means clustering, mean spectra from diseased and normal stroma were compared and collagen was found to be responsible for the main differences between them. Specifically, the modified absorptions at 1203, 1238, 1284 cm-1 and 1338 cm-1 wavenumbers, were related to the amide III band and CH2 bending of side chains. These signals are sensitive to the interactions between the α-chains in the triple helices of collagen structure. This provided robust chemical evidence that in cancer ECM, collagen fibers are more parallelized, stiff and ordered than in normal tissue. Principal Component Analysis (PCA) applied to the spectra from malignant and normal stroma confirmed these findings. Using LDA (Linear Discriminant Analysis) classification, the absorptions 1203, 1238, 1284 and 1338 cm-1 were examined as spectral biomarkers, obtaining quite promising results. The use of a PCA-LDA prediction model on samples with moderate tumor degree further showed that the stroma chemical modifications are more indicative of malignancy compared to the epithelium. These preliminary findings have shown that micro-FTIR spectroscopy, focused on collagen signals, could become a promising tool for colon cancer diagnosis.
Collapse
Affiliation(s)
- Serena De Santis
- Department of Engineering, Roma Tre University, via Vito Volterra 62, Roma, Italy.
| | - Francesco Porcelli
- Department of Engineering, Roma Tre University, via Vito Volterra 62, Roma, Italy
| | - Giovanni Sotgiu
- Department of Engineering, Roma Tre University, via Vito Volterra 62, Roma, Italy
| | - Anna Crescenzi
- Pathology Unit, University Hospital Campus Bio-Medico, Rome, Italy
| | - Anita Ceccucci
- Department of Engineering, Roma Tre University, via Vito Volterra 62, Roma, Italy
| | - Martina Verri
- Pathology Unit, University Hospital Campus Bio-Medico, Rome, Italy
| | - Marco Caricato
- Colorectal surgery Unit, University Campus Bio-Medico of Rome, Italy
| | - Chiara Taffon
- Pathology Unit, University Hospital Campus Bio-Medico, Rome, Italy
| | - Monica Orsini
- Department of Engineering, Roma Tre University, via Vito Volterra 62, Roma, Italy
| |
Collapse
|
106
|
Rubí-Sans G, Nyga A, Rebollo E, Pérez-Amodio S, Otero J, Navajas D, Mateos-Timoneda MA, Engel E. Development of Cell-Derived Matrices for Three-Dimensional In Vitro Cancer Cell Models. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44108-44123. [PMID: 34494824 DOI: 10.1021/acsami.1c13630] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Most morphogenetic and pathological processes are driven by cells responding to the surrounding matrix, such as its composition, architecture, and mechanical properties. Despite increasing evidence for the role of extracellular matrix (ECM) in tissue and disease development, many in vitro substitutes still fail to effectively mimic the native microenvironment. We established a novel method to produce macroscale (>1 cm) mesenchymal cell-derived matrices (CDMs) aimed to mimic the fibrotic tumor microenvironment surrounding epithelial cancer cells. CDMs are produced by human adipose mesenchymal stem cells cultured in sacrificial 3D scaffold templates of fibronectin-coated poly-lactic acid microcarriers (MCs) in the presence of macromolecular crowders. We showed that decellularized CDMs closely mimic the fibrillar protein composition, architecture, and mechanical properties of human fibrotic ECM from cancer masses. CDMs had highly reproducible composition made of collagen types I and III and fibronectin ECM with tunable mechanical properties. Moreover, decellularized and MC-free CDMs were successfully repopulated with cancer cells throughout their 3D structure, and following chemotherapeutic treatment, cancer cells showed greater doxorubicin resistance compared to 3D culture in collagen hydrogels. Collectively, these results support the use of CDMs as a reproducible and tunable tool for developing 3D in vitro cancer models.
Collapse
Affiliation(s)
- Gerard Rubí-Sans
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Agata Nyga
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Elena Rebollo
- Molecular Imaging Platform, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Soledad Pérez-Amodio
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
- IMEM-BRT group, Department of Materials Science, EEBE, Technical University of Catalonia (UPC), Barcelona 08019, Spain
| | - Jorge Otero
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona 08036, Spain
- CIBER de Enfermedades Respiratorias, Madrid 28029, Spain
| | - Daniel Navajas
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona 08036, Spain
- CIBER de Enfermedades Respiratorias, Madrid 28029, Spain
| | - Miguel A Mateos-Timoneda
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès (Barcelona) 08195, Spain
| | - Elisabeth Engel
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
- IMEM-BRT group, Department of Materials Science, EEBE, Technical University of Catalonia (UPC), Barcelona 08019, Spain
| |
Collapse
|
107
|
Martinez-Garcia FD, de Hilster RHJ, Sharma PK, Borghuis T, Hylkema MN, Burgess JK, Harmsen MC. Architecture and Composition Dictate Viscoelastic Properties of Organ-Derived Extracellular Matrix Hydrogels. Polymers (Basel) 2021; 13:polym13183113. [PMID: 34578013 PMCID: PMC8470996 DOI: 10.3390/polym13183113] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/13/2023] Open
Abstract
The proteins and polysaccharides of the extracellular matrix (ECM) provide architectural support as well as biochemical and biophysical instruction to cells. Decellularized, ECM hydrogels replicate in vivo functions. The ECM’s elasticity and water retention renders it viscoelastic. In this study, we compared the viscoelastic properties of ECM hydrogels derived from the skin, lung and (cardiac) left ventricle and mathematically modelled these data with a generalized Maxwell model. ECM hydrogels from the skin, lung and cardiac left ventricle (LV) were subjected to a stress relaxation test under uniaxial low-load compression at a 20%/s strain rate and the viscoelasticity determined. Stress relaxation data were modelled according to Maxwell. Physical data were compared with protein and sulfated GAGs composition and ultrastructure SEM. We show that the skin-ECM relaxed faster and had a lower elastic modulus than the lung-ECM and the LV-ECM. The skin-ECM had two Maxwell elements, the lung-ECM and the LV-ECM had three. The skin-ECM had a higher number of sulfated GAGs, and a highly porous surface, while both the LV-ECM and the lung-ECM had homogenous surfaces with localized porous regions. Our results show that the elasticity of ECM hydrogels, but also their viscoelastic relaxation and gelling behavior, was organ dependent. Part of these physical features correlated with their biochemical composition and ultrastructure.
Collapse
Affiliation(s)
- Francisco Drusso Martinez-Garcia
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; (F.D.M.-G.); (R.H.J.d.H.); (T.B.); (M.N.H.); (J.K.B.)
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| | - Roderick Harold Jan de Hilster
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; (F.D.M.-G.); (R.H.J.d.H.); (T.B.); (M.N.H.); (J.K.B.)
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 AV Groningen, The Netherlands
| | - Prashant Kumar Sharma
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands;
- Department of Biomedical Engineering-FB40, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Theo Borghuis
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; (F.D.M.-G.); (R.H.J.d.H.); (T.B.); (M.N.H.); (J.K.B.)
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 AV Groningen, The Netherlands
| | - Machteld Nelly Hylkema
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; (F.D.M.-G.); (R.H.J.d.H.); (T.B.); (M.N.H.); (J.K.B.)
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 AV Groningen, The Netherlands
| | - Janette Kay Burgess
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; (F.D.M.-G.); (R.H.J.d.H.); (T.B.); (M.N.H.); (J.K.B.)
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands;
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 AV Groningen, The Netherlands
| | - Martin Conrad Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; (F.D.M.-G.); (R.H.J.d.H.); (T.B.); (M.N.H.); (J.K.B.)
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands;
- Correspondence:
| |
Collapse
|
108
|
Reye G, Huang X, Haupt LM, Murphy RJ, Northey JJ, Thompson EW, Momot KI, Hugo HJ. Mechanical Pressure Driving Proteoglycan Expression in Mammographic Density: a Self-perpetuating Cycle? J Mammary Gland Biol Neoplasia 2021; 26:277-296. [PMID: 34449016 PMCID: PMC8566410 DOI: 10.1007/s10911-021-09494-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
Regions of high mammographic density (MD) in the breast are characterised by a proteoglycan (PG)-rich fibrous stroma, where PGs mediate aligned collagen fibrils to control tissue stiffness and hence the response to mechanical forces. Literature is accumulating to support the notion that mechanical stiffness may drive PG synthesis in the breast contributing to MD. We review emerging patterns in MD and other biological settings, of a positive feedback cycle of force promoting PG synthesis, such as in articular cartilage, due to increased pressure on weight bearing joints. Furthermore, we present evidence to suggest a pro-tumorigenic effect of increased mechanical force on epithelial cells in contexts where PG-mediated, aligned collagen fibrous tissue abounds, with implications for breast cancer development attributable to high MD. Finally, we summarise means through which this positive feedback mechanism of PG synthesis may be intercepted to reduce mechanical force within tissues and thus reduce disease burden.
Collapse
Affiliation(s)
- Gina Reye
- School of Biomedical Sciences, Gardens Point, Queensland University of Technology (QUT), Kelvin Grove, QLD, 4059, Australia
- Translational Research Institute, Woolloongabba, QLD, Australia
| | - Xuan Huang
- School of Biomedical Sciences, Gardens Point, Queensland University of Technology (QUT), Kelvin Grove, QLD, 4059, Australia
- Translational Research Institute, Woolloongabba, QLD, Australia
| | - Larisa M Haupt
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Ryan J Murphy
- School of Mathematical Sciences, Gardens Point, Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia
| | - Jason J Northey
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Erik W Thompson
- School of Biomedical Sciences, Gardens Point, Queensland University of Technology (QUT), Kelvin Grove, QLD, 4059, Australia
- Translational Research Institute, Woolloongabba, QLD, Australia
| | - Konstantin I Momot
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Honor J Hugo
- School of Biomedical Sciences, Gardens Point, Queensland University of Technology (QUT), Kelvin Grove, QLD, 4059, Australia.
- Translational Research Institute, Woolloongabba, QLD, Australia.
| |
Collapse
|
109
|
The Role of Cell Proliferation and Extracellular Matrix Accumulation Induced by Food Additive Butylated Hydroxytoluene in Uterine Leiomyoma. Nutrients 2021; 13:nu13093074. [PMID: 34578952 PMCID: PMC8468901 DOI: 10.3390/nu13093074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Leiomyoma is the most common benign uterine tumor in reproductive-age women. Increasing numbers of studies are focusing on the effects of environmental exposure on the incidence and progression of tumors. One major step taken in the food industry is the addition of food preservatives to maintain freshness. Butylated hydroxytoluene (BHT) is a synthetic phenolic antioxidant, which is widely used as an additive to develop fat-soluble characteristics, as well as in cosmetics and rubber. Previous studies also highlighted that BHT may be related to increased fibrosis capacity and carcinogenic effects. In this study, we explored the effects of the commonly used food additive BHT on leiomyoma progression, and the related mechanism. The exposure of the ELT-3 leiomyoma cell line to BHT for 48 h increased the proliferative effect. Since leiomyoma progression is related to increases in extracellular matrix (ECM) accumulation and matrix metalloproteinase (MMP), BHT could effectively increase ECM-related protein expression, as well as MMP-2 and MMP-9 protein expression. This increase in ECM, in response to BHT, may be linked to the activation of the phosphoinositide 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK) signaling pathway. Through PI3K inhibition, BHT’s effect on leiomyoma progression could be partially modulated. These results suggest the harmful effect of BHT exposure on leiomyoma progression may relate to PI3K modulation. However, an in vivo study is necessary to confirm these findings.
Collapse
|
110
|
Titus AS, Venugopal H, Ushakumary MG, Wang M, Cowling RT, Lakatta EG, Kailasam S. Discoidin Domain Receptor 2 Regulates AT1R Expression in Angiotensin II-Stimulated Cardiac Fibroblasts via Fibronectin-Dependent Integrin-β1 Signaling. Int J Mol Sci 2021; 22:ijms22179343. [PMID: 34502259 PMCID: PMC8431251 DOI: 10.3390/ijms22179343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
This study probed the largely unexplored regulation and role of fibronectin in Angiotensin II-stimulated cardiac fibroblasts. Using gene knockdown and overexpression approaches, Western blotting, and promoter pull-down assay, we show that collagen type I-activated Discoidin Domain Receptor 2 (DDR2) mediates Angiotensin II-dependent transcriptional upregulation of fibronectin by Yes-activated Protein in cardiac fibroblasts. Furthermore, siRNA-mediated fibronectin knockdown attenuated Angiotensin II-stimulated expression of collagen type I and anti-apoptotic cIAP2, and enhanced cardiac fibroblast susceptibility to apoptosis. Importantly, an obligate role for fibronectin was observed in Angiotensin II-stimulated expression of AT1R, the Angiotensin II receptor, which would link extracellular matrix (ECM) signaling and Angiotensin II signaling in cardiac fibroblasts. The role of fibronectin in Angiotensin II-stimulated cIAP2, collagen type I, and AT1R expression was mediated by Integrin-β1-integrin-linked kinase signaling. In vivo, we observed modestly reduced basal levels of AT1R in DDR2-null mouse myocardium, which were associated with the previously reported reduction in myocardial Integrin-β1 levels. The role of fibronectin, downstream of DDR2, could be a critical determinant of cardiac fibroblast-mediated wound healing following myocardial injury. In summary, our findings suggest a complex mechanism of regulation of cardiac fibroblast function involving two major ECM proteins, collagen type I and fibronectin, and their receptors, DDR2 and Integrin-β1.
Collapse
Affiliation(s)
- Allen Sam Titus
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, Kerala, India; (A.S.T.); (H.V.); (M.G.U.)
| | - Harikrishnan Venugopal
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, Kerala, India; (A.S.T.); (H.V.); (M.G.U.)
| | - Mereena George Ushakumary
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, Kerala, India; (A.S.T.); (H.V.); (M.G.U.)
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA; (M.W.); (E.G.L.)
| | - Randy T. Cowling
- Division of Cardiovascular Medicine, Department of Medicine, University of California, La Jolla, CA 92093, USA;
| | - Edward G. Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA; (M.W.); (E.G.L.)
| | - Shivakumar Kailasam
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, Kerala, India; (A.S.T.); (H.V.); (M.G.U.)
- Correspondence:
| |
Collapse
|
111
|
Karamanos NK, Piperigkou Z, Passi A, Götte M, Rousselle P, Vlodavsky I. Extracellular matrix-based cancer targeting. Trends Mol Med 2021; 27:1000-1013. [PMID: 34389240 DOI: 10.1016/j.molmed.2021.07.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Tumor extracellular matrix (ECM) operates in a coordinated mode with cancer and stroma cells to evoke the multistep process of metastatic potential. The remodeled tumor-associated matrix provides a point for direct or complementary therapeutic targeting. Here, we cover and critically address the importance of ECM networks and their macromolecules in cancer. We focus on the roles of key structural and functional ECM components, and their degradation enzymes and extracellular vesicles, aiming at improving our understanding of the mechanisms contributing to tumor initiation, growth, and dissemination, and discuss potential new approaches for ECM-based therapeutic targeting and diagnosis.
Collapse
Affiliation(s)
- Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece.
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS-Université Lyon 1, SFR BioSciences Gerland-Lyon Sud, 7 Passage du Vercors, Lyon, France
| | - Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
112
|
Belhabib I, Zaghdoudi S, Lac C, Bousquet C, Jean C. Extracellular Matrices and Cancer-Associated Fibroblasts: Targets for Cancer Diagnosis and Therapy? Cancers (Basel) 2021; 13:3466. [PMID: 34298680 PMCID: PMC8303391 DOI: 10.3390/cancers13143466] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Solid cancer progression is dictated by neoplastic cell features and pro-tumoral crosstalks with their microenvironment. Stroma modifications, such as fibroblast activation into cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM) remodeling, are now recognized as critical events for cancer progression and as potential therapeutic or diagnostic targets. The recent appreciation of the key, complex and multiple roles of the ECM in cancer and of the CAF diversity, has revolutionized the field and raised innovative but challenging questions. Here, we rapidly present CAF heterogeneity in link with their specific ECM remodeling features observed in cancer, before developing each of the impacts of such ECM modifications on tumor progression (survival, angiogenesis, pre-metastatic niche, chemoresistance, etc.), and on patient prognosis. Finally, based on preclinical studies and recent results obtained from clinical trials, we highlight key mechanisms or proteins that are, or may be, used as potential therapeutic or diagnostic targets, and we report and discuss benefits, disappointments, or even failures, of recently reported stroma-targeting strategies.
Collapse
Affiliation(s)
| | | | | | | | - Christine Jean
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, 31037 Toulouse, France; (I.B.); (S.Z.); (C.L.); (C.B.)
| |
Collapse
|
113
|
Ray SK, Mukherjee S. Consequences of Extracellular Matrix Remodeling in Headway and Metastasis of Cancer along with Novel Immunotherapies: A Great Promise for Future Endeavor. Anticancer Agents Med Chem 2021; 22:1257-1271. [PMID: 34254930 DOI: 10.2174/1871520621666210712090017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/23/2021] [Accepted: 05/30/2021] [Indexed: 12/12/2022]
Abstract
Tissues are progressively molded by bidirectional correspondence between denizen cells and extracellular matrix (ECM) via cell-matrix connections along with ECM remodeling. The composition and association of ECM are spatiotemporally directed to control cell conduct and differentiation; however, dysregulation of ECM dynamics prompts the development of diseases, for example, cancer. Emerging information demonstrates that hypoxia may have decisive roles in metastasis. In addition, the sprawling nature of neoplastic cells and chaotic angiogenesis are increasingly influencing microcirculation as well as altering the concentration of oxygen. In various regions of the tumor microenvironment, hypoxia, an essential player in the multistep phase of cancer metastasis, is necessary. Hypoxia can be turned into an advantage for selective cancer therapy because it is much more severe in tumors than in normal tissues. Cellular matrix gives signaling cues that control cell behavior and organize cells' elements in tissue development and homeostasis. The interplay between intrinsic factors of cancer cells themselves, including their genotype and signaling networks, and extrinsic factors of tumor stroma, for example, ECM and ECM remodeling, together decide the destiny and behavior of tumor cells. Tumor matrix encourages the development, endurance, and invasion of neoplastic and immune cell activities to drive metastasis and debilitate treatment. Incipient evidence recommends essential parts of tumor ECM segments and their remodeling in controlling each progression of the cancer-immunity cycle. Scientists have discovered that tumor matrix dynamics as well as matrix remodeling in perspective to anti-tumor immune reactions are especially important for matrix-based biomarkers recognition and followed by immunotherapy and targeting specific drugs.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Department of Applied Sciences, Indira Gandhi Technological and Medical Sciences University, India
| | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences Bhopal, Madhya pradesh-462020, India
| |
Collapse
|
114
|
Role and Evolution of the Extracellular Matrix in the Acquisition of Complex Multicellularity in Eukaryotes: A Macroalgal Perspective. Genes (Basel) 2021; 12:genes12071059. [PMID: 34356075 PMCID: PMC8307928 DOI: 10.3390/genes12071059] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Multicellular eukaryotes are characterized by an expanded extracellular matrix (ECM) with a diversified composition. The ECM is involved in determining tissue texture, screening cells from the outside medium, development, and innate immunity, all of which are essential features in the biology of multicellular eukaryotes. This review addresses the origin and evolution of the ECM, with a focus on multicellular marine algae. We show that in these lineages the expansion of extracellular matrix played a major role in the acquisition of complex multicellularity through its capacity to connect, position, shield, and defend the cells. Multiple innovations were necessary during these evolutionary processes, leading to striking convergences in the structures and functions of the ECMs of algae, animals, and plants.
Collapse
|
115
|
Combinatorial therapy in tumor microenvironment: Where do we stand? Biochim Biophys Acta Rev Cancer 2021; 1876:188585. [PMID: 34224836 DOI: 10.1016/j.bbcan.2021.188585] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/28/2021] [Accepted: 06/23/2021] [Indexed: 01/09/2023]
Abstract
The tumor microenvironment plays a pivotal role in tumor initiation and progression by creating a dynamic interaction with cancer cells. The tumor microenvironment consists of various cellular components, including endothelial cells, fibroblasts, pericytes, adipocytes, immune cells, cancer stem cells and vasculature, which provide a sustained environment for cancer cell proliferation. Currently, targeting tumor microenvironment is increasingly being explored as a novel approach to improve cancer therapeutics, as it influences the growth and expansion of malignant cells in various ways. Despite continuous advancements in targeted therapies for cancer treatment, drug resistance, toxicity and immune escape mechanisms are the basis of treatment failure and cancer escape. Targeting tumor microenvironment efficiently with approved drugs and combination therapy is the solution to this enduring challenge that involves combining more than one treatment modality such as chemotherapy, surgery, radiotherapy, immunotherapy and nanotherapy that can effectively and synergistically target the critical pathways associated with disease pathogenesis. This review shed light on the composition of the tumor microenvironment, interaction of different components within tumor microenvironment with tumor cells and associated hallmarks, the current status of combinatorial therapies being developed, and various growing advancements. Furthermore, computational tools can also be used to monitor the significance and outcome of therapies being developed. We addressed the perceived barriers and regulatory hurdles in developing a combinatorial regimen and evaluated the present status of these therapies in the clinic. The accumulating depth of knowledge about the tumor microenvironment in cancer may facilitate further development of effective treatment modalities. This review presents the tumor microenvironment as a sweeping landscape for developing novel cancer therapies.
Collapse
|
116
|
Satala D, Satala G, Zawrotniak M, Kozik A. Candida albicans and Candida glabrata triosephosphate isomerase - a moonlighting protein that can be exposed on the candidal cell surface and bind to human extracellular matrix proteins. BMC Microbiol 2021; 21:199. [PMID: 34210257 PMCID: PMC8252264 DOI: 10.1186/s12866-021-02235-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/17/2021] [Indexed: 12/23/2022] Open
Abstract
Background Triosephosphate isomerase (Tpi1) is a glycolytic enzyme that has recently been reported also to be an atypical proteinaceous component of the Candida yeast cell wall. Similar to other known candidal “moonlighting proteins”, surface-exposed Tpi1 is likely to contribute to fungal adhesion during the colonization and infection of a human host. The aim of our present study was to directly prove the presence of Tpi1 on C. albicans and C. glabrata cells under various growth conditions and characterize the interactions of native Tpi1, isolated and purified from the candidal cell wall, with human extracellular matrix proteins. Results Surface plasmon resonance measurements were used to determine the dissociation constants for the complexes of Tpi1 with host proteins and these values were found to fall within a relatively narrow range of 10− 8-10− 7 M. Using a chemical cross-linking method, two motifs of the Tpi1 molecule (aa 4–17 and aa 224–247) were identified to be directly involved in the interaction with vitronectin. A proposed structural model for Tpi1 confirmed that these interaction sites were at a considerable distance from the catalytic active site. Synthetic peptides with these sequences significantly inhibited Tpi1 binding to several extracellular matrix proteins suggesting that a common region on the surface of Tpi1 molecule is involved in the interactions with the host proteins. Conclusions The current study provided structural insights into the interactions of human extracellular matrix proteins with Tpi1 that can occur at the cell surface of Candida yeasts and contribute to the host infection by these fungal pathogens. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02235-w.
Collapse
Affiliation(s)
- Dorota Satala
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
| | - Grzegorz Satala
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland. .,Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-384, Krakow, Poland.
| |
Collapse
|
117
|
Co-evolution of matrisome and adaptive adhesion dynamics drives ovarian cancer chemoresistance. Nat Commun 2021; 12:3904. [PMID: 34162871 PMCID: PMC8222388 DOI: 10.1038/s41467-021-24009-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
Due to its dynamic nature, the evolution of cancer cell-extracellular matrix (ECM) crosstalk, critically affecting metastasis and treatment resistance, remains elusive. Our results show that platinum-chemotherapy itself enhances resistance by progressively changing the cancer cell-intrinsic adhesion signaling and cell-surrounding ECM. Examining ovarian high-grade serous carcinoma (HGSC) transcriptome and histology, we describe the fibrotic ECM heterogeneity at primary tumors and distinct metastatic sites, prior and after chemotherapy. Using cell models from systematic ECM screen to collagen-based 2D and 3D cultures, we demonstrate that both specific ECM substrates and stiffness increase resistance to platinum-mediated, apoptosis-inducing DNA damage via FAK and β1 integrin-pMLC-YAP signaling. Among such substrates around metastatic HGSCs, COL6 was upregulated by chemotherapy and enhanced the resistance of relapse, but not treatment-naïve, HGSC organoids. These results identify matrix adhesion as an adaptive response, driving HGSC aggressiveness via co-evolving ECM composition and sensing, suggesting stromal and tumor strategies for ECM pathway targeting.
Collapse
|
118
|
Induction of Neurogenesis and Angiogenesis in a Rat Hemisection Spinal Cord Injury Model With Combined Neural Stem Cell, Endothelial Progenitor Cell, and Biomimetic Hydrogel Matrix Therapy. Crit Care Explor 2021; 3:e0436. [PMID: 34151277 PMCID: PMC8205216 DOI: 10.1097/cce.0000000000000436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Acute spinal cord injury is a devastating injury that may lead to loss of independent function. Stem-cell therapies have shown promise; however, a clinically efficacious stem-cell therapy has yet to be developed. Functionally, endothelial progenitor cells induce angiogenesis, and neural stem cells induce neurogenesis. In this study, we explored using a multimodal therapy combining endothelial progenitor cells with neural stem cells encapsulated in a bioactive biomimetic hydrogel matrix to facilitate stem cell-induced neurogenesis and angiogenesis in a rat hemisection spinal cord injury model. DESIGN Laboratory experimentation. SETTING University laboratory. SUBJECTS Female Fischer 344 rats. INTERVENTIONS Three groups of rats: 1) control, 2) biomimetic hydrogel therapy, and 3) combined neural stem cell, endothelial progenitor cell, biomimetic hydrogel therapy underwent right-sided spinal cord hemisection at T9-T10. The blinded Basso, Beattie, and Bresnahan motor score was obtained weekly; after 4 weeks, observational histologic analysis of the injured spinal cords was completed. MEASUREMENTS AND MAIN RESULTS Blinded Basso, Beattie, and Bresnahan motor score of the hind limb revealed significantly improved motor function in rats treated with combined neural stem cell, endothelial progenitor cell, and biomimetic hydrogel therapy (p < 0.05) compared with the control group. The acellular biomimetic hydrogel group did not demonstrate a significant improvement in motor function compared with the control group. Immunohistochemistry evaluation of the injured spinal cords demonstrated de novo neurogenesis and angiogenesis in the combined neural stem cell, endothelial progenitor cell, and biomimetic hydrogel therapy group, whereas, in the control group, a gap or scar was found in the injured spinal cord. CONCLUSIONS This study demonstrates proof of concept that multimodal therapy with endothelial progenitor cells and neural stem cells combined with a bioactive biomimetic hydrogel can be used to induce de novo CNS tissue in an injured rat spinal cord.
Collapse
|
119
|
Tseng YT, Chen M, Lai R, Oieni F, Smyth G, Anoopkumar-Dukie S, St John J, Ekberg J. Liraglutide modulates olfactory ensheathing cell migration with activation of ERK and alteration of the extracellular matrix. Biomed Pharmacother 2021; 141:111819. [PMID: 34126351 DOI: 10.1016/j.biopha.2021.111819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Transplantation of olfactory ensheathing cells (OECs) is a promising approach for repairing the injured nervous system that has been extensively trialed for nervous system repair. However, the method still needs improvement and optimization. One avenue of improving outcomes is to stimulate OEC migration into the injury site. Liraglutide is a glucagon-like peptide-1 receptor agonist used for management of diabetes and obesity. It has been shown to be neuroprotective and to promote cell migration, but whether it can stimulate glial cells remains unknown. In the current study, we investigated the effects of liraglutide on OEC migration and explored the involved mechanisms. We showed that liraglutide at low concentration (100 nM) overall promoted OEC migration over time. Liraglutide modulated the migratory behavior of OECs by reducing time in arrest, and promoted random rather than straight migration. Liraglutide also induced a morphological change of primary OECs towards a bipolar shape consistent with improved migration. We found that liraglutide activated extracellular signal-regulated kinase (ERK), which has key roles in cell migration; the timing of ERK activation correlated with stimulation of migration. Furthermore, liraglutide also modulated the extracellular matrix by upregulating laminin-1 and down-regulating collagen IV. In summary, we found that liraglutide can stimulate OEC migration and re-model the extracellular matrix to better promote cell migration, and possibly also to become more conducive for axonal regeneration. Thus, liraglutide may improve OEC transplantation outcomes.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia
| | - Mo Chen
- Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia
| | - Richard Lai
- Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
| | - Francesca Oieni
- Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia
| | - Graham Smyth
- Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia
| | | | - James St John
- Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Jenny Ekberg
- Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD 4222, Australia; Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| |
Collapse
|
120
|
Genome-Wide Differential Methylation Profiles from Two Terpene-Rich Medicinal Plant Extracts Administered in Osteoarthritis Rats. PLANTS 2021; 10:plants10061132. [PMID: 34199631 PMCID: PMC8227118 DOI: 10.3390/plants10061132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/31/2022]
Abstract
Extracts from the plants Phlomis umbrosa and Dipsacus asperoides—which are widely used in Korean and Chinese traditional medicine to treat osteoarthritis and other bone diseases—were used to treat experimental osteoarthritis (OA) rats. Genome-wide differential methylation regions (DMRs) of these medicinal-plant-treated rats were profiled as therapeutic evidence associated with traditional medicine, and they need to be investigated further using detailed molecular research to extrapolate traditional practices to modern medicine. In total, 49 protein-encoding genes whose expression is differentially regulated during disease progression and recovery have been discovered via systematic bioinformatic analysis and have been approved/proposed as druggable targets for various bone diseases by the US food and drug administration. Genes encoding proteins involved in the PI3K/AKT pathway were found to be enriched, likely as this pathway plays a crucial role during OA progression as well as during the recovery process after treatment with the aforementioned plant extracts. The four sub-networks of PI3K/AKT were highly regulated by these plant extracts. Overall, 29 genes were seen in level 2 (51–75%) DMRs and were correlated highly with OA pathogenesis. Here, we propose that these genes could serve as targets to study OA; moreover, the iridoid and triterpenoid phytochemicals obtained from these two plants may serve as potential therapeutic agents.
Collapse
|
121
|
Gallorini M, Carradori S. Understanding collagen interactions and their targeted regulation by novel drugs. Expert Opin Drug Discov 2021; 16:1239-1260. [PMID: 34034595 DOI: 10.1080/17460441.2021.1933426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Among protein and fibers in the extracellular matrix (ECM), collagen is the most copious and widely employed in cosmetic, food, pharmaceutical, and biomedical industries due to its extensive biocompatible and versatile properties. In the last years, the knowledge about functions of collagens increased and expanded dramatically. Once considered only crucial for the ECM scaffolding and mechanotransduction, additional functional roles have now been ascribed to the collagen superfamily which are defined by other recently discovered domains, supramolecular assembly and receptors.Areas covered: Given the importance of each step in the collagen biosynthesis, folding and signaling, medicinal chemists have explored small molecules, peptides, and monoclonal antibodies to modulate enzymes, receptors and interactions with the physiological ligands of collagen. These compounds were also explored toward diseases and pathological conditions. The authors discuss this providing their expert perspectives on the subject area.Expert opinion: Understanding collagen protein properties and its interactome is beneficial for therapeutic drug design. Nevertheless, compounds targeting collagen-based interactome suffered from the presence of different isoforms for each target and the lack of specific 3D crystal structures able to guide properly drug design.
Collapse
Affiliation(s)
- Marialucia Gallorini
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
122
|
Abstract
The extracellular matrix is a fundamental, core component of all tissues and organs, and is essential for the existence of multicellular organisms. From the earliest stages of organism development until death, it regulates and fine-tunes every cellular process in the body. In cancer, the extracellular matrix is altered at the biochemical, biomechanical, architectural and topographical levels, and recent years have seen an exponential increase in the study and recognition of the importance of the matrix in solid tumours. Coupled with the advancement of new technologies to study various elements of the matrix and cell-matrix interactions, we are also beginning to see the deployment of matrix-centric, stromal targeting cancer therapies. This Review touches on many of the facets of matrix biology in solid cancers, including breast, pancreatic and lung cancer, with the aim of highlighting some of the emerging interactions of the matrix and influences that the matrix has on tumour onset, progression and metastatic dissemination, before summarizing the ongoing work in the field aimed at developing therapies to co-target the matrix in cancer and cancer metastasis.
Collapse
Affiliation(s)
- Thomas R Cox
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
123
|
Stiffness increases with myofibroblast content and collagen density in mesenchymal high grade serous ovarian cancer. Sci Rep 2021; 11:4219. [PMID: 33603134 PMCID: PMC7892556 DOI: 10.1038/s41598-021-83685-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
Women diagnosed with high-grade serous ovarian cancers (HGSOC) are still likely to exhibit a bad prognosis, particularly when suffering from HGSOC of the Mesenchymal molecular subtype (50% cases). These tumors show a desmoplastic reaction with accumulation of extracellular matrix proteins and high content of cancer-associated fibroblasts. Using patient-derived xenograft mouse models of Mesenchymal and Non-Mesenchymal HGSOC, we show here that HGSOC exhibit distinct stiffness depending on their molecular subtype. Indeed, tumor stiffness strongly correlates with tumor growth in Mesenchymal HGSOC, while Non-Mesenchymal tumors remain soft. Moreover, we observe that tumor stiffening is associated with high stromal content, collagen network remodeling, and MAPK/MEK pathway activation. Furthermore, tumor stiffness accompanies a glycolytic metabolic switch in the epithelial compartment, as expected based on Warburg's effect, but also in stromal cells. This effect is restricted to the central part of stiff Mesenchymal tumors. Indeed, stiff Mesenchymal tumors remain softer at the periphery than at the core, with stromal cells secreting high levels of collagens and showing an OXPHOS metabolism. Thus, our study suggests that tumor stiffness could be at the crossroad of three major processes, i.e. matrix remodeling, MEK activation and stromal metabolic switch that might explain at least in part Mesenchymal HGSOC aggressiveness.
Collapse
|
124
|
Harnessing Extracellular Matrix Biology for Tumor Drug Delivery. J Pers Med 2021; 11:jpm11020088. [PMID: 33572559 PMCID: PMC7911184 DOI: 10.3390/jpm11020088] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/21/2022] Open
Abstract
The extracellular matrix (ECM) plays an active role in cell life through a tightly controlled reciprocal relationship maintained by several fibrous proteins, enzymes, receptors, and other components. It is also highly involved in cancer progression. Because of its role in cancer etiology, the ECM holds opportunities for cancer therapy on several fronts. There are targets in the tumor-associated ECM at the level of signaling molecules, enzyme expression, protein structure, receptor interactions, and others. In particular, the ECM is implicated in invasiveness of tumors through its signaling interactions with cells. By capitalizing on the biology of the tumor microenvironment and the opportunities it presents for intervention, the ECM has been investigated as a therapeutic target, to facilitate drug delivery, and as a prognostic or diagnostic marker for tumor progression and therapeutic intervention. This review summarizes the tumor ECM biology as it relates to drug delivery with emphasis on design parameters targeting the ECM.
Collapse
|
125
|
Stromal Protein-Mediated Immune Regulation in Digestive Cancers. Cancers (Basel) 2021; 13:cancers13010146. [PMID: 33466303 PMCID: PMC7795083 DOI: 10.3390/cancers13010146] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Solid cancers are surrounded by a network of non-cancerous cells comprising different cell types, including fibroblasts, and acellular protein structures. This entire network is called the tumor microenvironment (TME) and it provides a physical barrier to the tumor shielding it from infiltrating immune cells, such as lymphocytes, or therapeutic agents. In addition, the TME has been shown to dampen efficient immune responses of infiltrated immune cells, which are key in eliminating cancer cells from the organism. In this review, we will discuss how TME proteins in particular are involved in this dampening effect, known as immunosuppression. We will focus on three different types of digestive cancers: pancreatic cancer, colorectal cancer, and gastric cancer. Moreover, we will discuss current therapeutic approaches using TME proteins as targets to reverse their immunosuppressive effects. Abstract The stromal tumor microenvironment (TME) consists of immune cells, vascular and neural structures, cancer-associated fibroblasts (CAFs), as well as extracellular matrix (ECM), and favors immune escape mechanisms promoting the initiation and progression of digestive cancers. Numerous ECM proteins released by stromal and tumor cells are crucial in providing physical rigidity to the TME, though they are also key regulators of the immune response against cancer cells by interacting directly with immune cells or engaging with immune regulatory molecules. Here, we discuss current knowledge of stromal proteins in digestive cancers including pancreatic cancer, colorectal cancer, and gastric cancer, focusing on their functions in inhibiting tumor immunity and enabling drug resistance. Moreover, we will discuss the implication of stromal proteins as therapeutic targets to unleash efficient immunotherapy-based treatments.
Collapse
|
126
|
Abstract
The extracellular matrix (ECM) is the noncellular compartment of living organisms and is formed of a complex network of cross-linked proteins, which is collectively known as the matrisome. Apart from providing the structure for an organism, cells interact and thereby communicate with the ECM. Cells interact with their surrounding ECM using cell-surface receptors, such as integrins. Upon integrin engagement with the ECM, cytoskeletal proteins are recruited to integrins and form a molecular protein complex known as the integrin adhesome. Global descriptions of the matrisome and integrin adhesome have been proposed using in silico bioinformatics approaches, as well as through biochemical enrichment of matrisome and adhesome fractions coupled with mass spectrometry-based proteomic analyses, providing inventories of their compositions in different contexts. Here, methods are described for the computational downstream analyses of matrisome and adhesome mass spectrometry datasets that are accessible to wet lab biologists, which include comparing datasets to in silico descriptions, generating interaction networks and performing functional ontological analyses.
Collapse
|
127
|
Petersen EV, Chudakova DA, Skorova EY, Anikin V, Reshetov IV, Mynbaev OA. The Extracellular Matrix-Derived Biomarkers for Diagnosis, Prognosis, and Personalized Therapy of Malignant Tumors. Front Oncol 2020; 10:575569. [PMID: 33425730 PMCID: PMC7793707 DOI: 10.3389/fonc.2020.575569] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/10/2020] [Indexed: 01/18/2023] Open
Abstract
The tumor biomarkers already have proven clinical value and have become an integral part in cancer management and modern translational oncology. The tumor tissue microenvironment (TME), which includes extracellular matrix (ECM), signaling molecules, immune and stromal cells, and adjacent non-tumorous tissue, contributes to cancer pathogenesis. Thus, TME-derived biomarkers have many clinical applications. This review is predominately based on the most recent publications (manuscripts published in a last 5 years, or seminal publications published earlier) and fills a gap in the current literature on the cancer biomarkers derived from the TME, with particular attention given to the ECM and products of its processing and degradation, ECM-associated extracellular vesicles (EVs), biomechanical characteristics of ECM, and ECM-derived biomarkers predicting response to the immunotherapy. We discuss the clinical utility of the TME-incorporating three-dimensional in vitro and ex vivo cell culture models for personalized therapy. We conclude that ECM is a critical driver of malignancies and ECM-derived biomarkers should be included in diagnostics and prognostics panels of markers in the clinic.
Collapse
Affiliation(s)
- Elena V. Petersen
- Department of Molecular and Bio Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Daria A. Chudakova
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Ekaterina Yu. Skorova
- Department of Molecular and Bio Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vladimir Anikin
- Harefield Hospital, The Royal Brompton and Harefield Hospitals NHS Foundation Trust, Harefield, United Kingdom
- Department of Oncology and Reconstructive Surgery, Sechenov Medical University, Moscow, Russia
| | - Igor V. Reshetov
- Department of Molecular and Bio Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Department of Oncology and Reconstructive Surgery, Sechenov Medical University, Moscow, Russia
| | - Ospan A. Mynbaev
- Department of Molecular and Bio Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
128
|
Atay S. Integrated transcriptome meta-analysis of pancreatic ductal adenocarcinoma and matched adjacent pancreatic tissues. PeerJ 2020; 8:e10141. [PMID: 33194391 PMCID: PMC7597628 DOI: 10.7717/peerj.10141] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/19/2020] [Indexed: 12/17/2022] Open
Abstract
A comprehensive meta-analysis of publicly available gene expression microarray data obtained from human-derived pancreatic ductal adenocarcinoma (PDAC) tissues and their histologically matched adjacent tissue samples was performed to provide diagnostic and prognostic biomarkers, and molecular targets for PDAC. An integrative meta-analysis of four submissions (GSE62452, GSE15471, GSE62165, and GSE56560) containing 105 eligible tumor-adjacent tissue pairs revealed 344 differentially over-expressed and 168 repressed genes in PDAC compared to the adjacent-to-tumor samples. The validation analysis using TCGA combined GTEx data confirmed 98.24% of the identified up-regulated and 73.88% of the down-regulated protein-coding genes in PDAC. Pathway enrichment analysis showed that “ECM-receptor interaction”, “PI3K-Akt signaling pathway”, and “focal adhesion” are the most enriched KEGG pathways in PDAC. Protein-protein interaction analysis identified FN1, TIMP1, and MSLN as the most highly ranked hub genes among the DEGs. Transcription factor enrichment analysis revealed that TCF7, CTNNB1, SMAD3, and JUN are significantly activated in PDAC, while SMAD7 is inhibited. The prognostic significance of the identified and validated differentially expressed genes in PDAC was evaluated via survival analysis of TCGA Pan-Cancer pancreatic ductal adenocarcinoma data. The identified candidate prognostic biomarkers were then validated in four external validation datasets (GSE21501, GSE50827, GSE57495, and GSE71729) to further improve reliability. A total of 28 up-regulated genes were found to be significantly correlated with worse overall survival in patients with PDAC. Twenty-one of the identified prognostic genes (ITGB6, LAMC2, KRT7, SERPINB5, IGF2BP3, IL1RN, MPZL2, SFTA2, MET, LAMA3, ARNTL2, SLC2A1, LAMB3, COL17A1, EPSTI1, IL1RAP, AK4, ANXA2, S100A16, KRT19, and GPRC5A) were also found to be significantly correlated with the pathological stages of the disease. The results of this study provided promising prognostic biomarkers that have the potential to differentiate PDAC from both healthy and adjacent-to-tumor pancreatic tissues. Several novel dysregulated genes merit further study as potentially promising candidates for the development of more effective treatment strategies for PDAC.
Collapse
Affiliation(s)
- Sevcan Atay
- Department of Medical Biochemistry, Ege University Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
129
|
McQuitty CE, Williams R, Chokshi S, Urbani L. Immunomodulatory Role of the Extracellular Matrix Within the Liver Disease Microenvironment. Front Immunol 2020; 11:574276. [PMID: 33262757 PMCID: PMC7686550 DOI: 10.3389/fimmu.2020.574276] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic liver disease when accompanied by underlying fibrosis, is characterized by an accumulation of extracellular matrix (ECM) proteins and chronic inflammation. Although traditionally considered as a passive and largely architectural structure, the ECM is now being recognized as a source of potent damage-associated molecular pattern (DAMP)s with immune-active peptides and domains. In parallel, the ECM anchors a range of cytokines, chemokines and growth factors, all of which are capable of modulating immune responses. A growing body of evidence shows that ECM proteins themselves are capable of modulating immunity either directly via ligation with immune cell receptors including integrins and TLRs, or indirectly through release of immunoactive molecules such as cytokines which are stored within the ECM structure. Notably, ECM deposition and remodeling during injury and fibrosis can result in release or formation of ECM-DAMPs within the tissue, which can promote local inflammatory immune response and chemotactic immune cell recruitment and inflammation. It is well described that the ECM and immune response are interlinked and mutually participate in driving fibrosis, although their precise interactions in the context of chronic liver disease are poorly understood. This review aims to describe the known pro-/anti-inflammatory and fibrogenic properties of ECM proteins and DAMPs, with particular reference to the immunomodulatory properties of the ECM in the context of chronic liver disease. Finally, we discuss the importance of developing novel biotechnological platforms based on decellularized ECM-scaffolds, which provide opportunities to directly explore liver ECM-immune cell interactions in greater detail.
Collapse
Affiliation(s)
- Claire E. McQuitty
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Roger Williams
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Shilpa Chokshi
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Luca Urbani
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
130
|
Matarèse BFE, Lad J, Seymour C, Schofield PN, Mothersill C. Bio-acoustic signaling; exploring the potential of sound as a mediator of low-dose radiation and stress responses in the environment. Int J Radiat Biol 2020; 98:1083-1097. [DOI: 10.1080/09553002.2020.1834162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bruno F. E. Matarèse
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Physics, University of Cambridge, Cambridge, UK
| | - Jigar Lad
- Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, Canada
| | - Paul N. Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
131
|
Belviso I, Angelini F, Di Meglio F, Picchio V, Sacco AM, Nocella C, Romano V, Nurzynska D, Frati G, Maiello C, Messina E, Montagnani S, Pagano F, Castaldo C, Chimenti I. The Microenvironment of Decellularized Extracellular Matrix from Heart Failure Myocardium Alters the Balance between Angiogenic and Fibrotic Signals from Stromal Primitive Cells. Int J Mol Sci 2020; 21:7903. [PMID: 33114386 PMCID: PMC7662394 DOI: 10.3390/ijms21217903] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 01/20/2023] Open
Abstract
Cardiac adverse remodeling is characterized by biological changes that affect the composition and architecture of the extracellular matrix (ECM). The consequently disrupted signaling can interfere with the balance between cardiogenic and pro-fibrotic phenotype of resident cardiac stromal primitive cells (CPCs). The latter are important players in cardiac homeostasis and can be exploited as therapeutic cells in regenerative medicine. Our aim was to compare the effects of human decellularized native ECM from normal (dECM-NH) or failing hearts (dECM-PH) on human CPCs. CPCs were cultured on dECM sections and characterized for gene expression, immunofluorescence, and paracrine profiles. When cultured on dECM-NH, CPCs significantly upregulated cardiac commitment markers (CX43, NKX2.5), cardioprotective cytokines (bFGF, HGF), and the angiogenesis mediator, NO. When seeded on dECM-PH, instead, CPCs upregulated pro-remodeling cytokines (IGF-2, PDGF-AA, TGF-β) and the oxidative stress molecule H2O2. Interestingly, culture on dECM-PH was associated with impaired paracrine support to angiogenesis, and increased expression of the vascular endothelial growth factor (VEGF)-sequestering decoy isoform of the KDR/VEGFR2 receptor. Our results suggest that resident CPCs exposed to the pathological microenvironment of remodeling ECM partially lose their paracrine angiogenic properties and release more pro-fibrotic cytokines. These observations shed novel insights on the crosstalk between ECM and stromal CPCs, suggesting also a cautious use of non-healthy decellularized myocardium for cardiac tissue engineering approaches.
Collapse
Affiliation(s)
- Immacolata Belviso
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (I.B.); (F.D.M.); (A.M.S.); (V.R.); (D.N.); (S.M.); (C.C.)
| | - Francesco Angelini
- Experimental and Clinical Pharmacology Unit, CRO-National Cancer Institute, 33081 Aviano (PN), Italy;
| | - Franca Di Meglio
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (I.B.); (F.D.M.); (A.M.S.); (V.R.); (D.N.); (S.M.); (C.C.)
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Corso della Repubblica 79, 04100 Latina, Italy; (V.P.); (G.F.)
| | - Anna Maria Sacco
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (I.B.); (F.D.M.); (A.M.S.); (V.R.); (D.N.); (S.M.); (C.C.)
| | - Cristina Nocella
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University, 00161 Rome, Italy;
| | - Veronica Romano
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (I.B.); (F.D.M.); (A.M.S.); (V.R.); (D.N.); (S.M.); (C.C.)
| | - Daria Nurzynska
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (I.B.); (F.D.M.); (A.M.S.); (V.R.); (D.N.); (S.M.); (C.C.)
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Corso della Repubblica 79, 04100 Latina, Italy; (V.P.); (G.F.)
- Department of AngioCardioNeurology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Ciro Maiello
- Department of Cardiovascular Surgery and Transplant, Monaldi Hospital, 80131 Naples, Italy;
| | - Elisa Messina
- Department of Maternal Infantile and Urological Sciences, “Umberto I” Hospital, 00161 Rome, Italy;
| | - Stefania Montagnani
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (I.B.); (F.D.M.); (A.M.S.); (V.R.); (D.N.); (S.M.); (C.C.)
| | - Francesca Pagano
- Institute of Biochemistry and Cell Biology, National Council of Research (IBBC-CNR), 00015 Monterotondo (RM), Italy;
| | - Clotilde Castaldo
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (I.B.); (F.D.M.); (A.M.S.); (V.R.); (D.N.); (S.M.); (C.C.)
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University, Corso della Repubblica 79, 04100 Latina, Italy; (V.P.); (G.F.)
- Mediterranea Cardiocentro, 80122 Napoli, Italy
| |
Collapse
|
132
|
Alfonso García SL, Parada-Sanchez MT, Arboleda Toro D. The phenotype of gingival fibroblasts and their potential use in advanced therapies. Eur J Cell Biol 2020; 99:151123. [PMID: 33070040 DOI: 10.1016/j.ejcb.2020.151123] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 02/06/2023] Open
Abstract
Advanced therapies in medicine use stem cells, gene editing, and tissues to treat a wide range of conditions. One of their goals is to stimulate endogenous repair of tissues and organs by manipulating stem cells and their niche, as well as to optimize the intrinsic characteristics and plasticity of differentiated cells in adult tissues. In this context, fibroblasts emerge as an alternative source to stem cells because they share phenotypic and regenerative characteristics. Specifically, fibroblasts of the oral mucosae have been shown to have improved regenerative capacity compared to other fibroblast populations. Additionally, their easy access by means of minimally invasive procedures without generating aesthetic problems, with easy and rapid in vitro expansion and with great capacity to respond to extrinsic factors, make oral fibroblasts an attractive and interesting resource for regenerative medicine. This review summarizes current concepts regarding the phenotypic and functional aspects of human Gingival Fibroblasts and their niche, differentiating them from other fibroblast populations of oral-lining mucosa and skin fibroblasts. Furthermore, some applications are presented in regenerative medicine, emphasizing on the biological potential of human Gingival Fibroblasts.
Collapse
Affiliation(s)
- Sandra Liliana Alfonso García
- Department of Integrated Basic Studies, Faculty of Dentistry, Universidad de Antioquia, Medellín, 050010, Colombia; Department of Oral Health, Faculty of Dentistry, Universidad Nacional de Colombia, Bogotá, 111311, Colombia.
| | | | - David Arboleda Toro
- Department of Integrated Basic Studies, Faculty of Dentistry, Universidad de Antioquia, Medellín, 050010, Colombia
| |
Collapse
|
133
|
Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun 2020; 11:5120. [PMID: 33037194 PMCID: PMC7547708 DOI: 10.1038/s41467-020-18794-x] [Citation(s) in RCA: 1256] [Impact Index Per Article: 251.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Tissues are dynamically shaped by bidirectional communication between resident cells and the extracellular matrix (ECM) through cell-matrix interactions and ECM remodelling. Tumours leverage ECM remodelling to create a microenvironment that promotes tumourigenesis and metastasis. In this review, we focus on how tumour and tumour-associated stromal cells deposit, biochemically and biophysically modify, and degrade tumour-associated ECM. These tumour-driven changes support tumour growth, increase migration of tumour cells, and remodel the ECM in distant organs to allow for metastatic progression. A better understanding of the underlying mechanisms of tumourigenic ECM remodelling is crucial for developing therapeutic treatments for patients. Tumors are more than cancer cells — the extracellular matrix is a protein structure that organizes all tissues and is altered in cancer. Here, the authors review recent progress in understanding how the cancer cells and tumor-associated stroma cells remodel the extracellular matrix to drive tumor growth and metastasis.
Collapse
Affiliation(s)
- Juliane Winkler
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA.
| | - Abisola Abisoye-Ogunniyan
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| | - Kevin J Metcalf
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| | - Zena Werb
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
134
|
Meurer SK, Karsdal MA, Weiskirchen R. Advances in the clinical use of collagen as biomarker of liver fibrosis. Expert Rev Mol Diagn 2020; 20:947-969. [PMID: 32865433 DOI: 10.1080/14737159.2020.1814746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Hepatic fibrosis is the excessive synthesis and deposition of extracellular matrix including collagen in the tissue. Chronic liver insult leads to progressive parenchymal damage, portal hypertension, and cirrhosis. Determination of hepatic collagen by invasive liver biopsy is the gold standard to estimate severity and stage of fibrosis. However, this procedure is associated with pain, carries the risk of infection and bleeding, and is afflicted with a high degree of sampling error. Therefore, there is urgent need for serological collagen-derived markers to assess collagen synthesis/turnover. AREAS COVERED Biochemical properties of collagens, cellular sources of hepatic collagen synthesis, and regulatory aspects in collagen expression. Markers are discussed suitable to estimate hepatic collagen synthesis and/or turnover. Discussed studies were identified through a PubMed search done in May 2020 and the authors' topic knowledge. EXPERT OPINION Hepatic fibrosis is mainly characterized by accumulation of collagen-rich scar tissue. Although traditionally performed liver biopsy is still standard in estimating hepatic fibrosis, there is evidence that noninvasive diagnostic scores and collagen-derived neo-epitopes provide clinical useful information. These noninvasive tests are less expensive than liver biopsy, better tolerated, safer, and more acceptable to patients. Therefore, these tests will lead to dramatic changes in diagnosis.
Collapse
Affiliation(s)
- Steffen K Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen , Aachen, Germany
| | - Morten A Karsdal
- Nordic Bioscience, Fibrosis Biomarkers and Research , Herlev, Denmark
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen , Aachen, Germany
| |
Collapse
|
135
|
Wu Y, Li J, Quan K, Meng X, Yang X, Huang J, Wang K. A DNAzyme cascade for amplified detection of intracellular miRNA. Chem Commun (Camb) 2020; 56:10163-10166. [PMID: 32744553 DOI: 10.1039/d0cc02847a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Inspired by the natural enzyme cascade reaction, an artificial DNAzyme cascade system is developed for the amplified detection of intracellular miR-141. The results showed that the method enormously enhanced the readout of the fluorescence signal and achieved a femtomolar detection limit.
Collapse
Affiliation(s)
- Yanan Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China.
| | | | | | | | | | | | | |
Collapse
|
136
|
Collagen and fibronectin promote an aggressive cancer phenotype in breast cancer cells but drive autonomous gene expression patterns. Gene 2020; 761:145024. [PMID: 32755659 DOI: 10.1016/j.gene.2020.145024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Understanding how various pathologies of breast cancer respond to their environment may be imperative in the creation of novel therapeutic targets. Central to the organisation and behaviour of cells within the tumour microenvironment is the extracellular matrix (ECM), a meshwork of fibrous proteins and glycoproteins that directly influences cell behaviour and the bioavailability of signalling molecules. Our appreciation on how the composition of the ECM can influence cancer behaviour has evolved significantly and although we are highly cognisant of the dramatic impact the ECM can have on cancer cell behaviour, we continue to neglect this during diagnosis and treatment. In the following study, we aimed to identify how three breast cancer cell lines respond functionally and genetically to common components of the ECM. Using real time and end point assays we have identified similar patterns of behaviour among the three breast cancer cell lines in response to commonly found ECM components of the breast. Using a selected gene panel, we have been able to identify cell line specific changes in gene differentiation when breast cancer cells are in contact with these elements. Although the response of our cells to these elements differ at the genetic level, their functional responses are consistent. This work adds to the growing arguments that highlight a need for histologically assessing ECM composition of breast tumours. In particular monitoring of fibrous protein deposition at the site of malignancy could provide critical information during clinical assessment influencing disease prognosis and treatment decisions for breast cancer patients.
Collapse
|
137
|
Dey S, Liu S, Factora TD, Taleb S, Riverahernandez P, Udari L, Zhong X, Wan J, Kota J. Global targetome analysis reveals critical role of miR-29a in pancreatic stellate cell mediated regulation of PDAC tumor microenvironment. BMC Cancer 2020; 20:651. [PMID: 32660466 PMCID: PMC7359459 DOI: 10.1186/s12885-020-07135-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive forms of malignancies with a nearly equal incidence and mortality rates in patients. Pancreatic stellate cells (PSCs) are critical players in PDAC microenvironment to promote the aggressiveness and pathogenesis of the disease. Dysregulation of microRNAs (miRNAs) have been shown to play a significant role in progression of PDAC. Earlier, we observed a PSC-specific downregulation of miR-29a in PDAC pancreas, however, the mechanism of action of the molecule in PSCs is still to be elucidated. The current study aims to clarify the regulation of miR-29a in PSCs and identifies functionally important downstream targets that contribute to tumorigenic activities during PDAC progression. METHODS In this study, using RNAseq approach, we performed transcriptome analysis of paired miR-29a overexpressing and control human PSCs (hPSCs). Enrichment analysis was performed with the identified differentially expressed genes (DEGs). miR-29a targets in the dataset were identified, which were utilized to create network interactions. Western blots were performed with the top miR-29a candidate targets in hPSCs transfected with miR-29a mimic or scramble control. RESULTS RNAseq analysis identified 202 differentially expressed genes, which included 19 downregulated direct miR-29a targets. Translational repression of eight key pro-tumorigenic and -fibrotic targets namely IGF-1, COL5A3, CLDN1, E2F7, MYBL2, ITGA6 and ADAMTS2 by miR-29a was observed in PSCs. Using pathway analysis, we find that miR-29a modulates effectors of IGF-1-p53 signaling in PSCs that may hinder carcinogenesis. We further observe a regulatory role of the molecule in pathways associated with PDAC ECM remodeling and tumor-stromal crosstalk, such as INS/IGF-1, RAS/MAPK, laminin interactions and collagen biosynthesis. CONCLUSIONS Together, our study presents a comprehensive understanding of miR-29a regulation of PSCs, and identifies essential pathways associated with PSC-mediated PDAC pathogenesis. The findings suggest an anti-tumorigenic role of miR-29a in the context of PSC-cancer cell crosstalk and advocates for the potential of the molecule in PDAC targeted therapies.
Collapse
Affiliation(s)
- Shatovisha Dey
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tricia D Factora
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Solaema Taleb
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Primavera Riverahernandez
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lata Udari
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiaoling Zhong
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Janaiah Kota
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
- The Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
138
|
Harikrishnan K, Joshi O, Madangirikar S, Balasubramanian N. Cell Derived Matrix Fibulin-1 Associates With Epidermal Growth Factor Receptor to Inhibit Its Activation, Localization and Function in Lung Cancer Calu-1 Cells. Front Cell Dev Biol 2020; 8:522. [PMID: 32719793 PMCID: PMC7348071 DOI: 10.3389/fcell.2020.00522] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Epidermal Growth Factor Receptor (EGFR) is a known promoter of tumor progression and is overexpressed in lung cancers. Growth factor receptors (including EGFR) are known to interact with extracellular matrix (ECM) proteins, which regulate their activation and function. Fibulin-1 (FBLN1) is a major component of the ECM in lung tissue, and its levels are known to be downregulated in non-small cell lung cancers (NSCLC). To test the possible role FBLN1 isoforms could have in regulating EGFR signaling and function in lung cancer, we performed siRNA mediated knockdown of FBLN1C and FBLN1D in NSCLC Calu-1 cells. Their loss significantly increased basal (with serum) and EGF (Epidermal Growth Factor) mediated EGFR activation without affecting net EGFR levels. Overexpression of FBLN1C and FBLN1D also inhibits EGFR activation confirming their regulatory crosstalk. Loss of FBLN1C and FBLN1D promotes EGFR-dependent cell migration, inhibited upon Erlotinib treatment. Mechanistically, both FBLN1 isoforms interact with EGFR, their association not dependent on its activation. Notably, cell-derived matrix (CDM) enriched FBLN1 binds EGFR. Calu-1 cells plated on CDM derived from FBLN1C and FBLN1D knockdown cells show a significant increase in EGF mediated EGFR activation. This promotes cell adhesion and spreading with active EGFR enriched at membrane ruffles. Both adhesion and spreading on CDMs is significantly reduced by Erlotinib treatment. Together, these findings show FBLN1C/1D, as part of the ECM, can bind and regulate EGFR activation and function in NSCLC Calu-1 cells. They further highlight the role tumor ECM composition could have in influencing EGFR dependent lung cancers.
Collapse
Affiliation(s)
| | - Omkar Joshi
- Indian Institute of Science Education and Research, Pune, India
| | | | | |
Collapse
|
139
|
Ferreira JPS, Kuang M, Parente MPL, Natal Jorge RM, Wang R, Eppell SJ, Damaser M. Altered mechanics of vaginal smooth muscle cells due to the lysyl oxidase-like1 knockout. Acta Biomater 2020; 110:175-187. [PMID: 32335309 DOI: 10.1016/j.actbio.2020.03.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 01/04/2023]
Abstract
The remodeling mechanisms that cause connective tissue of the vaginal wall, consisting mostly of smooth muscle, to weaken after vaginal delivery are not fully understood. Abnormal remodeling after delivery can contribute to development of pelvic organ prolapse and other pelvic floor disorders. The present study used vaginal smooth muscle cells (vSMCs) isolated from knockout mice lacking the expression of the lysyl oxidase-like1 (LOXL1) enzyme, a well-characterized animal model for pelvic organ prolapse. We tested if vaginal smooth muscle cells from LOXL1 knockout mice have altered mechanics including stiffness and surface adhesion. Using atomic force microscopy, we performed nanoindentations on both isolated and confluent cells to evaluate the effect of LOXL1 knockout on in vitro cultures of vSMCs cells from nulliparous mice. The results show that LOXL1 knockout vSMCs have increased stiffness in pre-confluent but decreased stiffness in confluent cultures (p* < 0.05) and significant decreased surface adhesion in pre-confluent cultures (p* < 0.05). This study provides evidence that the weakening of vaginal connective tissue in the absense of LOXL1 changes the mechanical properties of the vSMCs. STATEMENT OF SIGNIFICANCE: Pelvic organ prolapse is a common condition affecting millions of women worldwide, which significantly impacts their quality of life. Alterations in vaginal and pelvic floor mechanical properties can change their ability to support the pelvic organs. This study provides evidence of altered stiffness of vaginal smooth muscle cells from mice resembling pelvic organ prolapse. The results from this study set a foundation to develop pathophysiology-driven therapies focused on the interplay between smooth muscle mechanics and extracellular matrix remodeling.
Collapse
Affiliation(s)
- J P S Ferreira
- Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal; Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal; Department of Biomedical Engineering, Lerner Research Institute and Glickman Urological Institute, Cleveland Clinic Foundation, OH, USA.
| | - M Kuang
- Department of Biomedical Engineering, Lerner Research Institute and Glickman Urological Institute, Cleveland Clinic Foundation, OH, USA
| | - M P L Parente
- Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal; Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal
| | - R M Natal Jorge
- Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal; Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal
| | - R Wang
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, USA
| | - S J Eppell
- Department of Biomedical Engineering, Case Western Reserve, Cleveland, OH, USA
| | - M Damaser
- Department of Biomedical Engineering, Lerner Research Institute and Glickman Urological Institute, Cleveland Clinic Foundation, OH, USA; Department of Biomedical Engineering, Case Western Reserve, Cleveland, OH, USA; Advanced Platform Technology Center, Louis Stokes Cleveland Veteran's Administration Medical Center, Cleveland, OH, USA.
| |
Collapse
|
140
|
Andreuzzi E, Capuano A, Poletto E, Pivetta E, Fejza A, Favero A, Doliana R, Cannizzaro R, Spessotto P, Mongiat M. Role of Extracellular Matrix in Gastrointestinal Cancer-Associated Angiogenesis. Int J Mol Sci 2020; 21:E3686. [PMID: 32456248 PMCID: PMC7279269 DOI: 10.3390/ijms21103686] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal tumors are responsible for more cancer-related fatalities than any other type of tumors, and colorectal and gastric malignancies account for a large part of these diseases. Thus, there is an urgent need to develop new therapeutic approaches to improve the patients' outcome and the tumor microenvironment is a promising arena for the development of such treatments. In fact, the nature of the microenvironment in the different gastrointestinal tracts may significantly influence not only tumor development but also the therapy response. In particular, an important microenvironmental component and a potential therapeutic target is the vasculature. In this context, the extracellular matrix is a key component exerting an active effect in all the hallmarks of cancer, including angiogenesis. Here, we summarized the current knowledge on the role of extracellular matrix in affecting endothelial cell function and intratumoral vascularization in the context of colorectal and gastric cancer. The extracellular matrix acts both directly on endothelial cells and indirectly through its remodeling and the consequent release of growth factors. We envision that a deeper understanding of the role of extracellular matrix and of its remodeling during cancer progression is of chief importance for the development of new, more efficacious, targeted therapies.
Collapse
Affiliation(s)
- Eva Andreuzzi
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Alessandra Capuano
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Eliana Pivetta
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Andrea Favero
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Roberto Doliana
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Renato Cannizzaro
- Department of Clinical Oncology, Experimental Gastrointestinal Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| |
Collapse
|
141
|
Mao Q, Wang Y, Li Y, Juengpanich S, Li W, Chen M, Yin J, Fu J, Cai X. Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110625. [DOI: 10.1016/j.msec.2020.110625] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/16/2019] [Accepted: 01/01/2020] [Indexed: 02/07/2023]
|
142
|
Li J, Quan K, Yang Y, Yang X, Meng X, Huang J, Wang K. Engineering DNAzyme cascade for signal transduction and amplification. Analyst 2020; 145:1925-1932. [PMID: 31989119 DOI: 10.1039/c9an02003a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Inspired by the natural enzyme cascade reaction, a multiple DNAzyme cascade platform is engineered to imitate the intracellular process of signal transduction and signal amplification. In this design, when particular stimuli appear, an activated upstream DNAzyme will cleave a well-designed intermediary S1, releasing a downstream DNAzyme that can cleave the reporter substrate S2 to output signals. Thus, the signal is passed from the upstream DNAzyme to the downstream DNAzyme through a well-designed intermediary, accomplishing signal transduction and signal amplification. According to the experimental results, the DNAzyme cascades are capable of improving sensitivity for bioassays compared with that for single DNAzyme-based biocatalysis, which holds promise for potential applications, such as biomolecular computing, logic circuits and precision medicine.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P. R. China.
| | - Ke Quan
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, P. R. China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, P. R. China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P. R. China.
| | - Xiangxian Meng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P. R. China.
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P. R. China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P. R. China.
| |
Collapse
|
143
|
Zhu H, Zheng L, Wang L, Tang F, Arisha AH, Zhou H, Hua J. p53 inhibits the proliferation of male germline stem cells from dairy goat cultured on poly-L-lysine. Reprod Domest Anim 2020; 55:405-417. [PMID: 31985843 DOI: 10.1111/rda.13645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022]
Abstract
Male germline stem cells (mGSCs) can transmit genetic materials to the next generation and dedifferentiate into pluripotent stem cells. However, in livestock, mGSC lines are difficult to establish, because of the factors that affect their isolation and culture. The extracellular matrix serves as a substrate for attachment and affects the fate of these stem cells. Poly-L-lysine (PL), an extracellular matrix of choice, inhibits and/or kills cancer cells, and promotes the attachment of stem cells in culture. However, how it affects the characteristics and potentials of these stem cells in culture needs to be elucidated. Here, we isolated, enriched and cultured dairy goat mGSCs on five types of extracellular matrices. To explore the best extracellular matrix to use for culturing them, the characteristics and proliferation ability of the cells were determined. Results showed that the cells shared several characteristics with previously reported mGSCs, including the poor effect of PL on their proliferative and colony-forming abilities. Further examination showed upregulation of p53 expression in these cells, which could be inhibiting their proliferation. When a p53 inhibitor was included in the culture medium, it was confirmed to be responsible for the inhibition of proliferation in mGSCs. Optimal concentration of the inhibitor in the culture of these cells was 5 µM. Furthermore, addition of the p53 inhibitor increased the expression of the markers of self-renewal and cell cycle in goat mGSCs. In summary, suppressing p53 is beneficial for the proliferation of dairy goat mGSCs, cultured on PL.
Collapse
Affiliation(s)
- Haijing Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China.,Shaanxi Province Engineering and Technology Research Center of Cashmere Goat, Research Center of Life Science in Yulin University, Yulin, China
| | - Liming Zheng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Long Wang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Furong Tang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Ahmed H Arisha
- Department of physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hongchao Zhou
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
144
|
Chitty JL, Skhinas JN, Filipe EC, Wang S, Cupello CR, Grant RD, Yam M, Papanicolaou M, Major G, Zaratzian A, Da Silva AM, Tayao M, Vennin C, Timpson P, Madsen CD, Cox TR. The Mini-Organo: A rapid high-throughput 3D coculture organotypic assay for oncology screening and drug development. Cancer Rep (Hoboken) 2020; 3:e1209. [PMID: 32671954 PMCID: PMC7941459 DOI: 10.1002/cnr2.1209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The use of in vitro cell cultures is a powerful tool for obtaining key insights into the behaviour and response of cells to interventions in normal and disease situations. Unlike in vivo settings, in vitro experiments allow a fine-tuned control of a range of microenvironmental elements independently within an isolated setting. The recent expansion in the use of three-dimensional (3D) in vitro assays has created a number of representative tools to study cell behaviour in a more physiologically 3D relevant microenvironment. Complex 3D in vitro models that can recapitulate human tissue biology are essential for understanding the pathophysiology of disease. AIM The development of the 3D coculture collagen contraction and invasion assay, the "organotypic assay," has been widely adopted as a powerful approach to bridge the gap between standard two-dimensional tissue culture and in vivo mouse models. In the cancer setting, these assays can then be used to dissect how stromal cells, such as cancer-associated fibroblasts (CAFs), drive extracellular matrix (ECM) remodelling to alter cancer cell behaviour and response to intervention. However, to date, many of the published organotypic protocols are low-throughput, time-consuming (up to several weeks), and work-intensive with often limited scalability. Our aim was to develop a fast, high-throughput, scalable 3D organotypic assay for use in oncology screening and drug development. METHODS AND RESULTS Here, we describe a modified 96-well organotypic assay, the "Mini-Organo," which can be easily completed within 5 days. We demonstrate its application in a wide range of mouse and human cancer biology approaches including evaluation of stromal cell 3D ECM remodelling, 3D cancer cell invasion, and the assessment of efficacy of potential anticancer therapeutic targets. Furthermore, the organotypic assay described is highly amenable to customisation using different cell types under diverse experimental conditions. CONCLUSIONS The Mini-Organo high-throughput 3D organotypic assay allows the rapid screening of potential cancer therapeutics in human and mouse models in a time-efficient manner.
Collapse
Affiliation(s)
- Jessica L. Chitty
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
- St Vincent's Clinical School, Faculty of Medicine, UNSWSydneyNSWAustralia
| | - Joanna N. Skhinas
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
| | - Elysse C. Filipe
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
- St Vincent's Clinical School, Faculty of Medicine, UNSWSydneyNSWAustralia
| | - Shan Wang
- Department of Laboratory Medicine, Division of Translational Cancer ResearchLund UniversityLundSweden
| | - Carmen Rodriguez Cupello
- Department of Laboratory Medicine, Division of Translational Cancer ResearchLund UniversityLundSweden
| | - Rhiannon D. Grant
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
| | - Michelle Yam
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
| | - Michael Papanicolaou
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
- School of Life SciencesUniversity of Technology SydneySydneyAustralia
| | - Gretel Major
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
| | - Anaiis Zaratzian
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
| | - Andrew M. Da Silva
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
| | - Michael Tayao
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
| | - Claire Vennin
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
- Molecular PathologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Paul Timpson
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
- St Vincent's Clinical School, Faculty of Medicine, UNSWSydneyNSWAustralia
| | - Chris D. Madsen
- Department of Laboratory Medicine, Division of Translational Cancer ResearchLund UniversityLundSweden
| | - Thomas R. Cox
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
- St Vincent's Clinical School, Faculty of Medicine, UNSWSydneyNSWAustralia
| |
Collapse
|
145
|
Nweke EE, Naicker P, Aron S, Stoychev S, Devar J, Tabb DL, Omoshoro-Jones J, Smith M, Candy G. SWATH-MS based proteomic profiling of pancreatic ductal adenocarcinoma tumours reveals the interplay between the extracellular matrix and related intracellular pathways. PLoS One 2020; 15:e0240453. [PMID: 33048956 PMCID: PMC7553299 DOI: 10.1371/journal.pone.0240453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer accounts for 2.8% of new cancer cases worldwide and is projected to become the second leading cause of cancer-related deaths by 2030. Patients of African ancestry appear to be at an increased risk for pancreatic ductal adenocarcinoma (PDAC), with more severe disease and outcomes. The purpose of this study was to map the proteomic and genomic landscape of a cohort of PDAC patients of African ancestry. Thirty tissues (15 tumours and 15 normal adjacent tissues) were obtained from consenting South African PDAC patients. Optimisation of the sample preparation method allowed for the simultaneous extraction of high-purity protein and DNA for SWATH-MS and OncoArray SNV analyses. We quantified 3402 proteins with 49 upregulated and 35 downregulated proteins at a minimum 2.1 fold change and FDR adjusted p-value (q-value) ≤ 0.01 when comparing tumour to normal adjacent tissue. Many of the upregulated proteins in the tumour samples are involved in extracellular matrix formation (ECM) and related intracellular pathways. In addition, proteins such as EMIL1, KBTB2, and ZCCHV involved in the regulation of ECM proteins were observed to be dysregulated in pancreatic tumours. Downregulation of pathways involved in oxygen and carbon dioxide transport were observed. Genotype data showed missense mutations in some upregulated proteins, such as MYPN, ESTY2 and SERPINB8. Approximately 11% of the dysregulated proteins, including ISLR, BP1, PTK7 and OLFL3, were predicted to be secretory proteins. These findings help in further elucidating the biology of PDAC and may aid in identifying future plausible markers for the disease.
Collapse
Affiliation(s)
- Ekene Emmanuel Nweke
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| | - Previn Naicker
- Department of Biosciences, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Shaun Aron
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Stoyan Stoychev
- Department of Biosciences, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - John Devar
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - David L. Tabb
- Bioinformatics Unit, South African Tuberculosis Bioinformatics Initiative, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jones Omoshoro-Jones
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Martin Smith
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Geoffrey Candy
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
146
|
Targeting the lysyl oxidases in tumour desmoplasia. Biochem Soc Trans 2019; 47:1661-1678. [DOI: 10.1042/bst20190098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 02/08/2023]
Abstract
The extracellular matrix (ECM) is a fundamental component of tissue microenvironments and its dysregulation has been implicated in a number of diseases, in particular cancer. Tumour desmoplasia (fibrosis) accompanies the progression of many solid cancers, and is also often induced as a result of many frontline chemotherapies. This has recently led to an increased interest in targeting the underlying processes. The major structural components of the ECM contributing to desmoplasia are the fibrillar collagens, whose key assembly mechanism is the enzymatic stabilisation of procollagen monomers by the lysyl oxidases. The lysyl oxidase family of copper-dependent amine oxidase enzymes are required for covalent cross-linking of collagen (as well as elastin) molecules into the mature ECM. This key step in the assembly of collagens is of particular interest in the cancer field since it is essential to the tumour desmoplastic response. LOX family members are dysregulated in many cancers and consequently the development of small molecule inhibitors targeting their enzymatic activity has been initiated by many groups. Development of specific small molecule inhibitors however has been hindered by the lack of crystal structures of the active sites, and therefore alternate indirect approaches to target LOX have also been explored. In this review, we introduce the importance of, and assembly steps of the ECM in the tumour desmoplastic response focussing on the role of the lysyl oxidases. We also discuss recent progress in targeting this family of enzymes as a potential therapeutic approach.
Collapse
|
147
|
Forsythe S, Pu T, Skardal A. Using organoid models to predict chemotherapy efficacy: the future of precision oncology? EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1685868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Steven Forsythe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Tracey Pu
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Wake Forest School of Medicine, Bowman Gray Center, Winston-Salem, NC, USA
| | - Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
- Wake Forest School of Medicine, Bowman Gray Center, Winston-Salem, NC, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
- Department of Molecular Medicine and Translational Science, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| |
Collapse
|
148
|
Malekpour-Dehkordi Z, Teimourian S, Nourbakhsh M, Naghiaee Y, Sharifi R, Mohiti-Ardakani J. Metformin reduces fibrosis factors in insulin resistant and hypertrophied adipocyte via integrin/ERK, collagen VI, apoptosis, and necrosis reduction. Life Sci 2019; 233:116682. [DOI: 10.1016/j.lfs.2019.116682] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/21/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
|
149
|
Malekpour-Dehkordi Z, Mohiti-Ardakani J, Nourbakhsh M, Teimourian S, Naghiaee Y, Hemati M, Jafary F. Gene expression profile evaluation of integrins in 3T3-L1 cells differentiated to adipocyte, insulin resistant and hypertrophied cells. Gene 2019; 710:406-414. [DOI: 10.1016/j.gene.2019.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/07/2019] [Accepted: 06/10/2019] [Indexed: 01/09/2023]
|
150
|
Beadnell T, Borriello L, Christenson J, Fornetti J, Guldner I, Hanna A, Kyjacova L, Marinak-Whately K, de Melo Martins PC, Rotinen M, Te Boekhorst V, Cox TR. Meeting report: Metastasis Research Society (MRS) 17th Biennial conference and associated Young Investigator Satellite Meeting (YISM) on cancer metastasis. Clin Exp Metastasis 2019; 36:119-137. [PMID: 30673912 DOI: 10.1007/s10585-018-09953-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 12/31/2018] [Indexed: 11/24/2022]
Abstract
The Metastasis Research Society (MRS) 17th Biennial conference on metastasis was held on the 1st to the 5th of August 2018 at Princeton University, NJ, USA. The meeting was held around themes addressing notable aspects of the understanding and treatment of metastasis and metastatic disease covering basic, translational, and clinical research. Importantly, the meeting was largely supported by our patient advocate partners including Susan G. Komen for the Cure, Theresa's Research Foundation and METAvivor. There were a total of 85 presentations from invited and selected speakers spread across the main congress and presentations from the preceding Young Investigator Satellite Meeting. Presentations are summarized in this report by session topic.
Collapse
Affiliation(s)
- Thomas Beadnell
- Department of Cancer Biology, The Kansas University Medical Center, and The University of Kansas Cancer Center, Kansas City, KS, 66160, USA
| | - Lucia Borriello
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Jessica Christenson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jaime Fornetti
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ian Guldner
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, USA
| | - Ann Hanna
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lenka Kyjacova
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 681 67, Mannheim, Germany
| | - Kristina Marinak-Whately
- WVU Cancer Institute, Cancer Cell Biology, West Virginia School of Medicine, Morgantown, WV, USA
| | | | - Mirja Rotinen
- Division of Cancer Biology and Therapeutics, Departments of Surgery & Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Veronika Te Boekhorst
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, 77030, Houston, TX, USA.,Department of Cell Biology, Radboud University Medical Centre, 6525GA, Nijmegen, The Netherlands
| | - Thomas R Cox
- Cancer Division, Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW, Australia. .,Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|