101
|
Deshpande LS, Phillips K, Huang B, DeLorenzo RJ. Chronic behavioral and cognitive deficits in a rat survival model of paraoxon toxicity. Neurotoxicology 2014; 44:352-7. [PMID: 25172410 DOI: 10.1016/j.neuro.2014.08.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 01/15/2023]
Abstract
Organophosphate (OP) compounds, including paraoxon (POX), are similar to nerve agents such as sarin. There is a growing concern that OP agents could be weaponized to cause mass civilian causalities. We have developed a rodent survival model of POX toxicity that is being used to evaluate chronic morbidity and to screen for medical countermeasures against severe OP exposure. It is well known that the survivors of nerve gas and chronic OP exposure exhibit neurobehavioral deficits such as mood changes, depression, and memory impairments. In this study we investigated whether animals surviving severe POX exposure exhibited long-term neurological impairments. POX exposure produced overt signs of cholinergic toxicity. Rats were rescued using an optimized atropine, 2-PAM and diazepam therapy. Surviving rats were studied using established behavioral assays for identifying symptoms of depression and memory impairment 3-months after POX exposure. In the forced swim test, POX rats exhibited increased immobility time indicative of a despair-like state. In the sucrose preference test, POX rats consumed significantly less sucrose water indicating anhedonia-like condition. POX rats also displayed increased anxiety as characterized by significantly lower performance in the open arm of the elevated plus maze. Further, when tested with a novel object recognition paradigm, POX rats exhibited a negative discrimination ratio indicative of impaired recognition memory. The results indicate that this model of survival from severe POX exposure can be employed to study some of the molecular bases for OP-induced chronic behavioral and cognitive comorbidities and develop therapies for their treatment.
Collapse
Affiliation(s)
| | - Kristin Phillips
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Beverly Huang
- Department of Neuroscience, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Robert J DeLorenzo
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Molecular Biophysics and Biochemistry, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
102
|
Pearson JN, Schulz KM, Patel M. Specific alterations in the performance of learning and memory tasks in models of chemoconvulsant-induced status epilepticus. Epilepsy Res 2014; 108:1032-40. [PMID: 24842343 DOI: 10.1016/j.eplepsyres.2014.04.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 04/02/2014] [Accepted: 04/19/2014] [Indexed: 11/29/2022]
Abstract
Cognitive impairment is a common comorbidity in patients with Temporal Lobe Epilepsy (TLE). These impairments, particularly deficits in learning and memory, can be recapitulated in chemoconvulsant models of TLE. Here, we used two relatively low-stress behavioral paradigms, the novel object recognition task (NOR) and a spatial variation, the novel placement recognition task (NPR) to reveal deficits in short and long term memory, in both kainic acid (KA) and pilocarpine (Pilo) treated animals. We found that both KA- and Pilo-induced significant deficits in long term recognition memory but not short term recognition memory. Additionally, KA impaired spatial memory as detected by both NPR and Morris water maze. These deficits were present 1 week after SE. The characterization of memory performance of two chemoconvulsant-models, one of which is considered a surrogate organophosphate, provides an avenue for which targeted cognitive therapeutics can be tested.
Collapse
Affiliation(s)
- Jennifer N Pearson
- Neuroscience Program, University of Colorado Anschutz Medical Campus, United States
| | - Kalynn M Schulz
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, United States; Medical Research Service, Veterans Affairs Medical Center, Denver, CO, United States
| | - Manisha Patel
- Neuroscience Program, University of Colorado Anschutz Medical Campus, United States; Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, United States.
| |
Collapse
|
103
|
Schmidt D, Friedman D, Dichter MA. Anti-epileptogenic clinical trial designs in epilepsy: issues and options. Neurotherapeutics 2014; 11:401-11. [PMID: 24420312 PMCID: PMC3996121 DOI: 10.1007/s13311-013-0252-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although trials with anti-seizure drugs have not shown anti-epileptogenic or disease-modifying activity in humans, new compounds are on the horizon that may require novel trial designs. We briefly discuss the unique challenges and the available options to identify innovative clinical trial designs that differentiate novel anti-epileptogenic and disease-modifying compounds, preferably early in phase II, from current anti-seizure drugs. The most important challenges of clinical testing of agents for epilepsy prevention include having sufficient preclinical evidence for a suitable agent to proceed with a human trial of an anti-epileptogenic drug, and to demonstrate the feasibility of doing such a trial. Major challenges in trial design to assess agents for disease modification include the choice of suitable study parameters, the identification of a high-risk study population, the type of control, the time and duration of treatment, and a feasible follow-up period.
Collapse
Affiliation(s)
- Dieter Schmidt
- Epilepsy Research Group, Goethestrasse 5, 14163, Berlin, Germany,
| | | | | |
Collapse
|
104
|
|
105
|
Umpierre AD, Remigio GJ, Dahle EJ, Bradford K, Alex AB, Smith MD, West PJ, White HS, Wilcox KS. Impaired cognitive ability and anxiety-like behavior following acute seizures in the Theiler's virus model of temporal lobe epilepsy. Neurobiol Dis 2014; 64:98-106. [PMID: 24412221 DOI: 10.1016/j.nbd.2013.12.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/13/2013] [Accepted: 12/31/2013] [Indexed: 11/28/2022] Open
Abstract
Viral infection of the CNS can result in encephalitis and acute seizures, increasing the risk for later-life epilepsy. We have previously characterized a novel animal model of temporal lobe epilepsy that recapitulates key sequela in the development of epilepsy following viral infection. C57BL/6J mice inoculated with the Daniel's strain of Theiler's Murine Encephalomyelitis Virus (TMEV; 3×10(5) PFU, i.c.) display acute limbic seizures that secondarily generalize. A majority of acutely seized animals develop spontaneous seizures weeks to months later. As part of our investigation, we sought to assess behavioral comorbidity following TMEV inoculation. Anxiety, depression, cognitive impairment, and certain psychoses are diagnosed in persons with epilepsy at rates far more frequent than in the general population. We used a battery of behavioral tests to assess anxiety, depression, cognitive impairment, and general health in acutely seized animals inoculated with TMEV and compared behavioral outcomes against age-matched controls receiving a sham injection. We determined that TMEV-seized animals are less likely to move through the exposed center of an open field and are less likely to enter into the lighted half of a light/dark box; both behaviors may be indicative of anxiety-like behavior. TMEV-seized animals also display early and persistent reductions in novel object exploration during novel object place tasks and do not improve in their ability to find a hidden escape platform in Morris water maze testing, indicative of impairment in episodic and spatial memory, respectively. Cresyl violet staining at 35 and 250 days after injection reveals bilateral reductions in hippocampal area, with extensive sclerosis of CA1 evident bilaterally along the rostral-caudal axis. Early and persistent behavioral changes in the TMEV model provide surrogate markers for assessing disease progression as well as endpoints in screening for the efficacy of novel compounds to manage both seizure burden and comorbid conditions.
Collapse
Affiliation(s)
- Anthony D Umpierre
- Interdepartmental Program in Neuroscience, University of Utah, 1401 MREB, 20 North 1900 East, Salt Lake City, UT 84132
| | - Gregory J Remigio
- Interdepartmental Program in Neuroscience, University of Utah, 1401 MREB, 20 North 1900 East, Salt Lake City, UT 84132
| | - E Jill Dahle
- Department of Pharmacology and Toxicology, University of Utah
| | - Kate Bradford
- Department of Pharmacology and Toxicology, University of Utah
| | - Anitha B Alex
- Anticonvulsant Drug Development Program, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, USA
| | - Misty D Smith
- Department of Pharmacology and Toxicology, University of Utah; Anticonvulsant Drug Development Program, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, USA
| | - Peter J West
- Interdepartmental Program in Neuroscience, University of Utah, 1401 MREB, 20 North 1900 East, Salt Lake City, UT 84132; Department of Pharmacology and Toxicology, University of Utah; Anticonvulsant Drug Development Program, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, USA
| | - H Steve White
- Interdepartmental Program in Neuroscience, University of Utah, 1401 MREB, 20 North 1900 East, Salt Lake City, UT 84132; Department of Pharmacology and Toxicology, University of Utah; Anticonvulsant Drug Development Program, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, USA
| | - Karen S Wilcox
- Interdepartmental Program in Neuroscience, University of Utah, 1401 MREB, 20 North 1900 East, Salt Lake City, UT 84132; Department of Pharmacology and Toxicology, University of Utah; Anticonvulsant Drug Development Program, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, USA.
| |
Collapse
|
106
|
Scharfman HE, Brooks-Kayal AR. Is plasticity of GABAergic mechanisms relevant to epileptogenesis? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:133-50. [PMID: 25012373 DOI: 10.1007/978-94-017-8914-1_11] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Numerous changes in GABAergic neurons, receptors, and inhibitory mechanisms have been described in temporal lobe epilepsy (TLE), either in humans or in animal models. Nevertheless, there remains a common assumption that epilepsy can be explained by simply an insufficiency of GABAergic inhibition. Alternatively, investigators have suggested that there is hyperinhibition that masks an underlying hyperexcitability. Here we examine the status epilepticus (SE) models of TLE and focus on the dentate gyrus of the hippocampus, where a great deal of data have been collected. The types of GABAergic neurons and GABAA receptors are summarized under normal conditions and after SE. The role of GABA in development and in adult neurogenesis is discussed. We suggest that instead of "too little or too much" GABA there is a complexity of changes after SE that makes the emergence of chronic seizures (epileptogenesis) difficult to understand mechanistically, and difficult to treat. We also suggest that this complexity arises, at least in part, because of the remarkable plasticity of GABAergic neurons and GABAA receptors in response to insult or injury.
Collapse
Affiliation(s)
- Helen E Scharfman
- The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA,
| | | |
Collapse
|
107
|
Jefferys JGR. Are Changes in Synaptic Function That Underlie Hyperexcitability Responsible for Seizure Activity? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:185-94. [DOI: 10.1007/978-94-017-8914-1_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
108
|
What are the arguments for and against rational therapy for epilepsy? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:295-308. [PMID: 25012386 DOI: 10.1007/978-94-017-8914-1_24] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although more than a dozen new anti-seizure drugs (ASDs) have entered the market since 1993, a substantial proportion of patients (~30 %) remain refractory to current treatments. Thus, a concerted effort to identify and develop new therapies that will help these patients continues. Until this effort succeeds, it is reasonable to re-assess the use of currently available therapies and to consider how these therapies might be utilized in a more efficacious manner. This applies to the selection of monotherapies in newly-diagnosed epilepsy, but perhaps, more importantly, to the choice of combination treatments in otherwise drug-refractory epilepsy. Rational polytherapy is a concept that is predicated on the combination of drugs with complementary mechanisms of action (MoAs) that work synergistically to maximize efficacy and minimize the potential for adverse events. Furthermore, rational polytherapy requires a detailed understanding of the MoA subclasses amongst available ASDs and an appreciation of the empirical evidence that supports the use of specific combinations. The majority of ASDs can be loosely categorized into those that target neurotransmission and network hyperexcitability, modulate intrinsic neuronal properties through ion channels, or possess broad-spectrum efficacy as a result of multiple mechanisms. Within each of these categories, there are discrete pharmacological profiles that differentiate individual ASDs. This chapter will consider how knowledge of MoA can help guide therapy in a rational manner, both in the selection of monotherapies for specific seizure types and syndromes, but also in the choice of drug combinations for patients whose epilepsy is not optimally controlled with a single ASD.
Collapse
|
109
|
Stafstrom CE. Epilepsy comorbidities: how can animal models help? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:273-81. [PMID: 25012384 DOI: 10.1007/978-94-017-8914-1_22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An epilepsy comorbidity is a condition or disorder that occurs at a frequency greater than chance in a person with epilepsy. Examples of common epilepsy comorbidities are depression, anxiety, and intellectual disability. Epilepsy comorbidities can be quite disabling, sometimes affecting a patient's quality of life to a greater extent than seizures. Animal models offer the opportunity to explore shared pathophysiological mechanisms, therapeutic options, and consequences of both the epilepsy syndrome and a given comorbidity. In this chapter, depression is used as an example of how animal models can inform translational questions about epilepsy comorbidities.
Collapse
Affiliation(s)
- Carl E Stafstrom
- Departments of Neurology and Pediatrics, University of Wisconsin, Centennial Building 7176, 1685 Highland Avenue, Madison, WI, 53705, USA,
| |
Collapse
|
110
|
Mazarati A. Behavioral and neuroendocrine assays for studying epilepsy-associated depression. Epilepsia 2013; 54:2229. [PMID: 24304441 DOI: 10.1111/epi.12397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Andrey Mazarati
- D. Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A.
| |
Collapse
|
111
|
|
112
|
Pitkänen A, Nehlig A, Brooks-Kayal AR, Dudek FE, Friedman D, Galanopoulou AS, Jensen FE, Kaminski RM, Kapur J, Klitgaard H, Löscher W, Mody I, Schmidt D. Issues related to development of antiepileptogenic therapies. Epilepsia 2013; 54 Suppl 4:35-43. [PMID: 23909852 DOI: 10.1111/epi.12297] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Several preclinical proof-of-concept studies have provided evidence for positive treatment effects on epileptogenesis. However, none of these hypothetical treatments has advanced to the clinic. The experience in other fields of neurology such as stroke, Alzheimer's disease, or amyotrophic lateral sclerosis has indicated several problems in the design of preclinical studies, which likely contribute to failures in translating the positive preclinical data to the clinic. The Working Group on "Issues related to development of antiepileptogenic therapies" of the International League Against Epilepsy (ILAE) and the American Epilepsy Society (AES) has considered the possible problems that arise when moving from proof-of-concept antiepileptogenesis (AEG) studies to preclinical AEG trials, and eventually to clinical AEG trials. This article summarizes the discussions and provides recommendations on how to design a preclinical AEG monotherapy trial in adult animals. We specifically address study design, animal and model selection, number of studies needed, issues related to administration of the treatment, outcome measures, statistics, and reporting. In addition, we give recommendations for future actions to advance the preclinical AEG testing.
Collapse
Affiliation(s)
- Asla Pitkänen
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Galanopoulou AS, Kokaia M, Loeb JA, Nehlig A, Pitkänen A, Rogawski MA, Staley KJ, Whittemore VH, Dudek FE. Epilepsy therapy development: technical and methodologic issues in studies with animal models. Epilepsia 2013; 54 Suppl 4:13-23. [PMID: 23909850 DOI: 10.1111/epi.12295] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The search for new treatments for seizures, epilepsies, and their comorbidities faces considerable challenges. This is due in part to gaps in our understanding of the etiology and pathophysiology of most forms of epilepsy. An additional challenge is the difficulty in predicting the efficacy, tolerability, and impact of potential new treatments on epilepsies and comorbidities in humans, using the available resources. Herein we provide a summary of the discussions and proposals of the Working Group 2 as presented in the Joint American Epilepsy Society and International League Against Epilepsy Translational Workshop in London (September 2012). We propose methodologic and reporting practices that will enhance the uniformity, reliability, and reporting of early stage preclinical studies with animal seizure and epilepsy models that aim to develop and evaluate new therapies for seizures or epilepsies, using multidisciplinary approaches. The topics considered include the following: (1) implementation of better study design and reporting practices; (2) incorporation in the study design and analysis of covariants that may influence outcomes (including species, age, sex); (3) utilization of approaches to document target relevance, exposure, and engagement by the tested treatment; (4) utilization of clinically relevant treatment protocols; (5) optimization of the use of video-electroencephalography (EEG) recordings to best meet the study goals; and (6) inclusion of outcome measures that address the tolerability of the treatment or study end points apart from seizures. We further discuss the different expectations for studies aiming to meet regulatory requirements to obtain approval for clinical testing in humans. Implementation of the rigorous practices discussed in this report will require considerable investment in time, funds, and other research resources, which may create challenges for academic researchers seeking to contribute to epilepsy therapy discovery and development. We propose several infrastructure initiatives to overcome these barriers.
Collapse
Affiliation(s)
- Aristea S Galanopoulou
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
French JA, White HS, Klitgaard H, Holmes GL, Privitera MD, Cole AJ, Quay E, Wiebe S, Schmidt D, Porter RJ, Arzimanoglou A, Trinka E, Perucca E. Development of new treatment approaches for epilepsy: Unmet needs and opportunities. Epilepsia 2013; 54 Suppl 4:3-12. [DOI: 10.1111/epi.12294] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - H. Steve White
- Anticonvulsant Drug Development Program; Department of Pharmacology and Toxicology; University of Utah; Salt Lake City; Utah; U.S.A
| | | | - Gregory L. Holmes
- Departments of Neurology and Pediatrics; Geisel School of Medicine at Dartmouth; Hanover; New Hampshire; U.S.A
| | | | - Andrew J. Cole
- MGH Epilepsy Service; Massachusetts General Hospital and Harvard Medical School; Boston; Massachusetts; U.S.A
| | - Ellinor Quay
- NYU School of Medicine; New York; New York; U.S.A
| | - Samuel Wiebe
- Departments of Clinical Neurosciences and Community Health Sciences and Hotchkiss Brain Institute; University of Calgary; Calgary; Alberta; Canada
| | | | | | - Alexis Arzimanoglou
- Epilepsy, Sleep and Pediatric Neurophysiology Department; University Hospitals of Lyon (HCL) and Lyon Neuroscience Research Center (CRNL); Lyon; France
| | - Eugen Trinka
- Department of Neurology; Christian Doppler Klinik; Paracelsus Medical University of Salzburg; Salzburg; Austria
| | - Emilio Perucca
- Department of Internal Medicine and Therapeutics; University of Pavia and National Institute of Neurology IRCCS C Mondino Foundation; Pavia; Italy
| |
Collapse
|
115
|
The influence of ectopic migration of granule cells into the hilus on dentate gyrus-CA3 function. PLoS One 2013; 8:e68208. [PMID: 23840835 PMCID: PMC3695928 DOI: 10.1371/journal.pone.0068208] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/27/2013] [Indexed: 11/29/2022] Open
Abstract
Postnatal neurogenesis of granule cells (GCs) in the dentate gyrus (DG) produces GCs that normally migrate from the subgranular zone to the GC layer. However, GCs can mismigrate into the hilus, the opposite direction. Previous descriptions of these hilar ectopic GCs (hEGCs) suggest that they are rare unless there are severe seizures. However, it is not clear if severe seizures are required, and it also is unclear if severe seizures are responsible for the abnormalities of hEGCs, which include atypical dendrites and electrophysiological properties. Here we show that large numbers of hEGCs develop in a transgenic mouse without severe seizures. The mice have a deletion of BAX, which normally regulates apoptosis. Surprisingly, we show that hEGCs in the BAX-/- mouse have similar abnormalities as hEGCs that arise after severe seizures. We next asked if there are selective effects of hEGCs, i.e., whether a robust population of hEGCs would have any effect on the DG if they were induced without severe seizures. Indeed, this appears to be true, because it has been reported that BAX-/- mice have defects in a behavior that tests pattern separation, which depends on the DG. However, inferring functional effects of hEGCs is difficult in mice with a constitutive BAX deletion because there is decreased apoptosis in and outside the DG. Therefore, a computational model of the normal DG and hippocampal subfield CA3 was used. Adding a small population of hEGCs (5% of all GCs), with characteristics defined empirically, was sufficient to disrupt a simulation of pattern separation and completion. Modeling results also showed that effects of hEGCs were due primarily to “backprojections” of CA3 pyramidal cell axons to the hilus. The results suggest that hEGCs can develop for diverse reasons, do not depend on severe seizures, and a small population of hEGCs may impair DG-dependent function.
Collapse
|
116
|
Scharfman HE, Binder DK. Aquaporin-4 water channels and synaptic plasticity in the hippocampus. Neurochem Int 2013; 63:702-11. [PMID: 23684954 DOI: 10.1016/j.neuint.2013.05.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/29/2013] [Accepted: 05/07/2013] [Indexed: 12/23/2022]
Abstract
Aquaporin-4 (AQP4) is the major water channel expressed in the central nervous system (CNS) and is primarily expressed in glial cells. Many studies have shown that AQP4 regulates the response of the CNS to insults or injury, but far less is known about the potential for AQP4 to influence synaptic plasticity or behavior. Recent studies have examined long-term potentiation (LTP), long-term depression (LTD), and behavior in AQP4 knockout (KO) and wild-type mice to gain more insight into its potential role. The results showed a selective effect of AQP4 deletion on LTP of the Schaffer collateral pathway in hippocampus using an LTP induction protocol that simulates pyramidal cell firing during theta oscillations (theta-burst stimulation; TBS). However, LTP produced by a different induction protocol was unaffected. There was also a defect in LTD after low frequency stimulation (LFS) in AQP4 KO mice. Interestingly, some slices from AQP4 KO mice exhibited LTD after TBS instead of LTP, or LTP following LFS instead of LTD. These data suggest that AQP4 and astrocytes influence the polarity of long-term synaptic plasticity (potentiation or depression). These potentially powerful roles expand the influence of AQP4 and astrocytes beyond the original suggestions related to regulation of extracellular potassium and water balance. Remarkably, AQP4 KO mice did not show deficits in basal transmission, suggesting specificity for long-term synaptic plasticity. The mechanism appears to be related to neurotrophins and specifically brain-derived neurotrophic factor (BDNF) because pharmacological blockade of neurotrophin trk receptors or scavenging ligands such as BDNF restored plasticity. The in vitro studies predicted effects in vivo of AQP4 deletion because AQP4 KO mice performed worse using a task that requires memory for the location of objects (object placement). However, performance on other hippocampal-dependent tasks was spared. The results suggest an unanticipated and selective role of AQP4 in synaptic plasticity and spatial memory, and underscore the growing appreciation of the role of glial cells in functions typically attributed to neurons. Implications for epilepsy are discussed because of the previous evidence that AQP4 influences seizures, and the role of synaptic plasticity in epileptogenesis.
Collapse
Affiliation(s)
- Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Bldg. 35, Orangeburg, NY 10962, United States; Departments of Child and Adolescent Psychiatry, Physiology and Neuroscience, and Psychiatry, New York University Langone Medical Center, New York, NY 10016, United States
| | | |
Collapse
|