101
|
Fang SB, Zhang HY, Jiang AY, Fan XL, Lin YD, Li CL, Wang C, Meng XC, Fu QL. Human iPSC-MSCs prevent steroid-resistant neutrophilic airway inflammation via modulating Th17 phenotypes. Stem Cell Res Ther 2018; 9:147. [PMID: 29793557 PMCID: PMC5968555 DOI: 10.1186/s13287-018-0897-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/02/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human induced pluripotent stem cells-derived mesenchymal stem cells (iPSC-MSCs) have been shown to be effective in Type 2 helper T cells (Th2)-dominant eosinophilic allergic airway inflammation. However, the role of iPSC-MSCs in Type 17 helper T cells (Th17)-dominant neutrophilic airway inflammation remains poorly studied. Therefore, this study was to explore the effects of iPSC-MSCs on an experimental mouse model of steroid-resistant neutrophilic airway inflammation and further determine the underlying mechanisms. METHODS A mouse model of neutrophilic airway inflammation was established using ovalbumin (OVA) and lipopolysaccharide (LPS). Human iPSC-MSCs were systemically administered, and the lungs or bronchoalveolar lavage fluids (BALF) were collected at 4 h and 48 h post-challenge. The pathology and inflammatory cell infiltration, the T helper cells, T helper cells-associated cytokines, nuclear transcription factors and possible signaling pathways were evaluated. Human CD4+ T cells were polarized to T helper cells and the effects of iPSC-MSCs on the differentiation of T helper cells were determined. RESULTS We successfully induced the mouse model of Th17 dominant neutrophilic airway inflammation. Human iPSC-MSCs but not dexamethasone significantly prevented the neutrophilic airway inflammation and decreased the levels of Th17 cells, IL-17A and p-STAT3. The mRNA levels of Gata3 and RORγt were also decreased with the treatment of iPSC-MSCs. We further confirmed the suppressive effects of iPSC-MSCs on the differentiation of human T helper cells. CONCLUSIONS iPSC-MSCs showed therapeutic potentials in neutrophilic airway inflammation through the regulation on Th17 cells, suggesting that the iPSC-MSCs could be applied in the therapy for the asthma patients with steroid-resistant neutrophilic airway inflammation.
Collapse
Affiliation(s)
- Shu-Bin Fang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Hong-Yu Zhang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Ai-Yun Jiang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Xing-Liang Fan
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China.,Centre for Stem Cell Clinical Research and Application, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yong-Dong Lin
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Cheng-Lin Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China.,Centre for Stem Cell Clinical Research and Application, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Cong Wang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Xiang-Ci Meng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, Guangdong, China. .,Centre for Stem Cell Clinical Research and Application, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
102
|
Reid AT, Veerati PC, Gosens R, Bartlett NW, Wark PA, Grainge CL, Stick SM, Kicic A, Moheimani F, Hansbro PM, Knight DA. Persistent induction of goblet cell differentiation in the airways: Therapeutic approaches. Pharmacol Ther 2017; 185:155-169. [PMID: 29287707 DOI: 10.1016/j.pharmthera.2017.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dysregulated induction of goblet cell differentiation results in excessive production and retention of mucus and is a common feature of several chronic airways diseases. To date, therapeutic strategies to reduce mucus accumulation have focused primarily on altering the properties of the mucus itself, or have aimed to limit the production of mucus-stimulating cytokines. Here we review the current knowledge of key molecular pathways that are dysregulated during persistent goblet cell differentiation and highlights both pre-existing and novel therapeutic strategies to combat this pathology.
Collapse
Affiliation(s)
- Andrew T Reid
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.
| | - Punnam Chander Veerati
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nathan W Bartlett
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Peter A Wark
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Chris L Grainge
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Stephen M Stick
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia; Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands 6009, Western Australia, Australia
| | - Anthony Kicic
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia; Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands 6009, Western Australia, Australia; Occupation and Environment, School of Public Health, Curtin University, Bentley 6102, Western Australia, Australia
| | - Fatemeh Moheimani
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| |
Collapse
|