101
|
Cornet S, Brouat C, Diagne C, Charbonnel N. Eco-immunology and bioinvasion: revisiting the evolution of increased competitive ability hypotheses. Evol Appl 2016; 9:952-62. [PMID: 27606004 PMCID: PMC4999526 DOI: 10.1111/eva.12406] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/22/2016] [Indexed: 12/21/2022] Open
Abstract
Immunity is at the core of major theories related to invasion biology. Among them, the evolution of increased competitive ability (EICA) and EICA‐refined hypotheses have been used as a reference work. They postulate that the release from pathogens often experienced during invasion should favour a reallocation of resources from (costly) immune defences to beneficial life‐history traits associated with invasive potential. We review studies documenting immune changes during animal invasions. We describe the designs and approaches that have been applied and discuss some reasons that prevent drawing generalized conclusions regarding EICA hypotheses. We detail why a better assessment of invasion history and immune costs, including immunopathologies and parasite communities, could improve our understanding of the relationships between immunity and invasion success. Finally, we propose new perspectives to revisit the EICA hypotheses. We first emphasize the neutral and adaptive mechanisms involved in immune changes, as well as timing of the later. Such investigation will help decipher whether immune changes are a consequence of pre‐adaptation, or the result of postintroduction adaptations to invasion front conditions. We next bring attention to new avenues of research that remain unexplored, namely age‐dependent immunity and gut microbiota, potential key factors underlying adaptation to invasion front environment and modulating invasion success.
Collapse
Affiliation(s)
- Stéphane Cornet
- Centre de Biologie Pour la Gestion des Populations (UMR INRA/IRD/CIRAD/Montpellier SupAgro) IRD Montferrier-sur-Lez France
| | - Carine Brouat
- Centre de Biologie Pour la Gestion des Populations (UMR INRA/IRD/CIRAD/Montpellier SupAgro) IRD Montferrier-sur-Lez France
| | - Christophe Diagne
- Centre de Biologie Pour la Gestion des Populations (UMR INRA/IRD/CIRAD/Montpellier SupAgro) IRD Montferrier-sur-Lez France; Centre de Biologie Pour la Gestion des Populations (UMR INRA/IRD/CIRAD/Montpellier SupAgro) IRD Campus de Bel-Air, Dakar Sénégal; Département de Biologie Animale, Faculté des Sciences et Techniques Université Chiekh Anta Diop Fann, Dakar Sénégal
| | - Nathalie Charbonnel
- Centre de Biologie Pour la Gestion des Populations (UMR INRA/IRD/CIRAD/Montpellier SupAgro) INRA Montferrier-sur-Lez France
| |
Collapse
|
102
|
Bruneaux M, Visse M, Gross R, Pukk L, Saks L, Vasemägi A. Parasite infection and decreased thermal tolerance: impact of proliferative kidney disease on a wild salmonid fish in the context of climate change. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12701] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Matthieu Bruneaux
- Division of Genetics and Physiology Department of Biology University of Turku Turku FI‐20014 Finland
| | - Marko Visse
- Department of Zoology University of Tartu Tartu 51014 Estonia
| | - Riho Gross
- Department of Aquaculture Institute of Veterinary Medicine and Animal Sciences Estonian University of Life Sciences Tartu 51006 Estonia
| | - Lilian Pukk
- Department of Aquaculture Institute of Veterinary Medicine and Animal Sciences Estonian University of Life Sciences Tartu 51006 Estonia
| | - Lauri Saks
- Estonian Marine Institute University of Tartu Vanemuise 46a, Tartu 51014 Estonia
- Institute of Systematic Zoology University of Daugavpils 13–229 Vienības Street, Daugavpils 5401 Latvia
| | - Anti Vasemägi
- Division of Genetics and Physiology Department of Biology University of Turku Turku FI‐20014 Finland
- Department of Aquaculture Institute of Veterinary Medicine and Animal Sciences Estonian University of Life Sciences Tartu 51006 Estonia
| |
Collapse
|
103
|
Reisinger LS, Lodge DM. Parasites alter freshwater communities in mesocosms by modifying invasive crayfish behavior. Ecology 2016; 97:1497-506. [DOI: 10.1890/15-1634.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Lindsey S. Reisinger
- Department of Biological Sciences; University of Notre Dame; Notre Dame Indiana 46556 USA
| | - David M. Lodge
- Environmental Change Initiative and Department of Biological Sciences; University of Notre Dame; Notre Dame Indiana 46556 USA
| |
Collapse
|
104
|
Morand S, Bordes F, Chen HW, Claude J, Cosson JF, Galan M, Czirják GÁ, Greenwood AD, Latinne A, Michaux J, Ribas A. Global parasite and Rattus rodent invasions: The consequences for rodent-borne diseases. Integr Zool 2016; 10:409-23. [PMID: 26037785 DOI: 10.1111/1749-4877.12143] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We summarize the current knowledge on parasitism-related invasion processes of the globally invasive Rattus lineages, originating from Asia, and how these invasions have impacted the local epidemiology of rodent-borne diseases. Parasites play an important role in the invasion processes and successes of their hosts through multiple biological mechanisms such as "parasite release," "immunocompetence advantage," "biotic resistance" and "novel weapon." Parasites may also greatly increase the impact of invasions by spillover of parasites and other pathogens, introduced with invasive hosts, into new hosts, potentially leading to novel emerging diseases. Another potential impact is the ability of the invader to amplify local parasites by spillback. In both cases, local fauna and humans may be exposed to new health risks, which may decrease biodiversity and potentially cause increases in human morbidity and mortality. Here we review the current knowledge on these processes and propose some research priorities.
Collapse
Affiliation(s)
- Serge Morand
- Centre National de la Recherche Scientifique (CNRS)-Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) Animal et Gestion Intégrée des Risques, Centre d'Infectiologie Christophe Mérieux du Laos, Vientiane, Lao PDR.,Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Frédéric Bordes
- Institut des Sciences de l'Evolution, Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier-Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Hsuan-Wien Chen
- Department of Biological Resources, National Chiayi University, Chiayi City, Taiwan, China
| | - Julien Claude
- Institut des Sciences de l'Evolution, Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier-Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Jean-François Cosson
- Institut National de la Recherche Agronomique (INRA), Centre de Biologie et de Gestion des Populations, Baillarguet, France.,Institut National de la Recherche Agronomique (INRA), UMR Biologie et Immunologie Parasitaire Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail ses, Maisons-Alfort, France
| | - Maxime Galan
- Institut National de la Recherche Agronomique (INRA), Centre de Biologie et de Gestion des Populations, Baillarguet, France
| | - Gábor Á Czirják
- Leibniz Institute for Zoo and Wildlife Research, Department of Wildlife Diseases, 10315 Berlin, Germany
| | - Alex D Greenwood
- Leibniz Institute for Zoo and Wildlife Research, Department of Wildlife Diseases, 10315 Berlin, Germany
| | - Alice Latinne
- Institut des Sciences de l'Evolution, Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier-Institut de Recherche pour le Développement (IRD), Montpellier, France.,Conservation Genetics Unit, University of Liège 4000 Liège, Belgium
| | - Johan Michaux
- Centre National de la Recherche Scientifique (CNRS)-Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) Animal et Gestion Intégrée des Risques, Centre d'Infectiologie Christophe Mérieux du Laos, Vientiane, Lao PDR.,Conservation Genetics Unit, University of Liège 4000 Liège, Belgium
| | - Alexis Ribas
- Biodiversity Research Group, Faculty of Science, Udon Thani Rajabhat University, Udon Thani, Thailand
| |
Collapse
|
105
|
Granroth-Wilding HMV, Burthe SJ, Lewis S, Herborn KA, Takahashi EA, Daunt F, Cunningham EJA. Indirect effects of parasitism: costs of infection to other individuals can be greater than direct costs borne by the host. Proc Biol Sci 2016; 282:rspb.2015.0602. [PMID: 26156765 DOI: 10.1098/rspb.2015.0602] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Parasitic infection has a direct physiological cost to hosts but may also alter how hosts interact with other individuals in their environment. Such indirect effects may alter both host fitness and the fitness of other individuals in the host's social network, yet the relative impact of direct and indirect effects of infection are rarely quantified. During reproduction, a host's social environment includes family members who may be in conflict over resource allocation. In such situations, infection may alter how resources are allocated, thereby redistributing the costs of parasitism between individuals. Here, we experimentally reduce parasite burdens of parent and/or nestling European shags (Phalacrocorax aristotelis) infected with Contracaecum nematodes in a factorial design, then simultaneously measure the impact of an individual's infection on all family members. We found no direct effect of infection on parent or offspring traits but indirect effects were detected in all group members, with both immediate effects (mass change and survival) and longer-term effects (timing of parents' subsequent breeding). Our results show that parasite infection can have a major impact on individuals other than the host, suggesting that the effect of parasites on population processes may be greater than previously thought.
Collapse
Affiliation(s)
- Hanna M V Granroth-Wilding
- Wellcome Centre for Infection, Immunity and Evolution, Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Building, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Sarah J Burthe
- NERC Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, UK
| | - Sue Lewis
- Wellcome Centre for Infection, Immunity and Evolution, Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Building, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Katherine A Herborn
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Jarrett Building, Bearsden Road, Glasgow G61 1QH, UK
| | - Emi A Takahashi
- Wellcome Centre for Infection, Immunity and Evolution, Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Building, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Francis Daunt
- NERC Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, UK
| | - Emma J A Cunningham
- Wellcome Centre for Infection, Immunity and Evolution, Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Building, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| |
Collapse
|
106
|
Kaser JM, Ode PJ. Hidden risks and benefits of natural enemy-mediated indirect effects. CURRENT OPINION IN INSECT SCIENCE 2016; 14:105-111. [PMID: 27436655 DOI: 10.1016/j.cois.2016.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/03/2016] [Indexed: 06/06/2023]
Abstract
Polyphagous natural enemies can mediate a variety of indirect interactions between resource populations. Such indirect interactions are often reciprocally negative (i.e. apparent competition), but the sign of effects between resource populations can be any combination of positive (+), negative (-), or neutral (0). In this article we focus on parasitoids to illustrate the importance of natural enemy-mediated indirect interactions in predicting risk and efficacy in biological control. We review recent findings to illustrate how an improved understanding of parasitoid behavioral ecology may increase model accuracy.
Collapse
Affiliation(s)
- Joe M Kaser
- Department of Entomology, University of Minnesota, Saint Paul, MN 55108, USA.
| | - Paul J Ode
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
107
|
Mazzamuto MV, Pisanu B, Romeo C, Ferrari N, Preatoni D, Wauters LA, Chapuis JL, Martinoli A. Poor Parasite Community of an Invasive Alien Species: Macroparasites of Pallas's Squirrel in Italy. ANN ZOOL FENN 2016. [DOI: 10.5735/086.053.0209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
108
|
Rouis SO, Rouis AO, Dumont HJ, Magellan K, Arab A. Dynamics and effects of Ligula intestinalis (L.) infection in the native fish Barbus callensis Valenciennes, 1842 in Algeria. Acta Parasitol 2016; 61:307-18. [PMID: 27078654 DOI: 10.1515/ap-2016-0041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 12/04/2015] [Indexed: 11/15/2022]
Abstract
The dynamics of the emergence, duration, and decline phases in epizootic cycles are well known for humans and some crops, but they are poorly understood for host-parasite systems in the wild. Parasites may be particularly insidious as they are often introduced unintentionally, simultaneously with their hosts, and later transferred to species in the new location. Here we investigate the epizootic dynamics of the tapeworm Ligula intestinalis in the Hamiz reservoir, Algeria, and explore its effects on the cyprinid fish Barbus callensis. Regular sampling was conducted from October 2005 to February 2008 with intermittent surveys carried out until 2010. Five percent of the 566 specimens of B. callensis that were caught were infected, with the maximum number of parasites found in spring. There was no obvious difference in weight between uninfected fish and infected ones, and infection did not affect fish condition. However, infected fish were significantly longer than uninfected fish and had inhibited gonad development. The proportion of infected fish caught was significantly higher in year 1 and by the second winter, infection collapsed to zero. The Ligula infection thus appeared to have minimal ecological effects and be of a temporary nature, thus exhibiting an epizootic cycle. Taken together, our data indicates that this infection declined or even failed during our study period. Failure may be due to the specific genetic strain of Ligula, but invasive carp may also have been influential in both the introduction and subsequent decline of this parasite.
Collapse
|
109
|
Rabajante JF, Tubay JM, Ito H, Uehara T, Kakishima S, Morita S, Yoshimura J, Ebert D. Host-parasite Red Queen dynamics with phase-locked rare genotypes. SCIENCE ADVANCES 2016; 2:e1501548. [PMID: 26973878 PMCID: PMC4783124 DOI: 10.1126/sciadv.1501548] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/08/2016] [Indexed: 06/05/2023]
Abstract
Interactions between hosts and parasites have been hypothesized to cause winnerless coevolution, called Red Queen dynamics. The canonical Red Queen dynamics assume that all interacting genotypes of hosts and parasites undergo cyclic changes in abundance through negative frequency-dependent selection, which means that any genotype could become frequent at some stage. However, this prediction cannot explain why many rare genotypes stay rare in natural host-parasite systems. To investigate this, we build a mathematical model involving multihost and multiparasite genotypes. In a deterministic and controlled environment, Red Queen dynamics occur between two genotypes undergoing cyclic dominance changes, whereas the rest of the genotypes remain subordinate for long periods of time in phase-locked synchronized dynamics with low amplitude. However, introduction of stochastic noise in the model might allow the subordinate cyclic host and parasite types to replace dominant cyclic types as new players in the Red Queen dynamics. The factors that influence such evolutionary switching are interhost competition, specificity of parasitism, and degree of stochastic noise. Our model can explain, for the first time, the persistence of rare, hardly cycling genotypes in populations (for example, marine microbial communities) undergoing host-parasite coevolution.
Collapse
Affiliation(s)
- Jomar F. Rabajante
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
- Mathematics Division, Institute of Mathematical Sciences and Physics, University of the Philippines Los Baños, College, Laguna 4031, Philippines
| | - Jerrold M. Tubay
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
- Mathematics Division, Institute of Mathematical Sciences and Physics, University of the Philippines Los Baños, College, Laguna 4031, Philippines
| | - Hiromu Ito
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
| | - Takashi Uehara
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
- Department of Preschool Education, Nagoya College, Toyoake, Aichi 470-1193, Japan
| | - Satoshi Kakishima
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
| | - Satoru Morita
- Department of Mathematical and Systems Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
| | - Jin Yoshimura
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
- Department of Mathematical and Systems Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
- Marine Biosystems Research Center, Chiba University, Uchiura, Kamogawa, Chiba 299-5502, Japan
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Dieter Ebert
- Zoological Institute, University of Basel, Vesalgasse 1, Basel 4051, Switzerland
| |
Collapse
|
110
|
James J, Davidson KE, Richardson G, Grimstead C, Cable J. Reduced aggression and foraging efficiency of invasive signal crayfish (Pacifastacus leniusculus) infested with non-native branchiobdellidans (Annelida: Clitellata). Parasit Vectors 2015; 8:596. [PMID: 26577082 PMCID: PMC4650921 DOI: 10.1186/s13071-015-1199-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biological invasions are a principal threat to global biodiversity and identifying the determinants of non-native species' success is a conservation priority. Through their ability to regulate host populations, parasites are increasingly considered as important in determining the outcome of species' invasions. Here, we present novel evidence that the common crayfish ecto-symbiont, Xironogiton victoriensis (Annelida: Clitellata) can affect the behaviour of a widespread and ecologically important invader, the signal crayfish (Pacifastacus leniusculus). METHODS To assess the signal crayfish-X. victoriensis relationship naïve crayfish were infested with an intensity of worms typically observed under natural conditions. Over a 10-week period the growth rate and survivorship of these animals was monitored and compared to those of uninfested counterparts. Complementary dyadic competition and foraging experiments were run to assess the behaviour of infested compared to uninfested animals. These data were analysed using General Linear Models and Generalized Linear Mixed Models. RESULTS Whilst X. victoriensis did not affect the growth rate or survivorship of signal crayfish under laboratory conditions, infested animals were significantly less aggressive and poorer foragers than uninfested individuals. CONCLUSIONS Through reducing aggression and foraging efficiency, infestation with X. victoriensis may disrupt the social structure, and potentially growth rate and/or dispersal of afflicted crayfish populations, with potential effects on their invasion dynamics. This is important given the widespread invasive range of crayfish and their functional roles as ecosystem engineers and keystone species.
Collapse
Affiliation(s)
- J James
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| | - K E Davidson
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| | - G Richardson
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| | - C Grimstead
- Natural Resources Wales, Rivers House, St. Mellons, Cardiff, CF3 0EY, UK.
| | - J Cable
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| |
Collapse
|
111
|
Pérez-Jvostov F, Hendry AP, Fussmann GF, Scott ME. An experimental test of antagonistic effects of competition and parasitism on host performance in semi-natural mesocosms. OIKOS 2015. [DOI: 10.1111/oik.02499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Felipe Pérez-Jvostov
- Inst. of Parasitology and Centre for Host-Parasite Interactions, McGill University; 21111 Lakeshore Road Ste. Anne de Bellevue QC H9X 3V9 Canada
| | - Andrew P. Hendry
- Redpath Museum, McGill University; 859 Sherbrooke Street West Montreal QC H3A 2K6 Canada
| | - Gregor F. Fussmann
- Dept of Biology; McGill University; 1205 Docteur Penfield Montreal QC H3A 1B1 Canada
| | - Marilyn E. Scott
- Inst. of Parasitology and Centre for Host-Parasite Interactions, McGill University; 21111 Lakeshore Road Ste. Anne de Bellevue QC H9X 3V9 Canada
| |
Collapse
|
112
|
The ecology, evolution, impacts and management of host-parasite interactions of marine molluscs. J Invertebr Pathol 2015; 131:177-211. [PMID: 26341124 DOI: 10.1016/j.jip.2015.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 11/22/2022]
Abstract
Molluscs are economically and ecologically important components of aquatic ecosystems. In addition to supporting valuable aquaculture and wild-harvest industries, their populations determine the structure of benthic communities, cycling of nutrients, serve as prey resources for higher trophic levels and, in some instances, stabilize shorelines and maintain water quality. This paper reviews existing knowledge of the ecology of host-parasite interactions involving marine molluscs, with a focus on gastropods and bivalves. It considers the ecological and evolutionary impacts of molluscan parasites on their hosts and vice versa, and on the communities and ecosystems in which they are a part, as well as disease management and its ecological impacts. An increasing number of case studies show that disease can have important effects on marine molluscs, their ecological interactions and ecosystem services, at spatial scales from centimeters to thousands of kilometers and timescales ranging from hours to years. In some instances the cascading indirect effects arising from parasitic infection of molluscs extend well beyond the temporal and spatial scales at which molluscs are affected by disease. In addition to the direct effects of molluscan disease, there can be large indirect impacts on marine environments resulting from strategies, such as introduction of non-native species and selective breeding for disease resistance, put in place to manage disease. Much of our understanding of impacts of molluscan diseases on the marine environment has been derived from just a handful of intensively studied marine parasite-host systems, namely gastropod-trematode, cockle-trematode, and oyster-protistan interactions. Understanding molluscan host-parasite dynamics is of growing importance because: (1) expanding aquaculture; (2) current and future climate change; (3) movement of non-native species; and (4) coastal development are modifying molluscan disease dynamics, ultimately leading to complex relationships between diseases and cultivated and natural molluscan populations. Further, in some instances the enhancement or restoration of valued ecosystem services may be contingent on management of molluscan disease. The application of newly emerging molecular tools and remote sensing techniques to the study of molluscan disease will be important in identifying how changes at varying spatial and temporal scales with global change are modifying host-parasite systems.
Collapse
|
113
|
Host manipulation in the face of environmental changes: Ecological consequences. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2015; 4:442-51. [PMID: 26835252 PMCID: PMC4699980 DOI: 10.1016/j.ijppaw.2015.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 12/27/2022]
Abstract
Several parasite species, particularly those having complex life-cycles, are known to induce phenotypic alterations in their hosts. Most often, such alterations appear to increase the fitness of the parasites at the expense of that of their hosts, a phenomenon known as “host manipulation”. Host manipulation can have important consequences, ranging from host population dynamics to ecosystem engineering. So far, the importance of environmental changes for host manipulation has received little attention. However, because manipulative parasites are embedded in complex systems, with many interacting components, changes in the environment are likely to affect those systems in various ways. Here, after reviewing the ecological importance of manipulative parasites, we consider potential causes and consequences of changes in host manipulation by parasites driven by environmental modifications. We show that such consequences can extend to trophic networks and population dynamics within communities, and alter the ecological role of manipulative parasites such as their ecosystem engineering. We suggest that taking them into account could improve the accuracy of predictions regarding the effects of global change. We also propose several directions for future studies. Environmental changes can affect ecosystems in various ways. Manipulative parasites are known to play numerous roles within ecosystems. However, the effects of environmental changes on manipulation has been overlooked. We review those effects and their potential consequences on larger scales. We conclude with suggestions on the direction of future studies.
Collapse
|
114
|
Redón S, Amat F, Sánchez MI, Green AJ. Comparing cestode infections and their consequences for host fitness in two sexual branchiopods: alien Artemia franciscana and native A. salina from syntopic-populations. PeerJ 2015; 3:e1073. [PMID: 26157636 PMCID: PMC4493677 DOI: 10.7717/peerj.1073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/12/2015] [Indexed: 11/28/2022] Open
Abstract
The American brine shrimp Artemia franciscana is invasive in the Mediterranean region where it has displaced native species (the sexual A. salina, and the clonal A. parthenogenetica) from many salt pond complexes. Artemia populations are parasitized by numerous avian cestodes whose effects have been studied in native species. We present a study from the Ebro Delta salterns (NE Spain), in a salt pond where both A. franciscana and native A. salina populations coexist, providing a unique opportunity to compare the parasite loads of the two sexual species in syntopy. The native species had consistently higher infection parameters, largely because the dominant cestode in A. salina adults and juveniles (Flamingolepis liguloides) was much rarer in A. franciscana. The most abundant cestodes in the alien species were Eurycestus avoceti (in adults) and Flamingolepis flamingo (in juveniles). The abundance of E. avoceti and F. liguloides was higher in the A. franciscana population syntopic with A. salina than in a population sampled at the same time in another pond where the native brine shrimp was absent, possibly because the native shrimp provides a better reservoir for parasite circulation. Infection by cestodes caused red colouration in adult and juvenile A. salina, and also led to castration in a high proportion of adult females. Both these effects were significantly stronger in the native host than in A. franciscana with the same parasite loads. However, for the first time, significant castration effects (for E. avoceti and F. liguloides) and colour change (for six cestode species) were observed in infected A. franciscana. Avian cestodes are likely to help A. franciscana outcompete native species. At the same time, they are likely to reduce the production of A. franciscana cysts in areas where they are harvested commercially.
Collapse
Affiliation(s)
- Stella Redón
- Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), Ribera de Cabanes s/n , Castellón , Spain
| | - Francisco Amat
- Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), Ribera de Cabanes s/n , Castellón , Spain
| | - Marta I Sánchez
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC) , Américo Vespucio s/n, Sevilla , Spain
| | - Andy J Green
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC) , Américo Vespucio s/n, Sevilla , Spain
| |
Collapse
|
115
|
Sellers AJ, Ruiz GM, Leung B, Torchin ME. Regional Variation in Parasite Species Richness and Abundance in the Introduced Range of the Invasive Lionfish, Pterois volitans. PLoS One 2015; 10:e0131075. [PMID: 26098309 PMCID: PMC4476800 DOI: 10.1371/journal.pone.0131075] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 05/29/2015] [Indexed: 11/20/2022] Open
Abstract
Parasites can play an important role in biological invasions. While introduced species often lose parasites from their native range, they can also accumulate novel parasites in their new range. The accumulation of parasites by introduced species likely varies spatially, and more parasites may shift to new hosts where parasite diversity is high. Considering that parasitism and disease are generally more prevalent at lower latitudes, the accumulation of parasites by introduced hosts may be greater in tropical regions. The Indo-Pacific lionfish (Pterois volitans) has become widely distributed across the Western Atlantic. In this study, we compared parasitism across thirteen locations in four regions, spanning seventeen degrees of latitude in the lionfish's introduced range to examine potential spatial variation in parasitism. In addition, as an initial step to explore how indirect effects of parasitism might influence interactions between lionfish and ecologically similar native hosts, we also compared parasitism in lionfish and two co-occurring native fish species, the graysby grouper, Cephalopholis cruentata, and the lizardfish, Synodus intermedius, in the southernmost region, Panama. Our results show that accumulation of native parasites on lionfish varies across broad spatial scales, and that colonization by ectoparasites was highest in Panama, relative to the other study sites. Endoparasite richness and abundance, on the other hand, were highest in Belize where lionfish were infected by twice as many endoparasite species as lionfish in other regions. The prevalence of all but two parasite species infecting lionfish was below 25%, and we did not detect an association between parasite abundance and host condition, suggesting a limited direct effect of parasites on lionfish, even where parasitism was highest. Further, parasite species richness and abundance were significantly higher in both native fishes compared to lionfish, and parasite abundance was negatively associated with the condition index of the native grouper but not that of the lionfish or lizardfish. While two co-occurring native fishes were more heavily parasitized compared to lionfish in Panama any indirect benefits of differential parasitism requires further investigation. Future parasitological surveys of lionfish across the eastern coast of North America and the Lesser Antilles would further resolve geographic patterns of parasitism in invasive lionfish.
Collapse
Affiliation(s)
- Andrew J. Sellers
- Smithsonian Tropical Research Institute, Apartado 0843–03092, Balboa, Ancon, Panama, Republic of Panama
- Department of Biology, McGill University, Montreal, Québec, Canada
- * E-mail:
| | - Gregory M. Ruiz
- Smithsonian Environmental Research Center, Edgewater, Maryland, United States of America
| | - Brian Leung
- Department of Biology, McGill University, Montreal, Québec, Canada
| | - Mark E. Torchin
- Smithsonian Tropical Research Institute, Apartado 0843–03092, Balboa, Ancon, Panama, Republic of Panama
| |
Collapse
|
116
|
Evolution of resistance by a native competitor can lead to invasion collapse in disease-mediated invasions. Biol Invasions 2015. [DOI: 10.1007/s10530-015-0916-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
117
|
Hendrichsen DK, Kristoffersen R, Gjelland KØ, Knudsen R, Kusterle S, Rikardsen AH, Henriksen EH, Smalås A, Olstad K. Transmission dynamics of the monogenean Gyrodactylus salaris under seminatural conditions. JOURNAL OF FISH DISEASES 2015; 38:541-550. [PMID: 25039384 DOI: 10.1111/jfd.12263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/12/2014] [Accepted: 04/14/2014] [Indexed: 06/03/2023]
Abstract
Tracking individual variation in the dynamics of parasite infections in wild populations is often complicated by lack of knowledge of the epidemiological history of hosts. Whereas the dynamics and development of Gyrodactylus salaris Malmberg, 1957, on Atlantic salmon, Salmo salar L., are known from laboratory studies, knowledge about infection development on individual wild fishes is currently sparse. In this study, the dynamics of an infection of G. salaris on individually marked Atlantic salmon parr was followed in a section of a natural stream. During the 6-week experiment, the prevalence increased from 3.3 to 60.0%, with an average increase in intensity of 4.1% day(-1) . Survival analyses showed an initially high probability (93.6%) of staying uninfected by G. salaris, decreasing significantly to 37% after 6 weeks. The results showed that even at subarctic water temperatures and with an initially low risk of infection, the parasite spread rapidly in the Atlantic salmon population, with the capacity to reach 100% prevalence within a short summer season. The study thus track individual infection trajectories of Atlantic salmon living under near-natural conditions, providing an integration of key population parameters from controlled experiments with the dynamics of the epizootic observed in free-living living populations.
Collapse
|
118
|
Pedersen AB, Fenton A. The role of antiparasite treatment experiments in assessing the impact of parasites on wildlife. Trends Parasitol 2015; 31:200-11. [PMID: 25778845 DOI: 10.1016/j.pt.2015.02.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/18/2015] [Accepted: 02/20/2015] [Indexed: 12/13/2022]
Abstract
It has become increasingly clear that parasites can have significant impacts on the dynamics of wildlife populations. Recently, researchers have shifted from using observational approaches to infer the impact of parasites on the health and fitness of individuals to using antiparasite drug treatments to test directly the consequences of infection. However, it is not clear the extent to which these experiments work in wildlife systems, or whether the results of these individual-level treatment experiments can predict the population-level consequences of parasitism. Here, we assess the results of treatment experiments, laying out the benefits and limitations of this approach, and discuss how they can be used to improve our understanding of the role of parasites in wildlife populations.
Collapse
Affiliation(s)
- Amy B Pedersen
- Institute of Evolutionary Biology & Centre for Immunity, Infection, and Evolution, School of Biological Sciences, Kings Buildings, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK.
| | - Andy Fenton
- Institute of Integrative Biology, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK
| |
Collapse
|
119
|
Jolles AE, Ezenwa VO. Ungulates as model systems for the study of disease processes in natural populations. J Mammal 2015; 96:4-15. [PMID: 32287382 PMCID: PMC7107476 DOI: 10.1093/jmammal/gyu007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Parasites and pathogens are a fundamental driving force in the ecology and evolution of mammalian populations, and understanding disease processes in natural populations is an urgent priority in the face of increased rates of infectious disease emergence. In this review, we argue that mammalogists are uniquely placed to contribute to addressing these challenges because in-depth knowledge of mammal species is fundamental to the development of wild model systems that could accelerate discovery in disease ecology. The use of animal models-species for which a broad range of diagnostic, molecular, and genetic tools have been developed-in tightly controlled laboratory environments has been instrumental in driving progress in the biomedical sciences. However, in natural populations, disease processes operate in the context of enormous genetic, phenotypic, and environmental variability. Understanding diseases in animal populations (including humans) thus requires investment in "wild animal models" that explicitly include individual variation and relevant environmental gradients. Wild mammal groups such as primates and rodents have already been identified as potentially useful models of infectious diseases in the wild. Here, we discuss the enormous potential that ungulates hold as candidates for wild model systems. The diversity, broad geographic distribution, and often high abundance of species in this group make them a highly accessible target for disease research. Moreover, a depth of background knowledge, close relationships to domesticated animals, and ongoing management of many wild ungulate species provide context, tools, and opportunity for cutting-edge research at the interface of ecological and biomedical sciences. Studies of wild ungulates are already helping to unravel some key challenges in infectious disease research, including the role of parasites in trophic cascades, the consequences of climate change for disease dynamics, and the systems biology of host-parasite interactions. Other areas where ungulate studies may provide new insight include research on the sources and drivers of emerging infectious diseases.
Collapse
|
120
|
Ramos-Ascherl Z, Williams EH, Bunkley-Williams L, Tuttle LJ, Sikkel PC, Hixon MA. Parasitism inPterois volitans(Scorpaenidae) from Coastal Waters of Puerto Rico, the Cayman Islands, and the Bahamas. J Parasitol 2015; 101:50-6. [DOI: 10.1645/13-422.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
121
|
Dunn AM, Hatcher MJ. Parasites and biological invasions: parallels, interactions, and control. Trends Parasitol 2015; 31:189-99. [PMID: 25613560 DOI: 10.1016/j.pt.2014.12.003] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
Abstract
Species distributions are changing at an unprecedented rate owing to human activity. We examine how two key processes of redistribution - biological invasion and disease emergence - are interlinked. There are many parallels between invasion and emergence processes, and invasions can drive the spread of new diseases to wildlife. We examine the potential impacts of invasion and disease emergence, and discuss how these threats can be countered, focusing on biosecurity. In contrast with international policy on emerging diseases of humans and managed species, policy on invasive species and parasites of wildlife is fragmented, and the lack of international cooperation encourages individual parties to minimize their input into control. We call for international policy that acknowledges the strong links between emerging diseases and invasion risk.
Collapse
Affiliation(s)
- Alison M Dunn
- School of Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Melanie J Hatcher
- School of Biology, University of Leeds, Leeds LS2 9JT, UK; School of Biological Sciences, University of Bristol, Bristol BS8 1TH, UK
| |
Collapse
|
122
|
Hatcher MJ, Dick JTA, Paterson RA, Alexander ME, Bunke M, Dunn AM. Trait-Mediated Effects of Parasites on Invader-Native Interactions. HOST MANIPULATIONS BY PARASITES AND VIRUSES 2015. [PMCID: PMC7120441 DOI: 10.1007/978-3-319-22936-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Parasites have a variety of behavioural effects on their hosts, which can in turn affect species with which the host interacts. Here we review how these trait-mediated indirect effects of parasites can alter the outcomes of invader-native interactions, illustrating with examples from the literature and with particular regard to the invader-native crustacean systems studied in our laboratories. Parasites may potentially inhibit or exacerbate invasions via their effects on host behaviour, in addition to their direct virulence effects on hosts. In several crustacean systems, we have found that parasites influence both host predation rates on intra- and inter-guild prey and host vulnerability to being preyed upon. These trait effects can theoretically alter invasion impact and patterns of coexistence, as they indirectly affect interactions between predators and prey with the potential for further ramifications to other species in the food web. The fitness consequences of parasite-induced trait-mediated effects are rarely considered in traditional parasitological contexts, but demand attention in the context of ecological communities. We can regard these trait effects as a form of cryptic virulence that only becomes apparent when hosts are examined in the context of the other species with which they interact.
Collapse
|
123
|
Arundell K, Dunn A, Alexander J, Shearman R, Archer N, Ironside JE. Enemy release and genetic founder effects in invasive killer shrimp populations of Great Britain. Biol Invasions 2014. [DOI: 10.1007/s10530-014-0806-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
124
|
Lange B, Reuter M, Ebert D, Muylaert K, Decaestecker E. Diet quality determines interspecific parasite interactions in host populations. Ecol Evol 2014; 4:3093-102. [PMID: 25247066 PMCID: PMC4161182 DOI: 10.1002/ece3.1167] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 11/08/2022] Open
Abstract
The widespread occurrence of multiple infections and the often vast range of nutritional resources for their hosts allow that interspecific parasite interactions in natural host populations might be determined by host diet quality. Nevertheless, the role of diet quality with respect to multispecies parasite interactions on host population level is not clear. We here tested the effect of host population diet quality on the parasite community in an experimental study using Daphnia populations. We studied the effect of diet quality on Daphnia population demography and the interactions in multispecies parasite infections of this freshwater crustacean host. The results of our experiment show that the fitness of a low-virulent microsporidian parasite decreased in low, but not in high-host-diet quality conditions. Interestingly, infections with the microsporidium protected Daphnia populations against a more virulent bacterial parasite. The observed interspecific parasite interactions are discussed with respect to the role of diet quality-dependent changes in host fecundity. This study reflects that exploitation competition in multispecies parasite infections is environmentally dependent, more in particular it shows that diet quality affects interspecific parasite competition within a single host and that this can be mediated by host population-level effects.
Collapse
Affiliation(s)
- Benjamin Lange
- Laboratory Aquatic Biology, Science & Technology-Kulak, KU LeuvenKortrijk, 8500, Belgium
| | - Max Reuter
- Department of Genetics, Evolution & Environment, University College LondonLondon, WC1E 6BT, UK
| | - Dieter Ebert
- Zoological Institute, University of BaselBasel, CH-4051, Switzerland
| | - Koenraad Muylaert
- Laboratory Aquatic Biology, Science & Technology-Kulak, KU LeuvenKortrijk, 8500, Belgium
| | - Ellen Decaestecker
- Laboratory Aquatic Biology, Science & Technology-Kulak, KU LeuvenKortrijk, 8500, Belgium
| |
Collapse
|
125
|
González CE, Quiroga LB, Sanabria EA. First Survey of Nematode Parasites in Introduced American Bullfrogs (Lithobates catesbeianus) in Argentina. COMP PARASITOL 2014. [DOI: 10.1654/4700.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
126
|
Coon CAC, Brace AJ, McWilliams SR, McCue MD, Martin LB. Introduced and Native Congeners Use Different Resource Allocation Strategies to Maintain Performance during Infection. Physiol Biochem Zool 2014; 87:559-67. [DOI: 10.1086/676310] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
127
|
A trematode parasite alters growth, feeding behavior, and demographic success of invasive rusty crayfish (Orconectes rusticus). Oecologia 2014; 175:947-58. [PMID: 24710690 DOI: 10.1007/s00442-014-2939-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 03/26/2014] [Indexed: 10/25/2022]
Abstract
Nonindigenous species can cause major changes to community interactions and ecosystem processes. The strong impacts of these species are often attributed to their high demographic success. While the importance of enemy release in facilitating invasions has often been emphasized, few studies have addressed the role of parasites in the invasive range in controlling demographic success of potential invaders. Here we examine whether a trematode parasite (Microphallus spp.) can contribute to previously documented alternate states in the abundance of invasive rusty crayfish (Orconectes rusticus) in north temperate lakes in Wisconsin, USA. Microphallus infect O. rusticus after emerging from their first intermediate host, a hydrobiid snail. As previously documented, O. rusticus reduce densities of hydrobiid snails through direct predation and destruction of macrophyte habitat. Therefore, if Microphallus substantially reduce O. rusticus fitness, these parasites may reinforce a state of low crayfish abundance, and, at the other extreme, abundant crayfish may repress these parasites, reinforcing a state of high crayfish abundance. From samples collected from 109 sites in 16 lakes, we discovered (1) a positive relationship between crayfish infection intensity and hydrobiid snail abundance, (2) a negative relationship between parasite prevalence and crayfish abundance, and (3) a negative relationship between parasite prevalence and crayfish population growth. With experiments, we found that infection with Microphallus reduced foraging behavior and growth in O. rusticus, which may be the mechanisms responsible for the population reductions we observed. Overall results are consistent with the hypothesis that Microphallus contributes to alternate states in the abundance and impacts of O. rusticus.
Collapse
|
128
|
Romeo C, Wauters LA, Ferrari N, Lanfranchi P, Martinoli A, Pisanu B, Preatoni DG, Saino N. Macroparasite fauna of alien grey squirrels (Sciurus carolinensis): composition, variability and implications for native species. PLoS One 2014; 9:e88002. [PMID: 24505348 PMCID: PMC3914897 DOI: 10.1371/journal.pone.0088002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/04/2014] [Indexed: 11/18/2022] Open
Abstract
Introduced hosts populations may benefit of an "enemy release" through impoverishment of parasite communities made of both few imported species and few acquired local ones. Moreover, closely related competing native hosts can be affected by acquiring introduced taxa (spillover) and by increased transmission risk of native parasites (spillback). We determined the macroparasite fauna of invasive grey squirrels (Sciurus carolinensis) in Italy to detect any diversity loss, introduction of novel parasites or acquisition of local ones, and analysed variation in parasite burdens to identify factors that may increase transmission risk for native red squirrels (S. vulgaris). Based on 277 grey squirrels sampled from 7 populations characterised by different time scales in introduction events, we identified 7 gastro-intestinal helminths and 4 parasite arthropods. Parasite richness is lower than in grey squirrel's native range and independent from introduction time lags. The most common parasites are Nearctic nematodes Strongyloides robustus (prevalence: 56.6%) and Trichostrongylus calcaratus (6.5%), red squirrel flea Ceratophyllus sciurorum (26.0%) and Holarctic sucking louse Neohaematopinus sciuri (17.7%). All other parasites are European or cosmopolitan species with prevalence below 5%. S. robustus abundance is positively affected by host density and body mass, C. sciurorum abundance increases with host density and varies with seasons. Overall, we show that grey squirrels in Italy may benefit of an enemy release, and both spillback and spillover processes towards native red squirrels may occur.
Collapse
Affiliation(s)
- Claudia Romeo
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
- * E-mail:
| | - Lucas A. Wauters
- Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Nicola Ferrari
- Department of Veterinary Sciences and Public Health, Università degli Studi di Milano, Milan, Italy
| | - Paolo Lanfranchi
- Department of Veterinary Sciences and Public Health, Università degli Studi di Milano, Milan, Italy
| | - Adriano Martinoli
- Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Benoît Pisanu
- Department of Ecology and Biodiversity Management, Muséum National d’Histoire Naturelle, Paris, France
| | - Damiano G. Preatoni
- Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Nicola Saino
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
129
|
Hatcher MJ, Dick JTA, Dunn AM. Parasites that change predator or prey behaviour can have keystone effects on community composition. Biol Lett 2014; 10:20130879. [PMID: 24429680 PMCID: PMC3917330 DOI: 10.1098/rsbl.2013.0879] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Parasites play pivotal roles in structuring communities, often via indirect interactions with non-host species. These effects can be density-mediated (through mortality) or trait-mediated (behavioural, physiological and developmental), and may be crucial to population interactions, including biological invasions. For instance, parasitism can alter intraguild predation (IGP) between native and invasive crustaceans, reversing invasion outcomes. Here, we use mathematical models to examine how parasite-induced trait changes influence the population dynamics of hosts that interact via IGP. We show that trait-mediated indirect interactions impart keystone effects, promoting or inhibiting host coexistence. Parasites can thus have strong ecological impacts, even if they have negligible virulence, underscoring the need to consider trait-mediated effects when predicting effects of parasites on community structure in general and biological invasions in particular.
Collapse
|
130
|
Gómez A, Nichols E. Neglected wild life: Parasitic biodiversity as a conservation target. Int J Parasitol Parasites Wildl 2013; 2:222-7. [PMID: 24533340 PMCID: PMC3862516 DOI: 10.1016/j.ijppaw.2013.07.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/17/2013] [Accepted: 07/20/2013] [Indexed: 11/20/2022]
Abstract
Parasites appropriate host resources to feed and/or to reproduce, and lower host fitness to varying degrees. As a consequence, they can negatively impact human and animal health, food production, economic trade, and biodiversity conservation. They can also be difficult to study and have historically been regarded as having little influence on ecosystem organization and function. Not surprisingly, parasitic biodiversity has to date not been the focus of much positive attention from the conservation community. However, a growing body of evidence demonstrates that parasites are extremely diverse, have key roles in ecological and evolutionary processes, and that infection may paradoxically result in ecosystem services of direct human relevance. Here we argue that wildlife parasites should be considered meaningful conservation targets no less relevant than their hosts. We discuss their numerical and functional importance, current conservation status, and outline a series of non-trivial challenges to consider before incorporating parasite biodiversity in conservation strategies. We also suggest that addressing the key knowledge gaps and communication deficiencies that currently impede broad discussions about parasite conservation requires input from wildlife parasitologists.
Collapse
Affiliation(s)
- Andrés Gómez
- American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - Elizabeth Nichols
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
- Department of Ecology, Institute of Bioscience, University of São Paulo, 05508-900 São Paulo, SP, Brazil
| |
Collapse
|
131
|
Predator cue studies reveal strong trait-mediated effects in communities despite variation in experimental designs. Anim Behav 2013. [DOI: 10.1016/j.anbehav.2013.09.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
132
|
Microsporidia: diverse, dynamic, and emergent pathogens in aquatic systems. Trends Parasitol 2013; 29:567-78. [DOI: 10.1016/j.pt.2013.08.005] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 12/22/2022]
|
133
|
Blakeslee AMH, Fowler AE, Keogh CL. Marine invasions and parasite escape: updates and new perspectives. ADVANCES IN MARINE BIOLOGY 2013; 66:87-169. [PMID: 24182900 DOI: 10.1016/b978-0-12-408096-6.00002-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Marine invasions have risen over time with enhanced globalization, and so has the introduction of non-native hosts and their parasites. An important and well-supported paradigm of invasion biology is the significant loss of parasites that hosts enjoy in introduced regions compared to native regions (i.e. parasite escape), yet less is known about the factors that influence parasite escape in marine systems. Here, we compile an up-to-date review of marine parasite invasions and test several hypotheses related to host invasion pathway that we suspected could influence parasite escape across the 31 host-parasite systems included in our investigation. In general, we continued to show significant support for parasite escape; however, escape varied among parasite taxa, with most taxa demonstrating moderate levels of escape and a few showing complete or no escape. Moreover, we revealed several important factors related to host taxa, geography, time, and vector of introduction that influenced parasite escape, and in some cases demonstrated significant interactions, revealing the complexity of the invasion pathway in filtering parasites from native to introduced regions. In some (but not all) cases, there was also evidence of invasive host advantages due to parasite escape, but more evidence is required to demonstrate clear support for the enemy release hypothesis. In general, our study revealed the need for further research across systems, especially in understudied regions of the world.
Collapse
Affiliation(s)
- April M H Blakeslee
- Biology Department, Long Island University-Post, Brookville, New York, USA; Marine Invasions Laboratory, Smithsonian Environmental Research Center, Edgewater, Maryland, USA.
| | | | | |
Collapse
|
134
|
Williams CF, Britton JR, Turnbull JF. A risk assessment for managing non-native parasites. Biol Invasions 2012. [DOI: 10.1007/s10530-012-0364-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
135
|
Abstract
Emerging infectious diseases (EIDs) are recognized as having significant social, economic and ecological costs, threatening human health, food security, wildlife conservation and biodiversity. We review the processes underlying the emergence of infectious disease, focusing on the similarities and differences between conceptual models of disease emergence and biological invasions in general.Study of the IUCN's list of the world's worst invaders reveals that disease is cited as a driver behind the conservation, medical or economic impact of nearly a quarter of the species on the data base.The emergence of novel diseases in new host species are, in essence, examples of invasions by parasites. Many of the ecological and anthropogenic drivers of disease emergence and classical invasions are also shared, with environmental change and global transport providing opportunities for the introduction and spread of invaders and novel parasites.The phases of disease emergence and biological invasions have many parallels; particularly the early and late phases, where demographic and anthropogenic factors are key drivers. However, there are also differences in the intermediate phases, where host-parasite co-evolution plays a crucial role in determining parasite establishment in novel hosts.Similar opportunities and constraints on control and management occur at the different phases of invasions and disease emergence. However, exploitation of host immune responses offers additional control opportunities through contact control and vaccination against EIDs. We propose that cross-fertilization between the disciplines of disease emergence and invasion biology may provide further insights into their prediction, control and management.
Collapse
Affiliation(s)
- Melanie J Hatcher
- School of Biological Sciences University of Leeds Leeds UK
- School of Biological Sciences University of Bristol Bristol UK
| | - Jaimie T A Dick
- School of Biological Sciences Queen's University Belfast Belfast UK
| | - Alison M Dunn
- School of Biological Sciences University of Leeds Leeds UK
| |
Collapse
|
136
|
|
137
|
Horizontal transmission of Thelohania contejeani in the endangered white-clawed (Austropotamobius pallipes) and the invasive signal crayfish (Pacifastacus leniusculus). Parasitology 2012; 139:1471-7. [DOI: 10.1017/s0031182012000777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYThe microsporidian parasite Thelohania contejeani causes porcelain disease and has been implicated in mass mortalities in populations of the endangered European crayfish Austropotamobius pallipes. However, the route of parasite transmission is not known. This paper investigates the horizontal transmission of T. contejeani between A. pallipes hosts as well as its transmissibility to the invasive signal crayfish (Pacifastacus leniusculus). Field collected juvenile A. pallipes and P. leniusculus were assigned to 1 of 3 experimental treatments; fed heavily infected A. pallipes tissue, exposed to water from tanks housing heavily parasitized A. pallipes, and a control group to provide an estimate of the baseline infection levels in the field. After 26 weeks, abdominal muscle samples were screened by PCR for T. contejeani. Infection was significantly higher in the treatment groups (83% in the cannibalism treatment, 42% in the water exposure treatment) than in the control group (4%), providing evidence for horizontal transmission of the parasite between A. pallipes hosts. Cannibalism and scavenging are common amongst crayfish, providing transmission opportunities in the field. The study also provides the first direct evidence for transmission of the parasite from an indigenous European crayfish species to the invasive signal crayfish, with 50% of P. leniusculus in each treatment, and 8% of control animals infected. We discuss the possibility that high density populations of the invasive signal crayfish may serve either as reservoirs or sinks for the parasite.
Collapse
|