101
|
Castellanos-Martínez S, Diz AP, Álvarez-Chaver P, Gestal C. Proteomic characterization of the hemolymph of Octopus vulgaris infected by the protozoan parasite Aggregata octopiana. J Proteomics 2013; 105:151-63. [PMID: 24370682 DOI: 10.1016/j.jprot.2013.12.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/09/2013] [Accepted: 12/14/2013] [Indexed: 01/26/2023]
Abstract
UNLABELLED The immune system of cephalopods is poorly known to date. The lack of genomic information makes difficult to understand vital processes like immune defense mechanisms and their interaction with pathogens at molecular level. The common octopus Octopus vulgaris has a high economic relevance and potential for aquaculture. However, disease outbreaks provoke serious reductions in production with potentially severe economic losses. In this study, a proteomic approach is used to analyze the immune response of O. vulgaris against the coccidia Aggregata octopiana, a gastrointestinal parasite which impairs the cephalopod nutritional status. The hemocytes and plasma proteomes were compared by 2-DE between sick and healthy octopus. The identities of 12 differentially expressed spots and other 27 spots without significant alteration from hemocytes, and 5 spots from plasma, were determined by mass spectrometry analysis aided by a six reading-frame translation of an octopus hemocyte RNA-seq database and also public databases. Principal component analysis pointed to 7 proteins from hemocytes as the major contributors to the overall difference between levels of infection and so could be considered as potential biomarkers. Particularly, filamin, fascin and peroxiredoxin are highlighted because of their implication in octopus immune defense activity. From the octopus plasma, hemocyanin was identified. This work represents a first step forward in order to characterize the protein profile of O. vulgaris hemolymph, providing important information for subsequent studies of the octopus immune system at molecular level and also to the understanding of the basis of octopus tolerance-resistance to A. octopiana. BIOLOGICAL SIGNIFICANCE The immune system of cephalopods is poorly known to date. The lack of genomic information makes difficult to understand vital processes like immune defense mechanisms and their interaction with pathogens at molecular level. The study herein presented is focused to the comprehension of the octopus immune defense against a parasite infection. Particularly, it is centered in the host-parasite relationship developed between the octopus and the protozoan A. octopiana, which induces severe gastrointestinal injuries in octopus that produce a malabsorption syndrome. The common octopus is a commercially important species with a high potential for aquaculture in semi-open systems, and this pathology reduces the condition of the octopus populations on-growing in open-water systems resulting in important economical loses. This is the first proteomic approach developed on this host-parasite relationship, and therefore, the contribution of this work goes from i) ecological, since this particular relationship is tending to be established as a model of host-parasite interaction in natural populations; ii) evolutionary, due to the characterization of immune molecules that could contribute to understand the functioning of the immune defense in these highly evolved mollusks; and iii) to economical view. The results of this study provide an overview of the octopus hemolymph proteome. Furthermore, proteins influenced by the level of infection and implicated in the octopus cellular response are also showed. Consequently, a set of biomarkers for disease resistance is suggested for further research that could be valuable for the improvement of the octopus culture, taken into account their high economical value, the declining of landings and the need for the diversification of reared species in order to ensure the growth of the aquaculture activity. Although cephalopods are model species for biomedical studies and possess potential in aquaculture, their genomes have not been sequenced yet, which limits the application of genomic data to research important biological processes. Similarly, the octopus proteome, like other non-model organisms, is poorly represented in public databases. Most of the proteins were identified from an octopus' hemocyte RNA-seq database that we have performed, which will be the object of another manuscript in preparation. Therefore, the need to increase molecular data from non-model organisms is herein highlighted. Particularly, here is encouraged to expand the knowledge of the genomic of cephalopods in order to increase successful protein identifications. This article is part of a Special Issue entitled: Proteomics of non-model organisms.
Collapse
Affiliation(s)
- Sheila Castellanos-Martínez
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas, Eduardo Cabello, 6, 36208 Vigo, Spain
| | - Angel P Diz
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain
| | - Paula Álvarez-Chaver
- Unidad de Proteómica, Servicio de Determinación Estructural, Proteómica y Genómica, CACTI, Universidad de Vigo, 36310 Vigo, Spain
| | - Camino Gestal
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas, Eduardo Cabello, 6, 36208 Vigo, Spain.
| |
Collapse
|
102
|
Snake venomics: From the inventory of toxins to biology. Toxicon 2013; 75:44-62. [DOI: 10.1016/j.toxicon.2013.03.020] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/06/2013] [Accepted: 03/13/2013] [Indexed: 01/05/2023]
|
103
|
Hu G, Koh J, Yoo MJ, Grupp K, Chen S, Wendel JF. Proteomic profiling of developing cotton fibers from wild and domesticated Gossypium barbadense. THE NEW PHYTOLOGIST 2013; 200:570-582. [PMID: 23795774 DOI: 10.1111/nph.12381] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/27/2013] [Indexed: 05/27/2023]
Abstract
Pima cotton (Gossypium barbadense) is widely cultivated because of its long, strong seed trichomes ('fibers') used for premium textiles. These agronomically advanced fibers were derived following domestication and thousands of years of human-mediated crop improvement. To gain an insight into fiber development and evolution, we conducted comparative proteomic and transcriptomic profiling of developing fiber from an elite cultivar and a wild accession. Analyses using isobaric tag for relative and absolute quantification (iTRAQ) LC-MS/MS technology identified 1317 proteins in fiber. Of these, 205 were differentially expressed across developmental stages, and 190 showed differential expression between wild and cultivated forms, 14.4% of the proteome sampled. Human selection may have shifted the timing of developmental modules, such that some occur earlier in domesticated than in wild cotton. A novel approach was used to detect possible biased expression of homoeologous copies of proteins. Results indicate a significant partitioning of duplicate gene expression at the protein level, but an approximately equal degree of bias for each of the two constituent genomes of allopolyploid cotton. Our results demonstrate the power of complementary transcriptomic and proteomic approaches for the study of the domestication process. They also provide a rich database for mining for functional analyses of cotton improvement or evolution.
Collapse
Affiliation(s)
- Guanjing Hu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jin Koh
- Department of Biology, University of Florida, Gainesville, FL, 32610, USA
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Mi-Jeong Yoo
- Department of Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Kara Grupp
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL, 32610, USA
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
104
|
Diz AP, Dudley E, Cogswell A, MacDonald BW, Kenchington ELR, Zouros E, Skibinski DOF. Proteomic analysis of eggs from Mytilus edulis females differing in mitochondrial DNA transmission mode. Mol Cell Proteomics 2013; 12:3068-80. [PMID: 23869045 DOI: 10.1074/mcp.m113.031401] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Many bivalves have an unusual mechanism of mitochondrial DNA (mtDNA) inheritance called doubly uniparental inheritance (DUI) in which distinctly different genomes are inherited through the female (F genome) and male (M genome) lineages. In fertilized eggs that will develop into male embryos, the sperm mitochondria remain in an aggregation, which is believed to be delivered to the primordial germ cells and passed to the next generation through the sperm. In fertilized eggs that will develop into female embryos, the sperm mitochondria are dispersed throughout the developing embryo and make little if any contribution to the next generation. The frequency of embryos with the aggregated or dispersed mitochondrial type varies among females. Previous models of DUI have predicted that maternal nuclear factors cause molecular differences among unfertilized eggs from females producing embryos with predominantly dispersed or aggregated mitochondria. We test this hypothesis using females of each of the two types from a natural population. We have found small, yet detectable, differences of the predicted type at the proteome level. We also provide evidence that eggs of females giving the dispersed pattern have consistently lower expression for different proteasome subunits than eggs of females giving the aggregated pattern. These results, combined with those of an earlier study in which we used hatchery lines of Mytilus, and with a transcriptomic study in a clam that has the DUI system of mtDNA transmission, reinforce the hypothesis that the ubiquitin-proteasome system plays a key role in the mechanism of DUI and sex determination in bivalves. We also report that eggs of females giving the dispersed pattern have higher expression for arginine kinase and enolase, enzymes involved in energy production, whereas ferritin, which is involved in iron homeostasis, has lower expression. We discuss these results in the context of genetic models for DUI and suggest experimental methods for further understanding the role of these proteins in DUI.
Collapse
Affiliation(s)
- Angel P Diz
- Institute of Life Science, College of Medicine, Swansea University, Swansea SA28PP, Wales UK
| | | | | | | | | | | | | |
Collapse
|
105
|
Primmer CR, Papakostas S, Leder EH, Davis MJ, Ragan MA. Annotated genes and nonannotated genomes: cross-species use of Gene Ontology in ecology and evolution research. Mol Ecol 2013; 22:3216-41. [DOI: 10.1111/mec.12309] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 02/01/2023]
Affiliation(s)
- C. R. Primmer
- Department of Biology; University of Turku; 20014 Turku Finland
| | - S. Papakostas
- Department of Biology; University of Turku; 20014 Turku Finland
| | - E. H. Leder
- Department of Biology; University of Turku; 20014 Turku Finland
| | - M. J. Davis
- Institute for Molecular Bioscience; The University of Queensland; Brisbane Qld 4072 Australia
| | - M. A. Ragan
- Institute for Molecular Bioscience; The University of Queensland; Brisbane Qld 4072 Australia
| |
Collapse
|
106
|
Kültz D, Clayton DF, Robinson GE, Albertson C, Carey HV, Cummings ME, Dewar K, Edwards SV, Hofmann HA, Gross LJ, Kingsolver JG, Meaney MJ, Schlinger BA, Shingleton AW, Sokolowski MB, Somero GN, Stanzione DC, Todgham AE. New Frontiers for Organismal Biology. Bioscience 2013. [DOI: 10.1525/bio.2013.63.6.8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
107
|
Li C, Zhang Y, Xie ZX, He ZP, Lin L, Wang DZ. Quantitative proteomic analysis reveals evolutionary divergence and species-specific peptides in the Alexandrium tamarense complex (Dinophyceae). J Proteomics 2013; 86:85-96. [DOI: 10.1016/j.jprot.2013.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/01/2013] [Accepted: 05/01/2013] [Indexed: 11/24/2022]
|
108
|
Perry JC, Sirot L, Wigby S. The seminal symphony: how to compose an ejaculate. Trends Ecol Evol 2013; 28:414-22. [PMID: 23582755 DOI: 10.1016/j.tree.2013.03.005] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/17/2013] [Accepted: 03/13/2013] [Indexed: 02/06/2023]
Abstract
Ejaculates are fundamental to fitness in sexually reproducing animals: males gain all their direct fitness via the ejaculate and females require ejaculates to reproduce. Both sperm and non-sperm components of the ejaculate (including parasperm, seminal proteins, water, and macromolecules) play vital roles in postcopulatory sexual selection and conflict, processes that can potentially drive rapid evolutionary change and reproductive isolation. Here, we assess the increasing evidence that considering ejaculate composition as a whole (and potential trade-offs among ejaculate components) has important consequences for predictions about male reproductive investment and female responses to ejaculates. We review current theory and empirical work, and detail how social and environmental effects on ejaculate composition have potentially far-reaching fitness consequences for both sexes.
Collapse
Affiliation(s)
- Jennifer C Perry
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.
| | | | | |
Collapse
|
109
|
Salmenkova EA. Molecular genetic bases of adaptation processes and approaches to their analysis. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413010110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
110
|
Maes GE, Raeymaekers JAM, Hellemans B, Geeraerts C, Parmentier K, De Temmerman L, Volckaert FAM, Belpaire C. Gene transcription reflects poor health status of resident European eel chronically exposed to environmental pollutants. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 126:242-255. [PMID: 23247545 DOI: 10.1016/j.aquatox.2012.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/30/2012] [Accepted: 11/07/2012] [Indexed: 06/01/2023]
Abstract
Understanding the effects of chronic exposure to pollutants on the genome and transcriptome of diadromous fish populations is crucial for their resilience under combined anthropogenic and environmental selective pressures. The catadromous European eel (Anguilla anguilla L.) has suffered a dramatic decline in recruitment for three decades, necessitating a thorough assessment of the transcriptional effects of environmental pollutants on resident and migrating eels in natural systems. We investigated the relationship between muscular bioaccumulation levels of metals (Hg, Cd, Pb, Cu, Zn, Ni, Cr, As and Se), PCBs and organochlorine pesticides (DDTs), the health status (condition factor and lipid reserves) and the associated transcriptional response in liver and gill tissues for genes involved in metal detoxification (metallothionein, MT) and oxidative metabolism (cytochrome P4501A, CYP1A) of xenobiotic compounds. In total 84 resident eels originating from three Belgian river basins (Scheldt, Meuse and Yzer) were analyzed along with five unpolluted aquaculture samples as control group. There was a large spatial variation in individual contaminant intensity and profile, while tissue pollution levels were strongly and negatively associated with condition indices, suggesting an important impact of pollution on the health of sub-adult resident eels. Gene transcription patterns revealed a complex response mechanism to a cocktail of pollutants, with a high variation at low pollution levels, but strongly down-regulated hepatic and gill gene transcription in highly polluted eels. Resident eels clearly experience a high pollution burden and seem to show a dysfunctional gene transcription regulation of detoxification genes at higher pollutant levels, correlated with low energy reserves and condition. To fully understand the evolutionary implications of pollutants on eel reproductive fitness, analyses of mature migrating eels and the characterization of their transcriptome-wide gene transcription response would be appropriate to unveil the complex responses associated with multiple interacting stressors and the long-term consequences at the entire species level. In the meanwhile, jointly monitoring environmental and tissue pollution levels at a European scale should be initiated, while preserving high quality habitats to increase the recovery chance of European eel in the future.
Collapse
Affiliation(s)
- G E Maes
- University of Leuven, Laboratory of Biodiversity and Evolutionary Genomics, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Dattolo E, Gu J, Bayer PE, Mazzuca S, Serra IA, Spadafora A, Bernardo L, Natali L, Cavallini A, Procaccini G. Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles. FRONTIERS IN PLANT SCIENCE 2013; 4:195. [PMID: 23785376 PMCID: PMC3683636 DOI: 10.3389/fpls.2013.00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 05/27/2013] [Indexed: 05/11/2023]
Abstract
For seagrasses, seasonal and daily variations in light and temperature represent the mains factors driving their distribution along the bathymetric cline. Changes in these environmental factors, due to climatic and anthropogenic effects, can compromise their survival. In a framework of conservation and restoration, it becomes crucial to improve our knowledge about the physiological plasticity of seagrass species along environmental gradients. Here, we aimed to identify differences in transcriptomic and proteomic profiles, involved in the acclimation along the depth gradient in the seagrass Posidonia oceanica, and to improve the available molecular resources in this species, which is an important requisite for the application of eco-genomic approaches. To do that, from plant growing in shallow (-5 m) and deep (-25 m) portions of a single meadow, (i) we generated two reciprocal Expressed Sequences Tags (EST) libraries using a Suppressive Subtractive Hybridization (SSH) approach, to obtain depth/specific transcriptional profiles, and (ii) we identified proteins differentially expressed, using the highly innovative USIS mass spectrometry methodology, coupled with 1D-SDS electrophoresis and labeling free approach. Mass spectra were searched in the open source Global Proteome Machine (GPM) engine against plant databases and with the X!Tandem algorithm against a local database. Transcriptional analysis showed both quantitative and qualitative differences between depths. EST libraries had only the 3% of transcripts in common. A total of 315 peptides belonging to 64 proteins were identified by mass spectrometry. ATP synthase subunits were among the most abundant proteins in both conditions. Both approaches identified genes and proteins in pathways related to energy metabolism, transport and genetic information processing, that appear to be the most involved in depth acclimation in P. oceanica. Their putative rules in acclimation to depth were discussed.
Collapse
Affiliation(s)
- Emanuela Dattolo
- Functional and Evolutionary Ecology Lab, Stazione Zoologica Anton DohrnNapoli, Italy
| | - Jenny Gu
- Evolutionary Bioinformatics Group, Institute for Evolution and Biodiversity, University of MünsterMünster, Germany
| | - Philipp E. Bayer
- Evolutionary Bioinformatics Group, Institute for Evolution and Biodiversity, University of MünsterMünster, Germany
| | - Silvia Mazzuca
- Laboratorio di Proteomica, Dipartimento di Chimica e Tecnologie Chimiche, Università della CalabriaArcavacata di Rende (CS), Italy
- *Correspondence: Silvia Mazzuca, Associate Professor in Plant Biology, Laboratorio di Proteomica, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Bucci, 12 A, 87036 Arcavacata di Rende (CS), Italy e-mail:
| | - Ilia A. Serra
- Laboratorio di Proteomica, Dipartimento di Chimica e Tecnologie Chimiche, Università della CalabriaArcavacata di Rende (CS), Italy
| | - Antonia Spadafora
- Laboratorio di Proteomica, Dipartimento di Chimica e Tecnologie Chimiche, Università della CalabriaArcavacata di Rende (CS), Italy
| | - Letizia Bernardo
- Laboratorio di Proteomica, Dipartimento di Chimica e Tecnologie Chimiche, Università della CalabriaArcavacata di Rende (CS), Italy
| | - Lucia Natali
- Dipartimento di Scienze Agrarie, Alimentari ed Agro-ambientali, Università di PisaPisa, Italy
| | - Andrea Cavallini
- Dipartimento di Scienze Agrarie, Alimentari ed Agro-ambientali, Università di PisaPisa, Italy
| | - Gabriele Procaccini
- Functional and Evolutionary Ecology Lab, Stazione Zoologica Anton DohrnNapoli, Italy
| |
Collapse
|
112
|
Comparative proteomic analysis for assessment of the ecological significance of maize and peanut intercropping. J Proteomics 2013; 78:447-60. [DOI: 10.1016/j.jprot.2012.10.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/04/2012] [Accepted: 10/14/2012] [Indexed: 12/25/2022]
|
113
|
Leskinen PK, Laaksonen T, Ruuskanen S, Primmer CR, Leder EH. The proteomics of feather development in pied flycatchers (Ficedula hypoleuca) with different plumage coloration. Mol Ecol 2012; 21:5762-77. [DOI: 10.1111/mec.12073] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 08/28/2012] [Accepted: 08/31/2012] [Indexed: 02/04/2023]
Affiliation(s)
| | - Toni Laaksonen
- Department of Biology; University of Turku; Turku; 20014; Finland
| | - Suvi Ruuskanen
- Department of Biology; University of Turku; Turku; 20014; Finland
| | - Craig R. Primmer
- Department of Biology; University of Turku; Turku; 20014; Finland
| | - Erica H. Leder
- Department of Biology; University of Turku; Turku; 20014; Finland
| |
Collapse
|
114
|
Abstract
It is becoming increasingly clear that local adaptation can occur even in the face of high gene flow and limited overall genomic differentiation among populations (reviewed by Nosil et al. 2009). Thus, one important task for molecular ecologists is to sift through genomic data to identify the genes that matter for local adaptation (Hoffmann & Willi 2008; Stapley et al. 2010). Recent advances in high-throughput molecular technologies have facilitated this search, and a variety of approaches can be applied, including those grounded in population genetics [e.g. outlier analysis (Pavlidis et al. 2008)], classical and quantitative genetics [e.g. quantitative trait locus analysis (MacKay et al. 2009)], and cellular and molecular biology [e.g. transcriptomics (Larsen et al. 2011)]. However, applying these approaches in nonmodel organisms that lack extensive genetic and genomic resources has been a formidable challenge. In this issue, Papakostas et al. (2012). demonstrate how one such approach – high-throughput label-free proteomics (reviewed by Gstaiger & Aebersold 2009; Domon & Aebersold 2010) – can be applied to detect genes that may be involved in local adaptation in a species with limited genomic resources. Using this approach, they identified genes that may be implicated in local adaptation to salinity in European whitefish (Coregonus lavaretus L.) and provide insight into the mechanisms by which fish cope with changes in this critically important environmental parameter.
Collapse
Affiliation(s)
- Anne C Dalziel
- Department of Zoology, University of British Columbia,Vancouver, BC, Canada.
| | | |
Collapse
|
115
|
Diz AP, Páez de la Cadena M, Rolán-Alvarez E. Proteomic evidence of a paedomorphic evolutionary process within a marine snail species: a strategy for adapting to extreme ecological conditions? J Evol Biol 2012; 25:2569-81. [PMID: 23020901 DOI: 10.1111/jeb.12001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 11/28/2022]
Abstract
The exposed and sheltered ecotypes of the marine snail Littorina saxatilis from European rocky shores are considered a key model system to study adaptation and ecological speciation. Previous studies showed that two ecotypes (RB and SU) of this species in NW Spain have adapted differently to different shore levels and microhabitats. In order to understand how this divergent adaptive process has been accomplished, we followed a quantitative proteomic approach to investigate the proteome variation in a number of different biological factors, that is, ecotype, ontogeny and their interactions. This approach allowed testing the hypothesis that one of the ecotypes has evolved by paedomorphosis, and also whether or not the molecular mechanisms related to ecotype differentiation are set up in early developmental stages. Additionally, the identification of some candidate proteins using mass spectrometry provides some functional insights into these evolutionary processes. Results from this study provided evidence of higher ontogenetic differentiation at proteome level in the RB (metamorphic) than in SU (paedomorphic) ecotype that point to the possibility of juvenile stage retention in this latter ecotype. The level of protein expression (proteome) differences between ecotypes maintained nearly constant from late embryonic stages to adulthood, although some proteins involved in these changes considerably differed in embryonic compared to other ontogenetic stages. Paedomorphosis may be the evolutionary response of the SU ecotype of solving the trade-off during sexually immaturity that is caused by the evolution of small size arising from adaptation to the wave-exposed habitat. Some potential candidate genes of adaptation related to energetic metabolism have been identified, providing a promising baseline for future functional analyses.
Collapse
Affiliation(s)
- A P Diz
- Departamento de Bioquímica, Genética e Inmunología, Universidad de Vigo, Vigo, Spain.
| | | | | |
Collapse
|
116
|
Pavey SA, Bernatchez L, Aubin-Horth N, Landry CR. What is needed for next-generation ecological and evolutionary genomics? Trends Ecol Evol 2012; 27:673-8. [PMID: 22902072 DOI: 10.1016/j.tree.2012.07.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 11/27/2022]
Abstract
Ecological and evolutionary genomics (EEG) aims to link gene functions and genomic features to phenotypes and ecological factors. Although the rapid development of technologies allows central questions to be addressed at an unprecedented level of molecular detail, they do not alleviate one of the major challenges of EEG, which is that a large fraction of genes remains without any annotation. Here, we propose two solutions to this challenge. The first solution is in the form of a database that regroups associations between genes, organismal attributes and abiotic and biotic conditions. This database would result in an ecological annotation of genes by allowing cross-referencing across studies and taxa. Our second solution is to use new functional techniques to characterize genes implicated in the response to ecological challenges.
Collapse
Affiliation(s)
- Scott A Pavey
- Département de Biologie & Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, QC, Canada
| | | | | | | |
Collapse
|
117
|
Dowd WW. Challenges for Biological Interpretation of Environmental Proteomics Data in Non-model Organisms. Integr Comp Biol 2012; 52:705-20. [DOI: 10.1093/icb/ics093] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
118
|
Silvestre F, Gillardin V, Dorts J. Proteomics to Assess the Role of Phenotypic Plasticity in Aquatic Organisms Exposed to Pollution and Global Warming. Integr Comp Biol 2012; 52:681-94. [DOI: 10.1093/icb/ics087] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
119
|
Capozzi V, Russo P, Fragasso M, De Vita P, Fiocco D, Spano G. Biotechnology and pasta-making: lactic Acid bacteria as a new driver of innovation. Front Microbiol 2012; 3:94. [PMID: 22457660 PMCID: PMC3304088 DOI: 10.3389/fmicb.2012.00094] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 02/26/2012] [Indexed: 01/12/2023] Open
Abstract
Cereals-derived foods represent a key constituent in the diet of many populations. In particular, pasta is consumed in large quantities throughout the world in reason of its nutritive importance, containing significant amounts of complex carbohydrates, proteins, B-vitamins, and iron. Lactic acid bacteria (LAB) are a heterogeneous group of bacteria that play a key role in the production of fermented foods and beverages with high relevance for human and animal health. A wide literature testifies the multifaceted importance of LAB biotechnological applications in cereal-based products. Several studies focused on LAB isolation and characterization in durum wheat environment, in some cases with preliminary experimental applications of LAB in pasta-making. In this paper, using sourdough as a model, we focus on the relevant state-of-art to introduce a LAB-based biotechnological step in industrial pasta-making, a potential world driver of innovation that might represent a cutting-edge advancement in pasta production.
Collapse
Affiliation(s)
- Vittorio Capozzi
- Molecular Microbiology, Department of Food Science, Foggia University Foggia, Italy
| | | | | | | | | | | |
Collapse
|