101
|
Cohen S, Mendelson I, Altboum Z, Kobiler D, Elhanany E, Bino T, Leitner M, Inbar I, Rosenberg H, Gozes Y, Barak R, Fisher M, Kronman C, Velan B, Shafferman A. Attenuated nontoxinogenic and nonencapsulated recombinant Bacillus anthracis spore vaccines protect against anthrax. Infect Immun 2000; 68:4549-58. [PMID: 10899854 PMCID: PMC98371 DOI: 10.1128/iai.68.8.4549-4558.2000] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several highly attenuated spore-forming nontoxinogenic and nonencapsulated Bacillus anthracis vaccines differing in levels of expression of recombinant protective antigen (rPA) were constructed. Biochemical analyses (including electrospray mass spectroscopy and N terminus amino acid sequencing) as well as biological and immunological tests demonstrated that the rPA retains the characteristics of native PA. A single immunization of guinea pigs with 5 x 10(7) spores of one of these recombinant strains, MASC-10, expressing high levels of rPA (>/=100 microgram/ml) from a constitutive heterologous promoter induced high titers of neutralizing anti-PA antibodies. This immune response was long lasting (at least 12 months) and provided protection against a lethal challenge of virulent (Vollum) anthrax spores. The recombinant B. anthracis spore vaccine appears to be more efficacious than the vegetative cell vaccine. Furthermore, while results clearly suggest a direct correlation between the level of expression of PA and the potency of the vaccine, they also suggest that some B. anthracis spore-associated antigen(s) may contribute in a significant manner to protective immunity.
Collapse
Affiliation(s)
- S Cohen
- Departments of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Park S, Leppla SH. Optimized production and purification of Bacillus anthracis lethal factor. Protein Expr Purif 2000; 18:293-302. [PMID: 10733882 DOI: 10.1006/prep.2000.1208] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacillus anthracis lethal factor (LF) is a 90-kDa zinc metalloprotease that plays an important role in the virulence of the organism. LF has previously been purified from Escherichia coli and Bacillus anthracis. The yields and purities of these preparations were inadequate for crystal structure determination. In this study, the genes encoding wild-type LF and a mutated, inactive LF (LF-E687C) were placed in an E. coli-Bacillus shuttle vector so that LF was produced with the protective antigen (PA) signal peptide at its N-terminus. The resulting vectors, pSJ115 and pSJ121, express wild-type and mutated LF fusion proteins, respectively. Expression of the LF genes is under the control of the PA promoter and, during secretion, the PA signal peptide is cleaved to release the 90-kDa LF proteins. The wild-type and mutated LF proteins were purified from the culture medium using three chromatographic steps (Phenyl-Sepharose, Q-Sepharose, and hydroxyapatite). The purified proteins were greater than 95% pure and yields (20-30 mg/L) were higher than those obtained in other expression systems (1-5 mg/L). These proteins have been crystallized and are being used to solve the crystal structure of LF. Their potential use in anthrax vaccines is also discussed.
Collapse
Affiliation(s)
- S Park
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, 20892, USA
| | | |
Collapse
|
103
|
Okinaka RT, Cloud K, Hampton O, Hoffmaster AR, Hill KK, Keim P, Koehler TM, Lamke G, Kumano S, Mahillon J, Manter D, Martinez Y, Ricke D, Svensson R, Jackson PJ. Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. J Bacteriol 1999; 181:6509-15. [PMID: 10515943 PMCID: PMC103788 DOI: 10.1128/jb.181.20.6509-6515.1999] [Citation(s) in RCA: 269] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/1999] [Accepted: 07/30/1999] [Indexed: 11/20/2022] Open
Abstract
The Bacillus anthracis Sterne plasmid pXO1 was sequenced by random, "shotgun" cloning. A circular sequence of 181,654 bp was generated. One hundred forty-three open reading frames (ORFs) were predicted using GeneMark and GeneMark.hmm, comprising only 61% (110,817 bp) of the pXO1 DNA sequence. The overall guanine-plus-cytosine content of the plasmid is 32.5%. The most recognizable feature of the plasmid is a "pathogenicity island," defined by a 44.8-kb region that is bordered by inverted IS1627 elements at each end. This region contains the three toxin genes (cya, lef, and pagA), regulatory elements controlling the toxin genes, three germination response genes, and 19 additional ORFs. Nearly 70% of the ORFs on pXO1 do not have significant similarity to sequences available in open databases. Absent from the pXO1 sequence are homologs to genes that are typically required to drive theta replication and to maintain stability of large plasmids in Bacillus spp. Among the ORFs with a high degree of similarity to known sequences are a collection of putative transposases, resolvases, and integrases, suggesting an evolution involving lateral movement of DNA among species. Among the remaining ORFs, there are three sequences that may encode enzymes responsible for the synthesis of a polysaccharide capsule usually associated with serotype-specific virulent streptococci.
Collapse
Affiliation(s)
- R T Okinaka
- Life Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Affiliation(s)
- T C Dixon
- Department of Microbiology, Duke University Medical Center, Durham, NC, USA
| | | | | | | |
Collapse
|
105
|
Brossier F, Mock M, Sirard JC. Antigen delivery by attenuated Bacillus anthracis: new prospects in veterinary vaccines. J Appl Microbiol 1999; 87:298-302. [PMID: 10475973 DOI: 10.1046/j.1365-2672.1999.00895.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This report summarizes the recent investigations on the use of Bacillus anthracis as a live vector for delivery of antigens. Recombinant strains were constructed by engineering the current live Sterne vaccine. This vaccine, used to prevent anthrax in cattle, causes side-effects due to anthrax toxin activities. Bacteria producing a genetically detoxified toxin factor were devoid of lethal effects and were as protective as the Sterne strain against experimental anthrax. Moreover, B. anthracis expressing a foreign antigen controlled by an in vivo inducible promoter were able to generate either antibody or cellular protective responses against heterologous diseases.
Collapse
Affiliation(s)
- F Brossier
- Unité Toxines et Pathogénie Bactériennes, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
106
|
Bowen JE, Quinn CP. The native virulence plasmid combination affects the segregational stability of a theta-replicating shuttle vector in Bacillus anthracis var. New Hampshire. J Appl Microbiol 1999; 87:270-8. [PMID: 10475964 DOI: 10.1046/j.1365-2672.1999.00885.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The segregational stability of a small, theta-replicating, non-mobilizable shuttle plasmid (pAEX-5E) was determined in fully virulent (pX01+/pX02+), partially cured (pX01+/pX02- and pX01-/pX02+) and fully cured (pX01-/pX02-) derivatives of Bacillus anthracis var. New Hampshire. Under the growth conditions used (L-broth, 37 degrees C, aerobic, batch culture), pAEX-5E remained segregationally stable in the pX01-/pX02+ and pX01-/pX02- derivatives for in excess of 100 culture generations, but was expelled from the pX01+/pX02+ and pX01+/pX02- derivatives (100% loss occurred after 101+/-3.8 and 54+/-6.0 culture generations, respectively). In the presence of antibiotic selection pressure to maintain pAEX-5E (5 microg erythromycin ml-1) no comparable loss of pX01 or pX02 was observed over 100 generations of growth in any of the derivatives of B. anthracis. Under these conditions the pX01+/pX02- derivative had an extended culture doubling time (td+/-S. E. of the mean) of 75.3 +/- 1.4 min compared with 47.3 +/- 1.1, 46.2 +/- 0.86 and 43.2 +/- 1.2 min for the pX01+/pX02+, pX01-/pX02+ and pX01-/pX02- derivatives, respectively. That antibiotic resistance was pAEX-5E-mediated was confirmed using a second antibiotic marker (kanamycin). After100 generations of growth in the presence of erythromycin, colonies were shown to have retained kanamycin resistance. Southern blot analysis, in conjunction with plasmid rescue to Escherichia coli confirmed that, after 100 culture generations in the presence of antibiotic selection pressure, pAEX-5E had remained structurally stable and had not integrated into the B. anthracis genome.
Collapse
Affiliation(s)
- J E Bowen
- Centre for Applied Microbiology and Research, Porton Down, Salisbury, Wilts, UK.
| | | |
Collapse
|
107
|
Abstract
The atxA gene is an important regulator of virulence gene expression in Bacillus anthracis. atxA positively regulates expression of the three genes encoding the anthrax toxin proteins and at least one gene is required for capsule production. Here we report that an atxA-null mutant exhibits phenotypes unrelated to toxin and capsule synthesis. An atxA-null mutant grows poorly on minimal media and sporulates more efficiently than the parent strain. Numerous transposon-generated promoter-lacZ fusions at distinct loci on pXO1 exhibit CO2-enhanced atxA-dependent expression similar to that observed for the toxin genes. We also report that the atxA-activated pagA gene (encoding the protective antigen toxin protein) is co-transcribed with a 300-bp gene, pagR, located downstream of pagA. The predicted protein product of pagR has some amino acid sequence similarity to transcriptional regulators in other organisms. Our data indicate that pagR represses expression of pagA and atxA. pagR also controls expression of some CO2/atxA-activated transcriptional fusions on pXO1 that do not correspond to the toxin genes. Regulation of these fusions and pagA and pagR may be due to changes in AtxA levels, or may be independent of atxA expression.
Collapse
Affiliation(s)
- A R Hoffmaster
- Department of Microbiology and Molecular Genetics, The University of Texas-Houston Medical School 77030, USA
| | | |
Collapse
|
108
|
Abstract
Protective antigen (PA) is an important component of the edema and lethal toxins produced by Bacillus anthracis. PA is essential for binding the toxins to the target cell receptor and for facilitating translocation of the enzymatic toxin components, edema factor and lethal factor, across the target cell membrane. The structural gene for PA, pagA (previously known as pag), is located on the 182-kb virulence plasmid pXO1 at a locus distinct from the edema factor and lethal factor genes. Here we show that a 300-bp gene located downstream of pagA is cotranscribed with pagA and represses expression of the operon. We have designated this gene pagR (for protective antigen repressor). Two pagA mRNA transcripts were detected in cells producing PA: a short, 2.7-kb transcript corresponding to the pagA gene, and a longer, 4.2-kb transcript representing a bicistronic message derived from pagA and pagR. The 3' end of the short transcript mapped adjacent to an inverted repeat sequence, suggesting that the sequence can act as a transcription terminator. Attenuation of termination at this site results in transcription of pagR. A pagR mutant exhibited increased steady-state levels of pagA mRNA, indicating that pagR negatively controls expression of the operon. Autogenous control of the operon may involve atxA, a trans-acting positive regulator of pagA. The steady-state level of atxA mRNA was also increased in the pagR mutant. The mutant phenotype was complemented by addition of pagR in trans on a multicopy plasmid.
Collapse
Affiliation(s)
- A R Hoffmaster
- Department of Microbiology and Molecular Genetics, The University of Texas-Houston Health Science Center Medical School, Houston, Texas 77030, USA
| | | |
Collapse
|
109
|
Papavinasasundaram KG, Colston MJ, Davis EO. Construction and complementation of a recA deletion mutant of Mycobacterium smegmatis reveals that the intein in Mycobacterium tuberculosis recA does not affect RecA function. Mol Microbiol 1998; 30:525-34. [PMID: 9822818 DOI: 10.1046/j.1365-2958.1998.01083.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A recA deletion mutant of Mycobacterium smegmatis has been isolated by homologous recombination using a sacB counterselection strategy. Deletion of the recA gene from the chromosome was demonstrated by Southern hybridizations and by polymerase chain reaction (PCR). Western analysis using anti-RecA antibodies confirmed that the RecA protein was not made by the mutant strain. The recA deletion strain exhibited enhanced sensitivity to UV irradiation and failed to undergo homologous recombination. The results obtained from the recombination assays suggest that in wild-type M. smegmatis the majority of colonies arise from single cross-over homologous recombination events with only a very minor contribution from random integrations. The deficiencies in UV survival and recombination were complemented by introduction of the cloned M. smegmatis recA gene. Overexpression of RecA was found to be toxic in the absence of recX, which is found downstream of and co-transcribed with recA and is thus also affected by the deletion of recA. The M. smegmatis recA deletion strain was also complemented by the M. tuberculosis recA gene with or without its intein; most importantly, the frequency of double cross-over homologous recombination events was identical regardless of whether the M. tuberculosis recA gene contained or lacked the intein. Thus, the low frequency of homologous recombination observed in M. tuberculosis is not due to the presence of an intein-coding sequence in its recA gene per se.
Collapse
Affiliation(s)
- K G Papavinasasundaram
- Division of Mycobacterial Research, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | | | |
Collapse
|
110
|
Affiliation(s)
- P Hanna
- Department of Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
111
|
Hoffmaster AR, Koehler TM. The anthrax toxin activator gene atxA is associated with CO2-enhanced non-toxin gene expression in Bacillus anthracis. Infect Immun 1997; 65:3091-9. [PMID: 9234759 PMCID: PMC175436 DOI: 10.1128/iai.65.8.3091-3099.1997] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Bacillus anthracis toxin genes, cya, lef, and pag, can be viewed as a regulon, in which transcription of all three genes is activated in trans by the same regulatory gene, atxA, in response to the same signal, CO2. In atxA+ strains, toxin gene expression is increased 5- to 20-fold in cells grown in 5% CO2 relative to cells grown in air. CO2-enhanced toxin gene transcription is not observed in atx4-null mutants. Here, we used two independent techniques to obtain evidence for additional CO2-induced atxA-regulated genes. First, total protein preparations from atxA4+ and atxA isolates grown in 5% CO2 and in air were examined by two-dimensional electrophoresis. Comparison of the resulting protein patterns indicated that synthesis of non-toxin proteins is influenced by growth in elevated CO2 and the toxin gene regulator, atxA. Second, we generated random transcriptional lacZ fusions in B. anthracis with transposon Tn917-LTV3. Transposon-insertion libraries were screened for mutants expressing CO2-enhanced atxA-dependent beta-galactosidase activity. DNA sequence analysis of transposon insertion sites in 17 mutants carrying CO2- and atxA-regulated fusions revealed 10 mutants carrying independent insertions on the 185-kb toxin plasmid pXO1 which did not map to the toxin genes. The tcr-lacZ fusion mutants (tcr for toxin coregulated) were Tox+, indicating that these genes may not be involved in anthrax toxin gene activation. Our data indicate a clear association of atxA with CO2-enhanced gene expression in B. anthracis and provide evidence that atxA regulates genes other than the structural genes for the anthrax toxin proteins.
Collapse
Affiliation(s)
- A R Hoffmaster
- Department of Microbiology and Molecular Genetics, Medical School, University of Texas-Houston, 77030, USA
| | | |
Collapse
|
112
|
Dai Z, Koehler TM. Regulation of anthrax toxin activator gene (atxA) expression in Bacillus anthracis: temperature, not CO2/bicarbonate, affects AtxA synthesis. Infect Immun 1997; 65:2576-82. [PMID: 9199422 PMCID: PMC175364 DOI: 10.1128/iai.65.7.2576-2582.1997] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Anthrax toxin gene expression in Bacillus anthracis is dependent on the presence of atxA, a trans-acting regulatory gene located on the resident 185-kb plasmid pXO1. In atxA+ strains, expression of the toxin genes (pag, lef, and cya) is enhanced by two physiologically significant signals: elevated CO2/bicarbonate and temperature. To determine whether increased toxin gene expression in response to these signals is associated with increased atxA expression, we monitored steady-state levels of atxA mRNA and AtxA protein in cells cultured in different conditions. We purified histidine-tagged AtxA [AtxA(His)] from Escherichia coli and used anti-AtxA(His) serum to detect AtxA in protein preparations from B. anthracis cells. AtxA was identified as a protein with an apparent size of 56 kDa in cytoplasmic fractions of B. anthracis cells. Our data indicate that atxA expression is not influenced by CO2/bicarbonate levels. However, the steady-state level of atxA mRNA in cells grown in elevated CO2/bicarbonate at 37 degrees C is five- to sixfold higher than that observed in cells grown in the same conditions at 28 degrees C. A corresponding difference in AtxA protein was also seen at the different growth temperatures. When atxA was cloned on a multicopy plasmid in B. anthracis, AtxA levels corresponding to the atxA gene copy number were observed. However, this strain produced significantly less pag mRNA and protective antigen protein than the parental strain harboring atxA in single copy on pXO1. These results indicate that increased AtxA expression does not lead to a corresponding increase in pag expression. Our data strongly suggest that an additional factor(s) is involved in regulation of pag and that the relative amounts of such a factor(s) and AtxA are important for optimal toxin gene expression.
Collapse
Affiliation(s)
- Z Dai
- Department of Microbiology and Molecular Genetics, Medical School, University of Texas-Houston, 77030, USA
| | | |
Collapse
|
113
|
Sirard JC, Weber M, Duflot E, Popoff MR, Mock M. A recombinant Bacillus anthracis strain producing the Clostridium perfringens Ib component induces protection against iota toxins. Infect Immun 1997; 65:2029-33. [PMID: 9169728 PMCID: PMC175280 DOI: 10.1128/iai.65.6.2029-2033.1997] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Bacillus anthracis toxinogenic Sterne strain is currently used as a live veterinary vaccine against anthrax. The capacity of a toxin-deficient derivative strain to produce a heterologous antigen by using the strong inducible promoter of the B. anthracis pag gene was investigated. The expression of the foreign gene ibp, encoding the Ib component of iota toxin from Clostridium perfringens, was analyzed. A pag-ibp fusion was introduced by allelic exchange into a toxin-deficient Sterne strain, thereby replacing the wild-type pag gene. This recombinant strain, called BAIB, was stable and secreted large quantities of Ib protein in induced culture conditions. Mice given injections of live BAIB spores developed an antibody response specific to the Ib protein. The pag-ibp fusion was therefore functional both in vitro and in vivo. Moreover, the immunized animals were protected against a challenge with C. perfringens iota toxin or with the homologous Clostridium spiroforme toxin. The protective immunity was mediated by neutralizing antibodies. In conclusion, B. anthracis is promising for the development of live veterinary vaccines.
Collapse
Affiliation(s)
- J C Sirard
- Unité des Toxines et Pathogénie Bactériennes, URA1858, Centre National de la Recherche Scientifique, Institut Pasteur, Paris,
| | | | | | | | | |
Collapse
|
114
|
Guignot J, Mock M, Fouet A. AtxA activates the transcription of genes harbored by both Bacillus anthracis virulence plasmids. FEMS Microbiol Lett 1997; 147:203-7. [PMID: 9119194 DOI: 10.1111/j.1574-6968.1997.tb10242.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Fully virulent Bacillus anthracis bacilli are encapsulated and toxinogenic. These bacteria carry two plasmids, pXO1, and pXO2, encoding toxins and capsule synthetic-enzymes (capB, C, A, dep), respectively. The PXO1 plasmid strongly enhances capsule formation. This influence was studied by analysing the expression of a capB-lacZ fusion in various backgrounds. The beta-galactosidase activities were similar in a delta atxA strain and a pXO1 cured strain. Moreover, the capB-lacZ expression level could be restored, in a pXO1 cured strain, by addition of atxA in trans. Thus, we conclude that the pX01 influence on capsule synthesis is mediated by AtxA, the pXO1-encoded trans-activator of the toxin gene expression.
Collapse
Affiliation(s)
- J Guignot
- Laboratorie de Génétique Moléculaire des Toxines (URA 1858, CNRS), Institut Pasteur, Paris, France
| | | | | |
Collapse
|
115
|
Fouet A, Mock M. Differential influence of the two Bacillus anthracis plasmids on regulation of virulence gene expression. Infect Immun 1996; 64:4928-32. [PMID: 8945528 PMCID: PMC174470 DOI: 10.1128/iai.64.12.4928-4932.1996] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Fully virulent Bacillus anthracis bacilli are encapsulated and toxinogenic. These bacteria contain two plasmids, pXO1 and pXO2, carrying genes coding for toxins (pag, lef, and cya) and for capsule synthetic enzymes (capB, capC, capA, and dep), respectively. A transcriptional fusion between the capB regulatory region and the lacZ reporter gene was constructed to study the regulation of capsule synthesis. A single copy of this fusion was inserted into the cap region of pXO2. The influence of environmental factors on the capB-lacZ fusion expression was initially analyzed in a pXO1-negative background: bicarbonate but not temperature induced the transcription from the capB promoter. A strain carrying the recombinant pXO2 and (delta)pag pXO1 was constructed for transregulatory studies. The pXO1 plasmid strongly enhanced capsule formation without modifying the bicarbonate-dependent induction level. A (delta)cap pXO2 was transduced into a strain containing pXO1 harboring a pag-lacZ transcriptional fusion (19). pXO2 showed no influence on the toxin gene transcription.
Collapse
Affiliation(s)
- A Fouet
- Laboratoire de Génétique Moléculaire des Toxines, Institut Pasteur, Paris, France.
| | | |
Collapse
|
116
|
Affiliation(s)
- H Smith
- Medical School University of Birmingham, Edgbaston, UK
| |
Collapse
|