101
|
Elliott SR, Tischler AD. Phosphate starvation: a novel signal that triggers ESX-5 secretion in Mycobacterium tuberculosis. Mol Microbiol 2016; 100:510-26. [PMID: 26800324 DOI: 10.1111/mmi.13332] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2016] [Indexed: 12/13/2022]
Abstract
Mycobacterium tuberculosis uses the Type VII ESX secretion systems to transport proteins across its complex cell wall. ESX-5 has been implicated in M. tuberculosis virulence, but the regulatory mechanisms controlling ESX-5 secretion were unknown. Here we uncover a link between ESX-5 and the Pst/SenX3-RegX3 system that controls gene expression in response to phosphate availability. The DNA-binding response regulator RegX3 is normally activated by phosphate limitation. Deletion of pstA1, which encodes a Pst phosphate uptake system component, causes constitutive activation of RegX3. A ΔpstA1 mutant exhibited RegX3-dependent overexpression of esx-5 genes and hyper-secretion of the ESX-5 substrates EsxN and PPE41 when the bacteria were grown in phosphate-rich medium. In wild-type M. tuberculosis, phosphate limitation activated esx-5 transcription and secretion of both EsxN and PPE41, and this response required RegX3. Electrophoretic mobility shift assays revealed that RegX3 binds directly to a promoter within the esx-5 locus. Remarkably, phosphate limitation also induced secretion of EsxB, an effector of the virulence-associated ESX-1 secretion system, though this induction was RegX3 independent. Our work demonstrates that the Pst/SenX3-RegX3 system directly regulates ESX-5 secretion at the transcriptional level in response to phosphate availability and defines phosphate limitation as an environmental signal that activates ESX-5 secretion.
Collapse
Affiliation(s)
- Sarah R Elliott
- Department of Microbiology and Immunology, Minneapolis, MN, 55455, USA
| | - Anna D Tischler
- Department of Microbiology and Immunology, Minneapolis, MN, 55455, USA.,Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| |
Collapse
|
102
|
Tufariello JM, Chapman JR, Kerantzas CA, Wong KW, Vilchèze C, Jones CM, Cole LE, Tinaztepe E, Thompson V, Fenyö D, Niederweis M, Ueberheide B, Philips JA, Jacobs WR. Separable roles for Mycobacterium tuberculosis ESX-3 effectors in iron acquisition and virulence. Proc Natl Acad Sci U S A 2016; 113:E348-57. [PMID: 26729876 PMCID: PMC4725510 DOI: 10.1073/pnas.1523321113] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) encodes five type VII secretion systems (T7SS), designated ESX-1-ESX-5, that are critical for growth and pathogenesis. The best characterized is ESX-1, which profoundly impacts host cell interactions. In contrast, the ESX-3 T7SS is implicated in metal homeostasis, but efforts to define its function have been limited by an inability to recover deletion mutants. We overcame this impediment using medium supplemented with various iron complexes to recover mutants with deletions encompassing select genes within esx-3 or the entire operon. The esx-3 mutants were defective in uptake of siderophore-bound iron and dramatically accumulated cell-associated mycobactin siderophores. Proteomic analyses of culture filtrate revealed that secretion of EsxG and EsxH was codependent and that EsxG-EsxH also facilitated secretion of several members of the proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) protein families (named for conserved PE and PPE N-terminal motifs). Substrates that depended on EsxG-EsxH for secretion included PE5, encoded within the esx-3 locus, and the evolutionarily related PE15-PPE20 encoded outside the esx-3 locus. In vivo characterization of the mutants unexpectedly showed that the ESX-3 secretion system plays both iron-dependent and -independent roles in Mtb pathogenesis. PE5-PPE4 was found to be critical for the siderophore-mediated iron-acquisition functions of ESX-3. The importance of this iron-acquisition function was dependent upon host genotype, suggesting a role for ESX-3 secretion in counteracting host defense mechanisms that restrict iron availability. Further, we demonstrate that the ESX-3 T7SS secretes certain effectors that are important for iron uptake while additional secreted effectors modulate virulence in an iron-independent fashion.
Collapse
Affiliation(s)
- JoAnn M Tufariello
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Jessica R Chapman
- Office of Collaborative Science, New York University School of Medicine, New York, NY 10016
| | - Christopher A Kerantzas
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Ka-Wing Wong
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of the Ministry of Education/Health, School of Basic Medical Sciences, Fudan University, Shanghai 201508, China
| | - Catherine Vilchèze
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461; Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Christopher M Jones
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Laura E Cole
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Emir Tinaztepe
- Division of Infectious Diseases, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Victor Thompson
- Division of Infectious Diseases, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - David Fenyö
- Laboratory of Computational Proteomics, Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY 10016; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Beatrix Ueberheide
- Office of Collaborative Science, New York University School of Medicine, New York, NY 10016; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
| | - Jennifer A Philips
- Division of Infectious Diseases, Department of Medicine, New York University School of Medicine, New York, NY 10016;
| | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461; Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, NY 10461;
| |
Collapse
|
103
|
Dumas E, Christina Boritsch E, Vandenbogaert M, Rodríguez de la Vega RC, Thiberge JM, Caro V, Gaillard JL, Heym B, Girard-Misguich F, Brosch R, Sapriel G. Mycobacterial Pan-Genome Analysis Suggests Important Role of Plasmids in the Radiation of Type VII Secretion Systems. Genome Biol Evol 2016; 8:387-402. [PMID: 26748339 PMCID: PMC4779608 DOI: 10.1093/gbe/evw001] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In mycobacteria, various type VII secretion systems corresponding to different ESX (ESAT-6 secretory) types, are contributing to pathogenicity, iron acquisition, and/or conjugation. In addition to the known chromosomal ESX loci, the existence of plasmid-encoded ESX systems was recently reported. To investigate the potential role of ESX-encoding plasmids on mycobacterial evolution, we analyzed a large representative collection of mycobacterial genomes, including both chromosomal and plasmid-borne sequences. Data obtained for chromosomal ESX loci confirmed the previous five classical ESX types and identified a novel mycobacterial ESX-4-like type, termed ESX-4-bis. Moreover, analysis of the plasmid-encoded ESX loci showed extensive diversification, with at least seven new ESX profiles, identified. Three of them (ESX-P clusters 1–3) were found in multiple plasmids, while four corresponded to singletons. Our phylogenetic and gene-order-analyses revealed two main groups of ESX types: 1) ancestral types, including ESX-4 and ESX-4-like systems from mycobacterial and non-mycobacterial actinobacteria and 2) mycobacteria-specific ESX systems, including ESX-1-2-3-5 systems and the plasmid-encoded ESX types. Synteny analysis revealed that ESX-P systems are part of phylogenetic groups that derived from a common ancestor, which diversified and resulted in the different ESX types through extensive gene rearrangements. A converging body of evidence, derived from composition bias-, phylogenetic-, and synteny analyses points to a scenario in which ESX-encoding plasmids have been a major driving force for acquisition and diversification of type VII systems in mycobacteria, which likely played (and possibly still play) important roles in the adaptation to new environments and hosts during evolution of mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Emilie Dumas
- INSERM U1173, UFR Simone Weil, Versailles-Saint-en-Quentin University, Saint-Quentin-en-Yvelines 78180, France
| | - Eva Christina Boritsch
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, 75724, Paris Cedex 15, France
| | - Mathias Vandenbogaert
- Institut Pasteur, Genotyping of Pathogens and Public Health, 75724, Paris Cedex 15, France
| | | | - Jean-Michel Thiberge
- Institut Pasteur, Genotyping of Pathogens and Public Health, 75724, Paris Cedex 15, France
| | - Valerie Caro
- Institut Pasteur, Genotyping of Pathogens and Public Health, 75724, Paris Cedex 15, France
| | - Jean-Louis Gaillard
- INSERM U1173, UFR Simone Weil, Versailles-Saint-en-Quentin University, Saint-Quentin-en-Yvelines 78180, France AP-HP, Hôpital Ambroise Paré, Service De Microbiologie Et Hygiène, Boulogne-Billancourt, France
| | - Beate Heym
- INSERM U1173, UFR Simone Weil, Versailles-Saint-en-Quentin University, Saint-Quentin-en-Yvelines 78180, France AP-HP, Hôpital Ambroise Paré, Service De Microbiologie Et Hygiène, Boulogne-Billancourt, France
| | - Fabienne Girard-Misguich
- INSERM U1173, UFR Simone Weil, Versailles-Saint-en-Quentin University, Saint-Quentin-en-Yvelines 78180, France
| | - Roland Brosch
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, 75724, Paris Cedex 15, France
| | - Guillaume Sapriel
- INSERM U1173, UFR Simone Weil, Versailles-Saint-en-Quentin University, Saint-Quentin-en-Yvelines 78180, France UMR 8212, LSCE, Versailles-Saint-Quentin University, Saint-Quentin-en-Yvelines 78180, France Atelier De Bio-Informatique. Institut De Systématique, Evolution, Biodiversité, ISYEB, UMR 7205, CNRS, MNHN, UPMC, EPHE. Muséum National D'histoire Naturelle, Cedex 05, Paris 75231, France
| |
Collapse
|
104
|
Mycobacterium tuberculosis Resists Stress by Regulating PE19 Expression. Infect Immun 2015; 84:735-46. [PMID: 26712204 DOI: 10.1128/iai.00942-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/16/2015] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis requires the phosphate-sensing signal transduction system Pst/SenX3-RegX3 to resist host immune responses. A ΔpstA1 mutant lacking a Pst phosphate uptake system component is hypersensitive to diverse stress conditions in vitro and is attenuated in vivo due to constitutive expression of the phosphate starvation-responsive RegX3 regulon. Transcriptional profiling of the ΔpstA1 mutant revealed aberrant expression of certain pe and ppe genes. PE and PPE proteins, defined by conserved N-terminal domains containing Pro-Glu (PE) or Pro-Pro-Glu (PPE) motifs, account for a substantial fraction of the M. tuberculosis genome coding capacity, but their functions are largely uncharacterized. Because some PE and PPE proteins localize to the cell wall, we hypothesized that overexpression of these proteins sensitizes M. tuberculosis to stress by altering cell wall integrity. To test this idea, we deleted pe and ppe genes that were overexpressed by ΔpstA1 bacteria. Deletion of a single pe gene, pe19, suppressed hypersensitivity of the ΔpstA1 mutant to both detergent and reactive oxygen species. Ethidium bromide uptake assays revealed increased envelope permeability of the ΔpstA1 mutant that was dependent on PE19. The replication defect of the ΔpstA1 mutant in NOS2(-/-) mice was partially reversed by deletion of pe19, suggesting that increased membrane permeability due to PE19 overexpression sensitizes M. tuberculosis to host immunity. Our data indicate that PE19, which comprises only a 99-amino-acid PE domain, has a unique role in the permeability of the M. tuberculosis envelope that is regulated to resist stresses encountered in the host.
Collapse
|
105
|
Abstract
Most mycobacterial species are harmless saprophytes, often found in aquatic environments. A few species seem to have evolved from this pool of environmental mycobacteria into major human pathogens, such as Mycobacterium tuberculosis, the agent of tuberculosis, Mycobacterium leprae, the leprosy bacillus, and Mycobacterium ulcerans, the agent of Buruli ulcer. While the pathogenicity of M. ulcerans relates to the acquisition of a large plasmid encoding a polyketide-derived toxin, the molecular mechanisms by which M. leprae or M. tuberculosis have evolved to cause disease are complex and involve the interaction between the pathogen and the host. Here we focus on M. tuberculosis and closely related mycobacteria and discuss insights gained from recent genomic and functional studies. Comparison of M. tuberculosis genome data with sequences from nontuberculous mycobacteria, such as Mycobacterium marinum or Mycobacterium kansasii, provides a perception of the more distant evolution of M. tuberculosis, while the recently accomplished genome sequences of multiple tubercle bacilli with smooth colony morphology, named Mycobacterium canettii, have allowed the ancestral gene pool of tubercle bacilli to be estimated. The resulting findings are instrumental for our understanding of the pathogenomic evolution of tuberculosis-causing mycobacteria. Comparison of virulent and attenuated members of the M. tuberculosis complex has further contributed to identification of a specific secretion pathway, named ESX or Type VII secretion. The molecular machines involved are key elements for mycobacterial pathogenicity, strongly influencing the ability of M. tuberculosis to cope with the immune defense mounted by the host.
Collapse
|
106
|
Majlessi L, Prados-Rosales R, Casadevall A, Brosch R. Release of mycobacterial antigens. Immunol Rev 2015; 264:25-45. [PMID: 25703550 DOI: 10.1111/imr.12251] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mycobacterium tuberculosis has evolved from a Mycobacterium canettii-like progenitor pool into one of the most successful and widespread human pathogens. The pathogenicity of M. tuberculosis is linked to its ability to secrete/export/release selected mycobacterial proteins, and it is also established that active release of mycobacterial antigens is a prerequisite for strong immune recognition. Recent research has enabled mycobacterial secretion systems and vesicle-based release of mycobacterial antigens to be elucidated, which together with host-related specificities constitute key variables that determine the outcome of infection. Here, we discuss recently discovered, novel aspects on the nature and the regulation of antigen release of the tuberculosis agent with particular emphasis on the biological characterization of mycobacteria-specific ESX/type VII secretion systems and their secreted proteins, belonging to the Esx, PE, and PPE categories. The importance of specific mycobacterial antigen release is probably best exemplified by the striking differences observed between the cellular events during infection with the ESX-1-deficient, attenuated Mycobacterium bovis BCG compared to the virulent M. tuberculosis, which are clearly important for design of more specific diagnostics and more efficient vaccines.
Collapse
Affiliation(s)
- Laleh Majlessi
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | | | | | | |
Collapse
|
107
|
A Duplicated ESAT-6 Region of ESX-5 Is Involved in Protein Export and Virulence of Mycobacteria. Infect Immun 2015; 83:4349-61. [PMID: 26303392 DOI: 10.1128/iai.00827-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/19/2015] [Indexed: 11/20/2022] Open
Abstract
The ESX-5 secretion system of Mycobacterium tuberculosis is important for bacterial virulence and for the secretion of the large PE/PPE protein family, whose genes constitute 10% of the M. tuberculosis genome. A four-gene region of the ESX-5 system is duplicated three times in the M. tuberculosis genome, but the functions of these duplicates are unknown. Here we investigated one of these duplicates: the region carrying the esxI, esxJ, ppe15, and pe8 genes (ESX-5a). An ESX-5a deletion mutant in the model system M. marinum background was deficient in the secretion of some members of the PE/PPE family of proteins. Surprisingly, we also identified other proteins that are not members of this family, thus expanding the range of ESX-5 secretion substrates. In addition, we demonstrated that ESX-5a is important for the virulence of M. marinum in the zebrafish model. Furthermore, we showed the role of the M. tuberculosis ESX-5a region in inflammasome activation but not host cell death induction, which is different from the case for the M. tuberculosis ESX-5 system. In conclusion, the ESX-5a region is nonredundant with its ESX-5 paralog and is necessary for secretion of a specific subset of proteins in M. tuberculosis and M. marinum that are important for bacterial virulence of M. marinum. Our findings point to a role for the three ESX-5 duplicate regions in the selection of substrates for secretion via ESX-5, and hence, they provide the basis for a refined model of the molecular mechanism of this type VII secretion system.
Collapse
|
108
|
Garrett CK, Broadwell LJ, Hayne CK, Neher SB. Modulation of the Activity of Mycobacterium tuberculosis LipY by Its PE Domain. PLoS One 2015; 10:e0135447. [PMID: 26270534 PMCID: PMC4536007 DOI: 10.1371/journal.pone.0135447] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/22/2015] [Indexed: 01/11/2023] Open
Abstract
Mycobacterium tuberculosis harbors over 160 genes encoding PE/PPE proteins, several of which have roles in the pathogen’s virulence. A number of PE/PPE proteins are secreted via Type VII secretion systems known as the ESX secretion systems. One PE protein, LipY, has a triglyceride lipase domain in addition to its PE domain. LipY can regulate intracellular triglyceride levels and is also exported to the cell wall by one of the ESX family members, ESX-5. Upon export, LipY’s PE domain is removed by proteolytic cleavage. Studies using cells and crude extracts suggest that LipY’s PE domain not only directs its secretion by ESX-5, but also functions to inhibit its enzymatic activity. Here, we attempt to further elucidate the role of LipY’s PE domain in the regulation of its enzymatic activity. First, we established an improved purification method for several LipY variants using detergent micelles. We then used enzymatic assays to confirm that the PE domain down-regulates LipY activity. The PE domain must be attached to LipY in order to effectively inhibit it. Finally, we determined that full length LipY and the mature lipase lacking the PE domain (LipYΔPE) have similar melting temperatures. Based on our improved purification strategy and activity-based approach, we concluded that LipY’s PE domain down-regulates its enzymatic activity but does not impact the thermal stability of the enzyme.
Collapse
Affiliation(s)
- Christopher K. Garrett
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Lindsey J. Broadwell
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Cassandra K. Hayne
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Saskia B. Neher
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- * E-mail:
| |
Collapse
|
109
|
Villarreal DO, Walters J, Laddy DJ, Yan J, Weiner DB. Multivalent TB vaccines targeting the esx gene family generate potent and broad cell-mediated immune responses superior to BCG. Hum Vaccin Immunother 2015; 10:2188-98. [PMID: 25424922 DOI: 10.4161/hv.29574] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Development of a broad-spectrum synthetic vaccine against TB would represent an important advance to the limited vaccine armamentarium against TB. It is believed that the esx family of TB antigens may represent important vaccine candidates. However, only 4 esx antigens have been studied as potential vaccine antigens. The challenge remains to develop a vaccine that simultaneously targets all 23 members of the esx family to induce enhanced broad-spectrum cell-mediated immunity. We sought to investigate if broader cellular immune responses could be induced using a multivalent DNA vaccine representing the esx family protein members delivered via electroporation. In this study, 15 designed esx antigens were created to cross target all members of the esx family. They were distributed into groups of 3 self-processing antigens each, resulting in 5 trivalent highly optimized DNA plasmids. Vaccination with all 5 constructs elicited robust antigen-specific IFN-γ responses to all encoded esx antigens and induced multifunctional CD4 Th1 and CD8 T cell responses. Importantly, we show that when all constructs are combined into a cocktail, the RSQ-15 vaccine, elicited substantial broad Ag-specific T cell responses to all esx antigens as compared with vaccination with BCG. Moreover, these vaccine-induced responses were highly cross-reactive with BCG encoded esx family members and were highly immune effective in a BCG DNA prime-boost format. Furthermore, we demonstrate the vaccine potential and immunopotent profile of several novel esx antigens never previously studied. These data highlight the likely importance of these novel immunogens for study as preventative or therapeutic synthetic TB vaccines in combination or as stand alone antigens.
Collapse
Affiliation(s)
- Daniel O Villarreal
- a Department of Pathology and Laboratory Medicine; University of Pennsylvania School of Medicine; Philadelphia, PA USA
| | | | | | | | | |
Collapse
|
110
|
Le Chevalier F, Cascioferro A, Majlessi L, Herrmann JL, Brosch R. Mycobacterium tuberculosis evolutionary pathogenesis and its putative impact on drug development. Future Microbiol 2015; 9:969-85. [PMID: 25302954 DOI: 10.2217/fmb.14.70] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mycobacterium tuberculosis, the etiological agent of human TB, is the most important mycobacterial pathogen in terms of global patient numbers and gravity of disease. The molecular mechanisms by which M. tuberculosis causes disease are complex and the result of host-pathogen coevolution that might have started already in the time of its Mycobacterium canettii-like progenitors. Despite research progress, M. tuberculosis still holds many secrets of its successful strategy for circumventing host defences, persisting in the host and developing resistance, which makes anti-TB treatment regimens extremely long and often inefficient. Here, we discuss what we have learned from recent studies on the evolution of the pathogen and its putative new drug targets that are essential for mycobacterial growth under in vitro or in vivo conditions.
Collapse
Affiliation(s)
- Fabien Le Chevalier
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | | | | | | | | |
Collapse
|
111
|
Ahmed A, Das A, Mukhopadhyay S. Immunoregulatory functions and expression patterns of PE/PPE family members: Roles in pathogenicity and impact on anti-tuberculosis vaccine and drug design. IUBMB Life 2015; 67:414-27. [DOI: 10.1002/iub.1387] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/29/2015] [Indexed: 01/27/2023]
Affiliation(s)
- Asma Ahmed
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD); Hyderabad, Telengana India
| | - Arghya Das
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD); Hyderabad, Telengana India
- Manipal University; Manipal Karnataka India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD); Hyderabad, Telengana India
| |
Collapse
|
112
|
Deng W, Zeng J, Xiang X, Li P, Xie J. PE11 (Rv1169c) selectively alters fatty acid components of Mycobacterium smegmatis and host cell interleukin-6 level accompanied with cell death. Front Microbiol 2015; 6:613. [PMID: 26157429 PMCID: PMC4477156 DOI: 10.3389/fmicb.2015.00613] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/02/2015] [Indexed: 11/26/2022] Open
Abstract
PE/PPE family proteins, named after their conserved PE (Pro-Glu) and PPE (Pro-Pro-Glu) domains of N-terminal, are most intriguing aspects of pathologic mycobacterial genome. The roles of most members of this family remain unknown, although selected genes of this family are related to the virulence of Mycobacterium tuberculosis. In order to decipher the role of Rv1169c, the Mycobacterium smegmatis strain heterologous expressed this ORF was constructed and identified that Rv1169c was a cell wall associated protein with a novel function in modifying the cell wall fatty acids. The growth of Rv1169c expressing strain was affected under surface stress, acidic condition and antibiotics treatment. M. smegmatis expressing Rv1169c induced necrotic cell death of macrophage after infection and significantly decreased interlukin-6 production compared to controls. In general, these results underscore a proposing role of Rv1169c in virulence of M. tuberculosis, as it's role in the susceptibility of anti-mycobacteria factors caused by modified cell wall fatty acid, and the induced necrotic cell death by Rv1169c is crucial for M. tuberculosis virulence during infection.
Collapse
Affiliation(s)
- Wanyan Deng
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University Chongqing, China
| | - Jie Zeng
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University Chongqing, China
| | - Xiaohong Xiang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University Chongqing, China
| | - Ping Li
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University Chongqing, China
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University Chongqing, China
| |
Collapse
|
113
|
Structure of EspB, a secreted substrate of the ESX-1 secretion system of Mycobacterium tuberculosis. J Struct Biol 2015; 191:236-44. [PMID: 26051906 DOI: 10.1016/j.jsb.2015.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/16/2015] [Accepted: 06/02/2015] [Indexed: 02/03/2023]
Abstract
Mycobacterium tuberculosis secretes multiple virulence factors during infection via the general Sec and Tat pathways, and via specialized ESX secretion systems, also referred to as type VII secretion systems. The ESX-1 secretion system is an important virulence determinant because deletion of ESX-1 leads to attenuation of M. tuberculosis. ESX-1 secreted protein B (EspB) contains putative PE (Pro-Glu) and PPE (Pro-Pro-Glu) domains, and a C-terminal domain, which is processed by MycP1 protease during secretion. We determined the crystal structure of PE-PPE domains of EspB, which represents an all-helical, elongated molecule closely resembling the structure of the PE25-PPE41 heterodimer despite limited sequence similarity. Also, we determined the structure of full-length EspB, which does not have interpretable electron density for the C-terminal domain confirming that it is largely disordered. Comparative analysis of EspB in cell lysate and culture filtrates of M. tuberculosis revealed that mature secreted EspB forms oligomers. Electron microscopy analysis showed that the N-terminal fragment of EspB forms donut-shaped particles. These data provide a rationale for the future investigation of EspB's role in M. tuberculosis pathogenesis.
Collapse
|
114
|
Mendum TA, Wu H, Kierzek AM, Stewart GR. Lipid metabolism and Type VII secretion systems dominate the genome scale virulence profile of Mycobacterium tuberculosis in human dendritic cells. BMC Genomics 2015; 16:372. [PMID: 25956932 PMCID: PMC4425887 DOI: 10.1186/s12864-015-1569-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/23/2015] [Indexed: 12/20/2022] Open
Abstract
Background Mycobacterium tuberculosis continues to kill more people than any other bacterium. Although its archetypal host cell is the macrophage, it also enters, and survives within, dendritic cells (DCs). By modulating the behaviour of the DC, M. tuberculosis is able to manipulate the host’s immune response and establish an infection. To identify the M. tuberculosis genes required for survival within DCs we infected primary human DCs with an M. tuberculosis transposon library and identified mutations with a reduced ability to survive. Results Parallel sequencing of the transposon inserts of the surviving mutants identified a large number of genes as being required for optimal intracellular fitness in DCs. Loci whose mutation attenuated intracellular survival included those involved in synthesising cell wall lipids, not only the well-established virulence factors, pDIM and cord factor, but also sulfolipids and PGL, which have not previously been identified as having a direct virulence role in cells. Other attenuated loci included the secretion systems ESX-1, ESX-2 and ESX-4, alongside many PPE genes, implicating a role for ESX-5. In contrast the canonical ESAT-6 family of ESX substrates did not have intra-DC fitness costs suggesting an alternative ESX-1 associated virulence mechanism. With the aid of a gene-nutrient interaction model, metabolic processes such as cholesterol side chain catabolism, nitrate reductase and cysteine-methionine metabolism were also identified as important for survival in DCs. Conclusion We conclude that many of the virulence factors required for survival in DC are shared with macrophages, but that survival in DCs also requires several additional functions, such as cysteine-methionine metabolism, PGLs, sulfolipids, ESX systems and PPE genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1569-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tom A Mendum
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| | - Huihai Wu
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| | - Andrzej M Kierzek
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| | - Graham R Stewart
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| |
Collapse
|
115
|
Ates LS, Ummels R, Commandeur S, van der Weerd R, Sparrius M, Weerdenburg E, Alber M, Kalscheuer R, Piersma SR, Abdallah AM, Abd El Ghany M, Abdel-Haleem AM, Pain A, Jiménez CR, Bitter W, Houben EN. Essential Role of the ESX-5 Secretion System in Outer Membrane Permeability of Pathogenic Mycobacteria. PLoS Genet 2015; 11:e1005190. [PMID: 25938982 PMCID: PMC4418733 DOI: 10.1371/journal.pgen.1005190] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 04/02/2015] [Indexed: 12/03/2022] Open
Abstract
Mycobacteria possess different type VII secretion (T7S) systems to secrete proteins across their unusual cell envelope. One of these systems, ESX-5, is only present in slow-growing mycobacteria and responsible for the secretion of multiple substrates. However, the role of ESX-5 substrates in growth and/or virulence is largely unknown. In this study, we show that esx-5 is essential for growth of both Mycobacterium marinum and Mycobacterium bovis. Remarkably, this essentiality can be rescued by increasing the permeability of the outer membrane, either by altering its lipid composition or by the introduction of the heterologous porin MspA. Mutagenesis of the first nucleotide-binding domain of the membrane ATPase EccC5 prevented both ESX-5-dependent secretion and bacterial growth, but did not affect ESX-5 complex assembly. This suggests that the rescuing effect is not due to pores formed by the ESX-5 membrane complex, but caused by ESX-5 activity. Subsequent proteomic analysis to identify crucial ESX-5 substrates confirmed that all detectable PE and PPE proteins in the cell surface and cell envelope fractions were routed through ESX-5. Additionally, saturated transposon-directed insertion-site sequencing (TraDIS) was applied to both wild-type M. marinum cells and cells expressing mspA to identify genes that are not essential anymore in the presence of MspA. This analysis confirmed the importance of esx-5, but we could not identify essential ESX-5 substrates, indicating that multiple of these substrates are together responsible for the essentiality. Finally, examination of phenotypes on defined carbon sources revealed that an esx-5 mutant is strongly impaired in the uptake and utilization of hydrophobic carbon sources. Based on these data, we propose a model in which the ESX-5 system is responsible for the transport of cell envelope proteins that are required for nutrient uptake. These proteins might in this way compensate for the lack of MspA-like porins in slow-growing mycobacteria.
Collapse
Affiliation(s)
- Louis S. Ates
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
| | - Roy Ummels
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
| | - Susanna Commandeur
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
| | - Robert van der Weerd
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
| | - Marion Sparrius
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
| | - Eveline Weerdenburg
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
| | - Marina Alber
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Rainer Kalscheuer
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sander R. Piersma
- Department of Medical Oncology, OncoProteomics Laboratory, VU University Medical Center, Amsterdam, the Netherlands
| | - Abdallah M. Abdallah
- Biological and Environmental Sciences and Engineering (BESE) division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Moataz Abd El Ghany
- Biological and Environmental Sciences and Engineering (BESE) division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Alyaa M. Abdel-Haleem
- Biological and Environmental Sciences and Engineering (BESE) division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Arnab Pain
- Biological and Environmental Sciences and Engineering (BESE) division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Connie R. Jiménez
- Department of Medical Oncology, OncoProteomics Laboratory, VU University Medical Center, Amsterdam, the Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, the Netherlands
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicine & Systems, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Edith N.G. Houben
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicine & Systems, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
116
|
Fishbein S, van Wyk N, Warren RM, Sampson SL. Phylogeny to function: PE/PPE protein evolution and impact on Mycobacterium tuberculosis pathogenicity. Mol Microbiol 2015; 96:901-16. [PMID: 25727695 DOI: 10.1111/mmi.12981] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2015] [Indexed: 01/08/2023]
Abstract
The pe/ppe genes represent one of the most intriguing aspects of the Mycobacterium tuberculosis genome. These genes are especially abundant in pathogenic mycobacteria, with more than 160 members in M. tuberculosis. Despite being discovered over 15 years ago, their function remains unclear, although various lines of evidence implicate selected family members in mycobacterial virulence. In this review, we use PE/PPE phylogeny as a framework within which we examine the diversity and putative functions of these proteins. We report on the evolution and diversity of the respective gene families, as well as the implications thereof for function and host immune recognition. We summarize recent findings on pe/ppe gene regulation, also placing this in the context of PE/PPE phylogeny. We collate data from several large proteomics datasets, providing an overview of PE/PPE localization, and discuss the implications this may have for host responses. Assessment of the current knowledge of PE/PPE diversity suggests that these proteins are not variable antigens as has been so widely speculated; however, they do clearly play important roles in virulence. Viewing the growing body of pe/ppe literature through the lens of phylogeny reveals trends in features and function that may be associated with the evolution of mycobacterial pathogenicity.
Collapse
Affiliation(s)
- S Fishbein
- Harvard School of Public Health, Boston, MA, USA.,DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| | - N van Wyk
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| | - R M Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| | - S L Sampson
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| |
Collapse
|
117
|
Simeone R, Bottai D, Frigui W, Majlessi L, Brosch R. ESX/type VII secretion systems of mycobacteria: Insights into evolution, pathogenicity and protection. Tuberculosis (Edinb) 2015; 95 Suppl 1:S150-4. [PMID: 25732627 DOI: 10.1016/j.tube.2015.02.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Pathogenesis of Mycobacterium tuberculosis depends on the secretion of key virulence factors, such as the 6 kDa early secreted antigenic target ESAT-6 (EsxA) and its protein partner, the 10 kDa culture filtrate protein CFP-10 (EsxB), via the ESX-1 secretion system. ESX-1 represents the prototype system of the recently named type VII secretion systems that exist in a range of actinobacteria. The M. tuberculosis genome harbours a total of five gene clusters potentially coding for type VII secretion systems, designated ESX-1 - ESX-5, with ESX-4 being the most ancient system from which other ESX systems seem to have evolved by gene duplication and gene insertion events. The five ESX systems show similarity in gene content and gene order but differ in function. ESX-1 and ESX-5 are both crucial virulence determinants of M. tuberculosis, but with different mechanisms. While ESX-1 is implicated in the lysis of the host cell phagosomes, ESX-5 is involved in secretion of the mycobacteria specific PE and PPE proteins and cell wall stability. Research on type VII secretion systems has thus become a large and competitive research topic that is tightly linked to studies of host-pathogen interaction of pathogenic mycobacteria. Insights into this matter are of relevance for redrawing the patho-evolution of M. tuberculosis, which might help improving current strategies for prevention, diagnostics and therapy of tuberculosis as well as elucidating the virulence mechanisms employed by this important human pathogen.
Collapse
Affiliation(s)
- Roxane Simeone
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Daria Bottai
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France; Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Wafa Frigui
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Laleh Majlessi
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Roland Brosch
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France.
| |
Collapse
|
118
|
Uchiya KI, Takahashi H, Nakagawa T, Yagi T, Moriyama M, Inagaki T, Ichikawa K, Nikai T, Ogawa K. Characterization of a novel plasmid, pMAH135, from Mycobacterium avium subsp. hominissuis. PLoS One 2015; 10:e0117797. [PMID: 25671431 PMCID: PMC4324632 DOI: 10.1371/journal.pone.0117797] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/31/2014] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium avium complex (MAC) causes mainly two types of disease. The first is disseminated disease in immunocompromised hosts, such as individuals infected by human immunodeficiency virus (HIV). The second is pulmonary disease in individuals without systemic immunosuppression, and the incidence of this type is increasing worldwide. M. avium subsp. hominissuis, a component of MAC, causes infection in pigs as well as in humans. Many aspects of the different modes of M. avium infection and its host specificity remain unclear. Here, we report the characteristics and complete sequence of a novel plasmid, designated pMAH135, derived from M. avium strain TH135 in an HIV-negative patient with pulmonary MAC disease. The pMAH135 plasmid consists of 194,711 nucleotides with an average G + C content of 66.5% and encodes 164 coding sequences (CDSs). This plasmid was unique in terms of its homology to other mycobacterial plasmids. Interestingly, it contains CDSs with sequence homology to mycobactin biosynthesis proteins and type VII secretion system-related proteins, which are involved in the pathogenicity of mycobacteria. It also contains putative conserved domains of the multidrug efflux transporter. Screening of isolates from humans and pigs for genes located on pMAH135 revealed that the detection rate of these genes was higher in clinical isolates from pulmonary MAC disease patients than in those from HIV-positive patients, whereas the genes were almost entirely absent in isolates from pigs. Moreover, variable number tandem repeats typing analysis showed that isolates carrying pMAH135 genes are grouped in a specific cluster. Collectively, the pMAH135 plasmid contains genes associated with M. avium's pathogenicity and resistance to antimicrobial agents. The results of this study suggest that pMAH135 influence not only the pathological manifestations of MAC disease, but also the host specificity of MAC infection.
Collapse
Affiliation(s)
- Kei-ichi Uchiya
- Department of Microbiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
- * E-mail:
| | - Hiroyasu Takahashi
- Department of Pharmacy, Kainan Hospital Aichi Prefectural Welfare Federation of Agricultural Cooperatives, Yatomi, Japan
| | - Taku Nakagawa
- Department of Clinical Research, National Hospital Organization, Higashi Nagoya National Hospital, Nagoya, Japan
- Department of Pulmonary Medicine, National Hospital Organization, Higashi Nagoya National Hospital, Nagoya, Japan
| | - Tetsuya Yagi
- Department of Infectious Diseases, Center of National University Hospital for Infection Control, Nagoya University Hospital, Nagoya, Japan
| | - Makoto Moriyama
- Department of Microbiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
- Department of Pharmacy, National Hospital Organization, Toyohashi Medical Center, Toyohashi, Japan
| | - Takayuki Inagaki
- Department of Microbiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
- Department of Pharmacy, Nagoya University Hospital, Nagoya, Japan
| | - Kazuya Ichikawa
- Department of Pharmacy, Nagoya University Hospital, Nagoya, Japan
| | - Toshiaki Nikai
- Department of Microbiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Kenji Ogawa
- Department of Clinical Research, National Hospital Organization, Higashi Nagoya National Hospital, Nagoya, Japan
- Department of Pulmonary Medicine, National Hospital Organization, Higashi Nagoya National Hospital, Nagoya, Japan
| |
Collapse
|
119
|
Rienksma RA, Suarez-Diez M, Mollenkopf HJ, Dolganov GM, Dorhoi A, Schoolnik GK, Martins Dos Santos VA, Kaufmann SH, Schaap PJ, Gengenbacher M. Comprehensive insights into transcriptional adaptation of intracellular mycobacteria by microbe-enriched dual RNA sequencing. BMC Genomics 2015; 16:34. [PMID: 25649146 PMCID: PMC4334782 DOI: 10.1186/s12864-014-1197-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 12/22/2014] [Indexed: 02/06/2023] Open
Abstract
Background The human pathogen Mycobacterium tuberculosis has the capacity to escape eradication by professional phagocytes. During infection, M. tuberculosis resists the harsh environment of phagosomes and actively manipulates macrophages and dendritic cells to ensure prolonged intracellular survival. In contrast to other intracellular pathogens, it has remained difficult to capture the transcriptome of mycobacteria during infection due to an unfavorable host-to-pathogen ratio. Results We infected the human macrophage-like cell line THP-1 with the attenuated M. tuberculosis surrogate M. bovis Bacillus Calmette–Guérin (M. bovis BCG). Mycobacterial RNA was up to 1000-fold underrepresented in total RNA preparations of infected host cells. We employed microbial enrichment combined with specific ribosomal RNA depletion to simultaneously analyze the transcriptional responses of host and pathogen during infection by dual RNA sequencing. Our results confirm that mycobacterial pathways for cholesterol degradation and iron acquisition are upregulated during infection. In addition, genes involved in the methylcitrate cycle, aspartate metabolism and recycling of mycolic acids were induced. In response to M. bovis BCG infection, host cells upregulated de novo cholesterol biosynthesis presumably to compensate for the loss of this metabolite by bacterial catabolism. Conclusions Dual RNA sequencing allows simultaneous capture of the global transcriptome of host and pathogen, during infection. However, mycobacteria remained problematic due to their relatively low number per host cell resulting in an unfavorable bacterium-to-host RNA ratio. Here, we use a strategy that combines enrichment for bacterial transcripts and dual RNA sequencing to provide the most comprehensive transcriptome of intracellular mycobacteria to date. The knowledge acquired into the pathogen and host pathways regulated during infection may contribute to a solid basis for the deployment of novel intervention strategies to tackle infection. Electronic supplementary material The online version of this article (doi:10.1186/s12864-014-1197-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rienk A Rienksma
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Dreijenplein 10, 6703, HB, Wageningen, the Netherlands.
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Dreijenplein 10, 6703, HB, Wageningen, the Netherlands.
| | - Hans-Joachim Mollenkopf
- Core Facility Microarray/Genomics, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany.
| | - Gregory M Dolganov
- Department of Microbiology and Immunology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305-5124, USA.
| | - Anca Dorhoi
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany.
| | - Gary K Schoolnik
- Department of Microbiology and Immunology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305-5124, USA.
| | - Vitor Ap Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Dreijenplein 10, 6703, HB, Wageningen, the Netherlands. .,LifeGlimmer GmbH, Markelstrasse 38, 12163, Berlin, Germany.
| | - Stefan He Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany.
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Dreijenplein 10, 6703, HB, Wageningen, the Netherlands.
| | - Martin Gengenbacher
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany. .,Present address: Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore.
| |
Collapse
|
120
|
Abstract
Bacterial secretion systems are sophisticated molecular machines that fulfil a wide range of important functions, which reach from export/secretion of essential proteins or virulence factors to the implication in conjugation processes. In contrast to the widely distributed Sec and Twin Arginine Translocation (TAT) systems, the recently identified ESX/type VII systems show a more restricted distribution and are typical for mycobacteria and other high-GC Actinobacteria. Similarly, type VII-like secretion systems have been described in low-GC Gram-positive bacteria belonging to the phylum Firmicutes. While the most complex organization of type VII secretion systems currently known is found in slow-growing mycobacteria, which harbour up to 5 chromosomal-encoded systems (ESX-1 to ESX-5), much simpler organization is reported for type VII-like systems in Firmicutes. In this chapter, we describe common and divergent features of type VII- and type VII-like secretion pathways and also comment on their biological key roles, many of which are related to species-/genus-specific host-pathogen interactions and/or virulence mechanisms.
Collapse
|
121
|
Impact of protein domains on PE_PGRS30 polar localization in Mycobacteria. PLoS One 2014; 9:e112482. [PMID: 25390359 PMCID: PMC4229189 DOI: 10.1371/journal.pone.0112482] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/06/2014] [Indexed: 12/03/2022] Open
Abstract
PE_PGRS proteins are unique to the Mycobacterium tuberculosis complex and a number of other pathogenic mycobacteria. PE_PGRS30, which is required for the full virulence of M. tuberculosis (Mtb), has three main domains, i.e. an N-terminal PE domain, repetitive PGRS domain and the unique C-terminal domain. To investigate the role of these domains, we expressed a GFP-tagged PE_PGRS30 protein and a series of its functional deletion mutants in different mycobacterial species (Mtb, Mycobacterium bovis BCG and Mycobacterium smegmatis) and analysed protein localization by confocal microscopy. We show that PE_PGRS30 localizes at the mycobacterial cell poles in Mtb and M. bovis BCG but not in M. smegmatis and that the PGRS domain of the protein strongly contributes to protein cellular localization in Mtb. Immunofluorescence studies further showed that the unique C-terminal domain of PE_PGRS30 is not available on the surface, except when the PGRS domain is missing. Immunoblot demonstrated that the PGRS domain is required to maintain the protein strongly associated with the non-soluble cellular fraction. These results suggest that the repetitive GGA-GGN repeats of the PGRS domain contain specific sequences that contribute to protein cellular localization and that polar localization might be a key step in the PE_PGRS30-dependent virulence mechanism.
Collapse
|
122
|
Structure of a PE-PPE-EspG complex from Mycobacterium tuberculosis reveals molecular specificity of ESX protein secretion. Proc Natl Acad Sci U S A 2014; 111:14758-63. [PMID: 25275011 DOI: 10.1073/pnas.1409345111] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nearly 10% of the coding capacity of the Mycobacterium tuberculosis genome is devoted to two highly expanded and enigmatic protein families called PE and PPE, some of which are important virulence/immunogenicity factors and are secreted during infection via a unique alternative secretory system termed "type VII." How PE-PPE proteins function during infection and how they are translocated to the bacterial surface through the five distinct type VII secretion systems [ESAT-6 secretion system (ESX)] of M. tuberculosis is poorly understood. Here, we report the crystal structure of a PE-PPE heterodimer bound to ESX secretion-associated protein G (EspG), which adopts a novel fold. This PE-PPE-EspG complex, along with structures of two additional EspGs, suggests that EspG acts as an adaptor that recognizes specific PE-PPE protein complexes via extensive interactions with PPE domains, and delivers them to ESX machinery for secretion. Surprisingly, secretion of most PE-PPE proteins in M. tuberculosis is likely mediated by EspG from the ESX-5 system, underscoring the importance of ESX-5 in mycobacterial pathogenesis. Moreover, our results indicate that PE-PPE domains function as cis-acting targeting sequences that are read out by EspGs, revealing the molecular specificity for secretion through distinct ESX pathways.
Collapse
|
123
|
Korotkova N, Freire D, Phan TH, Ummels R, Creekmore CC, Evans TJ, Wilmanns M, Bitter W, Parret AHA, Houben ENG, Korotkov KV. Structure of the Mycobacterium tuberculosis type VII secretion system chaperone EspG5 in complex with PE25-PPE41 dimer. Mol Microbiol 2014; 94:367-82. [PMID: 25155747 DOI: 10.1111/mmi.12770] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2014] [Indexed: 11/29/2022]
Abstract
The growth or virulence of Mycobacterium tuberculosis bacilli depends on homologous type VII secretion systems, ESX-1, ESX-3 and ESX-5, which export a number of protein effectors across membranes to the bacterial surface and environment. PE and PPE proteins represent two large families of highly polymorphic proteins that are secreted by these ESX systems. Recently, it was shown that these proteins require system-specific cytoplasmic chaperones for secretion. Here, we report the crystal structure of M. tuberculosis ESX-5-secreted PE25-PPE41 heterodimer in complex with the cytoplasmic chaperone EspG(5). EspG(5) represents a novel fold that is unrelated to previously characterized secretion chaperones. Functional analysis of the EspG(5) -binding region uncovered a hydrophobic patch on PPE41 that promotes dimer aggregation, and the chaperone effectively abolishes this process. We show that PPE41 contains a characteristic chaperone-binding sequence, the hh motif, which is highly conserved among ESX-1-, ESX-3- and ESX-5-specific PPE proteins. Disrupting the interaction between EspG(5) and three different PPE target proteins by introducing different point mutations generally affected protein secretion. We further demonstrate that the EspG(5) chaperone plays an important role in the ESX secretion mechanism by keeping aggregation-prone PE-PPE proteins in their soluble state.
Collapse
Affiliation(s)
- Natalia Korotkova
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Center for Structural Biology, University of Kentucky, Lexington, KY, 40536, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Homeostasis of N-α-terminal acetylation of EsxA correlates with virulence in Mycobacterium marinum. Infect Immun 2014; 82:4572-86. [PMID: 25135684 DOI: 10.1128/iai.02153-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mycobacterial Esx-1 (ESAT-6 system 1) exporter translocates virulence factors across the cytoplasmic membrane to the cell wall, cell surface, and the bacteriological medium in vitro. The mechanisms underlying substrate targeting to distinct locations are unknown. Several Esx-1 substrates are N-α-terminally acetylated. The role of this rare modification in bacteria is unclear. We sought to identify genes required for Esx-1 substrate modification, transport, and localization. Pathogenic mycobacteria lyse Acanthamoeba castellanii in an Esx-1-dependent manner. We conducted a genetic screen to identify Mycobacterium marinum strains which failed to lyse amoebae. We identified a noncytotoxic M. marinum strain with a transposon insertion in a predicted N-α-terminal acetyltransferase not previously linked to mycobacterial pathogenesis. Disruption of this gene led to attenuation of virulence, failure to induce a type I interferon response during macrophage infection, and loss of hemolytic activity. The major Esx-1 substrates, EsxA and EsxB, were exported to the cell surface, but only low levels were released into the bacteriological medium. The balance of EsxA N-α-terminal acetylation was disrupted, resulting in a mycobacterial strain in which surface-associated EsxA was hyperacetylated. Genetic complementation completely restored Esx-1 function and the levels of N-α-terminally acetylated EsxA on the surface but restored only low levels of Esx-1 substrates in the bacteriological medium. Our results reveal a novel gene required for mycobacterial Esx-1 export. Our findings indicate that maintaining the homeostasis of Esx-1 substrate N-α-terminal acetylation is essential for Esx-1-mediated virulence. We propose an inverse correlation between EsxA acetylation and virulence.
Collapse
|
125
|
Boritsch EC, Supply P, Honoré N, Seeman T, Stinear TP, Brosch R. A glimpse into the past and predictions for the future: the molecular evolution of the tuberculosis agent. Mol Microbiol 2014; 93:835-52. [DOI: 10.1111/mmi.12720] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Eva C. Boritsch
- Institut Pasteur; Unit for Integrated Mycobacterial Pathogenomics; Paris France
| | - Philip Supply
- INSERM U1019; Lille France
- CNRS UMR 8204; Lille France
- University of Lille Nord de France; Lille France
- Institut Pasteur de Lille; Center for Infection and Immunity of Lille; Lille France
| | - Nadine Honoré
- Institut Pasteur; Unit for Integrated Mycobacterial Pathogenomics; Paris France
| | - Torsten Seeman
- Victorian Bioinformatics Consortium; Monash University; Clayton Victoria Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology; University of Melbourne; Parkville Victoria Australia
| | - Roland Brosch
- Institut Pasteur; Unit for Integrated Mycobacterial Pathogenomics; Paris France
| |
Collapse
|
126
|
A specific polymorphism in Mycobacterium tuberculosis H37Rv causes differential ESAT-6 expression and identifies WhiB6 as a novel ESX-1 component. Infect Immun 2014; 82:3446-56. [PMID: 24891105 DOI: 10.1128/iai.01824-14] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ESX-1 secreted virulence factor ESAT-6 is one of the major and most well-studied virulence factors of Mycobacterium tuberculosis, given that its inactivation severely attenuates virulent mycobacteria. In this work, we show that clinical isolates of M. tuberculosis produce and secrete larger amounts of ESAT-6 than the widely used M. tuberculosis H37Rv laboratory strain. A search for the genetic polymorphisms underlying this observation showed that whiB6 (rv3862c), a gene upstream of the ESX-1 genetic locus that has not previously been found to be implicated in the regulation of the ESX-1 secretory apparatus, presents a unique single nucleotide insertion in its promoter region in strains H37Rv and H37Ra. This polymorphism is not present in any of the other publicly available M. tuberculosis complex genomes or in any of the 76 clinical M. tuberculosis isolates analyzed in our laboratory. We demonstrate that in consequence, the virulence master regulator PhoP downregulates whiB6 expression in H37Rv, while it upregulates its expression in clinical strains. Importantly, reintroduction of the wild-type (WT) copy of whiB6 in H37Rv restored ESAT-6 production and secretion to the level of clinical strains. Hence, we provide clear evidence that in M. tuberculosis--with the exception of the H37Rv strain--ESX-1 expression is regulated by WhiB6 as part of the PhoP regulon, which adds another level of complexity to the regulation of ESAT-6 secretion with a potential role in virulence adaptation.
Collapse
|
127
|
Siegrist MS, Steigedal M, Ahmad R, Mehra A, Dragset MS, Schuster BM, Philips JA, Carr SA, Rubin EJ. Mycobacterial Esx-3 requires multiple components for iron acquisition. mBio 2014; 5:e01073-14. [PMID: 24803520 PMCID: PMC4010830 DOI: 10.1128/mbio.01073-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 03/28/2014] [Indexed: 12/16/2022] Open
Abstract
ABSTRACT The type VII secretion systems are conserved across mycobacterial species and in many Gram-positive bacteria. While the well-characterized Esx-1 pathway is required for the virulence of pathogenic mycobacteria and conjugation in the model organism Mycobacterium smegmatis, Esx-3 contributes to mycobactin-mediated iron acquisition in these bacteria. Here we show that several Esx-3 components are individually required for function under low-iron conditions but that at least one, the membrane-bound protease MycP3 of M. smegmatis, is partially expendable. All of the esx-3 mutants tested, including the ΔmycP3ms mutant, failed to export the native Esx-3 substrates EsxHms and EsxGms to quantifiable levels, as determined by targeted mass spectrometry. Although we were able to restore low-iron growth to the esx-3 mutants by genetic complementation, we found a wide range of complementation levels for protein export. Indeed, minute quantities of extracellular EsxHms and EsxGms were sufficient for iron acquisition under our experimental conditions. The apparent separation of Esx-3 function in iron acquisition from robust EsxGms and EsxHms secretion in the ΔmycP3ms mutant and in some of the complemented esx-3 mutants compels reexamination of the structure-function relationships for type VII secretion systems. IMPORTANCE Mycobacteria have several paralogous type VII secretion systems, Esx-1 through Esx-5. Whereas Esx-1 is required for pathogenic mycobacteria to grow within an infected host, Esx-3 is essential for growth in vitro. We and others have shown that Esx-3 is required for siderophore-mediated iron acquisition. In this work, we identify individual Esx-3 components that contribute to this process. As in the Esx-1 system, most mutations that abolish Esx-3 protein export also disrupt its function. Unexpectedly, however, ultrasensitive quantitation of Esx-3 secretion by multiple-reaction-monitoring mass spectrometry (MRM-MS) revealed that very low levels of export were sufficient for iron acquisition under similar conditions. Although protein export clearly contributes to type VII function, the relationship is not absolute.
Collapse
Affiliation(s)
- M. Sloan Siegrist
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | | | - Rushdy Ahmad
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Alka Mehra
- Division of Infectious Diseases, Department of Medicine, New York University School of Medicine, New York, New York, USA
| | | | - Brian M. Schuster
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Jennifer A. Philips
- Division of Infectious Diseases, Department of Medicine, New York University School of Medicine, New York, New York, USA
| | - Steven A. Carr
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
128
|
Ryndak MB, Singh KK, Peng Z, Zolla-Pazner S, Li H, Meng L, Laal S. Transcriptional profiling of Mycobacterium tuberculosis replicating ex vivo in blood from HIV- and HIV+ subjects. PLoS One 2014; 9:e94939. [PMID: 24755630 PMCID: PMC3995690 DOI: 10.1371/journal.pone.0094939] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/21/2014] [Indexed: 01/02/2023] Open
Abstract
Hematogenous dissemination of Mycobacterium tuberculosis (M. tb) occurs during both primary and reactivated tuberculosis (TB). Although hematogenous dissemination occurs in non-HIV TB patients, in ∼80% of these patients, TB manifests exclusively as pulmonary disease. In contrast, extrapulmonary, disseminated, and/or miliary TB is seen in 60–70% of HIV-infected TB patients, suggesting that hematogenous dissemination is likely more common in HIV+ patients. To understand M. tb adaptation to the blood environment during bacteremia, we have studied the transcriptome of M. tb replicating in human whole blood. To investigate if M. tb discriminates between the hematogenous environments of immunocompetent and immunodeficient individuals, we compared the M. tb transcriptional profiles during replication in blood from HIV- and HIV+ donors. Our results demonstrate that M. tb survives and replicates in blood from both HIV- and HIV+ donors and enhances its virulence/pathogenic potential in the hematogenous environment. The M. tb blood-specific transcriptome reflects suppression of dormancy, induction of cell-wall remodeling, alteration in mode of iron acquisition, potential evasion of immune surveillance, and enhanced expression of important virulence factors that drive active M. tb infection and dissemination. These changes are accentuated during bacterial replication in blood from HIV+ patients. Furthermore, the expression of ESAT-6, which participates in dissemination of M. tb from the lungs, is upregulated in M. tb growing in blood, especially during growth in blood from HIV+ patients. Preliminary experiments also demonstrate that ESAT-6 promotes HIV replication in U1 cells. These studies provide evidence, for the first time, that during bacteremia, M. tb can adapt to the blood environment by modifying its transcriptome in a manner indicative of an enhanced-virulence phenotype that favors active infection. Additionally, transcriptional modifications in HIV+ blood may further accentuate M. tb virulence and drive both M. tb and HIV infection.
Collapse
Affiliation(s)
- Michelle B. Ryndak
- Department of Pathology, New York University Langone Medical Center, New York, New York, United States of America
| | - Krishna K. Singh
- Department of Pathology, New York University Langone Medical Center, New York, New York, United States of America
| | - Zhengyu Peng
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Susan Zolla-Pazner
- Department of Pathology, New York University Langone Medical Center, New York, New York, United States of America
- Veterans Affairs New York Harbor Healthcare System, New York, New York, United States of America
| | - Hualin Li
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lu Meng
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Suman Laal
- Department of Pathology, New York University Langone Medical Center, New York, New York, United States of America
- Veterans Affairs New York Harbor Healthcare System, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
129
|
Gouzy A, Larrouy-Maumus G, Bottai D, Levillain F, Dumas A, Wallach JB, Caire-Brandli I, de Chastellier C, Wu TD, Poincloux R, Brosch R, Guerquin-Kern JL, Schnappinger D, Sório de Carvalho LP, Poquet Y, Neyrolles O. Mycobacterium tuberculosis exploits asparagine to assimilate nitrogen and resist acid stress during infection. PLoS Pathog 2014; 10:e1003928. [PMID: 24586151 PMCID: PMC3930563 DOI: 10.1371/journal.ppat.1003928] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/31/2013] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium tuberculosis is an intracellular pathogen. Within macrophages, M. tuberculosis thrives in a specialized membrane-bound vacuole, the phagosome, whose pH is slightly acidic, and where access to nutrients is limited. Understanding how the bacillus extracts and incorporates nutrients from its host may help develop novel strategies to combat tuberculosis. Here we show that M. tuberculosis employs the asparagine transporter AnsP2 and the secreted asparaginase AnsA to assimilate nitrogen and resist acid stress through asparagine hydrolysis and ammonia release. While the role of AnsP2 is partially spared by yet to be identified transporter(s), that of AnsA is crucial in both phagosome acidification arrest and intracellular replication, as an M. tuberculosis mutant lacking this asparaginase is ultimately attenuated in macrophages and in mice. Our study provides yet another example of the intimate link between physiology and virulence in the tubercle bacillus, and identifies a novel pathway to be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Alexandre Gouzy
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | - Gérald Larrouy-Maumus
- Mycobacterial Research Division, MRC National Institute for Medical Research, London, United Kingdom
| | - Daria Bottai
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Florence Levillain
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | - Alexia Dumas
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | - Joshua B. Wallach
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Irène Caire-Brandli
- Centre d'Immunologie de Marseille-Luminy (CIML), Inserm UMR 1104, CNRS UMR 7280, Aix-Marseille University UM 2, Marseille, France
| | - Chantal de Chastellier
- Centre d'Immunologie de Marseille-Luminy (CIML), Inserm UMR 1104, CNRS UMR 7280, Aix-Marseille University UM 2, Marseille, France
| | - Ting-Di Wu
- Institut Curie, Laboratoire de Microscopie Ionique, Orsay, France
- INSERM U759, Orsay, France
| | - Renaud Poincloux
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | - Roland Brosch
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée, Paris, France
| | - Jean-Luc Guerquin-Kern
- Institut Curie, Laboratoire de Microscopie Ionique, Orsay, France
- INSERM U759, Orsay, France
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | | | - Yannick Poquet
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | - Olivier Neyrolles
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| |
Collapse
|
130
|
Houben ENG, Korotkov KV, Bitter W. Take five - Type VII secretion systems of Mycobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1707-16. [PMID: 24263244 DOI: 10.1016/j.bbamcr.2013.11.003] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/07/2013] [Accepted: 11/09/2013] [Indexed: 11/18/2022]
Abstract
Mycobacteria use type VII secretion (T7S) systems to secrete proteins across their complex cell envelope. Pathogenic mycobacteria, such as the notorious pathogen Mycobacterium tuberculosis, have up to five of these secretion systems, named ESX-1 to ESX-5. At least three of these secretion systems are essential for mycobacterial virulence and/or viability. Elucidating T7S is therefore essential to understand the success of M. tuberculosis and other pathogenic mycobacteria as pathogens, and could be instrumental to identify novel targets for drug- and vaccine-development. Recently, significant progress has been achieved in the identification of T7S substrates and a general secretion motif. In addition, a start has been made with unraveling the mechanism of secretion and the structural analysis of the different subunits. This review summarizes these recent findings, which are incorporated in a working model of this complex machinery. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Edith N G Houben
- VU University, Amsterdam, The Netherlands; VU University Medical Center, Amsterdam, The Netherlands.
| | | | - Wilbert Bitter
- VU University, Amsterdam, The Netherlands; VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
131
|
Mehra A, Zahra A, Thompson V, Sirisaengtaksin N, Wells A, Porto M, Köster S, Penberthy K, Kubota Y, Dricot A, Rogan D, Vidal M, Hill DE, Bean AJ, Philips JA. Mycobacterium tuberculosis type VII secreted effector EsxH targets host ESCRT to impair trafficking. PLoS Pathog 2013; 9:e1003734. [PMID: 24204276 PMCID: PMC3814348 DOI: 10.1371/journal.ppat.1003734] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 09/12/2013] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) disrupts anti-microbial pathways of macrophages, cells that normally kill bacteria. Over 40 years ago, D'Arcy Hart showed that Mtb avoids delivery to lysosomes, but the molecular mechanisms that allow Mtb to elude lysosomal degradation are poorly understood. Specialized secretion systems are often used by bacterial pathogens to translocate effectors that target the host, and Mtb encodes type VII secretion systems (TSSSs) that enable mycobacteria to secrete proteins across their complex cell envelope; however, their cellular targets are unknown. Here, we describe a systematic strategy to identify bacterial virulence factors by looking for interactions between the Mtb secretome and host proteins using a high throughput, high stringency, yeast two-hybrid (Y2H) platform. Using this approach we identified an interaction between EsxH, which is secreted by the Esx-3 TSSS, and human hepatocyte growth factor-regulated tyrosine kinase substrate (Hgs/Hrs), a component of the endosomal sorting complex required for transport (ESCRT). ESCRT has a well-described role in directing proteins destined for lysosomal degradation into intraluminal vesicles (ILVs) of multivesicular bodies (MVBs), ensuring degradation of the sorted cargo upon MVB-lysosome fusion. Here, we show that ESCRT is required to deliver Mtb to the lysosome and to restrict intracellular bacterial growth. Further, EsxH, in complex with EsxG, disrupts ESCRT function and impairs phagosome maturation. Thus, we demonstrate a role for a TSSS and the host ESCRT machinery in one of the central features of tuberculosis pathogenesis. Mycobacterium tuberculosis (Mtb) causes the disease tuberculosis, one of the world's most deadly infections. The host immune system can't eradicate Mtb because it grows within macrophages, cells that normally kill bacteria. One of the intracellular survival strategies of Mtb is to avoid delivery to lysosomes, a phenomenon described over 40 years ago, but for which the mechanism and molecular details remain incomplete. Mtb possess specialized secretion systems (Type VII secretion systems; TSSS) that transfer particular proteins out of the bacteria, but how these proteins promote infection is not well understood. In this study, we used a high stringency yeast two-hybrid system to identify interactions between secreted effectors from Mtb and human host factors. We identified ninety-nine such interactions and focused our attention on the interaction between EsxH, secreted by Esx-3, a TSSS of Mtb, and Hrs, a component of the host ESCRT machinery. We provide evidence that Mtb EsxH directly targets host Hrs to disrupt delivery of bacteria to lysosomes. Thus, this study demonstrates the role of a TSSS effector and the ESCRT machinery in what is one of the central features of tuberculosis pathogenesis, thereby providing molecular insight into why humans can't clear Mtb infection.
Collapse
Affiliation(s)
- Alka Mehra
- Division of Infectious Diseases, Department of Medicine, Department of Pathology and Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Aleena Zahra
- Division of Infectious Diseases, Department of Medicine, Department of Pathology and Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Victor Thompson
- Division of Infectious Diseases, Department of Medicine, Department of Pathology and Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Natalie Sirisaengtaksin
- Department of Neurobiology and Anatomy, and Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Ashley Wells
- Division of Infectious Diseases, Department of Medicine, Department of Pathology and Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Maura Porto
- Division of Infectious Diseases, Department of Medicine, Department of Pathology and Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Stefan Köster
- Division of Infectious Diseases, Department of Medicine, Department of Pathology and Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Kristen Penberthy
- Division of Infectious Diseases, Department of Medicine, Department of Pathology and Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Yoshihisha Kubota
- Department of Neurobiology and Anatomy, and Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Amelie Dricot
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel Rogan
- Division of Infectious Diseases, Department of Medicine, Department of Pathology and Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David E. Hill
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew J. Bean
- Department of Neurobiology and Anatomy, and Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Division of Pediatrics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Jennifer A. Philips
- Division of Infectious Diseases, Department of Medicine, Department of Pathology and Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
132
|
Serafini A, Pisu D, Palù G, Rodriguez GM, Manganelli R. The ESX-3 secretion system is necessary for iron and zinc homeostasis in Mycobacterium tuberculosis. PLoS One 2013; 8:e78351. [PMID: 24155985 PMCID: PMC3796483 DOI: 10.1371/journal.pone.0078351] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/18/2013] [Indexed: 12/25/2022] Open
Abstract
ESX-3 is one of the five type VII secretion systems encoded by the Mycobacterium tuberculosis genome. We recently showed the essentiality of ESX-3 for M. tuberculosis viability and proposed its involvement in iron and zinc metabolism. In this study we confirmed the role of ESX-3 in iron uptake and its involvement in the adaptation to low zinc environment in M. tuberculosis. Moreover, we unveiled functional differences between the ESX-3 roles in M. tuberculosis and M. smegmatis showing that in the latter ESX-3 is only involved in the adaptation to iron and not to zinc restriction. Finally, we also showed that in M. tuberculosis this secretion system is essential for iron and zinc homeostasis not only in conditions in which the concentrations of these metals are limiting but also in metal sufficient conditions.
Collapse
Affiliation(s)
- Agnese Serafini
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Davide Pisu
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - G. Marcela Rodriguez
- Public Health Research Institute - Rutgers, the State University of New Jersey, Newark, New Jersey, United States of America
| | - Riccardo Manganelli
- Department of Molecular Medicine, University of Padova, Padova, Italy
- * E-mail:
| |
Collapse
|
133
|
Wagner JM, Evans TJ, Chen J, Zhu H, Houben ENG, Bitter W, Korotkov KV. Understanding specificity of the mycosin proteases in ESX/type VII secretion by structural and functional analysis. J Struct Biol 2013; 184:115-28. [PMID: 24113528 DOI: 10.1016/j.jsb.2013.09.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 11/28/2022]
Abstract
Mycobacteria use specialized ESX secretion systems to transport proteins across their cell membranes in order to manipulate their environment. In pathogenic Mycobacterium tuberculosis there are five paralogous ESX secretion systems, named ESX-1 through ESX-5. Each system includes a subtilisin-like protease (mycosin or MycP) as a core component essential for secretion. Here we report crystal structures of MycP1 and MycP3, the mycosins expressed by the ESX-1 and ESX-3 systems, respectively. In both mycosins the putative propeptide wraps around the catalytic domain and does not occlude the active site. The extensive contacts between the putative propeptide and catalytic domain, which include a disulfide bond, suggest that the N-terminal extension is an integral part of the active mycosin. The catalytic residues of MycP1 and MycP3 are located in a deep active site groove in contrast with an exposed active site in majority of subtilisins. We show that MycP1 specifically cleaves ESX-1 secretion-associated protein B (EspB) in vitro at residues Ala358 and Ala386. We also systematically characterize the specificity of MycP1 using peptide libraries, and show that it has evolved a narrow specificity relative to other subtilisins. Finally, comparison of the MycP1 and MycP3 structures suggest that both enzymes have stringent and different specificity profiles that result from the structurally distinct active site pockets, which could explain the system specific functioning of these proteases.
Collapse
Affiliation(s)
- Jonathan M Wagner
- Department of Molecular & Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | |
Collapse
|
134
|
Pawlik A, Garnier G, Orgeur M, Tong P, Lohan A, Le Chevalier F, Sapriel G, Roux AL, Conlon K, Honoré N, Dillies MA, Ma L, Bouchier C, Coppée JY, Gaillard JL, Gordon SV, Loftus B, Brosch R, Herrmann JL. Identification and characterization of the genetic changes responsible for the characteristic smooth-to-rough morphotype alterations of clinically persistent Mycobacterium abscessus. Mol Microbiol 2013; 90:612-29. [PMID: 23998761 DOI: 10.1111/mmi.12387] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2013] [Indexed: 12/13/2022]
Abstract
Mycobacterium abscessus is an emerging pathogen that is increasingly recognized as a relevant cause of human lung infection in cystic fibrosis patients. This highly antibiotic-resistant mycobacterium is an exception within the rapidly growing mycobacteria, which are mainly saprophytic and non-pathogenic organisms. M. abscessus manifests as either a smooth (S) or a rough (R) colony morphotype, which is of clinical importance as R morphotypes are associated with more severe and persistent infections. To better understand the molecular mechanisms behind the S/R alterations, we analysed S and R variants of three isogenic M. abscessus S/R pairs using an unbiased approach involving genome and transcriptome analyses, transcriptional fusions and integrating constructs. This revealed different small insertions, deletions (indels) or single nucleotide polymorphisms within the non-ribosomal peptide synthase gene cluster mps1-mps2-gap or mmpl4b in the three R variants, consistent with the transcriptional differences identified within this genomic locus that is implicated in the synthesis and transport of Glyco-Peptido-Lipids (GPL). In contrast to previous reports, the identification of clearly defined genetic lesions responsible for the loss of GPL-production or transport makes a frequent switching back-and-forth between smooth and rough morphologies in M. abscessus highly unlikely, which is important for our understanding of persistent M. abscessus infections.
Collapse
Affiliation(s)
- Alexandre Pawlik
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France; EA 3647, University Versailles St Quentin in Yvelines, Garches, France; Microbiology Laboratory, Assistance Publique - Hôpitaux de Paris, Raymond Poincaré Hospital, Garches, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Baptista C, Barreto HC, São-José C. High levels of DegU-P activate an Esat-6-like secretion system in Bacillus subtilis. PLoS One 2013; 8:e67840. [PMID: 23861817 PMCID: PMC3701619 DOI: 10.1371/journal.pone.0067840] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/22/2013] [Indexed: 11/18/2022] Open
Abstract
The recently discovered Type VII/Esat-6 secretion systems seem to be widespread among bacteria of the phyla Actinobacteria and Firmicutes. In some species they play an important role in pathogenic interactions with eukaryotic hosts. Several studies have predicted that the locus yukEDCByueBC of the non-pathogenic, Gram-positive bacterium Bacillus subtilis would encode an Esat-6-like secretion system (Ess). We provide here for the first time evidences for the functioning of this secretion pathway in an undomesticated B. subtilis strain. We show that YukE, a small protein with the typical features of the secretion substrates from the WXG100 superfamily is actively secreted to culture media. YukE secretion depends on intact yukDCByueBC genes, whose products share sequence or structural homology with known components of the S. aureus Ess. Biochemical characterization of YukE indicates that it exists as a dimer both in vitro and in vivo. We also show that the B. subtilis Ess essentially operates in late stationary growth phase in absolute dependence of phosphorylated DegU, the response regulator of the two-component system DegS-DegU. We present possible reasons that eventually have precluded the study of this secretion system in the B. subtilis laboratory strain 168.
Collapse
Affiliation(s)
- Catarina Baptista
- Centro de Patogénese Molecular – Unidade de Retrovírus e Infecções Associadas (CPM-URIA), Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| | - Hugo Condessa Barreto
- Centro de Patogénese Molecular – Unidade de Retrovírus e Infecções Associadas (CPM-URIA), Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| | - Carlos São-José
- Centro de Patogénese Molecular – Unidade de Retrovírus e Infecções Associadas (CPM-URIA), Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
136
|
The PPE domain of PPE17 is responsible for its surface localization and can be used to express heterologous proteins on the mycobacterial surface. PLoS One 2013; 8:e57517. [PMID: 23469198 PMCID: PMC3586085 DOI: 10.1371/journal.pone.0057517] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/23/2013] [Indexed: 01/01/2023] Open
Abstract
PPE represent a peculiar family of mycobacterial proteins characterized by a 180 aminoacids conserved N-terminal domain. Several PPE genes are co-transcribed with a gene encoding for a protein belonging to another family of mycobacterial specific proteins named PE. Only one PE-PPE couple has been extensively characterized so far (PE25-PPE41) and it was shown that these two proteins form a heterodimer and that this interaction is essential for PPE41 stability and translocation through the mycobacterial cell wall. In this study we characterize the PE11-PPE17 couple. In contrast with what was found for PE25-PPE41, we show that PPE17 is not secreted but surface exposed. Moreover, we demonstrate that the presence of PE11 is not necessary for PPE17 stability or for its localization on the mycobacterial surface. Finally, we show that the PPE domain of PPE17 targets the mycobacterial cell wall and that this domain can be used as a fusion partner to expose heterologous proteins on the mycobacterial surface.
Collapse
|
137
|
Dedieu L, Serveau-Avesque C, Kremer L, Canaan S. Mycobacterial lipolytic enzymes: A gold mine for tuberculosis research. Biochimie 2013; 95:66-73. [DOI: 10.1016/j.biochi.2012.07.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/10/2012] [Indexed: 10/28/2022]
|
138
|
Gouzy A, Nigou J, Gilleron M, Neyrolles O, Tailleux L, Gordon SV. Tuberculosis 2012: biology, pathogenesis and intervention strategies; an update from the city of light. Res Microbiol 2012; 164:270-80. [PMID: 23266372 DOI: 10.1016/j.resmic.2012.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tuberculosis (TB) remains one of the world's most deadly infectious diseases, with approximately 1.5 million deaths and 9 million new cases of TB in 2010. There is an urgent global need to develop new control tools, with advances necessary in our basic understanding of the pathogen, Mycobacterium tuberculosis, and translation of these findings to public health. It was in this context that the "Tuberculosis 2012: Biology, Pathogenesis, Intervention Strategies" meeting was held in the Institut Pasteur, Paris, France from 11 to 15th Sept 2012. The meeting brought together over 600 delegates from across the globe to hear updates on the latest research findings and how they are underpinning the development of novel vaccines, diagnostics, and drugs.
Collapse
Affiliation(s)
- Alexandre Gouzy
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | | | | | | | | | | |
Collapse
|
139
|
The ESX-5 associated eccB-EccC locus is essential for Mycobacterium tuberculosis viability. PLoS One 2012; 7:e52059. [PMID: 23284869 PMCID: PMC3524121 DOI: 10.1371/journal.pone.0052059] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 11/12/2012] [Indexed: 12/20/2022] Open
Abstract
The recently described ESX-5 secretion system of Mycobacterium tuberculosis is one of the most important modulators of host-pathogen interactions due to its crucial impact on PPE protein secretion, cell wall stability and virulence. Although various components of the ESX-5 secretion machinery have been defined, other ESX-5 core components still remain to be characterized. In this study, we focused on EccB5 and EccC5, a transmembrane protein (EccB5) and a membrane-bound ATPase (EccC5), both predicted to be building blocks of the M. tuberculosis ESX-5 membrane-associated complex. In vitro expression studies demonstrated that EccB5 and EccC5 encoding genes constitute an operon. The expression of this operon is essential for M. tuberculosis, since the deletion of the eccB5-eccC5 genomic segment at the ESX-5 locus is possible only after the integration of a second functional copy of eccB5-eccC5 genes into the M. tuberculosis chromosome. The characterization of two M. tuberculosis conditional mutant strains (MtbPptreccB5 and MtbPptreccC5), in which the eccB5-eccC5 operon or the eccC5 gene, respectively, were expressed under the control of an anhydrotetracycline-repressible promoter, confirmed that the repression of eccB5-eccC5 genes is detrimental for growth of M. tuberculosis both in vitro and in THP-1 human macrophage cell line. Moreover, analysis of the secretome of MtbPptreccB5-eccC5 and MtbPptreccC5 strains revealed that both EccB5 and EccC5 are required for secretion of ESX-5 specific substrates, thus confirming that they are indeed components of the ESX-5 secretion machinery. Taken together these findings demonstrate the importance of an intact and functional ESX-5 system for viability of M. tuberculosis, thus opening new interesting options for alternative antimycobacterial control strategies.
Collapse
|
140
|
Forrellad MA, Klepp LI, Gioffré A, Sabio y García J, Morbidoni HR, de la Paz Santangelo M, Cataldi AA, Bigi F. Virulence factors of the Mycobacterium tuberculosis complex. Virulence 2012; 4:3-66. [PMID: 23076359 PMCID: PMC3544749 DOI: 10.4161/viru.22329] [Citation(s) in RCA: 379] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) consists of closely related species that cause tuberculosis in both humans and animals. This illness, still today, remains to be one of the leading causes of morbidity and mortality throughout the world. The mycobacteria enter the host by air, and, once in the lungs, are phagocytated by macrophages. This may lead to the rapid elimination of the bacillus or to the triggering of an active tuberculosis infection. A large number of different virulence factors have evolved in MTBC members as a response to the host immune reaction. The aim of this review is to describe the bacterial genes/proteins that are essential for the virulence of MTBC species, and that have been demonstrated in an in vivo model of infection. Knowledge of MTBC virulence factors is essential for the development of new vaccines and drugs to help manage the disease toward an increasingly more tuberculosis-free world.
Collapse
|
141
|
Sayes F, Sun L, Di Luca M, Simeone R, Degaiffier N, Fiette L, Esin S, Brosch R, Bottai D, Leclerc C, Majlessi L. Strong immunogenicity and cross-reactivity of Mycobacterium tuberculosis ESX-5 type VII secretion: encoded PE-PPE proteins predicts vaccine potential. Cell Host Microbe 2012; 11:352-63. [PMID: 22520463 DOI: 10.1016/j.chom.2012.03.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/23/2012] [Accepted: 03/22/2012] [Indexed: 10/28/2022]
Abstract
The genome of Mycobacterium tuberculosis (Mtb) encodes five type VII secretion systems, ESX-1 to ESX-5, most of which are associated with genes encoding PE/PPE proteins, named after their N-terminal Pro-Glu (PE) or Pro-Pro-Glu (PPE) motifs. Here, we describe the strong T cell immunogenicity of the ESX-5-encoded PE/PPE proteins, which share a large panel of cross-reactive CD4(+) epitopes with substantial numbers of their ESX-5-nonassociated PE/PPE homologs. The immunogenicity of these numerous PE/PPE proteins is dependent on their export by a functional EccD(5), the predicted transmembrane channel of the ESX-5 secretion apparatus. The Mtb Δppe25-pe19 mutant deleted for all ESX-5-associated pe and ppe genes, although highly attenuated in immunocompetent mice, remains able to induce immunity against the ESX-5-associated PE/PPE virulence factors, via cross-reactivity with their numerous homologs, and against the ESX-1 virulence factors ESAT-6/CFP-10. The Δppe25-pe19 strain is strongly protective against Mtb infection in mice and represents a potential antituberculosis vaccine candidate.
Collapse
Affiliation(s)
- Fadel Sayes
- Unité de Régulation Immunitaire et Vaccinologie, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Houben ENG, Bestebroer J, Ummels R, Wilson L, Piersma SR, Jiménez CR, Ottenhoff THM, Luirink J, Bitter W. Composition of the type VII secretion system membrane complex. Mol Microbiol 2012; 86:472-84. [DOI: 10.1111/j.1365-2958.2012.08206.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2012] [Indexed: 01/04/2023]
Affiliation(s)
| | - Jovanka Bestebroer
- Department of Medical Microbiology and Infection Control; VU University Medical Center; Amsterdam; The Netherlands
| | - Roy Ummels
- Department of Medical Microbiology and Infection Control; VU University Medical Center; Amsterdam; The Netherlands
| | - Louis Wilson
- Department of Infectious Diseases; Leiden University Medical Center; Leiden; The Netherlands
| | - Sander R. Piersma
- Department of Medical Oncology; OncoProteomics Laboratory; VU University Medical Center; Amsterdam; The Netherlands
| | - Connie R. Jiménez
- Department of Medical Oncology; OncoProteomics Laboratory; VU University Medical Center; Amsterdam; The Netherlands
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases; Leiden University Medical Center; Leiden; The Netherlands
| | - Joen Luirink
- Department of Molecular Microbiology; Institute of Molecular Cell Biology; VU University Amsterdam; Amsterdam; The Netherlands
| | | |
Collapse
|
143
|
Stoop EJM, Bitter W, van der Sar AM. Tubercle bacilli rely on a type VII army for pathogenicity. Trends Microbiol 2012; 20:477-84. [PMID: 22858229 DOI: 10.1016/j.tim.2012.07.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 06/26/2012] [Accepted: 07/03/2012] [Indexed: 12/22/2022]
Abstract
Mycobacteria, such as the major human pathogen Mycobacterium tuberculosis, have a highly unusual and characteristic diderm cell envelope that protects them against harmful conditions. Protein secretion across this hydrophobic barrier requires specialized secretion systems. Recently, a type VII secretion (T7S) pathway has been identified that fulfills this function. Pathogenic mycobacteria have up to five different T7S systems, some of which play a crucial role in virulence. The interactions between secreted substrates and host molecules are only starting to become clear and will help in furthering our understanding of the persistence of these enigmatic pathogens. In this review, we discuss current knowledge on the role of T7S systems in mycobacterial virulence.
Collapse
Affiliation(s)
- Esther J M Stoop
- Department of Medical Microbiology and Infection control, VU University Medical Center, van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | | | | |
Collapse
|
144
|
Vordermeier HM, Hewinson RG, Wilkinson RJ, Wilkinson KA, Gideon HP, Young DB, Sampson SL. Conserved immune recognition hierarchy of mycobacterial PE/PPE proteins during infection in natural hosts. PLoS One 2012; 7:e40890. [PMID: 22870206 PMCID: PMC3411574 DOI: 10.1371/journal.pone.0040890] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 06/14/2012] [Indexed: 12/02/2022] Open
Abstract
The Mycobacterium tuberculosis genome contains two large gene families encoding proteins of unknown function, characterized by conserved N-terminal proline and glutamate (PE and PPE) motifs. The presence of a large number of PE/PPE proteins with repetitive domains and evidence of strain variation has given rise to the suggestion that these proteins may play a role in immune evasion via antigenic variation, while emerging data suggests that some family members may play important roles in mycobacterial pathogenesis. In this study, we examined cellular immune responses to a panel of 36 PE/PPE proteins during human and bovine infection. We observed a distinct hierarchy of immune recognition, reflected both in the repertoire of PE/PPE peptide recognition in individual cows and humans and in the magnitude of IFN-γ responses elicited by stimulation of sensitized host cells. The pattern of immunodominance was strikingly similar between cattle that had been experimentally infected with Mycobacterium bovis and humans naturally infected with clinical isolates of M. tuberculosis. The same pattern was maintained as disease progressed throughout a four-month course of infection in cattle, and between humans with latent as well as active tuberculosis. Detailed analysis of PE/PPE responses at the peptide level suggests that antigenic cross-reactivity amongst related family members is a major determinant in the observed differences in immune hierarchy. Taken together, these results demonstrate that a subset of PE/PPE proteins are major targets of the cellular immune response to tuberculosis, and are recognized at multiple stages of infection and in different disease states. Thus this work identifies a number of novel antigens that could find application in vaccine development, and provides new insights into PE/PPE biology.
Collapse
Affiliation(s)
- H. Martin Vordermeier
- TB Research Group, Animal Health and Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, United Kingdom
| | - R. Glyn Hewinson
- TB Research Group, Animal Health and Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, United Kingdom
| | - Robert J. Wilkinson
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Mycobacterial Research, MRC National Institute for Medical Research, London, United Kingdom
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Katalin A. Wilkinson
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Mycobacterial Research, MRC National Institute for Medical Research, London, United Kingdom
| | - Hannah P. Gideon
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Douglas B. Young
- Division of Mycobacterial Research, MRC National Institute for Medical Research, London, United Kingdom
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Samantha L. Sampson
- Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
145
|
Daleke MH, van der Woude AD, Parret AHA, Ummels R, de Groot AM, Watson D, Piersma SR, Jiménez CR, Luirink J, Bitter W, Houben ENG. Specific chaperones for the type VII protein secretion pathway. J Biol Chem 2012; 287:31939-47. [PMID: 22843727 DOI: 10.1074/jbc.m112.397596] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacteria use the dedicated type VII protein secretion systems ESX-1 and ESX-5 to secrete virulence factors across their highly hydrophobic cell envelope. The substrates of these systems include the large mycobacterial PE and PPE protein families, which are named after their characteristic Pro-Glu and Pro-Pro-Glu motifs. Pathogenic mycobacteria secrete large numbers of PE/PPE proteins via the major export pathway, ESX-5. In addition, a few PE/PPE proteins have been shown to be exported by ESX-1. It is not known how ESX-1 and ESX-5 recognize their cognate PE/PPE substrates. In this work, we investigated the function of the cytosolic protein EspG(5), which is essential for ESX-5-mediated secretion in Mycobacterium marinum, but for which the role in secretion is not known. By performing protein co-purifications, we show that EspG(5) interacts with several PPE proteins and a PE/PPE complex that is secreted by ESX-5, but not with the unrelated ESX-5 substrate EsxN or with PE/PPE proteins secreted by ESX-1. Conversely, the ESX-1 paralogue EspG(1) interacted with a PE/PPE couple secreted by ESX-1, but not with PE/PPE substrates of ESX-5. Furthermore, structural analysis of the complex formed by EspG(5) and PE/PPE indicates that these proteins interact in a 1:1:1 ratio. In conclusion, our study shows that EspG(5) and EspG(1) interact specifically with PE/PPE proteins that are secreted via their own ESX systems and suggests that EspG proteins are specific chaperones for the type VII pathway.
Collapse
Affiliation(s)
- Maria H Daleke
- Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 BT Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
General secretion signal for the mycobacterial type VII secretion pathway. Proc Natl Acad Sci U S A 2012; 109:11342-7. [PMID: 22733768 DOI: 10.1073/pnas.1119453109] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mycobacterial pathogens use specialized type VII secretion (T7S) systems to transport crucial virulence factors across their unusual cell envelope into infected host cells. These virulence factors lack classical secretion signals and the mechanism of substrate recognition is not well understood. Here we demonstrate that the model T7S substrates PE25/PPE41, which form a heterodimer, are targeted to the T7S pathway ESX-5 by a signal located in the C terminus of PE25. Site-directed mutagenesis of residues within this C terminus resulted in the identification of a highly conserved motif, i.e., YxxxD/E, which is required for secretion. This motif was also essential for the secretion of LipY, another ESX-5 substrate. Pathogenic mycobacteria have several different T7S systems and we identified a PE protein that is secreted by the ESX-1 system, which allowed us to compare substrate recognition of these two T7S systems. Surprisingly, this ESX-1 substrate contained a C-terminal signal functionally equivalent to that of PE25. Exchange of these C-terminal secretion signals between the PE proteins restored secretion, but each PE protein remained secreted via its own ESX secretion system, indicating that an additional signal(s) provides system specificity. Remarkably, the YxxxD/E motif was also present in and required for efficient secretion of the ESX-1 substrates CFP-10 and EspB. Therefore, our data show that the YxxxD/E motif is a general secretion signal that is present in all known mycobacterial T7S substrates or substrate complexes.
Collapse
|
147
|
van der Woude AD, Luirink J, Bitter W. Getting across the cell envelope: mycobacterial protein secretion. Curr Top Microbiol Immunol 2012; 374:109-34. [PMID: 23239236 DOI: 10.1007/82_2012_298] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protein secretion is an essential determinant of mycobacterial virulence. Mycobacterium tuberculosis has a unique cell envelope consisting of two lipid bilayers, which requires dedicated protein secretion pathways. The conserved general Sec and Tat translocation systems are responsible for protein transport across the inner membrane and are both essential. Additionally, the accessory Sec pathway specifically contributes to virulence. How transport of Sec/Tat substrates across the outer membrane is accomplished is currently an enigma. In addition to these pathways, M. tuberculosis also developed specialized secretion systems for protein transport across both membranes, the type VII or ESX secretion systems. Here, we discuss our current knowledge about the mechanisms and substrates of these different protein translocation systems and their role in mycobacterial physiology and virulence.
Collapse
Affiliation(s)
- Aniek D van der Woude
- Department of Molecular Microbiology, Institute of Molecular Cell Biology, VU University, Amsterdam, The Netherlands
| | | | | |
Collapse
|