101
|
Hadjipanayis CG, Bonder MJ, Balakrishnan S, Wang X, Mao H, Hadjipanayis GC. Metallic iron nanoparticles for MRI contrast enhancement and local hyperthermia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2008; 4:1925-9. [PMID: 18752211 PMCID: PMC2709953 DOI: 10.1002/smll.200800261] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Costas G Hadjipanayis
- Department of Neurological Surgery, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
102
|
Neuwelt EA, Hamilton BE, Varallyay CG, Rooney WR, Edelman RD, Jacobs PM, Watnick SG. Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)? Kidney Int 2008; 75:465-74. [PMID: 18843256 DOI: 10.1038/ki.2008.496] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gadolinium (Gd) based contrast agents (GBCAs) in magnetic resonance imaging (MRI) are used in daily clinical practice and appear safe in most patients; however, nephrogenic systemic fibrosis (NSF) is a recently recognized severe complication associated with GBCAs. It affects primarily patients with renal disease, such as stage 4 or 5 chronic kidney disease (CKD; glomerular filtration rate <30 ml/min per 1.73 m(2)), acute kidney injury, or kidney and liver transplant recipients with kidney dysfunction. Contrast-enhanced MRI and computed tomography (CT) scans provide important clinical information and influence patient management. An alternative contrast agent is needed to obtain adequate imaging results while avoiding the risk of NSF in this vulnerable patient group. One potential alternative is ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles, which provide enhancement characteristics similar to GBCAs. We review our experience in approximately 150 patients on the potential benefits of the USPIOs ferumoxtran-10 and ferumoxytol. We focus on central nervous system (CNS) MRI but also review imaging of other vascular beds. Safety studies, including USPIO administration (ferumoxytol) as iron supplement therapy in CKD patients on and not on dialysis, suggest that decreased kidney function does not alter the safety profile. We conclude that for both CNS MR imaging and MR angiography, USPIO agents like ferumoxytol are a viable option for patients at risk for NSF.
Collapse
Affiliation(s)
- Edward A Neuwelt
- Department of Neurology and Neurosurgery, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Sun C, Lee JSH, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 2008; 60:1252-1265. [PMID: 18558452 DOI: 10.1016/j.addr.2008.03.018] [Citation(s) in RCA: 1384] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2007] [Accepted: 03/12/2008] [Indexed: 11/15/2022]
Abstract
Magnetic nanoparticles (MNPs) possess unique magnetic properties and the ability to function at the cellular and molecular level of biological interactions making them an attractive platform as contrast agents for magnetic resonance imaging (MRI) and as carriers for drug delivery. Recent advances in nanotechnology have improved the ability to specifically tailor the features and properties of MNPs for these biomedical applications. To better address specific clinical needs, MNPs with higher magnetic moments, non-fouling surfaces, and increased functionalities are now being developed for applications in the detection, diagnosis, and treatment of malignant tumors, cardiovascular disease, and neurological disease. Through the incorporation of highly specific targeting agents and other functional ligands, such as fluorophores and permeation enhancers, the applicability and efficacy of these MNPs have greatly increased. This review provides a background on applications of MNPs as MR imaging contrast agents and as carriers for drug delivery and an overview of the recent developments in this area of research.
Collapse
Affiliation(s)
- Conroy Sun
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Jerry S H Lee
- Office of Technology and Industrial Relations, National Cancer Institute, Bethesda, MD 20892, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
104
|
Abstract
Multiple biomedical imaging techniques are used in all phases of cancer management. Imaging forms an essential part of cancer clinical protocols and is able to furnish morphological, structural, metabolic and functional information. Integration with other diagnostic tools such as in vitro tissue and fluids analysis assists in clinical decision-making. Hybrid imaging techniques are able to supply complementary information for improved staging and therapy planning. Image guided and targeted minimally invasive therapy has the promise to improve outcome and reduce collateral effects. Early detection of cancer through screening based on imaging is probably the major contributor to a reduction in mortality for certain cancers. Targeted imaging of receptors, gene therapy expression and cancer stem cells are research activities that will translate into clinical use in the next decade. Technological developments will increase imaging speed to match that of physiological processes. Targeted imaging and therapeutic agents will be developed in tandem through close collaboration between academia and biotechnology, information technology and pharmaceutical industries.
Collapse
Affiliation(s)
- Leonard Fass
- GE Healthcare, 352 Buckingham Avenue, Slough, SL1 4ER, UK.
| |
Collapse
|
105
|
Enhancement Characteristics of Ultrasmall Superparamagnetic Iron Oxide Particle Within the Prostate Gland in Patients With Primary Prostate Cancer. J Comput Assist Tomogr 2008; 32:523-8. [DOI: 10.1097/rct.0b013e318136e194] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
106
|
Huwyler J, Drewe J, Krähenbuhl S. Tumor targeting using liposomal antineoplastic drugs. Int J Nanomedicine 2008; 3:21-9. [PMID: 18488413 DOI: 10.2217/17435889.3.1.21] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During the last years, liposomes (microparticulate phospholipid vesicles) have been used with growing success as pharmaceutical carriers for antineoplastic drugs. Fields of application include lipid-based formulations to enhance the solubility of poorly soluble antitumor drugs, the use of pegylated liposomes for passive targeting of solid tumors as well as vector-conjugated liposomal carriers for active targeting of tumor tissue. Such formulation and drug targeting strategies enhance the effectiveness of anticancer chemotherapy and reduce at the same time the risk of toxic side-effects. The present article reviews the principles of different liposomal technologies and discusses current trends in this field of research.
Collapse
Affiliation(s)
- Jörg Huwyler
- University of Applied Sciences Northwestern Switzerland, Institute of Pharma Technology, Muttenz, Switzerland.
| | | | | |
Collapse
|
107
|
Elder JB, Hoh DJ, Oh BC, Heller AC, Liu CY, Apuzzo ML. THE FUTURE OF CEREBRAL SURGERY. Neurosurgery 2008; 62:1555-79; discussion 1579-82. [DOI: 10.1227/01.neu.0000333820.33143.0d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
108
|
|
109
|
|
110
|
|
111
|
Elder JB, Liu CY, Apuzzo MLJ. Neurosurgery in the realm of 10(-9), part 1: stardust and nanotechnology in neuroscience. Neurosurgery 2008; 62:1-20. [PMID: 18300888 DOI: 10.1227/01.neu.0000311058.80249.6b] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nanotechnology as a science has evolved from notions and speculation to emerge as a prominent combination of science and engineering that stands to impact innumerable aspects of technology. Medicine in general and neurosurgery in particular will benefit greatly in terms of improved diagnostic and therapeutic capabilities. The recent explosion in nanotechnology products, including diverse applications such as beauty products and medical contrast agents, has been accompanied by an ever increasing volume of literature. Recent articles from our institution provided an historical and scientific background of nanotechnology, with a purposeful focus on nanomedicine. Future applications of nanotechnology to neuroscience and neurosurgery were briefly addressed. The present article is the first of two that will further this discussion by providing specific details of current nanotechnology applications and research related to neuroscience and clinical neurosurgery. This article also provides relevant perspective in scale, history, economics, and toxicology. Topics of specific importance to developments or advances of technologies used by neuroscientists and neurosurgeons are presented. In addition, advances in the field of microelectromechanical systems technology are discussed. Although larger than nanoscale, microelectromechanical systems technologies will play an important role in the future of medicine and neurosurgery. The second article will discuss current nanotechnologies that are being, or will be in the near future, incorporated into the armamentarium of the neurosurgeon. The goal of these articles is to keep the neuroscience community abreast of current developments in nanotechnology, nanomedicine, and, in particular, nanoneurosurgery, and to present possibilities for future applications of nanotechnology. As applications of nanotechnology permeate all forms of scientific and medical research, clinical applications will continue to emerge. Physicians of the present and future must take an active role in shaping the design and research of nanotechnologies to ensure maximal clinical relevance and patient benefit.
Collapse
Affiliation(s)
- James B Elder
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA.
| | | | | |
Collapse
|
112
|
Sun C, Veiseh O, Gunn J, Fang C, Hansen S, Lee D, Sze R, Ellenbogen RG, Olson J, Zhang M. In vivo MRI detection of gliomas by chlorotoxin-conjugated superparamagnetic nanoprobes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2008; 4:372-9. [PMID: 18232053 PMCID: PMC2692358 DOI: 10.1002/smll.200700784] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Converging advances in the development of nanoparticle-based imaging probes and improved understanding of the molecular biology of brain tumors offer the potential to provide physicians with new tools for the diagnosis and treatment of these deadly diseases. However, the effectiveness of promising nanoparticle technologies is currently limited by insufficient accumulation of these contrast agents within tumors. Here a biocompatible nanoprobe composed of a poly(ethylene glycol) (PEG) coated iron oxide nanoparticle that is capable of specifically targeting glioma tumors via the surface-bound targeting peptide, chlorotoxin (CTX), is presented. The preferential accumulation of the nanoprobe within gliomas and subsequent magnetic resonance imaging (MRI) contrast enhancement are demonstrated in vitro in 9L cells and in vivo in tumors of a xenograft mouse model. TEM imaging reveals that the nanoprobes are internalized into the cytoplasm of 9L cells and histological analysis of selected tissues indicates that there are no acute toxic effects of these nanoprobes. High targeting specificity and benign biological response establish this nanoprobe as a potential platform to aid in the diagnosis and treatment of gliomas and other tumors of neuroectodermal origin.
Collapse
Affiliation(s)
- Conroy Sun
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Guillaume DJ, Huhn SL, Selden NR, Steiner RD. Cellular therapy for childhood neurodegenerative disease. Part I: rationale and preclinical studies. Neurosurg Focus 2008; 24:E22. [DOI: 10.3171/foc/2008/24/3-4/e21] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
✓ Successful cellular replacement in the diseased human central nervous system (CNS) faces numerous hurdles. In this first installment of a 2-part review, the authors report on the preclinical challenges involved in preparing for a major Phase I trial investigating the safety of human neural stem cell transplantation in a lysosomal storage disorder. Specifically, they discuss choice of the ideal disease for treatment, best donor cell type and source for implantation, the in vitro and in vivo methods used to estimate safety and efficacy, the challenges to noninvasive tracking of cells after transplantation, and the unique issues related to the immunology of CNS cellular transplantation.
Collapse
Affiliation(s)
| | - Stephen L. Huhn
- 6Department of Neurological Surgery, Stanford University; and
- 7StemCells Inc., Palo Alto, California
| | | | - Robert D. Steiner
- 2Pediatrics, and
- 3Molecular and Medical Genetics, and
- 4Oregon Clinical and Translational Research Center
- 5Child Development and Rehabilitation Center/Doernbecher Children's Hospital, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
114
|
Elder JB, Liu CY, Apuzzo ML. NEUROSURGERY IN THE REALM OF 10−9, PART 2. Neurosurgery 2008; 62:269-84; discussion 284-5. [DOI: 10.1227/01.neu.0000315995.73269.c3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- James B. Elder
- Department of Neurological Surgery, University of Southern California, Keck School of Medicine, Los Angeles, California
| | - Charles Y. Liu
- Department of Neurological Surgery, University of Southern California, Keck School of Medicine, Los Angeles, California
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Michael L.J. Apuzzo
- Department of Neurological Surgery, University of Southern California, Keck School of Medicine, Los Angeles, California
| |
Collapse
|
115
|
Vellinga MM, Oude Engberink RD, Seewann A, Pouwels PJW, Wattjes MP, van der Pol SMA, Pering C, Polman CH, de Vries HE, Geurts JJG, Barkhof F. Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. ACTA ACUST UNITED AC 2008; 131:800-7. [PMID: 18245785 DOI: 10.1093/brain/awn009] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Gadolinium-DTPA (Gd-DTPA) is routinely used as a marker for inflammation in MRI to visualize breakdown of the blood-brain barrier (BBB) in multiple sclerosis. Recent data suggest that ultra-small superparamagnetic particles of iron oxide (USPIO) can be used to visualize cellular infiltration, another aspect of inflammation. This project aimed to compare the novel USPIO particle SHU555C to the longitudinal pattern of Gd-DTPA enhancement in multiple sclerosis. Nineteen relapsing-remitting patients were screened monthly using Gd-enhanced MRI. In case of new enhancing lesions, USPIO were injected and 24 h later, MRI was performed and blood was collected to confirm USPIO loading of circulating monocytes. Lesion development was monitored by 3 monthly Gd-DTPA-enhanced scans and a final scan 7-11 months after injection. USPIO-enhancement was observed as hyperintensity on T1-weighted images, whereas no signal changes were observed on T2-weighted-gradient-echo images. In 14 patients with disease activity, 188 USPIO-positive lesions were seen, 144 of which were Gd-negative. By contrast, there were a total of 59 Gd-positive lesions, 15 of which were USPIO negative. Three patterns of USPIO-enhancement were seen: (i) focal enhancement; (ii) ring-like enhancement and (iii) return to isointensity of a previously hypointense lesion. The latter pattern was most frequently observed for lesions that turned out to be transiently hypointense on follow-up scans, and ring-enhancing lesions were less likely to evolve into black holes at follow-up than lesions without ring-like USPIO-enhancement; we speculate this to be associated with repair. In 4% of the USPIO-positive/Gd negative lesions, USPIO-enhancement preceded Gd-enhancement by 1 month. USPIO-enhancement remained visible for up to 3 months in 1.5% of all USPIO-positive lesions. In 29% of the lesions enhancing with both contrast agents, USPIO-enhancement persisted whereas Gd-enhancement had already resolved. In conclusion, the new nano-particle SHU555C provides complementary information to Gd-enhanced MRI, probably related to monocyte infiltration. The use of USPIO-enhanced MRI is likely to lead to more insight in the pluriformity of inflammation in multiple sclerosis.
Collapse
Affiliation(s)
- Machteld M Vellinga
- Department of Neurology, University Medical Centre, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Wu YJ, Muldoon LL, Varallyay C, Markwardt S, Jones RE, Neuwelt EA. In vivo leukocyte labeling with intravenous ferumoxides/protamine sulfate complex and in vitro characterization for cellular magnetic resonance imaging. Am J Physiol Cell Physiol 2007; 293:C1698-708. [PMID: 17898131 DOI: 10.1152/ajpcell.00215.2007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cellular labeling with ferumoxides (Feridex IV) superparamagnetic iron oxide nanoparticles can be used to monitor cells in vivo by MRI. The objective of this study was to use histology and MRI to evaluate an in vivo, as opposed to in vitro, technique for labeling of mononuclear leukocytes as a means of tracking inflammatory processes in the brain. Long-Evans rats were intravenously injected with 20 mg/kg ferumoxides, ferumoxtran-10, or ferumoxytol with or without protamine sulfate. Leukocytes and splenocytes were evaluated by cell sorting and iron histochemistry or were implanted into the brain for MRI. Injection of ferumoxides/protamine sulfate complex IV resulted in iron labeling of leukocytes (ranging from 7.4 ± 0.5% to 12.5 ± 0.9% with average 9.2 ± 0.8%) compared with ferumoxides (ranging from 3.9 ± 0.4% to 6.3 ± 0.5% with average 5.0 ± 0.5%) or protamine sulfate alone (ranging from 0% to 0.9 ± 0.7% with average 0.3 ± 0.3%). Cell sorting analysis indicated that iron-labeled cells were enriched for cell types positive for the myelomonocytic marker (CD11b/c) and the B lymphocyte marker (CD45RA) and depleted in the T cell marker (CD3). Neither ferumoxtran-10 nor ferumoxytol with protamine sulfate labeled leukocytes. In vivo ferumoxides/protamine sulfate-loaded leukocytes and splenocytes were detected by MRI after intracerebral injection. Ferumoxides/protamine complex labeled CD45RA-positive and CD11b/c-positive leukocytes in vivo without immediate toxicity. The dose of feumoxides in this report is much higher than the approved human dose, so additional animal studies are required before this approach could be translated to the clinic. These results might provide useful information for monitoring leukocyte trafficking into the brain.
Collapse
Affiliation(s)
- Y Jeffrey Wu
- Research Service, Veterans Administration Medical Center, Oregon Health and Sciences University, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
117
|
Abstract
Nanotechnology encompasses the creation and use of materials, devices, and systems at the level of atoms, molecules, and supramolecular structures. Nanotechnology for cancer consists of three main areas: (1) nanodetectors for sensing proteins and cancer cells, (2) nanoparticle or nanovector formulations for high-contrast imaging, and (3) nanotechnology-based drug delivery and therapeutic formulations. Although there are tremendous challenges facing nanotechnologists, nanotechnology, if properly integrated with established cancer research, can make laboratory-to-clinic transfer of technology successful, which can result in breakthrough potential for patient care.
Collapse
Affiliation(s)
- Balaji Panchapakesan
- Delaware MEMS and Nanotechnology Laboratory, Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA.
| | | |
Collapse
|
118
|
Gao J, Zhang B, Gao Y, Pan Y, Zhang X, Xu B. Fluorescent magnetic nanocrystals by sequential addition of reagents in a one-pot reaction: a simple preparation for multifunctional nanostructures. J Am Chem Soc 2007; 129:11928-35. [PMID: 17824703 DOI: 10.1021/ja0731017] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Core-shell nanostructures consisting of FePt magnetic nanoparticles as the core and semiconducting chalcogenides as the shell were synthesized by a series of reactions in a one-pot procedure. Adding Cd(acac)2 as the cadmium precursor to a reaction mixture containing FePt nanoparticles afforded FePt@CdO core-shell intermediates. The subsequent addition of chalcogens yielded FePt@CdX core-shell nanocrystals (where X was S or Se). The reverse sequence of addition, i.e., adding X before Cd, resulted in spongelike nanostructures because the chalcogens readily formed nanowires in the solution. Transmission electron microscopy, energy-dispersive X-ray spectrometry, selected area electron diffraction, fluorescence spectroscopy, and SQUID were used to characterize the nanostructures. These core-shell nanostructures displayed superparamagnetism at room temperature and exhibited fluorescence with quantum yields of 2.3-9.7%. The flexibility in the sequence of addition of reagents, combined with the compatibility of the lattices of the different materials, provides a powerful yet convenient strategy for generating sophisticated, multifunctional nanostructures.
Collapse
Affiliation(s)
- Jinhao Gao
- Department of Chemistry, Graduate Program of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
119
|
Ellis-Behnke R. Nano neurology and the four P's of central nervous system regeneration: preserve, permit, promote, plasticity. Med Clin North Am 2007; 91:937-62. [PMID: 17826112 DOI: 10.1016/j.mcna.2007.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
True nanomaterials are delivered as a specific structure, or combination of structures, designed to deliver the therapeutic intact, directly to the site, requiring a much lower dose. These materials use very specific and deliberate molecular structures that can interact with neurons or protein structures inside the cells. Until recently, functional recovery of the central nervous system (CNS) was an unattainable goal and nanotechnology was an invisible science. A well-planned treatment spaced over time will produce functional return in the CNS. The four P's of CNS regeneration is a new framework for approaching CNS injury and evidence shows that nanotechnology is currently being used for stroke rehabilitation and, in several clinical trials, the treatment of scar formation blockade in the spinal cord. The four components are preserve, permit, promote, and plasticity.
Collapse
Affiliation(s)
- Rutledge Ellis-Behnke
- MIT, Brain and Cognitive Sciences, 46-6007, 43 Vassar Street, Cambridge, MA 02139, USA.
| |
Collapse
|
120
|
Sakamoto J, Annapragada A, Decuzzi P, Ferrari M. Antibiological barrier nanovector technology for cancer applications. Expert Opin Drug Deliv 2007; 4:359-69. [PMID: 17683250 DOI: 10.1517/17425247.4.4.359] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The advent of sophisticated drug delivery strategies for cancer applications has inundated the scientific and clinical community with new tactics and approaches such as molecular targeting, nanotechnology-based methods and personalized therapies. Unfortunately, the clinical impact has been moderate at best, falling significantly short from revolutionizing existing chemotherapeutic methodologies. To this day, a cancer patient has a higher probability of receiving traditional systemically administered drugs than a more sophisticated targeted or nanotechnology-based therapeutic. This is not a reflection upon the novelty or quality of the technologies, but an indication of opportunity for a new approach that offers the realisation of the full potential of these scientific advances. This approach acknowledges the significance of the numerous biological barriers presented in the human body and their sequential nature. It is then recommended that computational mathematical tools are used to predict which nanovectors, surface modifications, therapeutic agents and penetration enhancers to use for a multi-stage drug delivery strategy. An approach where several stages of micro-/nano-vectors are nested within each other and delivered to overcome specific biological barriers to ultimately release a concentrated dose of a therapeutic payload at the intended lesion site. This novel, multi-stage strategy enables efficient localised delivery of chemotoxic drugs that may lead to significant improvements in therapy efficacy, reduced systemic toxicity and decreased total amount of injected drugs.
Collapse
Affiliation(s)
- Jason Sakamoto
- Alliance for NanoHealth, 1825 Herman Pressler Street, Suite 537A, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
121
|
Petry KG, Boiziau C, Dousset V, Brochet B. Magnetic resonance imaging of human brain macrophage infiltration. Neurotherapeutics 2007; 4:434-42. [PMID: 17599709 PMCID: PMC7479730 DOI: 10.1016/j.nurt.2007.05.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Macrophage tracking by magnetic resonance imaging (MRI) with iron oxide nanoparticles has been developed during the last decade for numerous diseases of the CNS. Experimental studies on animal models were confirmed by first clinical applications of MRI technology of brain macrophages for multiple sclerosis, ischemic stroke lesions, and tumors. As activated macrophages act in concert with other immune competent cells, this innovative MRI approach provides new functional data on the immune reaction in these CNS diseases. The MRI detection of brain macrophages defines precise spatial and temporal patterns of macrophage involvement that helps to characterize individual neurological disorders. This approach is being explored as an in vivo marker for the clinical diagnosis of cerebral lesion activity, in experimental models for the prognosis of disease development, and to determine the efficacy of immunomodulatory treatments under clinical evaluation. Comparative brain imaging follow-up studies of blood-brain barrier leakage by MRI with gadolinium-chelates, microglia activation by positron emission tomography with radiotracer ligand PK11195 and MRI detection of macrophage infiltration provide more precise information about the pathophysiological cascade of inflammatory events in cerebral diseases. Such multimodal characterization of the inflammatory events should help in the monitoring of patients, in defining precise time intervals for therapeutic interventions, and in developing and evaluating new therapeutic strategies.
Collapse
Affiliation(s)
- Klaus G Petry
- University of Bordeaux, EA2966 Neurobiology of Myelin Diseases, Bordeaux, Cedex F-33076 France.
| | | | | | | |
Collapse
|
122
|
Neuwelt EA, Várallyay CG, Manninger S, Solymosi D, Haluska M, Hunt MA, Nesbit G, Stevens A, Jerosch-Herold M, Jacobs PM, Hoffman JM. The potential of ferumoxytol nanoparticle magnetic resonance imaging, perfusion, and angiography in central nervous system malignancy: a pilot study. Neurosurgery 2007; 60:601-11; discussion 611-2. [PMID: 17415196 DOI: 10.1227/01.neu.0000255350.71700.37] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Ferumoxytol, an iron oxide nanoparticle that targets phagocytic cells, can be used in magnetic resonance imaging of malignant brain tumors and can be administered as a bolus, allowing dynamic imaging. Our objectives were to determine the optimum time of delayed contrast enhancement of ferumoxytol, and to compare ferumoxytol and gadolinium contrast agents for magnetic resonance angiography and perfusion. METHODS Twelve patients with malignant brain tumors underwent serial magnetic resonance imaging multiple times up to 72 hours after ferumoxytol injection at both 1.5 and 3-T. The enhancement time course was determined for ferumoxytol and compared with a baseline gadolinium scan. Perfusion, time-of-flight and dynamic magnetic resonance angiography and T1-weighted scans were compared for the two agents. RESULTS The lesions were detectable at all field strengths, even with an intraoperative 0.15-T magnet. Maximal ferumoxytol enhancement intensity was at 24 to 28 hours after administration, and the enhancing volume subsequently expanded with time into a non-gadolinium-enhancing, high T2-weighted signal region of tumor-infiltrated brain. Dynamic studies were assessed with both agents, indicating early vascular leak with gadolinium but not with ferumoxytol. CONCLUSION Our most important finding was that gadolinium leaks out of blood vessels early after injection, whereas ferumoxytol stays intravascular in the "early" phase, thereby increasing the accuracy of tumor perfusion assessment. As a magnetic resonance imaging contrast agent, ferumoxytol visualizes brain tumors at all field strengths evaluated, with delayed enhancement peaking at 24 to 28 hours after administration.
Collapse
Affiliation(s)
- Edward A Neuwelt
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Kremer S, Pinel S, Védrine PO, Bressenot A, Robert P, Bracard S, Plénat F. Ferumoxtran-10 enhancement in orthotopic xenograft models of human brain tumors: an indirect marker of tumor proliferation? J Neurooncol 2007; 83:111-9. [PMID: 17443290 DOI: 10.1007/s11060-006-9260-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 08/30/2006] [Indexed: 10/23/2022]
Abstract
PURPOSE Ferumoxtran-10 belongs to the Ultra Small Particles of Iron Oxide (USPIO) class of contrast agents and induces delayed tumor enhancement in brain tumors, reflecting the trapping of iron oxide particles by the macrophages and activated microglia. The aim of the study was to compare Ferumoxtran-10 contrast enhancement in four human high-grade glioma xenograft models (TCG2, TCG3, TCG4, and U87) with different growing profiles. MATERIALS AND METHODS Fragments of human malignant glioma were orthotopically xenografted into the brain of four groups of nude mice. All mice underwent a MRI examination 24 h after intravenous administration of Ferumoxtran-10 (axial T1 SE weighted MR images). The contrast enhancement observed in the different tumor types was measured and was correlated to in vivo tumor growth and to histological parameters, such as proliferative tumor cell fraction, apoptosis, vascular density, and Perls' staining score. RESULTS A good relationship was observed: (a) between tumor-to-background contrast and proliferative index, (b) between tumor-to-background contrast and tumor growth, and (c) between tumor-to-background contrast and Perls' staining score. The registered MR enhancement contrasts were not influenced by apoptotic index and by vascular density in these experimental xenografts. CONCLUSIONS Tumor contrast enhancement 24 h after intravenous Ferumoxtran-10 administration seems to be well correlated to tumor proliferative index and tumor growth and could be used as an indirect marker of tumor proliferation.
Collapse
Affiliation(s)
- Stéphane Kremer
- Service de Neuro-Radiologie, Hôpital Central, CHRU Nancy, Nancy, France.
| | | | | | | | | | | | | |
Collapse
|
124
|
Oh BC, Pagnini PG, Wang MY, Liu CY, Kim PE, Yu C, Apuzzo MLJ. Stereotactic radiosurgery: adjacent tissue injury and response after high-dose single fraction radiation: Part I--Histology, imaging, and molecular events. Neurosurgery 2007; 60:31-44; discussion 44-5. [PMID: 17228251 DOI: 10.1227/01.neu.0000249191.23162.d2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Radiosurgery is now the preferred treatment modality for many intracranial disease processes. Although almost 50 years have passed since it was introduced as a tool to treat neurological disease, investigations into its effects on normal tissues of the central nervous system are still ongoing. The need for these continuing studies must be underscored. A fundamental understanding of the brain parenchymal response to radiosurgery would permit development of strategies that would enhance and potentiate the radiosurgical treatment effects on diseased tissue while mitigating injury to normal structures. To date, most studies on the response of the central nervous system to radiosurgery have been performed on brain tissue in the absence of pathological lesions, such as benign tumors or metastases. Although instructive, these investigations fail to emulate the majority of clinical scenarios that involve radiosurgical treatment of specific lesions surrounded by normal brain parenchyma. This article is the first in a two-part series that addresses the brain parenchyma's response to radiosurgery. This first article analyzes the histological, radiographic, and molecular data gathered regarding the brain parenchymal response to radiosurgery and aims to suggest future studies that could enhance our understanding of the topic. The second article in the series begins by discussing strategies for radiosurgical therapeutic enhancement. It concludes by focusing on strategies for mitigation and repair of radiation-induced brain injury.
Collapse
Affiliation(s)
- Bryan C Oh
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | |
Collapse
|
125
|
Jackson H, Muhammad O, Daneshvar H, Nelms J, Popescu A, Vogelbaum MA, Bruchez M, Toms SA. Quantum dots are phagocytized by macrophages and colocalize with experimental gliomas. Neurosurgery 2007; 60:524-9; discussion 529-30. [PMID: 17327798 DOI: 10.1227/01.neu.0000255334.95532.dd] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The identification of neoplastic tissue within normal brain during biopsy and tumor resection remains a problem in the operative management of gliomas. A variety of nanoparticles are phagocytized by macrophages in vivo. This feature may allow optical nanoparticles, such as quantum dots, to colocalize with brain tumors and serve as an optical aid in the surgical resection or biopsy of brain tumors. METHODS Male Fisher rats (Charles River Labs, Wilmington, MA) were implanted intracranially with C6 gliosarcoma cell lines to establish tumors. Two weeks after the implantation of tumors, 705-nm emission Qdot ITK Amino(PEG) Quantum Dots (Quantum Dot Corp., Hayward, CA) were injected via the tail vein at doses of 3 to 17 nmol. The animals were sacrificed 24 hours after the injection of quantum dots and their tissues were examined. RESULTS Quantum dots are avidly phagocytized by macrophages and are taken up by the liver, spleen, and lymph nodes. A dose-response relationship was noted. At low doses, the majority of the quantum dots are sequestered in the liver, spleen, and lymph nodes. At higher doses, increasing quantities of quantum dots are noted within the experimental brain tumors. Macrophages and microglia colocalize with glioma cells, carrying the quantum dot and thereby optically outlining the tumor. Excitation with blue or ultraviolet wavelengths stimulates the quantum dots, which give off a deep red fluorescence detectable with charge-coupled device cameras, optical spectroscopy units, and in dark-field fluorescence microscopy. CONCLUSION Quantum dots are optical nanoparticles that, when delivered in nanomole doses, are phagocytized by the macrophages and microglia that infiltrate experimental gliomas. The optical signal may be detected, allowing for improved identification and visualization of tumors, potentially augmenting brain tumor biopsy and resection.
Collapse
Affiliation(s)
- Heather Jackson
- Brain Tumor Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Grand S, Kremer S, Tropres I, Pasteris C, Krainik A, Hoffmann D, Chabardes S, Berger F, Pasquier B, Lefournier V, Le Bas JF. Spectroscopie 1H, perfusion, diffusion : quelle place pour ces techniques lors du diagnostic et du suivi des principales tumeurs cérébrales sus-tentorielles de l’adulte ? Rev Neurol (Paris) 2006; 162:1204-20. [PMID: 17151513 DOI: 10.1016/s0035-3787(06)75134-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION In a few years, magnetic resonance imaging (MRI) has evolved from a morphology-based examination to one that encompasses metabolism and function. STATE OF ART MRI is a well-established tool for the initial evaluation of brain tumors, but conventional MR sequences have some limitations. Conventional MRI is unable to distinguish high-grade glioma from metastasis and abscess, to define precisely the histopathological grade of gliomas, to determine exactly the limits of tumor extension, to characterize meningeal tumors. Differentiation of tumor recurrence from treatment-related changes may be difficult with standard MR imaging because the interpretation is essentially based on volume analysis. PERSPECTIVES 1H Spectroscopy, diffusion and perfusion imaging become possible with the development of MR imagers and can be routinely performed in clinical settings. They give complementary information about tumor metabolism and vascularity and allow a better analysis of post-treatment modifications. Functional and metabolic explorations should be used to characterize brain tumors.
Collapse
|
127
|
Jahnke K, Doolittle ND, Muldoon LL, Neuwelt EA. Implications of the blood–brain barrier in primary central nervous system lymphoma. Neurosurg Focus 2006; 21:E11. [PMID: 17134113 DOI: 10.3171/foc.2006.21.5.12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
✓ The optimal treatment of primary central nervous system lymphoma (PCNSL), a rare form of extranodal non-Hodgkin lymphoma, has yet to be defined. Whole-brain radiation therapy (WBRT) has limited efficacy as a single therapeutic modality and is associated with a high risk of delayed neurotoxicity. Methotrexate-based chemotherapy regimens yield poor drug penetration across the blood–brain barrier (BBB), thus necessitating administration of high doses with the concomitant risk of increased systemic and neurological toxicity. Combined-modality therapy (WBRT plus chemotherapy) can improve response and survival rates, yet it is associated with a high risk of neurotoxicity. The aim of chemotherapy in conjunction with BBB disruption is to maximize drug delivery to the brain and improve the agent's efficacy, while preserving neurocognitive function and minimizing systemic toxicity. Methotrexate-based chemotherapy regimens administered in conjunction with BBB disruption have shown promising results in PCNSL. Animal models of central nervous system lymphoma and drug neurotoxicity offer new possibilities to study the effects of various treatments on PCNSL and normal brain and can also help understand biological and pathophysiological aspects of this disease. Because the intact BBB is even less permeable to antibodies than it is to drugs, preclinical and clinical studies of monoclonal antibody delivery (for example, rituximab and 90Y ibritumomab tiuxetan) to the brain in conjunction with BBB disruption offer a new possibility to make these novel treatments more efficient against PCNSL. Regarding the evaluation of more sensitive and specific diagnostic imaging tools, iron oxide–based contrast agents for magnetic resonance imaging have shown promise for better differentiation of PCNSL from other white matter diseases.
Collapse
Affiliation(s)
- Kristoph Jahnke
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | | | | | | |
Collapse
|
128
|
Tréhin R, Figueiredo JL, Pittet MJ, Weissleder R, Josephson L, Mahmood U. Fluorescent nanoparticle uptake for brain tumor visualization. Neoplasia 2006; 8:302-11. [PMID: 16756722 PMCID: PMC1600680 DOI: 10.1593/neo.05751] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Accurate delineation of tumor margins is vital to the successful surgical resection of brain tumors. We have previously developed a multimodal nanoparticle CLIO-Cy5.5, which is detectable by both magnetic resonance imaging and fluorescence, to assist in intraoperatively visualizing tumor boundaries. Here we examined the accuracy of tumor margin determination of orthotopic tumors implanted in hosts with differing immune responses to the tumor. Using a nonuser-based signal intensity method applied to fluorescent micrographs of 9L gliosarcoma green fluorescent protein (GFP) tumors, mean overestimations of 2 and 24 microm were obtained using Cy5.5 fluorescence, compared to the true tumor margin determined by GFP fluorescence, in nude mice and rats, respectively. To resolve which cells internalized the nanoparticle and to quantitate degree of uptake, tumors were disaggregated and cells were analyzed by flow cytometry and fluorescence microscopy. Nanoparticle uptake was seen in both CD11b+ cells (representing activated microglia and macrophages) and tumor cells in both animal models by both methods. CD11b+ cells were predominantly found at the tumor margin in both hosts, but were more pronounced at the margin in the rat model. Additional metastatic (CT26 colon) and primary (Gli36 glioma) brain tumor models likewise demonstrated that the nanoparticle was internalized both by tumor cells and by host cells. Together, these observations suggest that fluorescent nanoparticles provide an accurate method of tumor margin estimation based on a combination of tumor cell and host cell uptake for primary and metastatic tumors in animal model systems and offer potential for clinical translation.
Collapse
Affiliation(s)
- Rachel Tréhin
- Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
129
|
Muldoon LL, Sàndor M, Pinkston KE, Neuwelt EA. Imaging, distribution, and toxicity of superparamagnetic iron oxide magnetic resonance nanoparticles in the rat brain and intracerebral tumor. Neurosurgery 2006; 57:785-96; discussion 785-96. [PMID: 16239893 DOI: 10.1093/neurosurgery/57.4.785] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Superparamagnetic iron oxide nanoparticle magnetic resonance imaging (MRI) contrast agents are gaining use in the central nervous system. The purpose of this study was to evaluate the imaging characteristics, distribution, time course, and neurotoxicity of the clinical agents ferumoxtran-10, ferumoxides, and ferumoxytol, and the laboratory preparation MION-46 in rat brain. METHODS Iron oxide agents were administered by intracerebral inoculation or intraarterially after osmotic blood-brain barrier opening in normal rats and intravenously in nude rats with intracerebral tumor xenografts. Rat brains were imaged by MRI at multiple time points and then were assessed for iron histochemistry and pathological features. RESULTS After intracerebral injection, MRI signal changes declined slowly over weeks to months. After transvascular delivery, transient (3 d) enhancement was seen with ferumoxtran-10 or ferumoxytol, whereas ferumoxides induced long-term (28 d) signal dropout. No pathological brain cell or myelin changes were detected after delivery of the clinical iron oxide agents to normal brains. In tumor models, ferumoxtran-10 enhanced one small-cell lung carcinoma intracerebral tumor, which correlated with iron staining in cells with macrophage morphological features at the tumor margin. Little enhancement was seen in two other models. CONCLUSION These studies demonstrate the safety and efficacy of iron oxide-based MRI contrast agents in the brain and provide imaging parameters and time course data for future studies in brain tumors and neurological lesions.
Collapse
Affiliation(s)
- Leslie L Muldoon
- Department of Neurology, Oregon Health & Sciences University, Portland, Oregon, USA
| | | | | | | |
Collapse
|
130
|
Jain KK. Role of nanotechnology in developing new therapies for diseases of the nervous system. Nanomedicine (Lond) 2006; 1:9-12. [PMID: 17716203 DOI: 10.2217/17435889.1.1.9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
131
|
Leary SP, Liu CY, Apuzzo MLJ. Toward the Emergence of Nanoneurosurgery: Part II—Nanomedicine: Diagnostics and Imaging at the Nanoscale Level. Neurosurgery 2006; 58:805-23; discussion 805-23. [PMID: 16639314 DOI: 10.1227/01.neu.0000216793.45952.ed] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
THE NOTION OF nanotechnology has evolved since its inception as a fantastic conceptual idea to its current position as a mainstream research initiative with broad applications among all divisions of science. In the first part of this series, we reviewed the structures and principles that comprise the main body of knowledge of nanoscience and nanotechnology (58). This article reviews and discusses the applications of nanotechnology to biological systems that will undoubtedly transform the foundations of disease diagnosis, treatment, and prevention in the future. Specific attention is given to developments in diagnostics and imaging at the nanoscale level. The use of nanoparticles and nanomaterials as biodetection agents for deoxyribonucleic acid and proteins is presented. In addition, nanodevices, such as nanowires, nanotubes, and nanocantilevers, can be combined with nanoarrays and nanofluidics to create integrated and automated nanodetection platforms. Molecular imaging modalities based on quantum dots and magnetic nanoparticles are also discussed. This technology has been extended to the imaging of intracranial neoplasms. Further innovation within these disciplines will form the basis for the development of mature nanomedicine. The final article of the series will focus on additional advancements in nanomedicine, namely nanotherapy and nanosurgery, and will cover the innovations that will lead to the eventual realization of nanoneurosurgery.
Collapse
Affiliation(s)
- Scott P Leary
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | |
Collapse
|
132
|
Cengelli F, Maysinger D, Tschudi-Monnet F, Montet X, Corot C, Petri-Fink A, Hofmann H, Juillerat-Jeanneret L. Interaction of Functionalized Superparamagnetic Iron Oxide Nanoparticles with Brain Structures. J Pharmacol Exp Ther 2006; 318:108-16. [PMID: 16608917 DOI: 10.1124/jpet.106.101915] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Super Paramagnetic Iron Oxide Nanoparticles (SPIONs) combined with magnetic resonance imaging (MRI) are under clinical evaluation to enhance detection of neurodegenerative diseases. A major improvement would be to link therapeutic drugs to the SPIONs to achieve targeted drug delivery, either at the cell surface or intracellularly, together with active disease detection, without inducing cell reaction. Our objectives were to define the characteristics of SPIONS able to achieve cell-specific interaction with brain-derived structures. Our system consisted in an iron oxide core (9-10 nm diameter) coated either with dextran (Sinerem and Endorem) or various functionalized polyvinyl alcohols (PVAs) (PVA-SPIONs). We investigated the cellular uptake, cytotoxicity, and interaction of these various nanoparticles with brain-derived endothelial cells, microglial cells, and differentiating three-dimensional aggregates. None of the nanoparticles coated with dextran or the various PVAs was cytotoxic or induced the production of the inflammatory mediator NO used as a reporter for cell activation. AminoPVA-SPIONs were taken up by isolated brain-derived endothelial and microglial cells at a much higher level than the other SPIONs, and no inflammatory activation of these cells was observed. AminoPVA-SPIONs did not invade brain cells aggregates lower than the first cell layer and did not induce inflammatory reaction in the aggregates. Fluorescent aminoPVA-SPIONs derivatized with a fluorescent reporter molecule and confocal microscopy demonstrated intracellular uptake by microglial cells. Fluorescent aminoPVA-SPIONs were well tolerated by mice. Therefore, functionalized aminoPVA-SPIONs represent biocompatible potential vector systems for drug delivery to the brain that may be combined with MRI detection of active lesions in neurodegenerative diseases.
Collapse
Affiliation(s)
- Feride Cengelli
- University Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Will O, Purkayastha S, Chan C, Athanasiou T, Darzi AW, Gedroyc W, Tekkis PP. Diagnostic precision of nanoparticle-enhanced MRI for lymph-node metastases: a meta-analysis. Lancet Oncol 2006; 7:52-60. [PMID: 16389184 DOI: 10.1016/s1470-2045(05)70537-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND At present, there is no accepted, ideal imaging modality or technique for diagnosis of lymph-node metastases. We aimed to assess the diagnostic precision of MRI with ferumoxtran-10-an ultrasmall superparamagnetic iron-oxide nanoparticle used as a contrast agent for diagnosis of lymph-node metastases, compared with that of unenhanced MRI and final histological diagnosis. METHODS We did a meta-analysis of prospective studies that compared MRI, with and without ferumoxtran-10, with histological diagnosis after surgery or biopsy. Sensitivity, specificity, and diagnostic odds ratio (DOR) were calculated for every study; summary receiver operating characteristic (ROC) and subgroup analyses were done; and study quality and heterogeneity were assessed. Metaregression analysis was used to analyse the effect of ferumoxtran-10 in diagnostic precision of MRI. FINDINGS Summary ROC curve analysis for per-lymph-node data showed an overall sensitivity of 0.88 (95% CI 0.85-0.91) and overall specificity of 0.96 (0.95-0.97) for ferumoxtran-10-enhanced MRI. Overall weighted area under the curve for ferumoxtran-10-enhanced MRI was 0.96 (SE 0.01), DOR 123.05 (95% CI 5.93-256.93). Unenhanced MRI had less overall sensitivity (0.63 [0.57-0.69]) and specificity (0.93 [0.91-0.94]), with an overall weighted area under the ROC curve of 0.84 (SE 0.11) and DOR of 26.75 (95% CI 8.48-84.42). Significant heterogeneity was noted for studies reporting enhanced MRI and unenhanced MRI. Metaregression analysis confirmed the significant effect of ferumoxtran-10 in the diagnostic precision of MRI (p=0.001). INTERPRETATION Ferumoxtran-10-enhanced MRI is sensitive and specific in detection of lymph-node metastases for various tumours. It offers higher diagnostic precision than does unenhanced MRI for detection of lymph-node metastases, and allows functional and anatomical definition when used as an imaging modality.
Collapse
Affiliation(s)
- Olivia Will
- Centre for Academic Surgery, Barts and The London, Queen Mary's School of Medicine and Dentistry, Whitechapel, London, UK
| | | | | | | | | | | | | |
Collapse
|
134
|
Murillo TP, Sandquist C, Jacobs PM, Nesbit G, Manninger S, Neuwelt EA. Imaging brain tumors with ferumoxtran-10, a nanoparticle magnetic resonance contrast agent. ACTA ACUST UNITED AC 2005. [DOI: 10.2217/14750708.2.6.871] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
135
|
Abstract
An ideal injected therapeutic drug would travel through the vasculature, reach the intended target at full concentration, and there act selectively on diseased cells and tissues only, without creating undesired side effects. Unfortunately, even the best current therapies fail to attain this ideal behavior, by a wide margin. A primary reason is the fact that the target recognition abilities of the current therapeutics molecules are quite limited. Furthermore, the natural defenses of the body present a sequence of formidable obstacles on the drug's pathway to the intended lesion. Requiring any molecule to have sufficient therapeutic efficacy, target recognition specificity, as well as all of the tools required to bypass multiple biological barriers is probably unrealistic. A different approach is to decouple the problem (i.e. employ the drug molecules for their therapeutic action only, and deliver them to the intended site by vectors that can be preferentially concentrated at desired body locations through the concurrent action of multiple targeting mechanisms). These vectors must also be large enough to comprise all the requirements for the evasion of the body defenses, while still sufficiently small so as not to create undesired blockages of even the smallest of blood vessels - and thus, by definition, nanotechnological.
Collapse
Affiliation(s)
- Mauro Ferrari
- The Ohio State University, Columbus 43210-1002, USA.
| |
Collapse
|
136
|
Muldoon LL, Sàndor M, Pinkston KE, Neuwelt EA. Imaging, Distribution, and Toxicity of Superparamagnetic Iron Oxide Magnetic Resonance Nanoparticles in the Rat Brain and Intracerebral Tumor. Neurosurgery 2005. [DOI: 10.1227/01.neu.0000175731.25414.4c] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Leslie L. Muldoon
- Departments of Neurology and Cell and Developmental Biology, Oregon Health & Sciences University, Portland, Oregon
| | - Manninger Sàndor
- Departments of Neurology and Cell and Developmental Biology, Oregon Health & Sciences University, Portland, Oregon
| | | | - Edward A. Neuwelt
- Departments of Neurology and Neurosurgery, Oregon Health & Sciences University, and Department of Neurosurgery, Veterans Administration Medical Center, Portland, Oregon
| |
Collapse
|
137
|
Abstract
Nanotechnology is a multidisciplinary field, which covers a vast and diverse array of devices derived from engineering, biology, physics and chemistry. These devices include nanovectors for the targeted delivery of anticancer drugs and imaging contrast agents. Nanowires and nanocantilever arrays are among the leading approaches under development for the early detection of precancerous and malignant lesions from biological fluids. These and other nanodevices can provide essential breakthroughs in the fight against cancer.
Collapse
Affiliation(s)
- Mauro Ferrari
- Division of Haematology and Oncology, 110U Davis Heart and Lung Research Institute, The Ohio State University, 473 West 12th Avenue, Columbus OH 43210-1002, USA.
| |
Collapse
|
138
|
Doolittle ND, Abrey LE, Bleyer WA, Brem S, Davis TP, Dore-Duffy P, Drewes LR, Hall WA, Hoffman JM, Korfel A, Martuza R, Muldoon LL, Peereboom D, Peterson DR, Rabkin SD, Smith Q, Stevens GH, Neuwelt EA. New Frontiers in Translational Research in Neuro-oncology and the Blood-Brain Barrier: Report of the Tenth Annual Blood-Brain Barrier Disruption Consortium Meeting. Clin Cancer Res 2005. [DOI: 10.1158/1078-0432.421.11.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The blood-brain barrier (BBB) presents a major obstacle to the treatment of malignant brain tumors and other central nervous system (CNS) diseases. For this reason, a meeting partially funded by an NIH R13 grant was convened to discuss recent advances and future directions in translational research in neuro-oncology and the BBB. Cell biology and transport across the BBB, delivery of agents to the CNS, neuroimaging, angiogenesis, immunotherapy, and gene therapy, as well as glioma, primary CNS lymphoma, and metastases to the CNS were discussed. Transport across the BBB relates to the neurovascular unit, which consists not only of endothelial cells but also of pericyte, glia, and neuronal elements.
Collapse
Affiliation(s)
- Nancy D. Doolittle
- 1Department of Neurology, Oregon Health & Science University, Portland, Oregon
| | - Lauren E. Abrey
- 2Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - W. Archie Bleyer
- 3Divisions of Pediatrics and Community Oncology, M.D. Anderson Cancer Center, Houston, Texas
| | - Steven Brem
- 4Department of Neuro-oncology and Neurosurgery, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Thomas P. Davis
- 5Department of Pharmacology, Program in Neurosciences and Physiological Sciences, University of Arizona Medical School, Tucson, Arizona
| | - Paula Dore-Duffy
- 6Department of Neurology, Wayne State University, Detroit, Michigan
| | - Lester R. Drewes
- 7Department of Biochemistry and Molecular Biology, University of Minnesota School of Medicine, Duluth, Minnesota
| | - Walter A. Hall
- 8Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota
| | - John M. Hoffman
- 9National Cancer Institute, Cancer Imaging Program, Bethesda, Maryland
| | - Agnieszka Korfel
- 10Department of Hematology, Oncology, and Transfusion Medicine, Charite Campus Benjamin Franklin, Berlin, Germany
| | - Robert Martuza
- 11Department of Neurosurgery, Massachusetts General Hospital Neurosurgical Service, Harvard Medical School, Boston, Massachusetts
| | - Leslie L. Muldoon
- 1Department of Neurology, Oregon Health & Science University, Portland, Oregon
| | | | - Darryl R. Peterson
- 14Department of Physiology and Biophysics, Chicago Medical School, North Chicago, Illinois
| | - Samuel D. Rabkin
- 15Department of Neurosurgery, Massachusetts General Hospital-East Molecular Neurosurgery Laboratory, Harvard Medical School, Charlestown, Massachusetts; and
| | - Quentin Smith
- 16Department of Pharmaceutical Sciences, Texas Tech, Amarillo, Texas
| | - Glen H.J. Stevens
- 13Adult Neuro-oncology Brain Tumor Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Edward A. Neuwelt
- 1Department of Neurology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|