101
|
Várnai A, Siika-aho M, Viikari L. Carbohydrate-binding modules (CBMs) revisited: reduced amount of water counterbalances the need for CBMs. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:30. [PMID: 23442543 PMCID: PMC3599012 DOI: 10.1186/1754-6834-6-30] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/04/2013] [Indexed: 05/07/2023]
Abstract
BACKGROUND A vast number of organisms are known to produce structurally diversified cellulases capable of degrading cellulose, the most abundant biopolymer on earth. The generally accepted paradigm is that the carbohydrate-binding modules (CBMs) of cellulases are required for efficient saccharification of insoluble substrates. Based on sequence data, surprisingly more than 60% of the cellulases identified lack carbohydrate-binding modules or alternative protein structures linked to cellulases (dockerins). This finding poses the question about the role of the CBMs: why would most cellulases lack CBMs, if they are necessary for the efficient hydrolysis of cellulose? RESULTS The advantage of CBMs, which increase the affinity of cellulases to substrates, was found to be diminished by reducing the amount of water in the hydrolytic system, which increases the probability of enzyme-substrate interaction. At low substrate concentration (1% w/w), CBMs were found to be more important in the catalytic performance of the cellobiohydrolases TrCel7A and TrCel6A of Trichoderma reesei as compared to that of the endoglucanases TrCel5A and TrCel7B. Increasing the substrate concentration while maintaining the enzyme-to-substrate ratio enhanced adsorption of TrCel7A, independent of the presence of the CBM. At 20% (w/w) substrate concentration, the hydrolytic performance of cellulases without CBMs caught up with that of cellulases with CBMs. This phenomenon was more noticeable on the lignin-containing pretreated wheat straw as compared to the cellulosic Avicel, presumably due to unproductive adsorption of enzymes to lignin. CONCLUSIONS Here we propose that the water content in the natural environments of carbohydrate-degrading organisms might have led to the evolution of various substrate-binding structures. In addition, some well recognized problems of economical saccharification such as unproductive binding of cellulases, which reduces the hydrolysis rate and prevents recycling of enzymes, could be partially overcome by omitting CBMs. This finding could help solve bottlenecks of enzymatic hydrolysis of lignocelluloses and speed up commercialization of second generation bioethanol.
Collapse
Affiliation(s)
- Anikó Várnai
- Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 27, 00014, Helsinki, Finland
| | - Matti Siika-aho
- VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT, Espoo, Finland
| | - Liisa Viikari
- Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 27, 00014, Helsinki, Finland
| |
Collapse
|
102
|
Luís AS, Venditto I, Temple MJ, Rogowski A, Baslé A, Xue J, Knox JP, Prates JAM, Ferreira LMA, Fontes CMGA, Najmudin S, Gilbert HJ. Understanding how noncatalytic carbohydrate binding modules can display specificity for xyloglucan. J Biol Chem 2012; 288:4799-809. [PMID: 23229556 PMCID: PMC3576085 DOI: 10.1074/jbc.m112.432781] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Plant biomass is central to the carbon cycle and to environmentally sustainable industries exemplified by the biofuel sector. Plant cell wall degrading enzymes generally contain noncatalytic carbohydrate binding modules (CBMs) that fulfil a targeting function, which enhances catalysis. CBMs that bind β-glucan chains often display broad specificity recognizing β1,4-glucans (cellulose), β1,3-β1,4-mixed linked glucans and xyloglucan, a β1,4-glucan decorated with α1,6-xylose residues, by targeting structures common to the three polysaccharides. Thus, CBMs that recognize xyloglucan target the β1,4-glucan backbone and only accommodate the xylose decorations. Here we show that two closely related CBMs, CBM65A and CBM65B, derived from EcCel5A, a Eubacterium cellulosolvens endoglucanase, bind to a range of β-glucans but, uniquely, display significant preference for xyloglucan. The structures of the two CBMs reveal a β-sandwich fold. The ligand binding site comprises the β-sheet that forms the concave surface of the proteins. Binding to the backbone chains of β-glucans is mediated primarily by five aromatic residues that also make hydrophobic interactions with the xylose side chains of xyloglucan, conferring the distinctive specificity of the CBMs for the decorated polysaccharide. Significantly, and in contrast to other CBMs that recognize β-glucans, CBM65A utilizes different polar residues to bind cellulose and mixed linked glucans. Thus, Gln106 is central to cellulose recognition, but is not required for binding to mixed linked glucans. This report reveals the mechanism by which β-glucan-specific CBMs can distinguish between linear and mixed linked glucans, and show how these CBMs can exploit an extensive hydrophobic platform to target the side chains of decorated β-glucans.
Collapse
Affiliation(s)
- Ana S Luís
- CIISA, Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
How nature can exploit nonspecific catalytic and carbohydrate binding modules to create enzymatic specificity. Proc Natl Acad Sci U S A 2012; 109:20889-94. [PMID: 23213210 DOI: 10.1073/pnas.1212034109] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Noncatalytic carbohydrate binding modules (CBMs) are components of glycoside hydrolases that attack generally inaccessible substrates. CBMs mediate a two- to fivefold elevation in the activity of endo-acting enzymes, likely through increasing the concentration of the appended enzymes in the vicinity of the substrate. The function of CBMs appended to exo-acting glycoside hydrolases is unclear because their typical endo-binding mode would not fulfill a targeting role. Here we show that the Bacillus subtilis exo-acting β-fructosidase SacC, which specifically hydrolyses levan, contains the founding member of CBM family 66 (CBM66). The SacC-derived CBM66 (BsCBM66) targets the terminal fructosides of the major fructans found in nature. The crystal structure of BsCBM66 in complex with ligands reveals extensive interactions with the terminal fructose moiety (Fru-3) of levantriose but only limited hydrophobic contacts with Fru-2, explaining why the CBM displays broad specificity. Removal of BsCBM66 from SacC results in a ~100-fold reduction in activity against levan. The truncated enzyme functions as a nonspecific β-fructosidase displaying similar activity against β-2,1- and β-2,6-linked fructans and their respective fructooligosaccharides. Conversely, appending BsCBM66 to BT3082, a nonspecific β-fructosidase from Bacteroides thetaiotaomicron, confers exolevanase activity on the enzyme. We propose that BsCBM66 confers specificity for levan, a branched fructan, through an "avidity" mechanism in which the CBM and the catalytic module target the termini of different branches of the same polysaccharide molecule. This report identifies a unique mechanism by which CBMs modulate enzyme function, and shows how specificity can be tailored by integrating nonspecific catalytic and binding modules into a single enzyme.
Collapse
|
104
|
Yaniv O, Jindou S, Frolow F, Lamed R, Bayer EA. A simple method for determining specificity of carbohydrate-binding modules for purified and crude insoluble polysaccharide substrates. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 908:101-7. [PMID: 22843393 DOI: 10.1007/978-1-61779-956-3_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Experimental identification of carbohydrate-binding modules (CBM) and determination of ligand specificity of each CBM are complementary and compulsory steps for their characterization. Some CBMs are very specific for their primary substrate (e.g., cellulose), whereas others are relatively promiscuous or nonspecific in their substrate preference. Here we describe a simple procedure based on in-tube adsorption of a CBM to various insoluble polysaccharides, followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) for determining the distribution of the CBM between the bound and unbound fractions. This technique enables qualitative assessment of the binding strength and ligand specificity for each CBM.
Collapse
Affiliation(s)
- Oren Yaniv
- Department of Molecular Microbiology and Biotechnology, The Daniella Rich Institute for Structural Biology, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | |
Collapse
|
105
|
Textor LC, Colussi F, Silveira RL, Serpa V, de Mello BL, Muniz JRC, Squina FM, Pereira N, Skaf MS, Polikarpov I. Joint X-ray crystallographic and molecular dynamics study of cellobiohydrolase I fromTrichoderma harzianum: deciphering the structural features of cellobiohydrolase catalytic activity. FEBS J 2012; 280:56-69. [DOI: 10.1111/febs.12049] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Larissa C. Textor
- Instituto de Física de São Carlos; Universidade de São Paulo; São Carlos; SP; Brazil
| | - Francieli Colussi
- Instituto de Física de São Carlos; Universidade de São Paulo; São Carlos; SP; Brazil
| | - Rodrigo L. Silveira
- Institute of Chemistry; State University of Campinas - UNICAMP; Campinas; SP; Brazil
| | - Viviane Serpa
- Instituto de Física de São Carlos; Universidade de São Paulo; São Carlos; SP; Brazil
| | - Bruno L. de Mello
- Instituto de Física de São Carlos; Universidade de São Paulo; São Carlos; SP; Brazil
| | - João Renato C. Muniz
- Instituto de Física de São Carlos; Universidade de São Paulo; São Carlos; SP; Brazil
| | - Fabio M. Squina
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas; SP; Brazil
| | - Nei Pereira
- Centro de Tecnologia, Escola de Química, Laboratório de Desenvolvimento de Bioprocessos (LaDeBio); Universidade Federal do Rio de Janeiro; RJ; Brazil
| | - Munir S. Skaf
- Institute of Chemistry; State University of Campinas - UNICAMP; Campinas; SP; Brazil
| | - Igor Polikarpov
- Instituto de Física de São Carlos; Universidade de São Paulo; São Carlos; SP; Brazil
| |
Collapse
|
106
|
Ding SY, Liu YS, Zeng Y, Himmel ME, Baker JO, Bayer EA. How Does Plant Cell Wall Nanoscale Architecture Correlate with Enzymatic Digestibility? Science 2012. [PMID: 23180856 DOI: 10.1126/science.1227491] [Citation(s) in RCA: 403] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Shi-You Ding
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
| | | | | | | | | | | |
Collapse
|
107
|
Sammond DW, Payne CM, Brunecky R, Himmel ME, Crowley MF, Beckham GT. Cellulase linkers are optimized based on domain type and function: insights from sequence analysis, biophysical measurements, and molecular simulation. PLoS One 2012; 7:e48615. [PMID: 23139804 PMCID: PMC3490864 DOI: 10.1371/journal.pone.0048615] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 09/27/2012] [Indexed: 01/02/2023] Open
Abstract
Cellulase enzymes deconstruct cellulose to glucose, and are often comprised of glycosylated linkers connecting glycoside hydrolases (GHs) to carbohydrate-binding modules (CBMs). Although linker modifications can alter cellulase activity, the functional role of linkers beyond domain connectivity remains unknown. Here we investigate cellulase linkers connecting GH Family 6 or 7 catalytic domains to Family 1 or 2 CBMs, from both bacterial and eukaryotic cellulases to identify conserved characteristics potentially related to function. Sequence analysis suggests that the linker lengths between structured domains are optimized based on the GH domain and CBM type, such that linker length may be important for activity. Longer linkers are observed in eukaryotic GH Family 6 cellulases compared to GH Family 7 cellulases. Bacterial GH Family 6 cellulases are found with structured domains in either N to C terminal order, and similar linker lengths suggest there is no effect of domain order on length. O-glycosylation is uniformly distributed across linkers, suggesting that glycans are required along entire linker lengths for proteolysis protection and, as suggested by simulation, for extension. Sequence comparisons show that proline content for bacterial linkers is more than double that observed in eukaryotic linkers, but with fewer putative O-glycan sites, suggesting alternative methods for extension. Conversely, near linker termini where linkers connect to structured domains, O-glycosylation sites are observed less frequently, whereas glycines are more prevalent, suggesting the need for flexibility to achieve proper domain orientations. Putative N-glycosylation sites are quite rare in cellulase linkers, while an N-P motif, which strongly disfavors the attachment of N-glycans, is commonly observed. These results suggest that linkers exhibit features that are likely tailored for optimal function, despite possessing low sequence identity. This study suggests that cellulase linkers may exhibit function in enzyme action, and highlights the need for additional studies to elucidate cellulase linker functions.
Collapse
Affiliation(s)
- Deanne W. Sammond
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, United States of America
| | - Christina M. Payne
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, United States of America
| | - Roman Brunecky
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, United States of America
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, United States of America
| | - Michael F. Crowley
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, United States of America
| | - Gregg T. Beckham
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado, United States of America
- Department of Chemical Engineering, Colorado School of Mines, Golden, Colorado, United States of America
- * E-mail:
| |
Collapse
|
108
|
Sugimoto N, Igarashi K, Wada M, Samejima M. Adsorption characteristics of fungal family 1 cellulose-binding domain from Trichoderma reesei cellobiohydrolase I on crystalline cellulose: negative cooperative adsorption via a steric exclusion effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:14323-14329. [PMID: 22950684 DOI: 10.1021/la302352k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cellobiohydrolases (CBHs) hydrolyzing crystalline cellulose share a two-domain structure of catalytic domain (CD) and cellulose-binding domain (CBD). To focus on the binding characteristics of CBD, we analyzed the adsorption of fusion protein of fungal family 1 CBD from Trichoderma reesei CBH I and red-fluorescent protein on crystalline and amorphous celluloses. Binding data were better fitted by Hill's model with negative cooperativity than by other adsorption models, suggesting the occurrence of a steric exclusion effect among the fusion molecules on the cellulose surfaces. The degree of negative cooperativity depended on the nature of the cellulose. The significance of this phenomenon for catalysis by intact CBHI is discussed.
Collapse
Affiliation(s)
- Naohisa Sugimoto
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
109
|
The crystallization and structural analysis of cellulases (and other glycoside hydrolases): strategies and tactics. Methods Enzymol 2012; 510:141-68. [PMID: 22608725 DOI: 10.1016/b978-0-12-415931-0.00008-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The three-dimensional (3-D) structures of cellulases, and other glycoside hydrolases, are a central feature of research in carbohydrate chemistry and biochemistry. 3-D structure is used to inform protein engineering campaigns, both academic and industrial, which are typically used to improve the stability or activity of an enzyme. Examples of classical protein engineering goals include higher thermal stability, reduced metal-ion dependency, detergent and protease resistance, decreased product inhibition, and altered specificity. 3-D structure may also be used to interpret the behavior of enzyme variants that are derived from screening or random mutagenesis approaches, with a view to establishing an iterative design process. In other areas, 3-D structure is used as one of the many tools to probe enzymatic catalysis, typically dovetailing with physical organic chemistry approaches to provide complete reaction mechanisms for enzymes by visualizing catalytic site interactions at different stages of the reaction. Such mechanistic insight is not only fundamentally important, impacting on inhibitor and drug design approaches with ramifications way beyond cellulose hydrolysis, but also provides the framework for the design of enzyme variants to use as biocatalysts for the synthesis of bespoke oligosaccharides. Here we review some of the strategies and tactics that may be applied to the X-ray structure solution of cellulases (and other carbohydrate-active enzymes). The general approach is first to decide why you are doing the work, then to establish correct domain boundaries for truncated constructs (typically the catalytic domain only), and finally to pursue crystallization of pure, homogeneous, and monodisperse protein with appropriate ligand and additive combinations. Cellulase-specific strategies are important for the delineation of domain boundaries, while glycoside hydrolases generally also present challenges and opportunities for the selection and optimization of ligands to both aid crystallization, and also provide structural and mechanistic insight. As the many roles for plant cell wall degrading enzymes increase, so does the need for rapid high-quality structure determination to provide a sound structural foundation for understanding mechanism and specificity, and for future protein engineering strategies.
Collapse
|
110
|
Asztalos A, Daniels M, Sethi A, Shen T, Langan P, Redondo A, Gnanakaran S. A coarse-grained model for synergistic action of multiple enzymes on cellulose. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:55. [PMID: 22853643 PMCID: PMC3475064 DOI: 10.1186/1754-6834-5-55] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/21/2012] [Indexed: 05/07/2023]
Abstract
BACKGROUND Degradation of cellulose to glucose requires the cooperative action of three classes of enzymes, collectively known as cellulases. Endoglucanases randomly bind to cellulose surfaces and generate new chain ends by hydrolyzing β-1,4-D-glycosidic bonds. Exoglucanases bind to free chain ends and hydrolyze glycosidic bonds in a processive manner releasing cellobiose units. Then, β-glucosidases hydrolyze soluble cellobiose to glucose. Optimal synergistic action of these enzymes is essential for efficient digestion of cellulose. Experiments show that as hydrolysis proceeds and the cellulose substrate becomes more heterogeneous, the overall degradation slows down. As catalysis occurs on the surface of crystalline cellulose, several factors affect the overall hydrolysis. Therefore, spatial models of cellulose degradation must capture effects such as enzyme crowding and surface heterogeneity, which have been shown to lead to a reduction in hydrolysis rates. RESULTS We present a coarse-grained stochastic model for capturing the key events associated with the enzymatic degradation of cellulose at the mesoscopic level. This functional model accounts for the mobility and action of a single cellulase enzyme as well as the synergy of multiple endo- and exo-cellulases on a cellulose surface. The quantitative description of cellulose degradation is calculated on a spatial model by including free and bound states of both endo- and exo-cellulases with explicit reactive surface terms (e.g., hydrogen bond breaking, covalent bond cleavages) and corresponding reaction rates. The dynamical evolution of the system is simulated by including physical interactions between cellulases and cellulose. CONCLUSIONS Our coarse-grained model reproduces the qualitative behavior of endoglucanases and exoglucanases by accounting for the spatial heterogeneity of the cellulose surface as well as other spatial factors such as enzyme crowding. Importantly, it captures the endo-exo synergism of cellulase enzyme cocktails. This model constitutes a critical step towards testing hypotheses and understanding approaches for maximizing synergy and substrate properties with a goal of cost effective enzymatic hydrolysis.
Collapse
Affiliation(s)
- Andrea Asztalos
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Department of Physics, University of Notre Dame, Notre Dame, IN, 46556, USA
- Present Address: Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Marcus Daniels
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Anurag Sethi
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Tongye Shen
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Present Address: UT-ORNL, Center for Molecular Biophysics and Department of Biochemistry, Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Paul Langan
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Present Address: Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Antonio Redondo
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | | |
Collapse
|
111
|
High resolution crystal structure of the endo-N-Acetyl-β-D-glucosaminidase responsible for the deglycosylation of Hypocrea jecorina cellulases. PLoS One 2012; 7:e40854. [PMID: 22859955 PMCID: PMC3408457 DOI: 10.1371/journal.pone.0040854] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 06/14/2012] [Indexed: 01/02/2023] Open
Abstract
Endo-N-acetyl-β-D-glucosaminidases (ENGases) hydrolyze the glycosidic linkage between the two N-acetylglucosamine units that make up the chitobiose core of N-glycans. The endo-N-acetyl-β-D-glucosaminidases classified into glycoside hydrolase family 18 are small, bacterial proteins with different substrate specificities. Recently two eukaryotic family 18 deglycosylating enzymes have been identified. Here, the expression, purification and the 1.3Å resolution structure of the ENGase (Endo T) from the mesophilic fungus Hypocrea jecorina (anamorph Trichoderma reesei) are reported. Although the mature protein is C-terminally processed with removal of a 46 amino acid peptide, the protein has a complete (β/α)8 TIM-barrel topology. In the active site, the proton donor (E131) and the residue stabilizing the transition state (D129) in the substrate assisted catalysis mechanism are found in almost identical positions as in the bacterial GH18 ENGases: Endo H, Endo F1, Endo F3, and Endo BT. However, the loops defining the substrate-binding cleft vary greatly from the previously known ENGase structures, and the structures also differ in some of the α-helices forming the barrel. This could reflect the variation in substrate specificity between the five enzymes. This is the first three-dimensional structure of a eukaryotic endo-N-acetyl-β-D-glucosaminidase from glycoside hydrolase family 18. A glycosylation analysis of the cellulases secreted by a Hypocrea jecorina Endo T knock-out strain shows the in vivo function of the protein. A homology search and phylogenetic analysis show that the two known enzymes and their homologues form a large but separate cluster in subgroup B of the fungal chitinases. Therefore the future use of a uniform nomenclature is proposed.
Collapse
|
112
|
Jalak J, Kurašin M, Teugjas H, Väljamäe P. Endo-exo synergism in cellulose hydrolysis revisited. J Biol Chem 2012; 287:28802-15. [PMID: 22733813 DOI: 10.1074/jbc.m112.381624] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synergistic cooperation of different enzymes is a prerequisite for efficient degradation of cellulose. The conventional mechanistic interpretation of the synergism between randomly acting endoglucanases (EGs) and chain end-specific processive cellobiohydrolases (CBHs) is that EG-generated new chain ends on cellulose surface serve as starting points for CBHs. Here we studied the hydrolysis of bacterial cellulose (BC) by CBH TrCel7A and EG TrCel5A from Trichoderma reesei under both single-turnover and "steady state" conditions. Unaccountable by conventional interpretation, the presence of EG increased the rate constant of TrCel7A-catalyzed hydrolysis of BC in steady state. At optimal enzyme/substrate ratios, the "steady state" rate of synergistic hydrolysis became limited by the velocity of processive movement of TrCel7A on BC. A processivity value of 66 ± 7 cellobiose units measured for TrCel7A on (14)C-labeled BC was close to the leveling off degree of polymerization of BC, suggesting that TrCel7A cannot pass through the amorphous regions on BC and stalls. We propose a mechanism of endo-exo synergism whereby the degradation of amorphous regions by EG avoids the stalling of TrCel7A and leads to its accelerated recruitment. Hydrolysis of pretreated wheat straw suggested that this mechanism of synergism is operative also in the degradation of lignocellulose. Although both mechanisms of synergism are used in parallel, the contribution of conventional mechanism is significant only at high enzyme/substrate ratios.
Collapse
Affiliation(s)
- Jürgen Jalak
- Institute of Molecular and Cell Biology, University of Tartu, Vanemuise 46-138, 51014 Tartu, Estonia
| | | | | | | |
Collapse
|
113
|
Sugimoto N, Igarashi K, Samejima M. Cellulose affinity purification of fusion proteins tagged with fungal family 1 cellulose-binding domain. Protein Expr Purif 2012; 82:290-6. [PMID: 22305911 DOI: 10.1016/j.pep.2012.01.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/11/2012] [Accepted: 01/13/2012] [Indexed: 11/23/2022]
Abstract
N- or C-terminal fusions of red-fluorescent protein (RFP) with various fungal cellulose-binding domains (CBDs) belonging to carbohydrate binding module (CBM) family 1 were expressed in a Pichia pastoris expression system, and the resulting fusion proteins were used to examine the feasibility of large-scale affinity purification of CBD-tagged proteins on cellulose columns. We found that RFP fused with CBD from Trichoderma reesei CBHI (CBD(Tr)(CBHI)) was expressed at up to 1.2g/l in the culture filtrate, which could be directly injected into the cellulose column. The fusion protein was tightly adsorbed on the cellulose column in the presence of a sufficient amount of ammonium sulfate and was efficiently eluted with pure water. Bovine serum albumin (BSA) was not captured under these conditions, whereas both BSA and the fusion protein were adsorbed on a phenyl column, indicating that the cellulose column can be used for the purification of not only hydrophilic proteins but also for hydrophobic proteins. Recovery of various fusion proteins exceeded 80%. Our results indicate that protein purification by expression of a target protein as a fusion with a fungal family 1 CBD tag in a yeast expression system, followed by affinity purification on a cellulose column, is simple, effective and easily scalable.
Collapse
Affiliation(s)
- Naohisa Sugimoto
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
114
|
Qin LN, Cai FR, Dong XR, Huang ZB, Tao Y, Huang JZ, Dong ZY. Improved production of heterologous lipase in Trichoderma reesei by RNAi mediated gene silencing of an endogenic highly expressed gene. BIORESOURCE TECHNOLOGY 2012; 109:116-22. [PMID: 22305540 DOI: 10.1016/j.biortech.2012.01.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/03/2012] [Accepted: 01/04/2012] [Indexed: 05/13/2023]
Abstract
A lipase gene (Lip) of the Aspergillus niger was de novo synthesized and expressed in the Trichoderma reesei under the promoter of the cellobiohydrolase I gene (cbh1). RNAi-mediated gene silencing was successfully used to further improve the recombinant lipase production via down-regulation of CBHI which comprised more than 60% of the total extracellular proteins in T. reesei. The gene and protein expression of CBHI and recombinant lipase were analyzed by real-time PCR, SDS-PAGE and activity assay. The results demonstrated that RNAi-mediated gene silencing could effectively suppress cbh1 gene expression and the reduction of CBHI could result in obvious improvement of heterologous lipase production. The reconstructed strains with decreased CBHI production exhibited 1.8- to 3.2-fold increase in lipase activity than that of parental strain. The study herein provided a feasible and advantageous method of increasing heterologous target gene expression in T. reesei through preventing the high expression of a specific endogenenous gene by RNA interference.
Collapse
MESH Headings
- Aspergillus niger/enzymology
- Biotechnology/methods
- Blotting, Southern
- Cellulose 1,4-beta-Cellobiosidase/genetics
- Cellulose 1,4-beta-Cellobiosidase/metabolism
- DNA, Fungal/isolation & purification
- Down-Regulation
- Electrophoresis, Polyacrylamide Gel
- Fungal Proteins/metabolism
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Fungal
- Genes, Fungal/genetics
- Lipase/biosynthesis
- RNA/metabolism
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Proteins/biosynthesis
- Reverse Transcriptase Polymerase Chain Reaction
- Transformation, Genetic
- Trichoderma/genetics
- Trichoderma/metabolism
Collapse
Affiliation(s)
- Li-Na Qin
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | | | | | | | | | | | | |
Collapse
|
115
|
Billard H, Faraj A, Lopes Ferreira N, Menir S, Heiss-Blanquet S. Optimization of a synthetic mixture composed of major Trichoderma reesei enzymes for the hydrolysis of steam-exploded wheat straw. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:9. [PMID: 22373423 PMCID: PMC3310832 DOI: 10.1186/1754-6834-5-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/28/2012] [Indexed: 05/03/2023]
Abstract
BACKGROUND An efficient hydrolysis of lignocellulosic substrates to soluble sugars for biofuel production necessitates the interplay and synergistic interaction of multiple enzymes. An optimized enzyme mixture is crucial for reduced cost of the enzymatic hydrolysis step in a bioethanol production process and its composition will depend on the substrate and type of pretreatment used. In the present study, an experimental design was used to determine the optimal composition of a Trichoderma reesei enzyme mixture, comprising the main cellulase and hemicellulase activities, for the hydrolysis of steam-exploded wheat straw. METHODS Six enzymes, CBH1 (Cel7a), CBH2 (Cel6a), EG1 (Cel7b), EG2 (Cel5a), as well as the xyloglucanase Cel74a and the xylanase XYN1 (Xyl11a) were purified from a T. reesei culture under lactose/xylose-induced conditions. Sugar release was followed in milliliter-scale hydrolysis assays for 48 hours and the influence of the mixture on initial conversion rates and final yields is assessed. RESULTS The developed model could show that both responses were strongly correlated. Model predictions suggest that optimal hydrolysis yields can be obtained over a wide range of CBH1 to CBH2 ratios, but necessitates a high proportion of EG1 (13% to 25%) which cannot be replaced by EG2. Whereas 5% to 10% of the latter enzyme and a xylanase content above 6% are required for highest yields, these enzymes are predicted to be less important in the initial stage of hydrolysis. CONCLUSIONS The developed model could reliably predict hydrolysis yields of enzyme mixtures in the studied domain and highlighted the importance of the respective enzyme components in both the initial and the final hydrolysis phase of steam-exploded wheat straw.
Collapse
Affiliation(s)
- Hélène Billard
- IFP Energies nouvelles, Biotechnology Department, 1 et 4 Avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France
| | - Abdelaziz Faraj
- IFP Energies nouvelles, Applied Mathematics Department, 1 et 4 Avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France
| | - Nicolas Lopes Ferreira
- IFP Energies nouvelles, Biotechnology Department, 1 et 4 Avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France
| | - Sandra Menir
- IFP Energies nouvelles, Biotechnology Department, 1 et 4 Avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France
| | - Senta Heiss-Blanquet
- IFP Energies nouvelles, Biotechnology Department, 1 et 4 Avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France
| |
Collapse
|
116
|
Punt PJ, Levasseur A, Visser H, Wery J, Record E. Fungal protein production: design and production of chimeric proteins. Annu Rev Microbiol 2012; 65:57-69. [PMID: 21639784 DOI: 10.1146/annurev.micro.112408.134009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For more than a century, filamentous fungi have been used for the production of a wide variety of endogenous enzymes of industrial interest. More recently, with the use of genetic engineering tools developed for these organisms, this use has expanded for the production of nonnative heterologous proteins. In this review, an overview is given of examples describing the production of a special class of these proteins, namely chimeric proteins. The production of two types of chimeric proteins have been explored: (a) proteins grafted for a specific substrate-binding domain and (b) fusion proteins containing two separate enzymatic activities. Various application areas for the use of these chimeric proteins are described.
Collapse
Affiliation(s)
- Peter J Punt
- TNO Microbiology and Systems Biology, 3700 AJ, Zeist, The Netherlands.
| | | | | | | | | |
Collapse
|
117
|
Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Penttilä M, Ando T, Samejima M. Visualization of cellobiohydrolase I from Trichoderma reesei moving on crystalline cellulose using high-speed atomic force microscopy. Methods Enzymol 2012; 510:169-82. [PMID: 22608726 DOI: 10.1016/b978-0-12-415931-0.00009-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cellulases hydrolyze β-1,4-glucosidic linkages of insoluble cellulose at the solid/liquid interface, generating soluble cellooligosaccharides. We describe here our method for real-time observation of the behavior of cellulase molecules on the substrate, using high-speed atomic force microscopy (HS-AFM). When glycoside hydrolase family 7 cellobiohydrolase from Trichoderma reesei (TrCel7A) was incubated with crystalline cellulose, many enzyme molecules were observed to move unidirectionally on the surface of the substrate by HS-AFM. The velocity of the moving molecules of TrCel7A on cellulose I crystals was estimated by means of image analysis.
Collapse
Affiliation(s)
- Kiyohiko Igarashi
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
118
|
|
119
|
Li XH, Zhang P, Liang S, Zhou F, Wang MX, Bhaskar R, Malik FA, Niu YS, Miao YG. Molecular Cloning and Characterization of a Putative cDNA Encoding Endoglucanase IV from Trichoderma Viride and its Expression in Bombyx Mori. Appl Biochem Biotechnol 2011; 166:309-20. [DOI: 10.1007/s12010-011-9426-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 10/19/2011] [Indexed: 10/15/2022]
|
120
|
Hydrophilic aromatic residue and in silico structure for carbohydrate binding module. PLoS One 2011; 6:e24814. [PMID: 21966371 PMCID: PMC3178555 DOI: 10.1371/journal.pone.0024814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 08/18/2011] [Indexed: 01/13/2023] Open
Abstract
Carbohydrate binding modules (CBMs) are found in polysaccharide-targeting enzymes and increase catalytic efficiency. Because only a relatively small number of CBM structures have been solved, computational modeling represents an alternative approach in conjunction with experimental assessment of CBM functionality and ligand-binding properties. An accurate target-template sequence alignment is the crucial step during homology modeling. However, low sequence identities between target/template sequences can be a major bottleneck. We therefore incorporated the predicted hydrophilic aromatic residues (HARs) and secondary structure elements into our feature-incorporated alignment (FIA) algorithm to increase CBM alignment accuracy. An alignment performance comparison for FIA and six others was made, and the greatest average sequence identities and similarities were achieved by FIA. In addition, structure models were built for 817 representative CBMs. Our models possessed the smallest average surface-potential z scores. Besides, a large true positive value for liagnd-binding aromatic residue prediction was obtained by HAR identification. Finally, the pre-simulated CBM structures have been deposited in the Database of Simulated CBM structures (DS-CBMs). The web service is publicly available at http://dscbm.life.nthu.edu.tw/ and http://dscbm.cs.ntou.edu.tw/.
Collapse
|
121
|
The impact of Trichoderma reesei Cel7A carbohydrate binding domain mutations on its binding to a cellulose surface: a molecular dynamics free energy study. J Mol Model 2011; 18:1355-64. [DOI: 10.1007/s00894-011-1167-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 06/27/2011] [Indexed: 10/18/2022]
|
122
|
Li XH, Wang MX, Zhang P, Hu JB, Sun CG, Liu XJ, Zhou F, Niu YS, Malik FA, Bhaskar R, Yang HJ, Miao YG. Heterologous Expression Characteristics of Trichoderma viride Endoglucanase V in the Silkworm, Bombyx mori L. Appl Biochem Biotechnol 2011; 165:728-36. [DOI: 10.1007/s12010-011-9291-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
|
123
|
Proteome-wide systems analysis of a cellulosic biofuel-producing microbe. Mol Syst Biol 2011; 7:461. [PMID: 21245846 PMCID: PMC3049413 DOI: 10.1038/msb.2010.116] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/30/2010] [Indexed: 12/24/2022] Open
Abstract
We apply mass spectrometry-based ReDi proteomics to quantify the Clostridium phytofermentans proteome during fermentation of cellulosic substrates. ReDi proteomics gives accurate, low-cost quantification of an extra and intracellular microbial proteome. When combined with physiological measurements, these methods form a general systems biology strategy to evaluate the efficiency of cellulosic bioconversion and to identify enzyme targets to engineer for improving this process. C. phytofermentans expressed more than 100 carbohydrate-active enzymes, of which distinct subsets were upregulated on cellulose and hemicellulose. Numerous extracellular enzymes cleave insoluble plant polysaccharides into oligosaccharides, which are transported into the cell to be further degraded by intracellular carbohydratases. Sugars are catabolized by EMP glycolysis incorporating alternative glycolytic enzymes to maximize the ATP yield of anaerobic metabolism. During cellulosic fermentation, cells adhered to the substrate and altered metabolic processes such as upregulation of tryptophan and nicotinamide synthesis proteins and repression of proteins for fatty acid metabolism and cell motility. These diverse metabolic changes highlight how a systems approach can identify novel ways to optimize cellulosic fermentation.
Cellulose is the world's most abundant renewable, biological energy source (Leschine, 1995). Microbial fermentation of cellulosic biomass could sustainably provide enough ethanol for 65% of US ground transportation fuel at current levels (Somerville, 2006). However, cellulose in plant biomass is packaged into a crystalline matrix, making biomass deconstruction a key roadblock to using it as a feedstock (Houghton et al, 2006). A promising strategy to overcome biomass recalcitrance is consolidated bioprocessing (Lynd et al, 2002), which uses microbes such as Clostridium phytofermentans to both secrete enzymes to depolymerize biomass and then ferment the resulting hexose and pentose sugars to a biofuel such as ethanol. The C. phytofermentans genome encodes 161 carbohydrate-active enzymes (CAZy) including 108 glycoside hydrolases spread across 39 families (Cantarel et al, 2009), highlighting the elaborate set of enzymes needed to breakdown different cellulosic polysaccharides. Faced with the complexity of metabolizing biomass, systems biology strategies are needed to comprehensively identify which cellulolytic and metabolic enzymes are used to ferment different cellulosic substrates. This study presents a systems-level analysis of how C. phytofermentans ferments different cellulosic substrates that incorporates quantitative mass spectrometry-based proteomics of over 2500 proteins. Protein concentrations within each carbon source treatment were calculated by machine learning-supported spectral counting (Absolute Protein EXpression, APEX) (Lu et al, 2007). Protein levels on hemicellulose and cellulose relative to glucose were determined using reductive methylation (Hsu et al, 2003; Boersema et al, 2009), here called ReDi labeling, to chemically incorporate hydrogen or deuterium isotopes at lysines and N-terminal amines of tryptic peptides. We show that ReDi proteomics gives accurate, low-cost quantification of a microbial proteome and can be used to discern extracellular proteins. Further, we combine these quantitative proteomics with detailed measurements of growth, biomass consumption, fermentation product analyses, and electron microscopy. Together, these methods form a general strategy to evaluate the efficiency of cellulosic bioconversion and to identify enzyme targets to engineer for improving this process (Figure 1). We found that fermentation of cellulosic substrates by C. phytofermentans involves secretion of numerous CAZy as well as proteins for binding of extracellular solutes, proteolysis, and motility. The most highly expressed protein in the proteome is a secreted protein that appears to compose a surface layer to support the cell and anchor cell surface proteins, including some enzymes for plant degradation. Once the secreted CAZy cleave insoluble plant polysaccharides into oligosaccharides, they are taken into the cell to be further degraded by intracellular CAZy, enabling more efficient sugar transport, conserving energy by phosphorolytic cleavage, and ensuring the sugar monomers were not available to competing microbes. Sugars are catabolized by EMP glycolysis incorporating reversible, PPi-dependent glycolytic enzymes, and pyruvate ferredoxin oxidoreductase. The genome encodes seven alcohol dehydrogenases, among which two iron-dependent enzymes are highly expressed and likely facilitate the high ethanol yields. Growth on cellulose also resulted in indirect changes such as increased tryptophan and nicotinamide synthesis and repression of fatty acid synthesis. We distilled the data into a model showing the highly expressed enzymes enabling efficient cellulosic fermentation by C. phytofermentans (Figure 7). Collectively, these data help understand how bacteria recycle plant biomass works towards enabling the use of plant biomass as a low-cost chemical feedstock. Fermentation of plant biomass by microbes like Clostridium phytofermentans recycles carbon globally and can make biofuels from inedible feedstocks. We analyzed C. phytofermentans fermenting cellulosic substrates by integrating quantitative mass spectrometry of more than 2500 proteins with measurements of growth, enzyme activities, fermentation products, and electron microscopy. Absolute protein concentrations were estimated using Absolute Protein EXpression (APEX); relative changes between treatments were quantified with chemical stable isotope labeling by reductive dimethylation (ReDi). We identified the different combinations of carbohydratases used to degrade cellulose and hemicellulose, many of which were secreted based on quantification of supernatant proteins, as well as the repertoires of glycolytic enzymes and alcohol dehydrogenases (ADHs) enabling ethanol production at near maximal yields. Growth on cellulose also resulted in diverse changes such as increased expression of tryptophan synthesis proteins and repression of proteins for fatty acid metabolism and cell motility. This study gives a systems-level understanding of how this microbe ferments biomass and provides a rational, empirical basis to identify engineering targets for industrial cellulosic fermentation.
Collapse
|
124
|
Chu CY, Tseng CW, Yueh PY, Duan CH, Liu JR. Molecular cloning and characterization of a β-glucanase from Piromyces rhizinflatus. J Biosci Bioeng 2011; 111:541-6. [DOI: 10.1016/j.jbiosc.2011.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
|
125
|
Georgelis N, Tabuchi A, Nikolaidis N, Cosgrove DJ. Structure-function analysis of the bacterial expansin EXLX1. J Biol Chem 2011; 286:16814-23. [PMID: 21454649 DOI: 10.1074/jbc.m111.225037] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We made use of EXLX1, an expansin from Bacillus subtilis, to investigate protein features essential for its plant cell wall binding and wall loosening activities. We found that the two expansin domains, D1 and D2, need to be linked for wall extension activity and that D2 mediates EXLX1 binding to whole cell walls and to cellulose via distinct residues on the D2 surface. Binding to cellulose is mediated by three aromatic residues arranged linearly on the putative binding surface that spans D1 and D2. Mutation of these three residues to alanine eliminated cellulose binding and concomitantly eliminated wall loosening activity measured either by cell wall extension or by weakening of filter paper but hardly affected binding to whole cell walls, which is mediated by basic residues located on other D2 surfaces. Mutation of these basic residues to glutamine reduced cell wall binding but not wall loosening activities. We propose domain D2 as the founding member of a new carbohydrate binding module family, CBM63, but its function in expansin activity apparently goes beyond simply anchoring D1 to the wall. Several polar residues on the putative binding surface of domain D1 are also important for activity, most notably Asp82, whose mutation to alanine or asparagine completely eliminated wall loosening activity. The functional insights based on this bacterial expansin may be extrapolated to the interactions of plant expansins with cell walls.
Collapse
Affiliation(s)
- Nikolaos Georgelis
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
126
|
Nozaki K, Nishijima H, Arai T, Mizuno M, Sato N, Amano Y. Regulation of Adsorption Behavior of Carbohydrate-Binding Module Family 1 and Endo-β-1,4-Glucanase onto Crystalline Cellulose. J Appl Glycosci (1999) 2011. [DOI: 10.5458/jag.jag.jag-2011_007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
127
|
Várnai A, Viikari L, Marjamaa K, Siika-aho M. Adsorption of monocomponent enzymes in enzyme mixture analyzed quantitatively during hydrolysis of lignocellulose substrates. BIORESOURCE TECHNOLOGY 2011; 102:1220-7. [PMID: 20736135 DOI: 10.1016/j.biortech.2010.07.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/28/2010] [Accepted: 07/29/2010] [Indexed: 05/03/2023]
Abstract
The adsorption of purified Trichoderma reesei cellulases (TrCel7A, TrCel6A and TrCel5A) and xylanase TrXyn11 and Aspergillus niger β-glucosidase AnCel3A was studied in enzyme mixture during hydrolysis of two pretreated lignocellulosic materials, steam pretreated and catalytically delignified spruce, along with microcrystalline cellulose (Avicel). The enzyme mixture was compiled to resemble the composition of commercial cellulase preparations. The hydrolysis was carried out at 35 °C to mimic the temperature of the simultaneous saccharification and fermentation (SSF). Enzyme adsorption was followed by analyzing the activity and the protein amount of the individual free enzymes in the hydrolysis supernatant. Most enzymes adsorbed quickly at early stages of the hydrolysis and remained bound throughout the hydrolysis, although the conversion reached was fairly high. Only with the catalytically oxidized spruce samples, the bound enzymes started to be released as the hydrolysis degree reached 80%. The results based on enzyme activities and protein assay were in good accordance.
Collapse
Affiliation(s)
- Anikó Várnai
- University of Helsinki, Food and Environmental Sciences, P.O. Box 27, 00014 Helsinki, Finland.
| | | | | | | |
Collapse
|
128
|
Population balance modelling of homogeneous and heterogeneous cellulose hydrolysis. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/b978-0-444-54298-4.50042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
129
|
Terauchi T, Koyama Y, Machida S, Kasumi T, Komba S. Synthesis of Novel Thioglycoside Analogs as the Substrates and/or the Inhibitors of Cellobiohydrolases. J Appl Glycosci (1999) 2011. [DOI: 10.5458/jag.jag.jag-2011_012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
130
|
Li XH, Zhang P, Wang MX, Zhou F, Malik FA, Yang HJ, Bhaskar R, Hu JB, Sun CG, Miao YG. Expression of Trichoderma viride endoglucanase III in the larvae of silkworm, Bombyx mori L. and characteristic analysis of the recombinant protein. Mol Biol Rep 2010; 38:3897-902. [PMID: 21107717 DOI: 10.1007/s11033-010-0505-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 11/13/2010] [Indexed: 10/18/2022]
Abstract
Endoglucanase is a part of cellulase which hydrolyzes cellulose into glucose. In this study, we cloned endoglucanase III (EG III) gene from Trichoderma viride strain AS 3.3711 using a PCR-based exon splicing method, and expressed EG III recombinant protein in both silkworm BmN cell line and silkworm larvae with an improved Bac-to-Bac/BmNPV mutant baculovirus expression system, which lacks the chiA and v-cath genes of Bombyx mori nucleopolyhedrovirus (BmNPV). The result showed that around 45 kDa protein was visualized in BmN cells at 48 h after the second generation recombinant mBacmid/BmNPV/EG III baculovirus infection. The enzymes from recombinant baculoviruses infected silkworms exhibited significant maximum enzyme activity at the environmental condition of pH 8.0 and temperature 50°C, and increased 20.94 and 19.13% compared with that from blank mBacmid/BmNPV baculoviruses infected silkworms and normal silkworms, respectively. It was stable at pH range from 5.0 to 9.0 and at temperature range from 40 to 60°C. It provided a possibility to generate transgenic silkworms expressing bio-active cellulase, which can catabolize dietary fibers more efficiently, and it might be of great significance for sericulture industry.
Collapse
Affiliation(s)
- Xing-hua Li
- Key Laboratory of Animal Epidemic Etiology and Immunological Prevention of Ministry of Agriculture, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Montanier C, Flint JE, Bolam DN, Xie H, Liu Z, Rogowski A, Weiner DP, Ratnaparkhe S, Nurizzo D, Roberts SM, Turkenburg JP, Davies GJ, Gilbert HJ. Circular permutation provides an evolutionary link between two families of calcium-dependent carbohydrate binding modules. J Biol Chem 2010; 285:31742-54. [PMID: 20659893 PMCID: PMC2951246 DOI: 10.1074/jbc.m110.142133] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/13/2010] [Indexed: 11/06/2022] Open
Abstract
The microbial deconstruction of the plant cell wall is a critical biological process, which also provides important substrates for environmentally sustainable industries. Enzymes that hydrolyze the plant cell wall generally contain non-catalytic carbohydrate binding modules (CBMs) that contribute to plant cell wall degradation. Here we report the biochemical properties and crystal structure of a family of CBMs (CBM60) that are located in xylanases. Uniquely, the proteins display broad ligand specificity, targeting xylans, galactans, and cellulose. Some of the CBM60s display enhanced affinity for their ligands through avidity effects mediated by protein dimerization. The crystal structure of vCBM60, displays a β-sandwich with the ligand binding site comprising a broad cleft formed by the loops connecting the two β-sheets. Ligand recognition at site 1 is, exclusively, through hydrophobic interactions, whereas binding at site 2 is conferred by polar interactions between a protein-bound calcium and the O2 and O3 of the sugar. The observation, that ligand recognition at site 2 requires only a β-linked sugar that contains equatorial hydroxyls at C2 and C3, explains the broad ligand specificity displayed by vCBM60. The ligand-binding apparatus of vCBM60 displays remarkable structural conservation with a family 36 CBM (CBM36); however, the residues that contribute to carbohydrate recognition are derived from different regions of the two proteins. Three-dimensional structure-based sequence alignments reveal that CBM36 and CBM60 are related by circular permutation. The biological and evolutionary significance of the mechanism of ligand recognition displayed by family 60 CBMs is discussed.
Collapse
Affiliation(s)
- Cedric Montanier
- From the Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - James E. Flint
- From the Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - David N. Bolam
- From the Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Hefang Xie
- From the Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Ziyuan Liu
- From the Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Artur Rogowski
- From the Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | - Supriya Ratnaparkhe
- the Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602-4712
| | - Didier Nurizzo
- the European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, F-38043 Grenoble Cedex, France
| | - Shirley M. Roberts
- the York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom, and
| | - Johan P. Turkenburg
- the York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom, and
| | - Gideon J. Davies
- the York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom, and
| | - Harry J. Gilbert
- From the Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- the Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602-4712
| |
Collapse
|
132
|
Murphy L, Baumann MJ, Borch K, Sweeney M, Westh P. An enzymatic signal amplification system for calorimetric studies of cellobiohydrolases. Anal Biochem 2010; 404:140-8. [DOI: 10.1016/j.ab.2010.04.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 04/14/2010] [Accepted: 04/18/2010] [Indexed: 10/19/2022]
|
133
|
Colussi F, Textor LC, Serpa V, Maeda RN, Pereira N, Polikarpov I. Purification, crystallization and preliminary crystallographic analysis of the catalytic domain of the extracellular cellulase CBHI from Trichoderma harzianum. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1041-4. [PMID: 20823521 PMCID: PMC2935222 DOI: 10.1107/s1744309110026886] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 07/07/2010] [Indexed: 11/11/2022]
Abstract
The filamentous fungus Trichoderma harzianum has a considerable cellulolytic activity that is mediated by a complex of enzymes which are essential for the hydrolysis of microcrystalline cellulose. These enzymes were produced by the induction of T. harzianum with microcrystalline cellulose (Avicel) under submerged fermentation in a bioreactor. The catalytic core domain (CCD) of cellobiohydrolase I (CBHI) was purified from the extracellular extracts and submitted to robotic crystallization. Diffraction-quality CBHI CCD crystals were grown and an X-ray diffraction data set was collected under cryogenic conditions using a synchrotron-radiation source.
Collapse
Affiliation(s)
- Francieli Colussi
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador Saocarlense 400, 13560-970 São Carlos-SP, Brazil
| | - Larissa C. Textor
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador Saocarlense 400, 13560-970 São Carlos-SP, Brazil
| | - Viviane Serpa
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador Saocarlense 400, 13560-970 São Carlos-SP, Brazil
| | - Roberto Nobuyuki Maeda
- Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Escola de Química, Laboratório de Desenvolvimento de Bioprocessos (LaDeBio), 21949-900 Rio de Janeiro-RJ, Brazil
| | - Nei Pereira
- Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Escola de Química, Laboratório de Desenvolvimento de Bioprocessos (LaDeBio), 21949-900 Rio de Janeiro-RJ, Brazil
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador Saocarlense 400, 13560-970 São Carlos-SP, Brazil
| |
Collapse
|
134
|
Mohamed MNA, Watts HD, Guo J, Catchmark JM, Kubicki JD. MP2, density functional theory, and molecular mechanical calculations of C–H···π and hydrogen bond interactions in a cellulose-binding module–cellulose model system. Carbohydr Res 2010; 345:1741-51. [DOI: 10.1016/j.carres.2010.05.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 05/10/2010] [Accepted: 05/22/2010] [Indexed: 10/19/2022]
|
135
|
Lee KM, Joo AR, Jeya M, Lee KM, Moon HJ, Lee JK. Production and characterization of cellobiohydrolase from a novel strain of Penicillium purpurogenum KJS506. Appl Biochem Biotechnol 2010; 163:25-39. [PMID: 20582640 DOI: 10.1007/s12010-010-9013-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
Abstract
A high cellobiohydrolase (CBH)-producing strain was isolated and identified as Penicillium purpurogenum KJS506 according to the morphology and comparison of internal transcribed spacer rDNA gene sequence. When rice straw and corn steep powder were used as carbon and nitrogen sources, respectively, a maximum CBH activity of 2.6 U mg-protein(-1), one of the highest among CBH-producing microorganisms, was obtained. The optimum temperature and pH for CBH production were 30 °C and 4.0, respectively. The increased production of CBH in P. purpurogenum culture at 30 °C was confirmed by two-dimensional electrophoresis followed by MS/MS sequencing of the partial peptide. The internal amino acid sequences of P. purpurogenum CBH showed a significant homology with hydrolases from glycoside hydrolase family 7. The extracellular CBH was purified to homogeneity by sequential chromatography of P. purpurogenum culture supernatants on a DEAE-sepharose column, a gel filtration column, and then on a Mono Q column with fast-protein liquid chromatography. The purified CBH was a monomeric protein with a molecular weight of 60 kDa and showed broad substrate specificity with maximum activity towards p-nitrophenyl β-D: -cellobiopyranoside. P. purpurogenum CBH showed t (1/2) value of 4 h at 60 °C and V (max) value of 11.9 μmol min(-1) mg-protein(-1) for p-nitrophenyl-D: -cellobiopyranoside. Although CBHs have been reported, the high specific activity distinguishes P. purpurogenum CBH.
Collapse
Affiliation(s)
- Kyoung-Mi Lee
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
136
|
Ong E, Gilkes NR, Miller RC, Warren RA, Kilburn DG. The cellulose-binding domain (CBD(Cex)) of an exoglucanase from Cellulomonas fimi: production in Escherichia coli and characterization of the polypeptide. Biotechnol Bioeng 2010; 42:401-9. [PMID: 18613043 DOI: 10.1002/bit.260420402] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The gene fragment encoding the cellulose-binding domain (CBD) of an exoglucanase (Cex) from Cellulomonas fimi was subcloned and expressed in Escherichia coli. Transcription from the lac promoter coupled with translation from a consensus prokaryotic ribosome binding site led to the production of large quantities of CBD(Cex) (up to 25% total soluble cell protein). The polypeptide leaked into the culture supernatant (up to 50 mg . L(-1)), facilitating one-step purification by affinity chromatography on cellulose. The 11-kDa polypeptide reacted with Cex antiserum. Absence of free thiols indicated that the two Cys residues of CBD(Cex) form a disulfide bridge. It had the same N-terminal amino acid sequence as CBD(Cex) prepared from Cex by proteolysis, plus two additional N-terminal amino acid residues (Ala and Ser) encoded by the Nhel site introduced during plasmid construction. CBD(Cex) bound to a variety of beta-1, 4-glycans with different affinities and saturation levels. Adsorption to bacterial microcrystalline cellulose was dependent on the temperature, but not on the pH.
Collapse
Affiliation(s)
- E Ong
- Department of Microbiology and Protein Engineering Network of Centres of Excellence, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
137
|
Zhou W, Xu Y, Schüttler HB. Cellulose hydrolysis in evolving substrate morphologies III: Time-scale analysis. Biotechnol Bioeng 2010; 107:224-34. [DOI: 10.1002/bit.22814] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
138
|
Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. BIOTECHNOLOGY FOR BIOFUELS 2010; 3:10. [PMID: 20497524 PMCID: PMC2890632 DOI: 10.1186/1754-6834-3-10] [Citation(s) in RCA: 1231] [Impact Index Per Article: 82.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 05/24/2010] [Indexed: 05/02/2023]
Abstract
Although measurements of crystallinity index (CI) have a long history, it has been found that CI varies significantly depending on the choice of measurement method. In this study, four different techniques incorporating X-ray diffraction and solid-state 13C nuclear magnetic resonance (NMR) were compared using eight different cellulose preparations. We found that the simplest method, which is also the most widely used, and which involves measurement of just two heights in the X-ray diffractogram, produced significantly higher crystallinity values than did the other methods. Data in the literature for the cellulose preparation used (Avicel PH-101) support this observation. We believe that the alternative X-ray diffraction (XRD) and NMR methods presented here, which consider the contributions from amorphous and crystalline cellulose to the entire XRD and NMR spectra, provide a more accurate measure of the crystallinity of cellulose. Although celluloses having a high amorphous content are usually more easily digested by enzymes, it is unclear, based on studies published in the literature, whether CI actually provides a clear indication of the digestibility of a cellulose sample. Cellulose accessibility should be affected by crystallinity, but is also likely to be affected by several other parameters, such as lignin/hemicellulose contents and distribution, porosity, and particle size. Given the methodological dependency of cellulose CI values and the complex nature of cellulase interactions with amorphous and crystalline celluloses, we caution against trying to correlate relatively small changes in CI with changes in cellulose digestibility. In addition, the prediction of cellulase performance based on low levels of cellulose conversion may not include sufficient digestion of the crystalline component to be meaningful.
Collapse
Affiliation(s)
- Sunkyu Park
- Biosciences Center, National Renewable Energy Laboratory, 1617 Cole Blvd, Golden, CO 80401, USA
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - John O Baker
- Biosciences Center, National Renewable Energy Laboratory, 1617 Cole Blvd, Golden, CO 80401, USA
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory, 1617 Cole Blvd, Golden, CO 80401, USA
| | - Philip A Parilla
- National Center for Photovoltaics, National Renewable Energy Laboratory, 1617 Cole Blvd, Golden, CO 80401, USA
| | - David K Johnson
- Biosciences Center, National Renewable Energy Laboratory, 1617 Cole Blvd, Golden, CO 80401, USA
| |
Collapse
|
139
|
Viikari L, Grönqvist S, Kruus K, Pere J, Siika-Aho M, Suurnäkki A. Industrial Biotechnology in the Paper and Pulp Sector. Ind Biotechnol (New Rochelle N Y) 2010. [DOI: 10.1002/9783527630233.ch11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
140
|
Jalak J, Väljamäe P. Mechanism of initial rapid rate retardation in cellobiohydrolase catalyzed cellulose hydrolysis. Biotechnol Bioeng 2010; 106:871-83. [DOI: 10.1002/bit.22779] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
141
|
Guais O, Tourrasse O, Dourdoigne M, Parrou JL, Francois JM. Characterization of the family GH54 α-l-arabinofuranosidases in Penicillium funiculosum, including a novel protein bearing a cellulose-binding domain. Appl Microbiol Biotechnol 2010; 87:1007-21. [DOI: 10.1007/s00253-010-2532-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 02/26/2010] [Accepted: 02/28/2010] [Indexed: 11/29/2022]
|
142
|
Li XH, Wang D, Zhou F, Yang HJ, Bhaskar R, Hu JB, Sun CG, Miao YG. Cloning and expression of a cellulase gene in the silkworm, Bombyx mori by improved Bac-to-Bac/BmNPV baculovirus expression system. Mol Biol Rep 2010; 37:3721-8. [DOI: 10.1007/s11033-010-0025-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Accepted: 02/17/2010] [Indexed: 02/08/2023]
|
143
|
Li XH, Yang HJ, Roy B, Park EY, Jiang LJ, Wang D, Miao YG. Enhanced cellulase production of the Trichoderma viride mutated by microwave and ultraviolet. Microbiol Res 2010; 165:190-8. [DOI: 10.1016/j.micres.2009.04.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 03/30/2009] [Accepted: 04/18/2009] [Indexed: 11/26/2022]
|
144
|
Vallander L, Eriksson KE. Enzymatic hydrolysis of lignocellulosic materials: II. Experimental investigations of theoretical hydrolysis--process models for an increased enzyme recovery. Biotechnol Bioeng 2009; 38:139-44. [PMID: 18600744 DOI: 10.1002/bit.260380206] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Stream pretreatment of wheat straw solubilized most of the xylan present. Xylose and other sugars were recovered by washing the substrate with water but only a minor part (34%) was monomeric. Treatment of this solutions with celulases and hemicellulases improved the yield of monomeric sugars to 69%, the main product being xylose. Some xylose was also obtained during enzymatic hydrolysis of the solid substrate although the pretreatment step contributed 64% (mean value) of total xylose formed. A reference model, No. 1, and two other models, Nos. 2 and 4, described in the first part of this article series (this issue) have been studied experimentally and results confirm the theoretical conclusions. An uninterrupted hydrolysis over a given time period leads to a lower degree of saccharification than when hydrolysate is withdrawn several times. Saccharification is also favored if the residue is removed at a late stage, i.e., at the end of the 24 h hydrolysis cycle. Extended recirculation of the enzymes during a 4 x 24-h experimental period gave the following average yields of saccharification on a 24-h basis: 65% (Reference), 73% (Model 2), and 79% (Model 4). It is concluded that enzyme recovery with model 4 is 70% or more, while the Reference and Model 2 attain a lower level of recovery. The design of an improved hydrolysis model is also discussed.
Collapse
Affiliation(s)
- L Vallander
- STFI (Swedish Pulp and Paper Research Institute) Box 5604, S-114 86 Stockholm, Sweden
| | | |
Collapse
|
145
|
Sunna A. Modular organisation and functional analysis of dissected modular β-mannanase CsMan26 from Caldicellulosiruptor Rt8B.4. Appl Microbiol Biotechnol 2009; 86:189-200. [DOI: 10.1007/s00253-009-2242-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 09/03/2009] [Accepted: 09/03/2009] [Indexed: 10/20/2022]
|
146
|
Christiansen C, Abou Hachem M, Janecek S, Viksø-Nielsen A, Blennow A, Svensson B. The carbohydrate-binding module family 20--diversity, structure, and function. FEBS J 2009; 276:5006-29. [PMID: 19682075 DOI: 10.1111/j.1742-4658.2009.07221.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Starch-active enzymes often possess starch-binding domains (SBDs) mediating attachment to starch granules and other high molecular weight substrates. SBDs are divided into nine carbohydrate-binding module (CBM) families, and CBM20 is the earliest-assigned and best characterized family. High diversity characterizes CBM20s, which occur in starch-active glycoside hydrolase families 13, 14, 15, and 77, and enzymes involved in starch or glycogen metabolism, exemplified by the starch-phosphorylating enzyme glucan, water dikinase 3 from Arabidopsis thaliana and the mammalian glycogen phosphatases, laforins. The clear evolutionary relatedness of CBM20s to CBM21s, CBM48s and CBM53s suggests a common clan hosting most of the known SBDs. This review surveys the diversity within the CBM20 family, and makes an evolutionary comparison with CBM21s, CBM48s and CBM53s, discussing intrafamily and interfamily relationships. Data on binding to and enzymatic activity towards soluble ligands and starch granules are summarized for wild-type, mutant and chimeric fusion proteins involving CBM20s. Noticeably, whereas CBM20s in amylolytic enzymes confer moderate binding affinities, with dissociation constants in the low micromolar range for the starch mimic beta-cyclodextrin, recent findings indicate that CBM20s in regulatory enzymes have weaker, low millimolar affinities, presumably facilitating dynamic regulation. Structures of CBM20s, including the first example of a full-length glucoamylase featuring both the catalytic domain and the SBD, are summarized, and distinct architectural and functional features of the two SBDs and roles of pivotal amino acids in binding are described. Finally, some applications of SBDs as affinity or immobilization tags and, recently, in biofuel and in planta bioengineering are presented.
Collapse
Affiliation(s)
- Camilla Christiansen
- VKR Research Centre Pro-Active Plants, Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | | | | | | |
Collapse
|
147
|
Cicortas Gunnarsson L, Nordberg Karlsson E, Andersson M, Holst O, Ohlin M. Molecular engineering of a thermostable carbohydrate-binding module. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420500518516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
148
|
Li YL, Li H, Li AN, Li DC. Cloning of a gene encoding thermostable cellobiohydrolase from the thermophilic fungusChaetomium thermophilumand its expression inPichia pastoris. J Appl Microbiol 2009; 106:1867-75. [DOI: 10.1111/j.1365-2672.2009.04171.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
149
|
Improving the thermostability and activity of Melanocarpus albomyces cellobiohydrolase Cel7B. Appl Microbiol Biotechnol 2009; 83:261-72. [DOI: 10.1007/s00253-008-1848-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 12/15/2008] [Accepted: 12/26/2008] [Indexed: 10/21/2022]
|
150
|
Fukuda H, Kondo A, Tamalampudi S. Bioenergy: Sustainable fuels from biomass by yeast and fungal whole-cell biocatalysts. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2008.11.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|