101
|
Ge Y, Rikihisa Y. Subversion of host cell signaling by Orientia tsutsugamushi. Microbes Infect 2011; 13:638-48. [PMID: 21458586 DOI: 10.1016/j.micinf.2011.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 03/13/2011] [Accepted: 03/14/2011] [Indexed: 01/08/2023]
Abstract
Progress has been made in deciphering the mechanisms on Orientia tsutsugamushi-host interaction. The genome sequencing, microarray and proteomic analyses of this ancient bacterium have provided a wealth of new information. This paper reviews the general characteristics of O. tsutsugamushi and recent developments especially in signaling events involved in the bacteria--host interaction.
Collapse
Affiliation(s)
- Yan Ge
- Department of Immunology and Pathogen Biology, Tongji University School of Medicine, Shanghai 200092, China.
| | | |
Collapse
|
102
|
Lin M, Kikuchi T, Brewer HM, Norbeck AD, Rikihisa Y. Global proteomic analysis of two tick-borne emerging zoonotic agents: anaplasma phagocytophilum and ehrlichia chaffeensis. Front Microbiol 2011; 2:24. [PMID: 21687416 PMCID: PMC3109344 DOI: 10.3389/fmicb.2011.00024] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 01/31/2011] [Indexed: 11/29/2022] Open
Abstract
Anaplasma phagocytophilum and Ehrlichia chaffeensis are obligatory intracellular α-proteobacteria that infect human leukocytes and cause potentially fatal emerging zoonoses. In the present study, we determined global protein expression profiles of these bacteria cultured in the human promyelocytic leukemia cell line, HL-60. Mass spectrometric (MS) analyses identified a total of 1,212 A. phagocytophilum and 1,021 E. chaffeensis proteins, representing 89.3 and 92.3% of the predicted bacterial proteomes, respectively. Nearly all bacterial proteins (≥99%) with known functions were expressed, whereas only approximately 80% of “hypothetical” proteins were detected in infected human cells. Quantitative MS/MS analyses indicated that highly expressed proteins in both bacteria included chaperones, enzymes involved in biosynthesis and metabolism, and outer membrane proteins, such as A. phagocytophilum P44 and E. chaffeensis P28/OMP-1. Among 113 A. phagocytophilum p44 paralogous genes, 110 of them were expressed and 88 of them were encoded by pseudogenes. In addition, bacterial infection of HL-60 cells up-regulated the expression of human proteins involved mostly in cytoskeleton components, vesicular trafficking, cell signaling, and energy metabolism, but down-regulated some pattern recognition receptors involved in innate immunity. Our proteomics data represent a comprehensive analysis of A. phagocytophilum and E. chaffeensis proteomes, and provide a quantitative view of human host protein expression profiles regulated by bacterial infection. The availability of these proteomic data will provide new insights into biology and pathogenesis of these obligatory intracellular pathogens.
Collapse
Affiliation(s)
- Mingqun Lin
- Department of Veterinary Biosciences, The Ohio State University Columbus, OH, USA
| | | | | | | | | |
Collapse
|
103
|
Molecular and cellular pathobiology of Ehrlichia infection: targets for new therapeutics and immunomodulation strategies. Expert Rev Mol Med 2011; 13:e3. [PMID: 21276277 DOI: 10.1017/s1462399410001730] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ehrlichia are small obligately intracellular bacteria in the order Rickettsiales that are transmitted by ticks and associated with emerging life-threatening human zoonoses. Vaccines are not available for human ehrlichiosis, and therapeutic options are limited to a single antibiotic class. New technologies for exploring host-pathogen interactions have yielded recent advances in understanding the molecular interactions between Ehrlichia and the eukaryotic host cell and identified new targets for therapeutic and vaccine development, including those that target pathogen virulence mechanisms or disrupt the processes associated with ehrlichial effector proteins. Animal models have also provided insight into immunopathological mechanisms that contribute significantly to understanding severe disease manifestations, which should lead to the development of immunomodulatory approaches for treating patients nearing or experiencing severe disease states. In this review, we discuss the recent advances in our understanding of molecular and cellular pathobiology and the immunobiology of Ehrlichia infection. We identify new molecular host-pathogen interactions that can be targets of new therapeutics, and discuss prospects for treating the immunological dysregulation during acute infection that leads to life-threatening complications.
Collapse
|
104
|
Wessler S, Backert S. Abl family of tyrosine kinases and microbial pathogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:271-300. [PMID: 21199784 DOI: 10.1016/b978-0-12-385859-7.00006-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abl nonreceptor tyrosine kinases are activated by multiple stimuli and regulate cytoskeletal reorganization, cell proliferation, survival, and stress responses. Several downstream pathways have direct impact on physiological processes, including development and maintenance of the nervous and immune systems and epithelial morphogenesis. Recent studies also indicated that numerous viral and bacterial pathogens highjack Abl signaling for different purposes. Abl kinases are activated to reorganize the host actin cytoskeleton and promote the direct tyrosine phosphorylation of viral surface proteins and injected bacterial type-III and type-IV effector molecules. However, Abl kinases also play other roles in infectious processes of bacteria, viruses, and prions. These activities have crucial impact on microbial invasion and release from host cells, actin-based motility, pedestal formation, as well as cell-cell dissociation involved in epithelial barrier disruption and other responses. Thus, Abl kinases exhibit important functions in pathological signaling during microbial infections. Here, we discuss the different signaling pathways activated by pathogens and highlight possible therapeutic intervention strategies.
Collapse
Affiliation(s)
- Silja Wessler
- Department of Molecular Biology, Division of Microbiology, Paris-Lodron University of Salzburg, Billrothstrasse, Salzburg, Austria
| | | |
Collapse
|
105
|
Distinct host species correlate with Anaplasma phagocytophilum ankA gene clusters. J Clin Microbiol 2010; 49:790-6. [PMID: 21177886 DOI: 10.1128/jcm.02051-10] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaplasma phagocytophilum is a gram-negative, tick-transmitted, obligate intracellular bacterium that elicits acute febrile diseases in humans and domestic animals. In contrast to the United States, human granulocytic anaplasmosis seems to be a rare disease in Europe despite the initial recognition of A. phagocytophilum as the causative agent of tick-borne fever in European sheep and cattle. Considerable strain variation has been suggested to occur within this species, because isolates from humans and animals differed in their pathogenicity for heterologous hosts. In order to explain host preference and epidemiological diversity, molecular characterization of A. phagocytophilum strains has been undertaken. Most often the 16S rRNA gene was used, but it might be not informative enough to delineate distinct genotypes of A. phagocytophilum. Previously, we have shown that A. phagocytophilum strains infecting Ixodes ricinus ticks are highly diverse in their ankA genes. Therefore, we sequenced the 16S rRNA and ankA genes of 194 A. phagocytophilum strains from humans and several animal species. Whereas the phylogenetic analysis using 16S rRNA gene sequences was not meaningful, we showed that distinct host species correlate with A. phagocytophilum ankA gene clusters.
Collapse
|
106
|
Xu S, Zhang C, Miao Y, Gao J, Xu D. Effector prediction in host-pathogen interaction based on a Markov model of a ubiquitous EPIYA motif. BMC Genomics 2010; 11 Suppl 3:S1. [PMID: 21143776 PMCID: PMC2999339 DOI: 10.1186/1471-2164-11-s3-s1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Effector secretion is a common strategy of pathogen in mediating host-pathogen interaction. Eight EPIYA-motif containing effectors have recently been discovered in six pathogens. Once these effectors enter host cells through type III/IV secretion systems (T3SS/T4SS), tyrosine in the EPIYA motif is phosphorylated, which triggers effectors binding other proteins to manipulate host-cell functions. The objectives of this study are to evaluate the distribution pattern of EPIYA motif in broad biological species, to predict potential effectors with EPIYA motif, and to suggest roles and biological functions of potential effectors in host-pathogen interactions. Results A hidden Markov model (HMM) of five amino acids was built for the EPIYA-motif based on the eight known effectors. Using this HMM to search the non-redundant protein database containing 9,216,047 sequences, we obtained 107,231 sequences with at least one EPIYA motif occurrence and 3115 sequences with multiple repeats of the EPIYA motif. Although the EPIYA motif exists among broad species, it is significantly over-represented in some particular groups of species. For those proteins containing at least four copies of EPIYA motif, most of them are from intracellular bacteria, extracellular bacteria with T3SS or T4SS or intracellular protozoan parasites. By combining the EPIYA motif and the adjacent SH2 binding motifs (KK, R4, Tarp and Tir), we built HMMs of nine amino acids and predicted many potential effectors in bacteria and protista by the HMMs. Some potential effectors for pathogens (such as Lawsonia intracellularis, Plasmodium falciparum and Leishmania major) are suggested. Conclusions Our study indicates that the EPIYA motif may be a ubiquitous functional site for effectors that play an important pathogenicity role in mediating host-pathogen interactions. We suggest that some intracellular protozoan parasites could secrete EPIYA-motif containing effectors through secretion systems similar to the T3SS/T4SS in bacteria. Our predicted effectors provide useful hypotheses for further studies.
Collapse
Affiliation(s)
- Shunfu Xu
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu 210029, China.
| | | | | | | | | |
Collapse
|
107
|
Abstract
Human ehrlichiosis and anaplasmosis are acute febrile tick-borne diseases caused by various members of the genera Ehrlichia and Anaplasma (Anaplasmataceae). Human monocytotropic ehrlichiosis has become one of the most prevalent life-threatening tick-borne disease in the United States. Ehrlichiosis and anaplasmosis are becoming more frequently diagnosed as the cause of human infections, as animal reservoirs and tick vectors have increased in number and humans have inhabited areas where reservoir and tick populations are high. Ehrlichia chaffeensis, the etiologic agent of human monocytotropic ehrlichiosis (HME), is an emerging zoonosis that causes clinical manifestations ranging from a mild febrile illness to a fulminant disease characterized by multiorgan system failure. Anaplasma phagocytophilum causes human granulocytotropic anaplasmosis (HGA), previously known as human granulocytotropic ehrlichiosis. This article reviews recent advances in the understanding of ehrlichial diseases related to microbiology, epidemiology, diagnosis, pathogenesis, immunity, and treatment of the 2 prevalent tick-borne diseases found in the United States, HME and HGA.
Collapse
|
108
|
Sukumaran B, Mastronunzio JE, Narasimhan S, Fankhauser S, Uchil PD, Levy R, Graham M, Colpitts TM, Lesser CF, Fikrig E. Anaplasma phagocytophilum AptA modulates Erk1/2 signalling. Cell Microbiol 2010; 13:47-61. [PMID: 20716207 DOI: 10.1111/j.1462-5822.2010.01516.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Anaplasma phagocytophilum causes human granulocytic anaplasmosis, one of the most common tick-borne diseases in North America. This unusual obligate intracellular pathogen selectively persists within polymorphonuclear leucocytes. In this study, using the yeast surrogate model we identified an A. phagocytophilum virulence protein, AptA (A. phagocytophilum toxin A), that activates mammalian Erk1/2 mitogen-activated protein kinase. This activation is important for A. phagocytophilum survival within human neutrophils. AptA interacts with the intermediate filament protein vimentin, which is essential for A. phagocytophilum-induced Erk1/2 activation and infection. A. phagocytophilum infection reorganizes vimentin around the bacterial inclusion, thereby contributing to intracellular survival. These observations reveal a major role for the bacterial protein, AptA, and the host protein, vimentin, in the activation of Erk1/2 during A. phagocytophilum infection.
Collapse
Affiliation(s)
- Bindu Sukumaran
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8022, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Rikihisa Y, Lin M, Niu H. Type IV secretion in the obligatory intracellular bacterium Anaplasma phagocytophilum. Cell Microbiol 2010; 12:1213-21. [PMID: 20670295 DOI: 10.1111/j.1462-5822.2010.01500.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Anaplasma phagocytophilum is an obligatory intracellular bacterium that infects neutrophils, the primary host defence cells. Consequent effects of infection on host cells result in a potentially fatal systemic disease called human granulocytic anaplasmosis. Despite ongoing reductive genome evolution and deletion of most genes for intermediary metabolism and amino acid biosynthesis, Anaplasma has also experienced expansion of genes encoding several components of the type IV secretion (T4S) apparatus. Two A. phagocytophilum T4S effector molecules are currently known; Anaplasma translocated substrate 1 (Ats-1) and ankyrin repeat domain-containing protein A (AnkA) have C-terminal positively charged amino acid residues that are recognized by the T4S coupling protein, VirD4. AnkA and Ats-1 contain eukaryotic protein motifs and are uniquely evolved in the family Anaplasmataceae; Ats-1 contains a mitochondria-targeting signal. They are abundantly produced and secreted into the host cytoplasm, are not toxic to host cells, and manipulate host cell processes to aid in the infection process. At the cellular level, the two effectors have distinct subcellular localization and signalling in host cells. Thus in this obligatory intracellular pathogen, the T4S system has evolved as a host-subversive survival factor.
Collapse
Affiliation(s)
- Yasuko Rikihisa
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
110
|
Sultana H, Neelakanta G, Kantor FS, Malawista SE, Fish D, Montgomery RR, Fikrig E. Anaplasma phagocytophilum induces actin phosphorylation to selectively regulate gene transcription in Ixodes scapularis ticks. ACTA ACUST UNITED AC 2010; 207:1727-43. [PMID: 20660616 PMCID: PMC2916137 DOI: 10.1084/jem.20100276] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Anaplasma phagocytophilum, the agent of human anaplasmosis, persists in ticks and mammals. We show that A. phagocytophilum induces the phosphorylation of actin in an Ixodes ricinus tick cell line and Ixodes scapularis ticks, to alter the ratio of monomeric/filamentous (G/F) actin. A. phagocytophilum–induced actin phosphorylation was dependent on Ixodes p21-activated kinase (IPAK1)–mediated signaling. A. phagocytophilum stimulated IPAK1 activity via the G protein–coupled receptor Gβγ subunits, which mediated phosphoinositide 3-kinase (PI3K) activation. Disruption of Ixodes gβγ, pi3k, and pak1 reduced actin phosphorylation and bacterial acquisition by ticks. A. phagocytophilum–induced actin phosphorylation resulted in increased nuclear G actin and phosphorylated actin. The latter, in association with RNA polymerase II (RNAPII), enhanced binding of TATA box–binding protein to RNAPII and selectively promoted expression of salp16, a gene crucial for A. phagocytophilum survival. These data define a mechanism that A. phagocytophilum uses to selectively alter arthropod gene expression for its benefit and suggest new strategies to interfere with the life cycle of this intracellular pathogen, and perhaps other Rickettsia-related microbes of medical importance.
Collapse
Affiliation(s)
- Hameeda Sultana
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
111
|
Schaff UY, Trott KA, Chase S, Tam K, Johns JL, Carlyon JA, Genetos DC, Walker NJ, Simon SI, Borjesson DL. Neutrophils exposed to A. phagocytophilum under shear stress fail to fully activate, polarize, and transmigrate across inflamed endothelium. Am J Physiol Cell Physiol 2010; 299:C87-96. [PMID: 20392928 PMCID: PMC2904253 DOI: 10.1152/ajpcell.00165.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 04/02/2010] [Indexed: 11/22/2022]
Abstract
Anaplasma phagocytophilum is an obligate intracellular bacterium that has evolved mechanisms to hijack polymorphonuclear neutrophil (PMN) receptors and signaling pathways to bind, infect, and multiply within the host cell. E-selectin is upregulated during inflammation and is a requisite endothelial receptor that supports PMN capture, rolling, and activation of integrin-mediated arrest. Ligands expressed by PMN that mediate binding to endothelium via E-selectin include sialyl Lewis x (sLe(x))-expressing ligands such as P-selectin glycoprotein ligand-1 (PSGL-1) and other glycolipids and glycoproteins. As A. phagocytophilum is capable of binding to sLe(x)-expressing ligands expressed on PMN, we hypothesized that acute bacterial adhesion to PMN would subsequently attenuate PMN recruitment during inflammation. We assessed the dynamics of PMN recruitment and migration under shear flow in the presence of a wild-type strain of A. phagocytophilum and compared it with a strain of bacteria that binds to PMN independent of PSGL-1. Acute bacterial engagement with PMN resulted in transient PMN arrest and minimal PMN polarization. Although the wild-type pathogen also signaled activation of beta2 integrins and elicited a mild intracellular calcium flux, downstream signals including PMN transmigration and phosphorylation of p38 mitogen-activated protein kinase (MAPK) were inhibited. The mutant strain bound less well to PMN and failed to activate beta2 integrins and induce a calcium flux but did result in decreased PMN arrest and polarization that may have been partially mediated by a suppression of p38 MAPK activation. This model suggests that A. phagocytophilum binding to PMN under shear flow during recruitment to inflamed endothelium interferes with normal tethering via E-selectin and navigational signaling of transendothelial migration.
Collapse
Affiliation(s)
- U Y Schaff
- Department of Biomedical Engineering, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Huang B, Troese MJ, Howe D, Ye S, Sims JT, Heinzen RA, Borjesson DL, Carlyon JA. Anaplasma phagocytophilum APH_0032 is expressed late during infection and localizes to the pathogen-occupied vacuolar membrane. Microb Pathog 2010; 49:273-84. [PMID: 20600793 DOI: 10.1016/j.micpath.2010.06.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/18/2010] [Accepted: 06/23/2010] [Indexed: 01/16/2023]
Abstract
Anaplasma phagocytophilum infects neutrophils and myeloid, endothelial, and tick cell lines to reside within a host cell-derived vacuole that is indispensible for its survival. Here, we identify APH_0032 as an Anaplasma-derived protein that associates with the A. phagocytophilum-occupied vacuolar membrane (AVM). APH_0032 is a 66.1 kDa acidic protein that electrophoretically migrates with an apparent molecular weight of 130 kDa. It contains a predicted transmembrane domain and tandemly arranged direct repeats that comprise 46% of the protein. APH_0032 is undetectable on Anaplasma organisms bound to the surfaces of HL-60 cells, but is detected on the AVM and surfaces of intravacuolar bacteria beginning 24 h post-infection. APH_0032 localizes to the AVM in HL-60, THP-1, HMEC-1, and ISE6 cells. APH_0032, along with APH_1387, which encodes a confirmed AVM protein, is transcribed during A. phagocytophilum infection of tick salivary glands and murine neutrophils. APH_0032 localizes to the AVM in neutrophils recovered from infected mice. The Legionella pneumophila Dot/IcM type IV secretion system (T4SS) can heterologously secrete a CyaA-tagged version of the A. phagocytophilum VirB/D T4SS effector, AnkA, but fails to secrete CyaA-tagged APH_0032 or APH_1387. These data confirm APH_0032 as an Anaplasma-derived AVM protein and hint that neither it nor APH_1387 are T4SS effectors.
Collapse
Affiliation(s)
- Bernice Huang
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0678, USA
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Slatko BE, Taylor MJ, Foster JM. The Wolbachia endosymbiont as an anti-filarial nematode target. Symbiosis 2010; 51:55-65. [PMID: 20730111 PMCID: PMC2918796 DOI: 10.1007/s13199-010-0067-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 05/13/2010] [Indexed: 01/05/2023]
Abstract
Human disease caused by parasitic filarial nematodes is a major cause of global morbidity. The parasites are transmitted by arthropod intermediate hosts and are responsible for lymphatic filariasis (elephantiasis) or onchocerciasis (river blindness). Within these filarial parasites are intracellular alpha-proteobacteria, Wolbachia, that were first observed almost 30 years ago. The obligate endosymbiont has been recognized as a target for anti-filarial nematode chemotherapy as evidenced by the loss of worm fertility and viability upon antibiotic treatment in an extensive series of human trials. While current treatments with doxycycline and rifampicin are not practical for widespread use due to the length of required treatments and contraindications, anti-Wolbachia targeting nevertheless appears a promising alternative for filariasis control in situations where current programmatic strategies fail or are unable to be delivered and it provides a superior efficacy for individual therapy. The mechanisms that underlie the symbiotic relationship between Wolbachia and its nematode hosts remain elusive. Comparative genomics, bioinfomatic and experimental analyses have identified a number of potential interactions, which may be drug targets. One candidate is de novo heme biosynthesis, due to its absence in the genome sequence of the host nematode, Brugia malayi, but presence in Wolbachia and its potential roles in worm biology. We describe this and several additional candidate targets, as well as our approaches for understanding the nature of the host-symbiont relationship.
Collapse
Affiliation(s)
- Barton E. Slatko
- Molecular Parasitology Division, New England Biolabs, 240 County Road, Ipswich, MA 01938 USA
| | - Mark J. Taylor
- Filariasis Research Laboratory, Molecular and Biochemical Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| | - Jeremy M. Foster
- Molecular Parasitology Division, New England Biolabs, 240 County Road, Ipswich, MA 01938 USA
| |
Collapse
|
114
|
Huang B, Troese MJ, Ye S, Sims JT, Galloway NL, Borjesson DL, Carlyon JA. Anaplasma phagocytophilum APH_1387 is expressed throughout bacterial intracellular development and localizes to the pathogen-occupied vacuolar membrane. Infect Immun 2010; 78:1864-73. [PMID: 20212090 PMCID: PMC2863503 DOI: 10.1128/iai.01418-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 01/18/2010] [Accepted: 02/15/2010] [Indexed: 11/20/2022] Open
Abstract
Obligate vacuolar pathogens produce proteins that localize to the host cell-derived membranes of the vacuoles in which they reside, yielding unique organelles that are optimally suited for pathogen survival. Anaplasma phagocytophilum is an obligate vacuolar bacterium that infects neutrophils and causes the emerging and potentially fatal disease human granulocytic anaplasmosis. Here we identified APH_1387 as the first A. phagocytophilum-derived protein that associates with the A. phagocytophilum-occupied vacuolar membrane (AVM). APH_1387, also referred to as P100, is a 61.4-kDa acidic protein that migrates with an apparent molecular weight of 115 kDa on SDS-PAGE gels. It carries 3 tandem direct repeats that comprise 58% of the protein. Each APH_1387 repeat carries a bilobed hydrophobic alpha-helix domain, which is a structural characteristic that is consistent with the structure of chlamydia-derived proteins that traverse inclusion membranes. APH_1387 is not detectable on the surfaces of A. phagocytophilum dense core organisms bound at the HL-60 cell surface, but abundant APH_1387 is detected on the surfaces of intravacuolar reticulate cell and dense core organisms. APH_1387 accumulates on the AVM throughout infection. It associates with the AVM in human HL-60, THP-1, and HMEC-1 cells and tick ISE6 cells. APH_1387 is expressed and localizes to the AVM in neutrophils recovered from A. phagocytophilum-infected mice. This paper presents the first direct evidence that A. phagocytophilum actively modifies its host cell-derived vacuole.
Collapse
Affiliation(s)
- Bernice Huang
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky 40504, Department of Pathology, Microbiology, and Immunology, University of California School of Veterinary Medicine, Davis, California 95616
| | - Matthew J. Troese
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky 40504, Department of Pathology, Microbiology, and Immunology, University of California School of Veterinary Medicine, Davis, California 95616
| | - Shaojing Ye
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky 40504, Department of Pathology, Microbiology, and Immunology, University of California School of Veterinary Medicine, Davis, California 95616
| | - Jonathan T. Sims
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky 40504, Department of Pathology, Microbiology, and Immunology, University of California School of Veterinary Medicine, Davis, California 95616
| | - Nathan L. Galloway
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky 40504, Department of Pathology, Microbiology, and Immunology, University of California School of Veterinary Medicine, Davis, California 95616
| | - Dori L. Borjesson
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky 40504, Department of Pathology, Microbiology, and Immunology, University of California School of Veterinary Medicine, Davis, California 95616
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky 40504, Department of Pathology, Microbiology, and Immunology, University of California School of Veterinary Medicine, Davis, California 95616
| |
Collapse
|
115
|
Anaplasma phagocytophilum and Ehrlichia chaffeensis: subversive manipulators of host cells. Nat Rev Microbiol 2010; 8:328-39. [PMID: 20372158 DOI: 10.1038/nrmicro2318] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Anaplasma spp. and Ehrlichia spp. cause several emerging human infectious diseases. Anaplasma phagocytophilum and Ehrlichia chaffeensis are transmitted between mammals by blood-sucking ticks and replicate inside mammalian white blood cells and tick salivary-gland and midgut cells. Adaptation to a life in eukaryotic cells and transmission between hosts has been assisted by the deletion of many genes that are present in the genomes of free-living bacteria (including genes required for the biosynthesis of lipopolysaccharide and peptidoglycan), by the acquisition of a cholesterol uptake pathway and by the expansion of the repertoire of genes encoding the outer-membrane porins and type IV secretion system. Here, I review the specialized properties and other adaptations of these intracellular bacteria.
Collapse
|
116
|
Mass spectrometric analysis of Ehrlichia chaffeensis tandem repeat proteins reveals evidence of phosphorylation and absence of glycosylation. PLoS One 2010; 5:e9552. [PMID: 20209062 PMCID: PMC2832021 DOI: 10.1371/journal.pone.0009552] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 02/12/2010] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Ehrlichia chaffeensis has a small subset of immunoreactive secreted, acidic (pI approximately 4), tandem repeat (TR)-containing proteins (TRPs), which exhibit abnormally large electrophoretic masses that have been associated with glycosylation of the TR domain. METHODOLOGY/PRINCIPAL FINDINGS In this study, we examined the extent and nature of posttranslational modifications on the native TRP47 and TRP32 using mass spectrometry. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) demonstrated that the mass of native TRP47 (33,104.5 Da) and TRP32 (22,736.8 Da) were slightly larger (179- and 288-Da, respectively) than their predicted masses. The anomalous migration of native and recombinant TRP47, and the recombinant TR domain (C-terminal region) were normalized by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) modification of negatively charged carboxylates to neutral amides. Exhaustive tandem mass spectrometric analysis (92% coverage) performed on trypsin and Asp-N digested native TRP47 identified peptides consistent with their predicted masses. Two TRP47 peptides not identified were located in the normally migrating amino (N)-terminal region of TRP47 and contained predicted phosphorylation sites (tyrosine and serine residues). Moreover, native TRP47 was immunoprecipitated from E. chaffeensis-infected cell lysate with anti-phosphotyrosine (anti-pTyr) antibody. CONCLUSIONS/SIGNIFICANCE TRP47 and TRP32 are not modified by glycans and the substantial net negative charge of the ehrlichial TRPs, and particularly the highly acidic TRs present within the ehrlichial TRPs, is responsible for larger-than-predicted masses. Furthermore, this study provides evidence that the N-terminal region of the TRP47 is tyrosine phosphorylated.
Collapse
|
117
|
Abstract
With an obligate intracellular lifestyle, Alphaproteobacteria of the order Rickettsiales have inextricably coevolved with their various eukaryotic hosts, resulting in small, reductive genomes and strict dependency on host resources. Unsurprisingly, large portions of Rickettsiales genomes encode proteins involved in transport and secretion. One particular transporter that has garnered recent attention from researchers is the type IV secretion system (T4SS). Homologous to the well-studied archetypal vir T4SS of Agrobacterium tumefaciens, the Rickettsiales vir homolog (rvh) T4SS is characterized primarily by duplication of several of its genes and scattered genomic distribution of all components in several conserved islets. Phylogeny estimation suggests a single event of ancestral acquirement of the rvh T4SS, likely from a nonalphaproteobacterial origin. Bioinformatics analysis of over 30 Rickettsiales genome sequences illustrates a conserved core rvh scaffold (lacking only a virB5 homolog), with lineage-specific diversification of several components (rvhB1, rvhB2, and rvhB9b), likely a result of modifications to cell envelope structure. This coevolution of the rvh T4SS and cell envelope morphology is probably driven by adaptations to various host cells, identifying the transporter as an important target for vaccine development. Despite the genetic intractability of Rickettsiales, recent advancements have been made in the characterization of several components of the rvh T4SS, as well as its putative regulators and substrates. While current data favor a role in effector translocation, functions in DNA uptake and release and/or conjugation cannot at present be ruled out, especially considering that a mechanism for plasmid transfer in Rickettsia spp. has yet to be proposed.
Collapse
|
118
|
Niu H, Kozjak-Pavlovic V, Rudel T, Rikihisa Y. Anaplasma phagocytophilum Ats-1 is imported into host cell mitochondria and interferes with apoptosis induction. PLoS Pathog 2010; 6:e1000774. [PMID: 20174550 PMCID: PMC2824752 DOI: 10.1371/journal.ppat.1000774] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 01/15/2010] [Indexed: 12/14/2022] Open
Abstract
Anaplasma phagocytophilum, the causative agent of human granulocytic anaplasmosis, infects human neutrophils and inhibits mitochondria-mediated apoptosis. Bacterial factors involved in this process are unknown. In the present study, we screened a genomic DNA library of A. phagocytophilum for effectors of the type IV secretion system by a bacterial two-hybrid system, using A. phagocytophilum VirD4 as bait. A hypothetical protein was identified as a putative effector, hereby named Anaplasmatranslocated substrate 1 (Ats-1). Using triple immunofluorescence labeling and Western blot analysis of infected cells, including human neutrophils, we determined that Ats-1 is abundantly expressed by A. phagocytophilum, translocated across the inclusion membrane, localized in the host cell mitochondria, and cleaved. Ectopically expressed Ats-1 targeted mitochondria in an N-terminal 17 residue-dependent manner, localized in matrix or at the inner membrane, and was cleaved as native protein, which required residues 55–57. In vitro-translated Ats-1 was imported in a receptor-dependent manner into isolated mitochondria. Ats-1 inhibited etoposide-induced cytochrome c release from mitochondria, PARP cleavage, and apoptosis in mammalian cells, as well as Bax-induced yeast apoptosis. Ats-1(55–57) had significantly reduced anti-apoptotic activity. Bax redistribution was inhibited in both etoposide-induced and Bax-induced apoptosis by Ats-1. Taken together, Ats-1 is the first example of a bacterial protein that traverses five membranes and prevents apoptosis at the mitochondria. Anaplasma phagocytophilum is the pathogen that causes human granulocytic anaplasmosis, an emerging infectious disease. As an obligate intracellular organism, this bacterium cannot reproduce outside of eukaryotic cells due to the loss of many genes that are present in free-living bacteria. Paradoxically, it specifically infects short-lived white blood cells that play critical roles in anti-microbial defense, by subverting a number of host innate immune responses including programmed cell death (apoptosis). A. phagocytophilum factors that are involved in this process are largely unknown. In this study, we first searched A. phagocytophilum proteins that are secreted by its specialized secretion system into eukaryotic cells. We found a protein of unknown function, here named Ats-1, which is abundantly produced by A. phagocytophilum and traverses five membranes to enter the mitochondria of human cells. Our further study showed that Ats-1 reduces the sensitivity of mitochondria to respond to apoptosis-inducing factors, leading to the inhibition of host cell apoptosis. Thus, present findings identified a bacterial protein that allows infected white blood cells to live longer to support bacterial growth. The absence of similarity of the sequence or the mode of action to any other known cell death suppressor suggests that Ats-1 defines a previously undescribed class of anti-apoptotic protein. This protein and the mechanism thereof may provide insight regarding a new therapeutic target for treatment of human granulocytic anaplasmosis.
Collapse
Affiliation(s)
- Hua Niu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Vera Kozjak-Pavlovic
- Biocenter, Department of Microbiology, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Thomas Rudel
- Biocenter, Department of Microbiology, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Yasuko Rikihisa
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
119
|
New insights into molecular Ehrlichia chaffeensis-host interactions. Microbes Infect 2010; 12:337-45. [PMID: 20116446 DOI: 10.1016/j.micinf.2010.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 01/20/2010] [Indexed: 12/24/2022]
Abstract
Ehrlichia chaffeensis is an obligately intracellular bacterium that exhibits tropism for mononuclear phagocytes and survives by reprogramming the host cell. Here we review new information regarding the newly characterized effector molecules and the complex network of molecular host-pathogen interactions that the organism exploits enabling it to thrive and persist intracellularly.
Collapse
|
120
|
Anaplasma marginale type IV secretion system proteins VirB2, VirB7, VirB11, and VirD4 are immunogenic components of a protective bacterial membrane vaccine. Infect Immun 2010; 78:1314-25. [PMID: 20065028 DOI: 10.1128/iai.01207-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Anaplasma and related Ehrlichia spp. are important tick-borne, Gram-negative bacterial pathogens of livestock and humans that cause acute infection and disease and can persist. Immunization of cattle with an Anaplasma marginale fraction enriched in outer membranes (OM) can provide complete protection against disease and persistent infection. Serological responses of OM vaccinees to the OM proteome previously identified over 20 antigenic proteins, including three type IV secretion system (T4SS) proteins, VirB9-1, VirB9-2, and VirB10. Subsequent studies showed that these three proteins also stimulated CD4(+) T-cell responses in OM vaccinees. The T4SS, composed of a complex of proteins spanning the inner and outer membranes of certain bacteria, is an important virulence factor but is relatively unexplored as a vaccine target. The goal of this study was to determine if additional T4SS proteins are immunogenic for animals immunized with the protective OM fraction of A. marginale. T4SS proteins expressed by in vitro transcription and translation were screened for stimulating proliferation of T cells from OM vaccinees, and immunogenic proteins were expressed as recombinant proteins in Escherichia coli and their immunogenicity was verified. VirB2, a putative VirB7, VirB11, and VirD4 were immunogenic for OM vaccinees expressing several common major histocompatibility complex (MHC) class II haplotypes. VirB2 is encoded by multiple genes that share a conserved central region, and epitope mapping revealed T-cell epitopes in this region. The discovery of novel immunogenic T4SS proteins recognized by outbred individuals with common MHC haplotypes further justifies evaluating the T4SS as a potential vaccine candidate for pathogenic bacteria.
Collapse
|
121
|
Rikihisa Y, Lin M. Anaplasma phagocytophilum and Ehrlichia chaffeensis type IV secretion and Ank proteins. Curr Opin Microbiol 2010; 13:59-66. [PMID: 20053580 DOI: 10.1016/j.mib.2009.12.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 12/02/2009] [Accepted: 12/09/2009] [Indexed: 02/04/2023]
Abstract
The obligatory intracellular bacterial pathogens Anaplasma and Ehrlichia infect leukocytes by hijacking host-cell components and processes. The type IV secretion system is up-regulated during infection. Among type IV secretion candidate substrates, an ankyrin repeat protein of Anaplasma phagocytophilum, AnkA, is delivered into the host cytoplasm via a complex that includes VirD4. AnkA is highly tyrosine phosphorylated and binds to the Abl interactor 1, SHP-1, and nuclear DNA fragments. Ehrlichia chaffeensis AnkA was recently reported to be translocated into host-cell nucleus. The recent discovery of several ankyrin repeat proteins secreted via the type IV secretion system of different intracellular bacteria suggests that a common strategy evolved to subvert host-cell functions.
Collapse
Affiliation(s)
- Yasuko Rikihisa
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
122
|
Functional diversity of ankyrin repeats in microbial proteins. Trends Microbiol 2009; 18:132-9. [PMID: 19962898 DOI: 10.1016/j.tim.2009.11.004] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 10/09/2009] [Accepted: 11/11/2009] [Indexed: 12/18/2022]
Abstract
The ankyrin repeat (ANK) is the most common protein-protein interaction motif in nature, and is predominantly found in eukaryotic proteins. Genome sequencing of various pathogenic or symbiotic bacteria and eukaryotic viruses has identified numerous genes encoding ANK-containing proteins that are proposed to have been acquired from eukaryotes by horizontal gene transfer. However, the recent discovery of additional ANK-containing proteins encoded in the genomes of archaea and free-living bacteria suggests either a more ancient origin of the ANK motif or multiple convergent evolution events. Many bacterial pathogens employ various types of secretion systems to deliver ANK-containing proteins into eukaryotic cells, where they mimic or manipulate various host functions. Studying the molecular and biochemical functions of this family of proteins will enhance our understanding of important host-microbe interactions.
Collapse
|
123
|
Alvarez-Martinez CE, Christie PJ. Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 2009; 73:775-808. [PMID: 19946141 PMCID: PMC2786583 DOI: 10.1128/mmbr.00023-09] [Citation(s) in RCA: 524] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Type IV secretion systems (T4SS) translocate DNA and protein substrates across prokaryotic cell envelopes generally by a mechanism requiring direct contact with a target cell. Three types of T4SS have been described: (i) conjugation systems, operationally defined as machines that translocate DNA substrates intercellularly by a contact-dependent process; (ii) effector translocator systems, functioning to deliver proteins or other macromolecules to eukaryotic target cells; and (iii) DNA release/uptake systems, which translocate DNA to or from the extracellular milieu. Studies of a few paradigmatic systems, notably the conjugation systems of plasmids F, R388, RP4, and pKM101 and the Agrobacterium tumefaciens VirB/VirD4 system, have supplied important insights into the structure, function, and mechanism of action of type IV secretion machines. Information on these systems is updated, with emphasis on recent exciting structural advances. An underappreciated feature of T4SS, most notably of the conjugation subfamily, is that they are widely distributed among many species of gram-negative and -positive bacteria, wall-less bacteria, and the Archaea. Conjugation-mediated lateral gene transfer has shaped the genomes of most if not all prokaryotes over evolutionary time and also contributed in the short term to the dissemination of antibiotic resistance and other virulence traits among medically important pathogens. How have these machines adapted to function across envelopes of distantly related microorganisms? A survey of T4SS functioning in phylogenetically diverse species highlights the biological complexity of these translocation systems and identifies common mechanistic themes as well as novel adaptations for specialized purposes relating to the modulation of the donor-target cell interaction.
Collapse
Affiliation(s)
- Cristina E. Alvarez-Martinez
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin, Houston, Texas 77030
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin, Houston, Texas 77030
| |
Collapse
|
124
|
Rikihisa Y. Molecular events involved in cellular invasion by Ehrlichia chaffeensis and Anaplasma phagocytophilum. Vet Parasitol 2009; 167:155-66. [PMID: 19836896 DOI: 10.1016/j.vetpar.2009.09.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ehrlichia chaffeensis and Anaplasma phagocytophilum are obligatory intracellular bacteria that preferentially replicate inside leukocytes by utilizing biological compounds and processes of these primary host defensive cells. These bacteria incorporate cholesterol from the host for their survival. Upon interaction with host monocytes and granulocytes, respectively, these bacteria usurp the lipid raft domain containing GPI-anchored protein to induce a series of signaling events that result in internalization of the bacteria. Monocytes and neutrophils usually kill invading microorganisms by fusion of the phagosomes containing the bacteria with granules containing both antimicrobial peptides and lysosomal hydrolytic enzymes and/or through sequestering vital nutrients. However, E. chaffeensis and A. phagocytophilum alter vesicular traffic to create a unique intracellular membrane-bound compartment that allows their replication in seclusion from lysosomal killing. These bacteria are quite sensitive to reactive oxygen species (ROS), so in order to survive in host cells that are primary mediators of ROS-induced killing, they inhibit activation of NADPH oxidase and assembly of this enzyme in their inclusion compartments. Moreover, host phagocyte activation and differentiation, apoptosis, and IFN-gamma signaling pathways are inhibited by these bacteria. Through reductive evolution, lipopolysaccharide and peptidoglycan that activate the innate immune response, have been eliminated from these gram-negative bacteria at the genomic level. Upon interaction with new host cells, bacterial genes encoding the Type IV secretion apparatus and the two-component regulatory system are up-regulated to sense and adapt to the host environment. Thus dynamic signal transduction events concurrently proceed both in the host cells and in the invading E. chaffeensis and A. phagocytophilum bacteria for successful establishment of intracellular infection. Several bacterial surface-exposed proteins and porins are recently identified. Further functional studies on Ehrlichia and Anaplasma effector or ligand molecules and cognate host cell receptors will undoubtedly advance our understanding of the complex interplay between obligatory intracellular pathogens and their hosts. Such data can be applied towards treatment, diagnosis, and control of ehrlichiosis and anaplasmosis.
Collapse
Affiliation(s)
- Yasuko Rikihisa
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
125
|
Troese MJ, Carlyon JA. Anaplasma phagocytophilum dense-cored organisms mediate cellular adherence through recognition of human P-selectin glycoprotein ligand 1. Infect Immun 2009; 77:4018-27. [PMID: 19596771 PMCID: PMC2738047 DOI: 10.1128/iai.00527-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/08/2009] [Accepted: 07/07/2009] [Indexed: 01/20/2023] Open
Abstract
Anaplasma phagocytophilum is an obligate intracellular bacterium that infects granulocytes to cause human granulocytic anaplasmosis. The susceptibilities of human neutrophils and promyelocytic HL-60 cells to A. phagocytophilum are linked to bacterial usage of P-selectin glycoprotein ligand 1 (PSGL-1) as a receptor for adhesion and entry. A. phagocytophilum undergoes a biphasic developmental cycle, transitioning between a smaller electron dense-cored cell (DC), which has a dense nucleoid, and a larger, pleomorphic electron lucent reticulate cell (RC), which has a dispersed nucleoid. The pathobiological roles of each form have not been elucidated. To ascertain the role of each form, we used electron microscopy to monitor bacterial binding, entry, and intracellular development within HL-60 cells. Only DCs were observed binding to and inducing uptake by HL-60 cells. By 12 h, internalized DCs had transitioned to RCs, which had initiated replication. By 24 h, large RC numbers were observed within individual inclusions. Reinfection had occurred by 36 h, as individual, vacuole-enclosed DCs and RCs were again observed. The abilities of DC- and RC-enriched A. phagocytophilum populations to bind and/or infect HL-60 cells or Chinese hamster ovary cells transfected to express PSGL-1 (PSGL-1 CHO) were compared. Only DCs bound PSGL-1 CHO cells and did so in a PSGL-1-blocking antibody-inhibitable manner. These results demonstrate that the respective roles of A. phagocytophilum DCs and RCs are consistent with analogous forms of other obligate intracellular pathogens that undergo biphasic development and hint that the PSGL-1-targeting adhesin(s) may be upregulated or optimally posttranslationally modified on DCs.
Collapse
Affiliation(s)
- Matthew J Troese
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298-0678, USA
| | | |
Collapse
|
126
|
Lin M, Zhang C, Gibson K, Rikihisa Y. Analysis of complete genome sequence of Neorickettsia risticii: causative agent of Potomac horse fever. Nucleic Acids Res 2009; 37:6076-91. [PMID: 19661282 PMCID: PMC2764437 DOI: 10.1093/nar/gkp642] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Neorickettsia risticii is an obligate intracellular bacterium of the trematodes and mammals. Horses develop Potomac horse fever (PHF) when they ingest aquatic insects containing encysted N. risticii-infected trematodes. The complete genome sequence of N. risticii Illinois consists of a single circular chromosome of 879 977 bp and encodes 38 RNA species and 898 proteins. Although N. risticii has limited ability to synthesize amino acids and lacks many metabolic pathways, it is capable of making major vitamins, cofactors and nucleotides. Comparison with its closely related human pathogen N. sennetsu showed that 758 (88.2%) of protein-coding genes are conserved between N. risticii and N. sennetsu. Four-way comparison of genes among N. risticii and other Anaplasmataceae showed that most genes are either shared among Anaplasmataceae (525 orthologs that generally associated with housekeeping functions), or specific to each genome (>200 genes that are mostly hypothetical proteins). Genes potentially involved in the pathogenesis of N. risticii were identified, including those encoding putative outer membrane proteins, two-component systems and a type IV secretion system (T4SS). The bipolar localization of T4SS pilus protein VirB2 on the bacterial surface was demonstrated for the first time in obligate intracellular bacteria. These data provide insights toward genomic potential of N. risticii and intracellular parasitism, and facilitate our understanding of PHF pathogenesis.
Collapse
Affiliation(s)
- Mingqun Lin
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
127
|
Rikihisa Y, Lin M, Niu H, Cheng Z. Type IV secretion system of Anaplasma phagocytophilum and Ehrlichia chaffeensis. Ann N Y Acad Sci 2009; 1166:106-11. [PMID: 19538269 DOI: 10.1111/j.1749-6632.2009.04527.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The intracellular bacterial pathogens Ehrlichia chaffeensis and Anaplasma phagocytophilum have evolved to infect leukocytes and hijack biological compounds and processes of these host defensive cells. Bacterial type IV secretion (T4S) system transports macromolecules across the membrane in an ATP-dependent manner and is increasingly recognized as a virulence factor delivery mechanism that allows pathogens to modulate eukaryotic cell functions for their own benefit. Genes encoding T4S system homologous to those of a plant pathogen Agrobacterium tumefaciens have been identified in E. chaffeensis and A. phagocytophilum. Upon interaction with new host cells, E. chaffeensis and A. phagocytophilum genes encoding the T4S apparatus are upregulated. The delivered macromolecules are referred to as T4S substrates, or effectors, because they affect and alter basic host cellular processes, resulting in disease development. Recently, A. phagocytophilum 160-kDa AnkA protein was to be delivered by T4S system into the host cytoplasm. Thus, dynamic signal transduction events are likely induced by T4S substrates in the host cells for successful establishment of intracellular infection. Further studies on Ehrlichia and Anaplasma T4S effectors cognate host cell molecules will undoubtedly advance our understanding of the complex interplay between obligatory intracellular pathogens and their hosts. Such data can be applied toward treatment, diagnosis, and control of ehrlichiosis and anaplasmosis.
Collapse
Affiliation(s)
- Yasuko Rikihisa
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | |
Collapse
|
128
|
Abstract
Type IV secretion (T4S) systems are versatile machines involved in many processes relevant to bacterial virulence, such as horizontal DNA transfer and effector translocation into human cells. A recent workshop organized by the International University of Andalousia in Baeza, Spain, covered most aspects of bacterial T4S relevant to human disease, ranging from the structural and mechanistic analysis of the T4S systems to the physiological roles of the translocated effector proteins in subverting cellular functions in infected humans. This review reports the highlights from this workshop, which include the first visualization of a T4S system core complex spanning both membranes of Gram-negative bacteria, the identification of the first host receptors for T4S systems, the identification and characterization of novel T4S effector proteins, the analysis of the molecular function of effector proteins in subverting human cellular functions and an analysis of the role of T4S systems in the evolution of pathogenic bacteria. Our increasing knowledge of the biology of T4S systems improves our ability to exploit them as biotechnological tools or to use them as novel targets for a new generation of antimicrobials.
Collapse
Affiliation(s)
- Matxalen Llosa
- Departamento de Biología Molecular, Universidad de Cantabria, and Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC-IDICAN, Santander, Spain
| | | | | |
Collapse
|
129
|
Pichon S, Bouchon D, Cordaux R, Chen L, Garrett RA, Grève P. Conservation of the Type IV secretion system throughout Wolbachia evolution. Biochem Biophys Res Commun 2009; 385:557-62. [PMID: 19486895 DOI: 10.1016/j.bbrc.2009.05.118] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 05/22/2009] [Indexed: 11/28/2022]
Abstract
The Type IV Secretion System (T4SS) is an efficient pathway with which bacteria can mediate the transfer of DNA and/or proteins to eukaryotic cells. In Wolbachia pipientis, a maternally inherited obligate endosymbiont of arthropods and nematodes, two operons of vir genes, virB3-B6 and virB8-D4, encoding a T4SS were previously identified and characterized at two separate genomic loci. Using the largest data set of Wolbachia strains studied so far, we show that vir gene sequence and organization are strictly conserved among 37 Wolbachia strains inducing various phenotypes such as cytoplasmic incompatibility, feminization, or oogenesis in their arthropod hosts. In sharp contrast, extensive variation of genomic sequences flanking the virB8-D4 operon suggested its distinct location among Wolbachia genomes. Long term conservation of the T4SS may imply maintenance of a functional effector translocation system in Wolbachia, thereby suggesting the importance for the T4SS in Wolbachia biology and survival inside host cells.
Collapse
Affiliation(s)
- Samuel Pichon
- Université de Poitiers, UMR CNRS 6556 Ecologie, Evolution, Symbiose, 40 avenue du Recteur Pineau, F-86022 Poitiers, France
| | | | | | | | | | | |
Collapse
|
130
|
Host cell interactome of tyrosine-phosphorylated bacterial proteins. Cell Host Microbe 2009; 5:397-403. [PMID: 19380118 DOI: 10.1016/j.chom.2009.03.004] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 12/15/2008] [Accepted: 03/04/2009] [Indexed: 12/15/2022]
Abstract
Selective interactions between tyrosine-phosphorylated proteins and their cognate, SH2-domain containing ligands play key roles in mammalian signal transduction. Several bacterial pathogens use secretion systems to inject tyrosine kinase substrates into host cells. Upon phosphorylation, these effector proteins recruit cellular binding partners to manipulate host cell functions. So far, only a few interaction partners have been identified. Here we report the results of a proteomic screen to systematically identify binding partners of all known tyrosine-phosphorylated bacterial effectors by high-resolution mass spectrometry. We identified 39 host interactions, all mediated by SH2 domains, including four of the five already known interaction partners. Individual phosphorylation sites recruited a surprisingly high number of cellular interaction partners suggesting that individual phosphorylation sites can interfere with multiple cellular signaling pathways. Collectively, our results indicate that tyrosine-phosphorylation sites of bacterial effector proteins have evolved as versatile interaction modules that can recruit a rich repertoire of cellular SH2 domains.
Collapse
|
131
|
The Coxiella burnetii ankyrin repeat domain-containing protein family is heterogeneous, with C-terminal truncations that influence Dot/Icm-mediated secretion. J Bacteriol 2009; 191:4232-42. [PMID: 19411324 DOI: 10.1128/jb.01656-08] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coxiella burnetii is an obligate intracellular bacterium that directs biogenesis of a parasitophorous vacuole (PV) for replication. Effectors of PV maturation are likely translocated into the host cytosol by a type IV secretion system (T4SS) with homology to the Dot/Icm apparatus of Legionella pneumophila. Since secreted bacterial virulence factors often functionally mimic the activities of host proteins, prokaryotic proteins with eukaryotic features are considered candidate T4SS substrates. Genes encoding proteins with eukaryotic-type ankyrin repeat domains (Anks) were identified upon genome sequencing of the C. burnetii Nine Mile reference isolate, which is associated with a case of human acute Q fever. Interestingly, recent genome sequencing of the G and K isolates, derived from human chronic endocarditis patients, and of the Dugway rodent isolate revealed remarkable heterogeneity in the Ank gene family, with the Dugway isolate harboring the largest number of full-length Ank genes. Using L. pneumophila as a surrogate host, we identified 10 Dugway Anks and 1 Ank specific to the G and K endocarditis isolates translocated into the host cytosol in a Dot/Icm-dependent fashion. A 10-amino-acid C-terminal region appeared to be necessary for translocation, with some Anks also requiring the chaperone IcmS for secretion. Ectopically expressed Anks localized to a variety of subcellular regions in mammalian cells, including microtubules, mitochondria, and the PV membrane. Collectively, these data suggest that C. burnetii isolates translocate distinct subsets of the Ank protein family into the host cytosol, where they modulate diverse functions, some of which may be unique to C. burnetii pathotypes.
Collapse
|
132
|
Silencing of host cell CYBB gene expression by the nuclear effector AnkA of the intracellular pathogen Anaplasma phagocytophilum. Infect Immun 2009; 77:2385-91. [PMID: 19307214 DOI: 10.1128/iai.00023-09] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Coevolution of intracellular bacterial pathogens and their host cells resulted in the appearance of effector molecules that when translocated into the host cell modulate its function, facilitating bacterial survival within the hostile host environment. Some of these effectors interact with host chromatin and other nuclear components. In this report, we show that the AnkA protein of Anaplasma phagocytophilum, which is translocated into the host cell nucleus, interacts with gene regulatory regions of host chromatin and is involved in downregulating expression of CYBB (gp91(phox)) and other key host defense genes. AnkA effector protein rapidly accumulated in nuclei of infected cells coincident with changes in CYBB transcription. AnkA interacted with transcriptional regulatory regions of the CYBB locus at sites where transcriptional regulators bind. AnkA binding to DNA occurred at regions with high AT contents. Mutation of AT stretches at these sites abrogated AnkA binding. Histone H3 acetylation decreased dramatically at the CYBB locus during A. phagocytophilum infection, particularly around AnkA binding sites. Transcription of CYBB and other defense genes was significantly decreased in AnkA-transfected HL-60 cells. These data suggest a mechanism by which intracellular pathogens directly regulate host cell gene expression mediated by nuclear effectors and changes in host chromatin structure.
Collapse
|
133
|
Xiong Q, Lin M, Rikihisa Y. Cholesterol-dependent anaplasma phagocytophilum exploits the low-density lipoprotein uptake pathway. PLoS Pathog 2009; 5:e1000329. [PMID: 19283084 PMCID: PMC2654415 DOI: 10.1371/journal.ppat.1000329] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 02/05/2009] [Indexed: 11/18/2022] Open
Abstract
In eukaryotes, intracellular cholesterol homeostasis and trafficking are tightly regulated. Certain bacteria, such as Anaplasma phagocytophilum, also require cholesterol; it is unknown, however, how this cholesterol-dependent obligatory intracellular bacterium of granulocytes interacts with the host cell cholesterol regulatory pathway to acquire cholesterol. Here, we report that total host cell cholesterol increased >2-fold during A. phagocytophilum infection in a human promyelocytic leukemia cell line. Cellular free cholesterol was enriched in A. phagocytophilum inclusions as detected by filipin staining. We determined that A. phagocytophilum requires cholesterol derived from low-density lipoprotein (LDL), because its replication was significantly inhibited by depleting the growth medium of cholesterol-containing lipoproteins, by blocking LDL uptake with a monoclonal antibody against LDL receptor (LDLR), or by treating the host cells with inhibitors that block LDL-derived cholesterol egress from late endosomes or lysosomes. However, de novo cholesterol biosynthesis is not required, since inhibition of the biosynthesis pathway did not inhibit A. phagocytophilum infection. The uptake of fluorescence-labeled LDL was enhanced in infected cells, and LDLR expression was up-regulated at both the mRNA and protein levels. A. phagocytophilum infection stabilized LDLR mRNA through the 3′ UTR region, but not through activation of the sterol regulatory element binding proteins. Extracellular signal–regulated kinase (ERK) was up-regulated by A. phagocytophilum infection, and inhibition of its upstream kinase, MEK, by a specific inhibitor or siRNA knockdown, reduced A. phagocytophilum infection. Up-regulation of LDLR mRNA by A. phagocytophilum was also inhibited by the MEK inhibitor; however, it was unclear whether ERK activation is required for LDLR mRNA up-regulation by A. phagocytophilum. These data reveal that A. phagocytophilum exploits the host LDL uptake pathway and LDLR mRNA regulatory system to accumulate cholesterol in inclusions to facilitate its replication. Maintenance of the cholesterol amount and transport within cells are essential for healthy human cell functions. Most bacteria do not need cholesterol, but certain bacteria that infect human cells are dependent on host cell cholesterol for their infection. How infected human cells deal with these cholesterol-robbing bacteria, and in turn how these bacteria hijack host cholesterol, are intriguing questions. Anaplasma phagocytophilum is a bacterium that lives inside white blood cells, and causes the disease human granulocytic anaplasmosis (HGA). A. phagocytophilum needs host cholesterol to live. Here, we discovered that A. phagocytophilum infection increases the amount of cholesterol in host cells and sequesters the majority of cholesterol in A. phagocytophilum inclusions inside host cells. Human cells acquire cholesterol from two sources: receptor-mediated endocytosis of cholesterol-containing low-density lipoprotein (LDL) from the circulating blood, and synthesis of cholesterol inside the cells. Since A. phagocytophilum depends on cholesterol derived from LDL, it coaxes the host cell to take up more LDL by increasing LDL receptor, through inhibition of LDL receptor mRNA degradation. A. phagocytophilum infection may serve as a model to improve our understanding of the cellular cholesterol regulation in white blood cells, and may provide insight regarding new therapeutic target for treatment of HGA.
Collapse
Affiliation(s)
- Qingming Xiong
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Mingqun Lin
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Yasuko Rikihisa
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
134
|
Turning on the spotlight--using light to monitor and characterize bacterial effector secretion and translocation. Curr Opin Microbiol 2009; 12:24-30. [PMID: 19135407 DOI: 10.1016/j.mib.2008.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 11/24/2008] [Accepted: 11/26/2008] [Indexed: 02/07/2023]
Abstract
Secretion and translocation of bacterial pathogen effectors into host cells via dedicated secretion machineries like type III secretion systems (T3SSs) or type IV secretion systems (T4SSs) is a key feature employed by pathogens to attack host cells. Innovative fluorescence and imaging approaches have blossomed during recent years, and became instrumental in revealing the dynamics of effector secretion and function in interfering with host cellular processes, particularly signaling events, gene expression regulation, membrane trafficking, and autophagy. Furthermore, imaging-based screening approaches have demonstrated the mode of action of several bacterial effectors upon host cellular translocation. The rapid technological advancement of imaging technologies indicates that these techniques will continue to be at the center of numerous future breakthroughs delineating the dynamic processes of bacterial effector actions.
Collapse
|
135
|
Ganta RR, Peddireddi L, Seo GM, Dedonder SE, Cheng C, Chapes SK. Molecular characterization of Ehrlichia interactions with tick cells and macrophages. FRONT BIOSCI-LANDMRK 2009; 14:3259-73. [PMID: 19273271 PMCID: PMC4392924 DOI: 10.2741/3449] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several tick-transmitted Anaplasmataceae family rickettsiales of the genera Ehrlichia and Anaplasma have been discovered in recent years. Some species are classified as pathogens causing emerging diseases with growing health concern for people. They include human monocytic ehrlichiosis, human granulocytic ewingii ehrlichiosis and human granulocytic anaplasmosis which are caused by Ehrlichia chaffeensis, E. ewingii and Anaplasma phagocytophilum, respectively. Despite the complex cellular environments and defense systems of arthropod and vertebrate hosts, rickettsials have evolved strategies to evade host clearance and persist in both vertebrate and tick host environments. For example, E. chaffeensis growing in vertebrate macrophages has distinct patterns of global host cell-specific protein expression and differs considerably in morphology compared with its growth in tick cells. Immunological studies suggest that host cell-specific differences in Ehrlichia gene expression aid the pathogen, extending its survival. Bacteria from tick cells persist longer when injected into mice compared with mammalian macrophage-grown bacteria, and the host response is also significantly different. This review presents the current understanding of tick-Ehrlichia interactions and implications for future.
Collapse
Affiliation(s)
- Roman Reddy Ganta
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | | | | | | | | | | |
Collapse
|
136
|
Four VirB6 paralogs and VirB9 are expressed and interact in Ehrlichia chaffeensis-containing vacuoles. J Bacteriol 2008; 191:278-86. [PMID: 18952796 DOI: 10.1128/jb.01031-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type IV secretion system is an important virulence factor in several host cell-associated pathogens, as it delivers various bacterial macromolecules to target eukaryotic cells. Genes homologous to several virB genes and virD4 of Agrobacterium tumefaciens are found in an intravacuolar pathogen Ehrlichia chaffeensis, the tick-borne causative agent of human monocytic ehrlichiosis. In particular, despite its small genome size, E. chaffeensis has four tandem virB6 paralogs (virB6-1, -2, -3, and -4) that are 3- to 10-fold larger than A. tumefaciens virB6. The present study for the first time illustrates the relevance of the larger quadruple VirB6 paralogs by demonstrating the protein expression and interaction in E. chaffeensis. All four virB6 paralogs were cotranscribed in THP-1 human leukemia and ISE6 tick cell cultures. The four VirB6 proteins and VirB9 were expressed by E. chaffeensis in THP-1 cells, and amounts of these five proteins were similar in isolated E. chaffeensis-containing vacuoles and vacuole-free E. chaffeensis. In addition, an 80-kDa fragment of VirB6-2 was detected, which was strikingly more prevalent in E. chaffeensis-containing vacuoles than in vacuole-free E. chaffeensis. Coimmunoprecipitation analysis revealed VirB9 interaction with VirB6-1 and VirB6-2; VirB6-4 interaction with VirB6-1, VirB6-2, and VirB6-3; and VirB6-2 80-kDa fragment interaction with VirB6-3 and VirB6-4. The interaction of VirB9 and VirB6-2 was confirmed by far-Western blotting. The results suggest that E. chaffeensis VirB9, the quadruple VirB6 proteins, and the VirB6-2 80-kDa fragment form a unique molecular subassembly to cooperate in type IV secretion.
Collapse
|
137
|
Total, membrane, and immunogenic proteomes of macrophage- and tick cell-derived Ehrlichia chaffeensis evaluated by liquid chromatography-tandem mass spectrometry and MALDI-TOF methods. Infect Immun 2008; 76:4823-32. [PMID: 18710870 DOI: 10.1128/iai.00484-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ehrlichia chaffeensis, a tick-transmitted rickettsial, is the causative agent of human monocytic ehrlichiosis. To examine protein expression patterns, we analyzed total, membrane, and immunogenic proteomes of E. chaffeensis originating from macrophage and tick cell cultures. Total proteins resolved by one-dimensional gel electrophoresis and subjected to liquid chromatography-electrospray ionization ion trap mass spectrometry allowed identification of 134 and 116 proteins from macrophage- and tick cell-derived E. chaffeensis, respectively. Because a majority of immunogenic proteins remained in the membrane fraction, individually picked total and immunogenic membrane proteins were also surveyed by liquid chromatography-tandem mass spectrometry and matrix-assisted laser desorption ionization-time of flight methods. The analysis aided the identification of 48 additional proteins. In all, 278 genes of the E. chaffeensis genome were verified as functional genes. They included genes for DNA and protein metabolism, energy metabolism and transport, membrane proteins, hypothetical proteins, and many novel proteins of unknown function. The data reported in this study suggest that the membrane of E. chaffeensis is very complex, having many expressed proteins. This study represents the first and the most comprehensive analysis of E. chaffeensis-expressed proteins. This also is the first study confirming the expression of nearly one-fourth of all predicted genes of the E. chaffeensis genome, validating that they are functionally active genes, and demonstrating that classic shotgun proteomic approaches are feasible for tick-transmitted intraphagosomal bacteria. The identity of novel expressed proteins reported in this study, including the large selection of membrane and immunogenic proteins, will be valuable in elucidating pathogenic mechanisms and developing effective prevention and control methods.
Collapse
|
138
|
Haemophilus ducreyi LspA proteins are tyrosine phosphorylated by macrophage-encoded protein tyrosine kinases. Infect Immun 2008; 76:4692-702. [PMID: 18678665 DOI: 10.1128/iai.00513-08] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The LspA proteins (LspA1 and LspA2) of Haemophilus ducreyi are necessary for this pathogen to inhibit the phagocytic activity of macrophage cell lines, an event that can be correlated with a reduction in the level of active Src family protein tyrosine kinases (PTKs) in these eukaryotic cells. During studies investigating this inhibitory mechanism, it was discovered that the LspA proteins themselves were tyrosine phosphorylated after wild-type H. ducreyi cells were incubated with macrophages. LspA proteins in cell-free concentrated H. ducreyi culture supernatant fluid could also be tyrosine phosphorylated by macrophages. This ability to tyrosine phosphorylate the LspA proteins was not limited to immune cell lineages but could be accomplished by both HeLa and COS-7 cells. Kinase inhibitor studies with macrophages demonstrated that the Src family PTKs were required for this tyrosine phosphorylation activity. In silico methods and site-directed mutagenesis were used to identify EPIYG and EPVYA motifs in LspA1 that contained tyrosines that were targets for phosphorylation. A total of four tyrosines could be phosphorylated in LspA1, with LspA2 containing eight predicted tyrosine phosphorylation motifs. Purified LspA1 fusion proteins containing either the EPIYG or EPVYA motifs were shown to be phosphorylated by purified Src PTK in vitro. Macrophage lysates could also tyrosine phosphorylate the LspA proteins and an LspA1 fusion protein via a mechanism that was dependent on the presence of both divalent cations and ATP. Several motifs known to interact with or otherwise affect eukaryotic kinases were identified in the LspA proteins.
Collapse
|
139
|
Nelson CM, Herron MJ, Felsheim RF, Schloeder BR, Grindle SM, Chavez AO, Kurtti TJ, Munderloh UG. Whole genome transcription profiling of Anaplasma phagocytophilum in human and tick host cells by tiling array analysis. BMC Genomics 2008; 9:364. [PMID: 18671858 PMCID: PMC2527338 DOI: 10.1186/1471-2164-9-364] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 07/31/2008] [Indexed: 11/16/2022] Open
Abstract
Background Anaplasma phagocytophilum (Ap) is an obligate intracellular bacterium and the agent of human granulocytic anaplasmosis, an emerging tick-borne disease. Ap alternately infects ticks and mammals and a variety of cell types within each. Understanding the biology behind such versatile cellular parasitism may be derived through the use of tiling microarrays to establish high resolution, genome-wide transcription profiles of the organism as it infects cell lines representative of its life cycle (tick; ISE6) and pathogenesis (human; HL-60 and HMEC-1). Results Detailed, host cell specific transcriptional behavior was revealed. There was extensive differential Ap gene transcription between the tick (ISE6) and the human (HL-60 and HMEC-1) cell lines, with far fewer differentially transcribed genes between the human cell lines, and all disproportionately represented by membrane or surface proteins. There were Ap genes exclusively transcribed in each cell line, apparent human- and tick-specific operons and paralogs, and anti-sense transcripts that suggest novel expression regulation processes. Seven virB2 paralogs (of the bacterial type IV secretion system) showed human or tick cell dependent transcription. Previously unrecognized genes and coding sequences were identified, as were the expressed p44/msp2 (major surface proteins) paralogs (of 114 total), through elevated signal produced to the unique hypervariable region of each – 2/114 in HL-60, 3/114 in HMEC-1, and none in ISE6. Conclusion Using these methods, whole genome transcription profiles can likely be generated for Ap, as well as other obligate intracellular organisms, in any host cells and for all stages of the cell infection process. Visual representation of comprehensive transcription data alongside an annotated map of the genome renders complex transcription into discernable patterns.
Collapse
Affiliation(s)
- Curtis M Nelson
- University of Minnesota, Department of Entomology, Saint Paul, Minnesota 55108, USA.
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Pan X, Lührmann A, Satoh A, Laskowski-Arce MA, Roy CR. Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 2008; 320:1651-4. [PMID: 18566289 DOI: 10.1126/science.1158160] [Citation(s) in RCA: 307] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Specialized secretion systems are used by many bacteria to deliver effector proteins into host cells that can either mimic or disrupt the function of eukaryotic factors. We found that the intracellular pathogens Legionella pneumophila and Coxiella burnetii use a type IV secretion system to deliver into eukaryotic cells a large number of different bacterial proteins containing ankyrin repeat homology domains called Anks. The L. pneumophila AnkX protein prevented microtubule-dependent vesicular transport to interfere with fusion of the L. pneumophila-containing vacuole with late endosomes after infection of macrophages, which demonstrates that Ank proteins have effector functions important for bacterial infection of eukaryotic host cells.
Collapse
Affiliation(s)
- Xiaoxiao Pan
- Section of Microbial Pathogenesis, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | | | | | | | | |
Collapse
|
141
|
Klasson L, Walker T, Sebaihia M, Sanders MJ, Quail MA, Lord A, Sanders S, Earl J, O'Neill SL, Thomson N, Sinkins SP, Parkhill J. Genome evolution of Wolbachia strain wPip from the Culex pipiens group. Mol Biol Evol 2008; 25:1877-87. [PMID: 18550617 PMCID: PMC2515876 DOI: 10.1093/molbev/msn133] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The obligate intracellular bacterium Wolbachia pipientis strain wPip induces cytoplasmic incompatibility (CI), patterns of crossing sterility, in the Culex pipiens group of mosquitoes. The complete sequence is presented of the 1.48-Mbp genome of wPip which encodes 1386 coding sequences (CDSs), representing the first genome sequence of a B-supergroup Wolbachia. Comparisons were made with the smaller genomes of Wolbachia strains wMel of Drosophila melanogaster, an A-supergroup Wolbachia that is also a CI inducer, and wBm, a mutualist of Brugia malayi nematodes that belongs to the D-supergroup of Wolbachia. Despite extensive gene order rearrangement, a core set of Wolbachia genes shared between the 3 genomes can be identified and contrasts with a flexible gene pool where rapid evolution has taken place. There are much more extensive prophage and ankyrin repeat encoding (ANK) gene components of the wPip genome compared with wMel and wBm, and both are likely to be of considerable importance in wPip biology. Five WO-B-like prophage regions are present and contain some genes that are identical or highly similar in multiple prophage copies, whereas other genes are unique, and it is likely that extensive recombination, duplication, and insertion have occurred between copies. A much larger number of genes encode ankyrin repeat (ANK) proteins in wPip, with 60 present compared with 23 in wMel, many of which are within or close to the prophage regions. It is likely that this pattern is partly a result of expansions in the wPip lineage, due for example to gene duplication, but their presence is in some cases more ancient. The wPip genome underlines the considerable evolutionary flexibility of Wolbachia, providing clear evidence for the rapid evolution of ANK-encoding genes and of prophage regions. This host-Wolbachia system, with its complex patterns of sterility induced between populations, now provides an excellent model for unraveling the molecular systems underlying host reproductive manipulation.
Collapse
Affiliation(s)
- Lisa Klasson
- Peter Medawar Building for Pathogen Research and Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Genetic and functional characterization of the type IV secretion system in Wolbachia. J Bacteriol 2008; 190:5020-30. [PMID: 18502862 DOI: 10.1128/jb.00377-08] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A type IV secretion system (T4SS) is used by many symbiotic and pathogenic intracellular bacteria for the successful infection of and survival, proliferation, and persistence within hosts. In this study, the presence and function of the T4SS in Wolbachia strains were investigated by a combination of genetic screening and immunofluorescence microscopy. Two operons of virB-virD4 loci were found in the genome of Wolbachia pipientis strain wAtab3, from the Hymenoptera Asobara tabida, and strain wRi, infecting Drosophila simulans. One operon consisted of five vir genes (virB8, virB9, virB10, virB11, and virD4) and the downstream wspB locus. The other operon was composed of three genes (virB3, virB4, and virB6) and included four additional open reading frames (orf1 to orf4) orientated in the same direction. In cell culture and insect hosts infected with different Wolbachia strains, the bona fide vir genes were polycistronically transcribed, together with the downstream adjacent loci, notably, as virB8 to virD4 and wspB and as virB3, virB4, virB6, and orf1 to orf4. Two peptides encompassing conserved C and N termini of the Wolbachia VirB6 protein were used for the production of polyclonal antibodies. Anti-VirB6 antibodies could detect the corresponding recombinant protein by chemifluorescence on Western blots of total proteins from Escherichia coli transformants and Wolbachia strains cultured in cell lines. Using immunofluorescence microscopy, we further demonstrated that the VirB6 protein was produced by Wolbachia strains in ovaries of insects harboring wAtab3 or wRi and cell lines infected with wAlbB or wMelPop. As VirB6 is known to associate with other VirB proteins to form a membrane-spanning structure, this finding suggests that a T4SS may function in Wolbachia.
Collapse
|
143
|
Proteomic analysis of and immune responses to Ehrlichia chaffeensis lipoproteins. Infect Immun 2008; 76:3405-14. [PMID: 18490460 DOI: 10.1128/iai.00056-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ehrlichia chaffeensis is an obligately intracellular gram-negative bacterium and is the etiologic agent of human monocytic ehrlichiosis (HME). Although E. chaffeensis induces the generation of several cytokines and chemokines by leukocytes, E. chaffeensis lacks lipopolysaccharide and peptidoglycan. Bioinfomatic analysis of the E. chaffeensis genome, however, predicted genes encoding 15 lipoproteins and 3 posttranslational lipoprotein-processing enzymes. The present study showed that by use of multidimensional liquid chromatography followed by tandem mass spectrometry, all predicted lipoproteins as well as lipoprotein-processing enzymes were expressed by E. chaffeensis cultured in the human promyelocytic leukemia cell line HL-60. Consistent with this observation, a signal peptidase II inhibitor, globomycin, was found to inhibit E. chaffeensis infection and lipoprotein processing in HL-60 cell culture. To study in vivo E. chaffeensis lipoprotein expression and host immune responses to E. chaffeensis lipoproteins, 13 E. chaffeensis lipoprotein genes were cloned into a mammalian expression vector. When the DNA constructs were inoculated into naïve dogs, or when dogs were infected with E. chaffeensis, the animals developed delayed-type hypersensitivity reactions at cutaneous sites of the DNA construct deposition and serum antibodies to these lipoproteins. This is the first demonstration of lipoprotein expression and elicitation of immune responses by a member of the order Rickettsiales. Multiple lipoproteins expressed by E. chaffeensis in vitro and in vivo may play key roles in pathogenesis and immune responses in HME.
Collapse
|
144
|
Reneer DV, Troese MJ, Huang B, Kearns SA, Carlyon JA. Anaplasma phagocytophilum PSGL-1-independent infection does not require Syk and leads to less efficient AnkA delivery. Cell Microbiol 2008; 10:1827-38. [PMID: 18485118 DOI: 10.1111/j.1462-5822.2008.01168.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Anaplasma phagocytophilum is an obligate intracellular bacterium that infects neutrophils to cause granulocytic anaplasmosis in humans and mammals. P-selectin glycoprotein ligand-1 (PSGL-1) and the tetrasaccharide sialyl Lewis x (sLe(x)), which caps the PSGL-1 N-terminus, are confirmed A. phagocytophilum receptors. A. phagocytophilum is capable of sLe(x)-modified PSGL-1-dependent and -independent infection. PSGL-1 N-terminus-mediated entry is dependent on spleen tyrosine kinase (Syk). Here, we determined that PSGL-1-independent entry does not alter bacterial replication and investigated whether it involves Syk using NCH-1A2, an enriched subpopulation of A. phagocytophilum NCH-1 obtained through cultivation in a sLe(x)-deficient HL-60 cell line, HL-60 A2. Pharmacological inhibition of Syk nearly abolishes NCH-1 infection, but does not alter NCH-1A2 invasion and only marginally reduces NCH-1A2 propagation. This phenomenon was confirmed by a competitive infection assay using PSGL-1-dependent and -independent A. phagocytophilum organisms transformed to express mCherry or green fluorescent protein respectively. We also assayed for delivery and tyrosine phosphorylation of the A. phagocytophilum effector, AnkA, following NCH-1or NCH-1A2 incubation with HL-60 or HL-60 A2 cells in the presence of PSGL-1 blocking antibody. PSGL-1 N-terminus recognition promotes optimal AnkA delivery while binding to sLe(x) or the unknown receptor is comparably less important for this process.
Collapse
Affiliation(s)
- Dexter V Reneer
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA
| | | | | | | | | |
Collapse
|
145
|
Backert S, Feller SM, Wessler S. Emerging roles of Abl family tyrosine kinases in microbial pathogenesis. Trends Biochem Sci 2008; 33:80-90. [DOI: 10.1016/j.tibs.2007.10.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 10/15/2007] [Accepted: 10/19/2007] [Indexed: 01/04/2023]
|
146
|
A variable-length PCR target protein of Ehrlichia chaffeensis contains major species-specific antibody epitopes in acidic serine-rich tandem repeats. Infect Immun 2008; 76:1572-80. [PMID: 18212082 DOI: 10.1128/iai.01466-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ehrlichia chaffeensis and E. canis have a small subset of tandem repeat (TR)-containing proteins that elicit strong host immune responses and are associated with host-pathogen interactions. In a previous study, we molecularly characterized a highly conserved 19-kDa major immunoreactive protein (gp19) of E. canis and identified the corresponding TR-containing ortholog variable-length PCR target (VLPT) protein in E. chaffeensis. In this study, the native 32-kDa VLPT protein was identified and the immunodeterminants defined in order to further understand the molecular basis of the host immune response to E. chaffeensis. Synthetic and/or recombinant polypeptides corresponding to various regions of VLPT were used to localize major antibody epitopes to the TR-containing region. Major antibody epitopes were identified in three nonidentical repeats (R2, R3, and R4), which reacted strongly with antibodies in sera from an E. chaffeensis-infected dog and human monocytotropic ehrlichiosis patients. VLPT-R3 and VLPT-R2 reacted most strongly with antibody, and the epitope was further localized to a nearly identical proximal 17-amino-acid region common between these repeats that was species specific. The epitope in R4 was distinct from that of R2 and R3 and was found to have conformational dependence. VLPT was detected in supernatants from infected cells, indicating that the protein was secreted. VLPT was localized on both reticulate and dense-core cells, and it was found extracellularly in the morula fibrillar matrix and associated with the morula membrane.
Collapse
|
147
|
Regulation of type IV secretion apparatus genes during Ehrlichia chaffeensis intracellular development by a previously unidentified protein. J Bacteriol 2008; 190:2096-105. [PMID: 18192398 DOI: 10.1128/jb.01813-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The type IV secretion (T4S) system is critical for the virulence of several pathogens. In the rickettsial pathogen Ehrlichia chaffeensis, the virBD genes are split into two operons, the virB3-virB6 (preceded by sodB) and virB8-virD4 operons. Between these two operons, there are duplications of virB4, virB8, and virB9. In this study we found that transcription of all five loci was downregulated prior to the release of E. chaffeensis from host THP-1 cells and was upregulated at the initiation of exponential growth. Electrophoretic mobility shift assays revealed an E. chaffeensis-encoded protein that specifically bound to the promoter regions upstream of the virBD loci. The protein was purified from the bacterial lysate by affinity chromatography using a biotinylated promoter region upstream of sodB. Mass spectrometry identified the protein as an E. chaffeensis 12.3-kDa hypothetical protein, which was designated EcxR. Recombinant EcxR bound to the promoter regions upstream of five individual virBD loci. EcxR also activated transcription of all five virBD loci in lacZ reporter constructs. The expression of ecxR was positively autoregulated by EcxR. These results suggest that the five virBD loci are coordinately regulated by EcxR to allow developmental stage-specific expression of the T4S system in E. chaffeensis.
Collapse
|
148
|
Niu H, Yamaguchi M, Rikihisa Y. Subversion of cellular autophagy by Anaplasma phagocytophilum. Cell Microbiol 2007; 10:593-605. [PMID: 17979984 DOI: 10.1111/j.1462-5822.2007.01068.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Anaplasma phagocytophilum, the causative agent of human granulocytic anaplasmosis, is an obligatory intracellular pathogen. After entry into host cells, the bacterium is diverted from the endosomal pathway and replicates in a membrane-bound compartment devoid of endosomal or lysosomal markers. Here, we show that several hallmarks of early autophagosomes can be identified in A. phagocytophilum replicative inclusions, including a double-lipid bilayer membrane and colocalization with GFP-tagged LC3 and Beclin 1, the human homologues of Saccharomyces cerevisiae autophagy-related proteins Atg8 and Atg6 respectively. While the membrane-associated form of LC3, LC3-II, increased during A. phagocytophilum infection, A. phagocytophilum-containing inclusions enveloped with punctate GFP-LC3 did not colocalize with a lysosomal marker. Stimulation of autophagy by rapamycin favoured A. phagocytophilum infection. Inhibition of the autophagosomal pathway by 3-methyladenine did not inhibit A. phagocytophilum internalization, but reversibly arrested its growth. Although autophagy is considered part of the innate immune system that clears a variety of intracellular pathogens, our study implies that A. phagocytophilum subverts this system to establish itself in an early autophagosome-like compartment segregated from lysosomes to facilitate its proliferation.
Collapse
Affiliation(s)
- Hua Niu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
149
|
Nethery KA, Doyle CK, Zhang X, McBride JW. Ehrlichia canis gp200 contains dominant species-specific antibody epitopes in terminal acidic domains. Infect Immun 2007; 75:4900-8. [PMID: 17682040 PMCID: PMC2044547 DOI: 10.1128/iai.00041-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Species-specific antibody epitopes within several major immunoreactive protein orthologs of Ehrlichia species have recently been identified and molecularly characterized. In this study, dominant B-cell epitopes within the acidic (pI 5.35) ankyrin repeat-containing 200-kDa major immunoreactive protein (gp200) of Ehrlichia canis were defined. The E. canis gp200 gene (4,263 bp; 1,421 amino acids) was cloned and expressed as four (N-terminal, 1,107 bp; N-internal, 910 bp; C-internal, 1,000 bp; and C-terminal, 1,280 bp) overlapping recombinant proteins. The N-terminal, C-internal, and C-terminal polypeptides (369, 332, and 426 amino acids, respectively) were strongly recognized by antibody, and the major epitope(s) in these polypeptides was mapped to four polypeptide regions (40 to 70 amino acids). Smaller overlapping recombinant polypeptides (14 to 15 amino acids) spanning these regions identified five strongly immunoreactive species-specific epitopes that exhibited conformational dependence. The majority of the epitopes (four) were located in two strongly acidic (pI 4 to 4.9) domains in the distal N- and C-terminal regions of the protein flanking the centralized ankyrin domain-containing region. The amino acid content of the epitope-containing domains included a high proportion of strongly acidic amino acids (glutamate and aspartate), and these domains appear to have important biophysical properties that influence the antibody response to gp200.
Collapse
Affiliation(s)
- Kimberly A Nethery
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | | | | | | |
Collapse
|