101
|
Granados Mendoza C, Naumann J, Samain MS, Goetghebeur P, De Smet Y, Wanke S. A genome-scale mining strategy for recovering novel rapidly-evolving nuclear single-copy genes for addressing shallow-scale phylogenetics in Hydrangea. BMC Evol Biol 2015; 15:132. [PMID: 26141718 PMCID: PMC4491267 DOI: 10.1186/s12862-015-0416-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/09/2015] [Indexed: 12/21/2022] Open
Abstract
Background Identifying orthologous molecular markers that potentially resolve relationships at and below species level has been a major challenge in molecular phylogenetics over the past decade. Non-coding regions of nuclear low- or single-copy markers are a vast and promising source of data providing information for shallow-scale phylogenetics. Taking advantage of public transcriptome data from the One Thousand Plant Project (1KP), we developed a genome-scale mining strategy for recovering potentially orthologous single-copy markers to address low-scale phylogenetics. Our marker design targeted the amplification of intron-rich nuclear single-copy regions from genomic DNA. As a case study we used Hydrangea section Cornidia, one of the most recently diverged lineages within Hydrangeaceae (Cornales), for comparing the performance of three of these nuclear markers to other “fast” evolving plastid markers. Results Our data mining and filtering process retrieved 73 putative nuclear single-copy genes which are potentially useful for resolving phylogenetic relationships at a range of divergence depths within Cornales. The three assessed nuclear markers showed considerably more phylogenetic signal for shallow evolutionary depths than conventional plastid markers. Phylogenetic signal in plastid markers increased less markedly towards deeper evolutionary divergences. Potential phylogenetic noise introduced by nuclear markers was lower than their respective phylogenetic signal across all evolutionary depths. In contrast, plastid markers showed higher probabilities for introducing phylogenetic noise than signal at the deepest evolutionary divergences within the tribe Hydrangeeae (Hydrangeaceae). Conclusions While nuclear single-copy markers are highly informative for shallow evolutionary depths without introducing phylogenetic noise, plastid markers might be more appropriate for resolving deeper-level divergences such as the backbone relationships of the Hydrangeaceae family and deeper, at which non-coding parts of nuclear markers could potentially introduce noise due to elevated rates of evolution. The herein developed and demonstrated transcriptome based mining strategy has a great potential for the design of novel and highly informative nuclear markers for a range of plant groups and evolutionary scales. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0416-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carolina Granados Mendoza
- Department of Biology, Research Group Spermatophytes, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium. .,Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-367, 04510, Coyoacán, Distrito Federal, Mexico.
| | - Julia Naumann
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany.
| | - Marie-Stéphanie Samain
- Department of Biology, Research Group Spermatophytes, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium. .,Instituto de Ecología, A.C., Centro Regional del Bajío, Avenida Lázaro Cárdenas 253, 61600, Pátzcuaro, Michoacán, Mexico.
| | - Paul Goetghebeur
- Department of Biology, Research Group Spermatophytes, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium.
| | - Yannick De Smet
- Department of Biology, Research Group Spermatophytes, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium.
| | - Stefan Wanke
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany.
| |
Collapse
|
102
|
Rothfels CJ, Li FW, Sigel EM, Huiet L, Larsson A, Burge DO, Ruhsam M, Deyholos M, Soltis DE, Stewart CN, Shaw SW, Pokorny L, Chen T, dePamphilis C, DeGironimo L, Chen L, Wei X, Sun X, Korall P, Stevenson DW, Graham SW, Wong GKS, Pryer KM. The evolutionary history of ferns inferred from 25 low-copy nuclear genes. AMERICAN JOURNAL OF BOTANY 2015. [PMID: 26199366 DOI: 10.3732/ajb.1500089] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
UNLABELLED • PREMISE OF THE STUDY Understanding fern (monilophyte) phylogeny and its evolutionary timescale is critical for broad investigations of the evolution of land plants, and for providing the point of comparison necessary for studying the evolution of the fern sister group, seed plants. Molecular phylogenetic investigations have revolutionized our understanding of fern phylogeny, however, to date, these studies have relied almost exclusively on plastid data.• METHODS Here we take a curated phylogenomics approach to infer the first broad fern phylogeny from multiple nuclear loci, by combining broad taxon sampling (73 ferns and 12 outgroup species) with focused character sampling (25 loci comprising 35877 bp), along with rigorous alignment, orthology inference and model selection.• KEY RESULTS Our phylogeny corroborates some earlier inferences and provides novel insights; in particular, we find strong support for Equisetales as sister to the rest of ferns, Marattiales as sister to leptosporangiate ferns, and Dennstaedtiaceae as sister to the eupolypods. Our divergence-time analyses reveal that divergences among the extant fern orders all occurred prior to ∼200 MYA. Finally, our species-tree inferences are congruent with analyses of concatenated data, but generally with lower support. Those cases where species-tree support values are higher than expected involve relationships that have been supported by smaller plastid datasets, suggesting that deep coalescence may be reducing support from the concatenated nuclear data.• CONCLUSIONS Our study demonstrates the utility of a curated phylogenomics approach to inferring fern phylogeny, and highlights the need to consider underlying data characteristics, along with data quantity, in phylogenetic studies.
Collapse
Affiliation(s)
- Carl J Rothfels
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6J 3S7, Canada
| | - Fay-Wei Li
- Department of Biology, Duke University, Durham, North Carolina 27708 USA
| | - Erin M Sigel
- Department of Botany (MRC 166), National Museum of Natural History, Smithsonian Institution, P.O. Box 37012 Washington, District of Columbia 20013-7012 USA
| | - Layne Huiet
- Department of Biology, Duke University, Durham, North Carolina 27708 USA
| | - Anders Larsson
- Systematic Biology, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyv. 18D, SE-752 36 Uppsala, Sweden
| | - Dylan O Burge
- California Academy of Sciences, 55 Music Concourse Drive, San Francisco, California 94118 USA
| | - Markus Ruhsam
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK
| | - Michael Deyholos
- Department of Biology, University of British Columbia, Okanagan Campus, 1177 Research Road, Kelowna, British Columbia V1V 1V7, Canada
| | - Douglas E Soltis
- Florida Museum of Natural History, Department of Biology, and the Genetics Institute. University of Florida. Gainesville, Florida 32611 USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | - Lisa Pokorny
- Departamento de Biodiversidad y Conservación, Real Jardín Botánico-Consejo Superior de Investigaciones Científicas, 28014 Madrid, Spain
| | - Tao Chen
- Shenzhen Fairy Lake Botanical Garden, The Chinese Academy of Sciences, Shenzhen, Guangdong 518004, China
| | - Claude dePamphilis
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | - Lisa DeGironimo
- The New York Botanical Garden, 2900 Southern Blvd., Bronx, New York 10458 USA
| | - Li Chen
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Xiaofeng Wei
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Xiao Sun
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Petra Korall
- Systematic Biology, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyv. 18D, SE-752 36 Uppsala, Sweden
| | - Dennis W Stevenson
- The New York Botanical Garden, 2900 Southern Blvd., Bronx, New York 10458 USA
| | - Sean W Graham
- Department of Botany & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6J 3S7, Canada
| | - Gane K-S Wong
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Kathleen M Pryer
- Department of Biology, Duke University, Durham, North Carolina 27708 USA
| |
Collapse
|
103
|
Enke N, Kunze R, Pustahija F, Glöckner G, Zimmermann J, Oberländer J, Kamari G, Siljak-Yakovlev S. Genome size shifts: karyotype evolution in Crepis section Neglectoides (Asteraceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:775-786. [PMID: 25683604 DOI: 10.1111/plb.12318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/19/2015] [Indexed: 06/04/2023]
Abstract
Plant genome size evolution is a very dynamic process: the ancestral genome of angiosperms was initially most likely small, which led to a tendency towards genome increase during evolution. However, findings in several angiosperm lineages demonstrate mechanisms that also led to genome size contraction. Recent molecular investigations on the Asteraceae genus Crepis suggest that several genomic reduction events have occurred during the evolution of the genus. This study focuses on the Mediterranean Crepis sect. Neglectoides, which includes three species with some of the smallest genomes within the whole genus. Crepis neglecta has the largest genome in sect. Neglectoides, approximately twice the size of the two species Crepis cretica and Crepis hellenica. Whereas C. cretica and C. hellencia are more closely related to each other than to C. neglecta the karyotypes of the latter species and C. cretica are similar, while that of C. hellenica differs considerably. Here, the karyotypic organisation of the three species is investigated with fluorescence in-situ hybridisation and studied in a molecular phylogenetic framework based on the nuclear markers Actin, CHR12, CPN60B, GPCR1 and XTH23. Our findings further corroborate the occurrence of genome size contraction in Crepis, and suggest that the difference in genome size between C. neglecta and C. cretica is mostly due to elimination of dispersed repetitive elements, whereas chromosomal reorganisation was involved in the karyotype formation of C. hellenica.
Collapse
Affiliation(s)
- N Enke
- Botanic Garden and Botanical Museum Berlin-Dahlem, Freie Universität Berlin, Berlin, Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - R Kunze
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
- Institut für Biologie - Angewandte Genetik, Freie Universität Berlin, Berlin, Germany
| | - F Pustahija
- CNRS, Laboratoire Ecologie, Systématique et Evolution, UMR 8079, Université Paris Sud, Orsay, France
- Faculty of Forestry, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - G Glöckner
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
- Molecular Biology Group, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - J Zimmermann
- Botanic Garden and Botanical Museum Berlin-Dahlem, Freie Universität Berlin, Berlin, Germany
- AG Spezielle Botanik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - J Oberländer
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
- Institut für Biologie - Angewandte Genetik, Freie Universität Berlin, Berlin, Germany
| | - G Kamari
- Department of Biology, Botanical Institute, University of Patras, Patras, Greece
| | - S Siljak-Yakovlev
- CNRS, Laboratoire Ecologie, Systématique et Evolution, UMR 8079, Université Paris Sud, Orsay, France
| |
Collapse
|
104
|
Magallón S, Gómez-Acevedo S, Sánchez-Reyes LL, Hernández-Hernández T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. THE NEW PHYTOLOGIST 2015; 207:437-453. [PMID: 25615647 DOI: 10.1111/nph.13264] [Citation(s) in RCA: 496] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/21/2014] [Indexed: 05/03/2023]
Abstract
The establishment of modern terrestrial life is indissociable from angiosperm evolution. While available molecular clock estimates of angiosperm age range from the Paleozoic to the Late Cretaceous, the fossil record is consistent with angiosperm diversification in the Early Cretaceous. The time-frame of angiosperm evolution is here estimated using a sample representing 87% of families and sequences of five plastid and nuclear markers, implementing penalized likelihood and Bayesian relaxed clocks. A literature-based review of the palaeontological record yielded calibrations for 137 phylogenetic nodes. The angiosperm crown age was bound within a confidence interval calculated with a method that considers the fossil record of the group. An Early Cretaceous crown angiosperm age was estimated with high confidence. Magnoliidae, Monocotyledoneae and Eudicotyledoneae diversified synchronously 135-130 million yr ago (Ma); Pentapetalae is 126-121 Ma; and Rosidae (123-115 Ma) preceded Asteridae (119-110 Ma). Family stem ages are continuously distributed between c. 140 and 20 Ma. This time-frame documents an early phylogenetic proliferation that led to the establishment of major angiosperm lineages, and the origin of over half of extant families, in the Cretaceous. While substantial amounts of angiosperm morphological and functional diversity have deep evolutionary roots, extant species richness was probably acquired later.
Collapse
Affiliation(s)
- Susana Magallón
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sandra Gómez-Acevedo
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luna L Sánchez-Reyes
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | |
Collapse
|
105
|
Mao Y, Zhang Y, Xu C, Qiu Y. Comparative transcriptome resources of two Dysosma species (Berberidaceae) and molecular evolution of the CYP719A gene in Podophylloideae. Mol Ecol Resour 2015; 16:228-41. [PMID: 25879377 DOI: 10.1111/1755-0998.12415] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/09/2015] [Accepted: 04/14/2015] [Indexed: 12/13/2022]
Abstract
Dysosma species (Berberidaceae, Podophylloideae) are of great medicinal pharmacogenetic importance and used as model systems to study the drivers and mechanisms of species diversification of temperate plants in East Asia. Recently, we have sequenced the transcriptome of the low-elevation D. versipellis. In this study, we sequenced the transcriptome of the high-elevation D. aurantiocaulis and used comparative genomic approaches to investigate the transcriptome evolution of the two species. We retrieved 53,929 unigenes from D. aurantiocaulis by de novo transcriptome assemblies using the Illumina HiSeq 2000 platform. Comparing the transcriptomes of both species, we identified 4593 orthologs. Estimation of Ka/Ks ratios for 3126 orthologs revealed that none had a Ka/Ks significantly greater than 1, whereas 1273 (Ka/Ks < 0.5, P < 0.05) were inferred to be under purifying selection. A total of 51 primer pairs were successfully designed from 461 EST-SSRs contained in 4593 orthologs. Marker validation assay revealed that 26 (51%) and 41 (80.4%) produced clear fragments with the expected sizes in all Podophylloideae species. Specifically, 19 different sequences of CYP719A were identified from PCR-amplified genomic DNA of all 12 species of Podophylloideae using primers designed from the assembled transcripts. The data further indicated that CYP719A was likely subject to strong selective constraints maintaining only one copy per genome. In Dysosma, there was relaxed purifying selection or more positive selection for high-elevation species. Overall, this study has generated a wealth of molecular resources potentially useful for pharmacogenetic and evolutionary studies in Dysosma and allied taxa.
Collapse
Affiliation(s)
- Yunrui Mao
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yonghua Zhang
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuan Xu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingxiong Qiu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
106
|
Petersen G, Seberg O, Cuenca A, Stevenson DW, Thadeo M, Davis JI, Graham S, Ross TG. Phylogeny of the Alismatales (Monocotyledons) and the relationship ofAcorus(Acorales?). Cladistics 2015; 32:141-159. [DOI: 10.1111/cla.12120] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 11/28/2022] Open
Affiliation(s)
- Gitte Petersen
- Natural History Museum of Denmark; University of Copenhagen; Sølvgade 83 Opg. S DK-1307 Copenhagen Denmark
| | - Ole Seberg
- Natural History Museum of Denmark; University of Copenhagen; Sølvgade 83 Opg. S DK-1307 Copenhagen Denmark
| | - Argelia Cuenca
- Natural History Museum of Denmark; University of Copenhagen; Sølvgade 83 Opg. S DK-1307 Copenhagen Denmark
| | | | | | - Jerrold I. Davis
- L. H. Bailey Hortorium and Section of Plant Biology; Cornell University; Ithaca NY 14853 USA
| | - Sean Graham
- Department of Botany; University of British Columbia; Vancouver BC V6T 1Z4 Canada
| | - T. Gregory Ross
- Department of Botany; University of British Columbia; Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
107
|
Zhang Q, Feild TS, Antonelli A. Assessing the impact of phylogenetic incongruence on taxonomy, floral evolution, biogeographical history, and phylogenetic diversity. AMERICAN JOURNAL OF BOTANY 2015; 102:566-580. [PMID: 25878090 DOI: 10.3732/ajb.1400527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
PREMISE OF THE STUDY Phylogenetic incongruence between "gene trees" and "species trees" has been widely acknowledged in phylogenetic research. Conflicts may emerge from several processes including paralogy, hybridization, and incomplete lineage sorting. Although phylogenetic incongruence appears common, its impact on many phylogeny-based analyses remains poorly understood. METHODS We examined the occurrence of phylogenetic conflict between nuclear (ribosome ITS) and plastid (rbcL, trnL-F, rpl20-rps12, and rps16 intron) loci in the ancient angiosperm family Chloranthaceae. Then we investigated how phylogenetic conflict bears on taxonomic classification within the family as well as on inferences on biogeographical history, floral evolution, and measures of phylogenetic diversity (PD). KEY RESULTS We found evidence for significant phylogenetic incongruence between plastid and nuclear data in the genus Hedyosmum. Within Hedyosmum, our results did not support previous subgeneric classification of the genus. Division of sections within subgenus Tafalla was supported by the ITS data but not by the plastid data set. As a consequence, we showed that inferring the evolution of key floral characters and geographical history within Hedyosmum depends on the phylogenetic data used. Both data sets yielded similar PD measures across genera, but we found contrasting PD measures in Hedyosmum, even after correcting for rate heterogeneity. CONCLUSIONS Our study demonstrated that phylogenetic conflict not only affects the inference of organismal relationships but also impacts our understanding of biogeographical history, morphological evolution, and phylogenetic diversity.
Collapse
Affiliation(s)
- Qiang Zhang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences 541006, Guilin, China
| | - Taylor S Feild
- College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, Australia
| | - Alexandre Antonelli
- Gothenburg Botanical Garden and Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
108
|
De La Torre AR, Lin YC, Van de Peer Y, Ingvarsson PK. Genome-wide analysis reveals diverged patterns of codon bias, gene expression, and rates of sequence evolution in picea gene families. Genome Biol Evol 2015; 7:1002-15. [PMID: 25747252 PMCID: PMC4419791 DOI: 10.1093/gbe/evv044] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The recent sequencing of several gymnosperm genomes has greatly facilitated studying the evolution of their genes and gene families. In this study, we examine the evidence for expression-mediated selection in the first two fully sequenced representatives of the gymnosperm plant clade (Picea abies and Picea glauca). We use genome-wide estimates of gene expression (>50,000 expressed genes) to study the relationship between gene expression, codon bias, rates of sequence divergence, protein length, and gene duplication. We found that gene expression is correlated with rates of sequence divergence and codon bias, suggesting that natural selection is acting on Picea protein-coding genes for translational efficiency. Gene expression, rates of sequence divergence, and codon bias are correlated with the size of gene families, with large multicopy gene families having, on average, a lower expression level and breadth, lower codon bias, and higher rates of sequence divergence than single-copy gene families. Tissue-specific patterns of gene expression were more common in large gene families with large gene expression divergence than in single-copy families. Recent family expansions combined with large gene expression variation in paralogs and increased rates of sequence evolution suggest that some Picea gene families are rapidly evolving to cope with biotic and abiotic stress. Our study highlights the importance of gene expression and natural selection in shaping the evolution of protein-coding genes in Picea species, and sets the ground for further studies investigating the evolution of individual gene families in gymnosperms.
Collapse
Affiliation(s)
| | - Yao-Cheng Lin
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium Genomics Research Institute, University of Pretoria, South Africa
| | - Pär K Ingvarsson
- Department of Ecology and Environmental Science, Umeå University, Sweden Umeå Plant Science Centre, Umeå, Sweden
| |
Collapse
|
109
|
Jiao Y, Paterson AH. Polyploidy-associated genome modifications during land plant evolution. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0355. [PMID: 24958928 DOI: 10.1098/rstb.2013.0355] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The occurrence of polyploidy in land plant evolution has led to an acceleration of genome modifications relative to other crown eukaryotes and is correlated with key innovations in plant evolution. Extensive genome resources provide for relating genomic changes to the origins of novel morphological and physiological features of plants. Ancestral gene contents for key nodes of the plant family tree are inferred. Pervasive polyploidy in angiosperms appears likely to be the major factor generating novel angiosperm genes and expanding some gene families. However, most gene families lose most duplicated copies in a quasi-neutral process, and a few families are actively selected for single-copy status. One of the great challenges of evolutionary genomics is to link genome modifications to speciation, diversification and the morphological and/or physiological innovations that collectively compose biodiversity. Rapid accumulation of genomic data and its ongoing investigation may greatly improve the resolution at which evolutionary approaches can contribute to the identification of specific genes responsible for particular innovations. The resulting, more 'particulate' understanding of plant evolution, may elevate to a new level fundamental knowledge of botanical diversity, including economically important traits in the crop plants that sustain humanity.
Collapse
Affiliation(s)
- Yuannian Jiao
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA 30606, USA
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA 30606, USA
| |
Collapse
|
110
|
Sun M, Soltis DE, Soltis PS, Zhu X, Burleigh JG, Chen Z. Deep phylogenetic incongruence in the angiosperm clade Rosidae. Mol Phylogenet Evol 2015; 83:156-66. [DOI: 10.1016/j.ympev.2014.11.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 11/01/2014] [Accepted: 11/05/2014] [Indexed: 10/24/2022]
|
111
|
Müller S, Salomo K, Salazar J, Naumann J, Jaramillo MA, Neinhuis C, Feild TS, Wanke S. Intercontinental long-distance dispersal of Canellaceae from the New to the Old World revealed by a nuclear single copy gene and chloroplast loci. Mol Phylogenet Evol 2015; 84:205-19. [PMID: 25579657 DOI: 10.1016/j.ympev.2014.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 10/24/2022]
Abstract
Canellales, a clade consisting of Winteraceae and Canellaceae, represent the smallest order of magnoliid angiosperms. The clade shows a broad distribution throughout the Southern Hemisphere, across a diverse range of dry to wet tropical forests. In contrast to their sister-group, Winteraceae, the phylogenetic relations and biogeography within Canellaceae remain poorly studied. Here we present the phylogenetic relationships of all currently recognized genera of Canellales with a special focus on the Old World Canellaceae using a combined dataset consisting of the chloroplast trnK-matK-trnK-psbA and the nuclear single copy gene mag1 (Maigo 1). Within Canellaceae we found high statistical support for the monophyly of Warburgia and Cinnamosma. However, we also found relationships that differ from previous studies. Cinnamodendron splitted into two clades, a South American clade and a second clade confined to the Antilles and adjacent areas. Cinnamodendron from the Antilles, as well as Capsicodendron, South American Cinnamodendron and Pleodendron were not monophyletic. Consequently, Capsicodendron should be included in the South American Cinnamodendron clade and the genus Pleodendron merged with the Cinnamodendron clade from the Antilles. We also found that Warburgia (restricted to mainland eastern Africa) together with the South American Cinnamodendron and Capsicodendron are sister to the Malagasy genus Cinnamosma. In addition to the unexpected geographical relationships, both biogeographic and molecular clock analyses suggest vicariance, extinction, and at least one intercontinental long-distance-dispersal event. Our dating result contrasts previous work on Winteraceae. Diversification of Winteraceae took place in the Paleocene, predating the Canellaceae diversification by 13 MA in the Eocene. The phylogenetic relationships for Canellaceae supported here offer a solid framework for a future taxonomic revision of the Canellaceae.
Collapse
Affiliation(s)
- Sebastian Müller
- Technische Universität Dresden, Institut für Botanik, Zellescher Weg 20b, 01062 Dresden, Germany
| | - Karsten Salomo
- Technische Universität Dresden, Institut für Botanik, Zellescher Weg 20b, 01062 Dresden, Germany
| | - Jackeline Salazar
- Escuela de Biología, Universidad Autónoma de Santo Domingo (UASD), C/Bartolomé Mitre, Santo Domingo, Dominican Republic
| | - Julia Naumann
- Technische Universität Dresden, Institut für Botanik, Zellescher Weg 20b, 01062 Dresden, Germany
| | | | - Christoph Neinhuis
- Technische Universität Dresden, Institut für Botanik, Zellescher Weg 20b, 01062 Dresden, Germany
| | - Taylor S Feild
- Centre for Tropical Biodiversity and Climate Change, College of Marine and Environmental Science, Townsville 4810, Campus Townsville, Australia
| | - Stefan Wanke
- Technische Universität Dresden, Institut für Botanik, Zellescher Weg 20b, 01062 Dresden, Germany.
| |
Collapse
|
112
|
Dodsworth S, Chase MW, Kelly LJ, Leitch IJ, Macas J, Novák P, Piednoël M, Weiss-Schneeweiss H, Leitch AR. Genomic repeat abundances contain phylogenetic signal. Syst Biol 2015; 64:112-26. [PMID: 25261464 PMCID: PMC4265144 DOI: 10.1093/sysbio/syu080] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022] Open
Abstract
A large proportion of genomic information, particularly repetitive elements, is usually ignored when researchers are using next-generation sequencing. Here we demonstrate the usefulness of this repetitive fraction in phylogenetic analyses, utilizing comparative graph-based clustering of next-generation sequence reads, which results in abundance estimates of different classes of genomic repeats. Phylogenetic trees are then inferred based on the genome-wide abundance of different repeat types treated as continuously varying characters; such repeats are scattered across chromosomes and in angiosperms can constitute a majority of nuclear genomic DNA. In six diverse examples, five angiosperms and one insect, this method provides generally well-supported relationships at interspecific and intergeneric levels that agree with results from more standard phylogenetic analyses of commonly used markers. We propose that this methodology may prove especially useful in groups where there is little genetic differentiation in standard phylogenetic markers. At the same time as providing data for phylogenetic inference, this method additionally yields a wealth of data for comparative studies of genome evolution.
Collapse
Affiliation(s)
- Steven Dodsworth
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Mark W Chase
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Laura J Kelly
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Ilia J Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Jiří Macas
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Petr Novák
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Mathieu Piednoël
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Hanna Weiss-Schneeweiss
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| |
Collapse
|
113
|
Ai B, Gao Y, Zhang X, Tao J, Kang M, Huang H. Comparative transcriptome resources of eleven Primulina species, a group of 'stone plants' from a biodiversity hot spot. Mol Ecol Resour 2014; 15:619-32. [PMID: 25243665 DOI: 10.1111/1755-0998.12333] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 11/28/2022]
Abstract
The genus Primulina is an emerging model system in studying the drivers and mechanisms of species diversification, for its high species richness and endemism, together with high degree of habitat specialization. In this study, we sequenced transcriptomes for eleven Primulina species across the phylogeny of the genus using the Illumina HiSeq 2000 platform. A total of 336 million clean reads were processed into 355 573 unigenes with a mean length of 1336 bp and an N50 value of 2191 bp after pooling and reassembling twelve individual pre-assembled unigene sets. Of these unigenes, 249 973 (70%) were successfully annotated and 256 601 (72%) were identified as coding sequences (CDSs). We identified a total of 38 279 simple sequence repeats (SSRs) and 367 123 single nucleotide polymorphisms (SNPs). Marker validation assay revealed that 354 (27.3%) of the 1296 SSR and 795 (39.6%) of the 2008 SNP loci showed successful genotyping performance and exhibited expected polymorphism profiles. We screened 834 putative single-copy nuclear genes and proved their high effectiveness in phylogeny construction and estimation of ancestral population parameters. We identified a total of 85 candidate orthologs under positive selection for 46 of the 66 species pairs. This study provided an efficient application of RNA-seq in development of genomic resources for a group of 'stone plants' from south China Karst regions, a biodiversity hot spot of the World. The assembled unigenes with annotations and the massive gene-associated molecular markers would help guide further molecular systematic, population genetic and ecological genomics studies in Primulina and its relatives.
Collapse
Affiliation(s)
- Bin Ai
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
114
|
Doyle JA, Upchurch GR. Angiosperm Clades in the Potomac Group: What Have We Learned since 1977? BULLETIN OF THE PEABODY MUSEUM OF NATURAL HISTORY 2014. [DOI: 10.3374/014.055.0203] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
115
|
Zeng L, Zhang Q, Sun R, Kong H, Zhang N, Ma H. Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times. Nat Commun 2014; 5:4956. [PMID: 25249442 PMCID: PMC4200517 DOI: 10.1038/ncomms5956] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/11/2014] [Indexed: 11/08/2022] Open
Abstract
Angiosperms are the most successful plants and support human livelihood and ecosystems. Angiosperm phylogeny is the foundation of studies of gene function and phenotypic evolution, divergence time estimation and biogeography. The relationship of the five divergent groups of the Mesangiospermae (~99.95% of extant angiosperms) remains uncertain, with multiple hypotheses reported in the literature. Here transcriptome data sets are obtained from 26 species lacking sequenced genomes, representing each of the five groups: eudicots, monocots, magnoliids, Chloranthaceae and Ceratophyllaceae. Phylogenetic analyses using 59 carefully selected low-copy nuclear genes resulted in highly supported relationships: sisterhood of eudicots and a clade containing Chloranthaceae and Ceratophyllaceae, with magnoliids being the next sister group, followed by monocots. Our topology allows a re-examination of the evolutionary patterns of 110 morphological characters. The molecular clock estimates of Mesangiospermae diversification during the late to middle Jurassic correspond well to the origins of some insects, which may have been a factor facilitating early angiosperm radiation.
Collapse
Affiliation(s)
- Liping Zeng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 220 Handan Road, Yangpu District, Shanghai 200433, China
| | - Qiang Zhang
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and the Chinese Academy of Sciences, Guilin 541006, China
| | - Renran Sun
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 220 Handan Road, Yangpu District, Shanghai 200433, China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ning Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 220 Handan Road, Yangpu District, Shanghai 200433, China
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington DC 20560, USA
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 220 Handan Road, Yangpu District, Shanghai 200433, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
116
|
Lu Y, Ran JH, Guo DM, Yang ZY, Wang XQ. Phylogeny and divergence times of gymnosperms inferred from single-copy nuclear genes. PLoS One 2014; 9:e107679. [PMID: 25222863 PMCID: PMC4164646 DOI: 10.1371/journal.pone.0107679] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 08/19/2014] [Indexed: 11/19/2022] Open
Abstract
Phylogenetic reconstruction is fundamental to study evolutionary biology and historical biogeography. However, there was not a molecular phylogeny of gymnosperms represented by extensive sampling at the genus level, and most published phylogenies of this group were constructed based on cytoplasmic DNA markers and/or the multi-copy nuclear ribosomal DNA. In this study, we use LFY and NLY, two single-copy nuclear genes that originated from an ancient gene duplication in the ancestor of seed plants, to reconstruct the phylogeny and estimate divergence times of gymnosperms based on a complete sampling of extant genera. The results indicate that the combined LFY and NLY coding sequences can resolve interfamilial relationships of gymnosperms and intergeneric relationships of most families. Moreover, the addition of intron sequences can improve the resolution in Podocarpaceae but not in cycads, although divergence times of the cycad genera are similar to or longer than those of the Podocarpaceae genera. Our study strongly supports cycads as the basal-most lineage of gymnosperms rather than sister to Ginkgoaceae, and a sister relationship between Podocarpaceae and Araucariaceae and between Cephalotaxaceae-Taxaceae and Cupressaceae. In addition, intergeneric relationships of some families that were controversial, and the relationships between Taxaceae and Cephalotaxaceae and between conifers and Gnetales are discussed based on the nuclear gene evidence. The molecular dating analysis suggests that drastic extinctions occurred in the early evolution of gymnosperms, and extant coniferous genera in the Northern Hemisphere are older than those in the Southern Hemisphere on average. This study provides an evolutionary framework for future studies on gymnosperms.
Collapse
Affiliation(s)
- Ying Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jin-Hua Ran
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Dong-Mei Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zu-Yu Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
117
|
Liu Q, Liu H, Wen J, Peterson PM. Infrageneric phylogeny and temporal divergence of Sorghum (Andropogoneae, Poaceae) based on low-copy nuclear and plastid sequences. PLoS One 2014; 9:e104933. [PMID: 25122516 PMCID: PMC4133246 DOI: 10.1371/journal.pone.0104933] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/12/2014] [Indexed: 01/30/2023] Open
Abstract
The infrageneric phylogeny and temporal divergence of Sorghum were explored in the present study. Sequence data of two low-copy nuclear (LCN) genes, phosphoenolpyruvate carboxylase 4 (Pepc4) and granule-bound starch synthase I (GBSSI), from 79 accessions of Sorghum plus Cleistachne sorghoides together with those from outgroups were used for maximum likelihood (ML) and Bayesian inference (BI) analyses. Bayesian dating based on three plastid DNA markers (ndhA intron, rpl32-trnL, and rps16 intron) was used to estimate the ages of major diversification events in Sorghum. The monophyly of Sorghum plus Cleistachne sorghoides (with the latter nested within Sorghum) was strongly supported by the Pepc4 data using BI analysis, and the monophyly of Sorghum was strongly supported by GBSSI data using both ML and BI analyses. Sorghum was divided into three clades in the Pepc4, GBSSI, and plastid phylograms: the subg. Sorghum lineage; the subg. Parasorghum and Stiposorghum lineage; and the subg. Chaetosorghum and Heterosorghum lineage. Two LCN homoeologous loci of Cleistachne sorghoides were first discovered in the same accession. Sorghum arundinaceum, S. bicolor, S. x drummondii, S. propinquum, and S. virgatum were closely related to S. x almum in the Pepc4, GBSSI, and plastid phylograms, suggesting that they may be potential genome donors to S. almum. Multiple LCN and plastid allelic variants have been identified in S. halepense of subg. Sorghum. The crown ages of Sorghum plus Cleistachne sorghoides and subg. Sorghum are estimated to be 12.7 million years ago (Mya) and 8.6 Mya, respectively. Molecular results support the recognition of three distinct subgenera in Sorghum: subg. Chaetosorghum with two sections, each with a single species, subg. Parasorghum with 17 species, and subg. Sorghum with nine species and we also provide a new nomenclatural combination, Sorghum sorghoides.
Collapse
Affiliation(s)
- Qing Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- * E-mail: (QL); (PMP)
| | - Huan Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
| | - Paul M. Peterson
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
- * E-mail: (QL); (PMP)
| |
Collapse
|
118
|
Xi Z, Liu L, Rest JS, Davis CC. Coalescent versus Concatenation Methods and the Placement of Amborella as Sister to Water Lilies. Syst Biol 2014; 63:919-32. [DOI: 10.1093/sysbio/syu055] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Zhenxiang Xi
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; 2Department of Statistics and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA; 3Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Liang Liu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; 2Department of Statistics and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA; 3Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Joshua S. Rest
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; 2Department of Statistics and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA; 3Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Charles C. Davis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; 2Department of Statistics and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA; 3Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
119
|
Evolution and biogeography of gymnosperms. Mol Phylogenet Evol 2014; 75:24-40. [DOI: 10.1016/j.ympev.2014.02.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 02/06/2014] [Accepted: 02/10/2014] [Indexed: 11/20/2022]
|
120
|
Zhang LN, Zhang XZ, Zhang YX, Zeng CX, Ma PF, Zhao L, Guo ZH, Li DZ. Identification of putative orthologous genes for the phylogenetic reconstruction of temperate woody bamboos (Poaceae: Bambusoideae). Mol Ecol Resour 2014; 14:988-99. [PMID: 24606129 DOI: 10.1111/1755-0998.12248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 03/02/2014] [Accepted: 03/04/2014] [Indexed: 11/29/2022]
Abstract
The temperate woody bamboos (Arundinarieae) are highly diverse in morphology but lack a substantial amount of genetic variation. The taxonomy of this lineage is intractable, and the relationships within the tribe have not been well resolved. Recent studies indicated that this tribe could have a complex evolutionary history. Although phylogenetic studies of the tribe have been carried out, most of these phylogenetic reconstructions were based on plastid data, which provide lower phylogenetic resolution compared with nuclear data. In this study, we intended to identify a set of desirable nuclear genes for resolving the phylogeny of the temperate woody bamboos. Using two different methodologies, we identified 209 and 916 genes, respectively, as putative single copy orthologous genes. A total of 112 genes was successfully amplified and sequenced by next-generation sequencing technologies in five species sampled from the tribe. As most of the genes exhibited intra-individual allele heterozygotes, we investigated phylogenetic utility by reconstructing the phylogeny based on individual genes. Discordance among gene trees was observed and, to resolve the conflict, we performed a range of analyses using BUCKy and HybTree. While caution should be taken when inferring a phylogeny from multiple conflicting genes, our analysis indicated that 74 of the 112 investigated genes are potential markers for resolving the phylogeny of the temperate woody bamboos.
Collapse
Affiliation(s)
- Li-Na Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China; Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China; Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Salas-Leiva DE, Meerow AW, Francisco-Ortega J, Calonje M, Griffith MP, Stevenson DW, Nakamura K. Conserved genetic regions across angiosperms as tools to develop single-copy nuclear markers in gymnosperms: an example using cycads. Mol Ecol Resour 2014; 14:831-45. [PMID: 24444413 DOI: 10.1111/1755-0998.12228] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 01/28/2023]
Abstract
Several individuals of the Caribbean Zamia clade and other cycad genera were used to identify single-copy nuclear genes for phylogeographic and phylogenetic studies in Cycadales. Two strategies were employed to select target loci: (i) a tblastX search of Arabidopsis conserved ortholog sequence (COS) set and (ii) a tblastX search of Arabidopsis-Populus-Vitis-Oryza Shared Single-Copy genes (APVO SSC) against the EST Zamia databases in GenBank. From the first strategy, 30 loci were selected, and from the second, 16 loci. In both cases, the matching GenBank accessions of Zamia were used as a query for retrieving highly similar sequences from Cycas, Picea, Pinus species or Ginkgo biloba. After retrieving and aligning all the sequences in each locus, intron predictions were completed to assist in primer design. PCR was carried out in three rounds to detect paralogous loci. A total of 29 loci were successfully amplified as a single band of which 20 were likely single-copy loci. These loci showed different diversity and divergence levels. A preliminary screening allowed us to select 8 promising loci (40S, ATG2, BG, GroES, GTP, LiSH, PEX4 and TR) for the Zamia pumila complex and 4 loci (COS26, GroES, GTP and HTS) for all other cycad genera.
Collapse
Affiliation(s)
- Dayana E Salas-Leiva
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA; USDA-ARS-SHRS, National Germplasm Repository, Miami, FL, 33158, USA; Montgomery Botanical Center, Miami, FL, 33156, USA
| | | | | | | | | | | | | |
Collapse
|
122
|
Valmonte GR, Arthur K, Higgins CM, MacDiarmid RM. Calcium-dependent protein kinases in plants: evolution, expression and function. PLANT & CELL PHYSIOLOGY 2014; 55:551-69. [PMID: 24363288 DOI: 10.1093/pcp/pct200] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in metabolism, osmosis, hormone response and stress signaling pathways. CPKs are a large multigene family of proteins that are present in all plants studied to date, as well as in protists, oomycetes and green algae, but are not found in animals and fungi. Despite the increasing evidence of the importance of CPKs in developmental and stress responses from various plants, a comprehensive genome-wide analysis of CPKs from algae to higher plants has not been undertaken. This paper describes the evolution of CPKs from green algae to plants using a broadly sampled phylogenetic analysis and demonstrates the functional diversification of CPKs based on expression and functional studies in different plant species. Our findings reveal that CPK sequence diversification into four major groups occurred in parallel with the terrestrial transition of plants. Despite significant expansion of the CPK gene family during evolution from green algae to higher plants, there is a high level of sequence conservation among CPKs in all plant species. This sequence conservation results in very little correlation between CPK evolutionary groupings and functional diversity, making the search for CPK functional orthologs a challenge.
Collapse
Affiliation(s)
- Gardette R Valmonte
- Institute for Applied Ecology New Zealand, School of Applied Sciences, Auckland University of Technology, New Zealand
| | | | | | | |
Collapse
|
123
|
El Baidouri M, Carpentier MC, Cooke R, Gao D, Lasserre E, Llauro C, Mirouze M, Picault N, Jackson SA, Panaud O. Widespread and frequent horizontal transfers of transposable elements in plants. Genome Res 2014; 24:831-8. [PMID: 24518071 PMCID: PMC4009612 DOI: 10.1101/gr.164400.113] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Vertical, transgenerational transmission of genetic material occurs through reproduction of living organisms. In addition to vertical inheritance, horizontal gene transfer between reproductively isolated species has recently been shown to be an important, if not dominant, mechanism in the evolution of prokaryotic genomes. In contrast, only a few horizontal transfer (HT) events have been characterized so far in eukaryotes and mainly concern transposable elements (TEs). Whether these are frequent and have a significant impact on genome evolution remains largely unknown. We performed a computational search for highly conserved LTR retrotransposons among 40 sequenced eukaryotic genomes representing the major plant families. We found that 26 genomes (65%) harbor at least one case of horizontal TE transfer (HTT). These transfers concern species as distantly related as palm and grapevine, tomato and bean, or poplar and peach. In total, we identified 32 cases of HTTs, which could translate into more than 2 million among the 13,551 monocot and dicot genera. Moreover, we show that these TEs have remained functional after their transfer, occasionally causing a transpositional burst. This suggests that plants can frequently exchange genetic material through horizontal transfers and that this mechanism may be important in TE-driven genome evolution.
Collapse
Affiliation(s)
- Moaine El Baidouri
- Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096 CNRS/UPVD, 66860 Perpignan Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Betancur-R. R, Naylor GJ, Ortí G. Conserved Genes, Sampling Error, and Phylogenomic Inference. Syst Biol 2014; 63:257-62. [DOI: 10.1093/sysbio/syt073] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ricardo Betancur-R.
- Department of Biological Sciences, The George Washington University, 2023 G St. NW, Washington, DC 20052, USA; and 2College of Charleston, Hollings Marine Lab, 331 Fort Johnson Rd., Charleston, SC 29412, USA
| | - Gavin J.P. Naylor
- Department of Biological Sciences, The George Washington University, 2023 G St. NW, Washington, DC 20052, USA; and 2College of Charleston, Hollings Marine Lab, 331 Fort Johnson Rd., Charleston, SC 29412, USA
| | - Guillermo Ortí
- Department of Biological Sciences, The George Washington University, 2023 G St. NW, Washington, DC 20052, USA; and 2College of Charleston, Hollings Marine Lab, 331 Fort Johnson Rd., Charleston, SC 29412, USA
| |
Collapse
|
125
|
Abstract
Amborella trichopoda is strongly supported as the single living species of the sister lineage to all other extant flowering plants, providing a unique reference for inferring the genome content and structure of the most recent common ancestor (MRCA) of living angiosperms. Sequencing the Amborella genome, we identified an ancient genome duplication predating angiosperm diversification, without evidence of subsequent, lineage-specific genome duplications. Comparisons between Amborella and other angiosperms facilitated reconstruction of the ancestral angiosperm gene content and gene order in the MRCA of core eudicots. We identify new gene families, gene duplications, and floral protein-protein interactions that first appeared in the ancestral angiosperm. Transposable elements in Amborella are ancient and highly divergent, with no recent transposon radiations. Population genomic analysis across Amborella's native range in New Caledonia reveals a recent genetic bottleneck and geographic structure with conservation implications.
Collapse
|
126
|
Drew BT, Ruhfel BR, Smith SA, Moore MJ, Briggs BG, Gitzendanner MA, Soltis PS, Soltis DE. Another Look at the Root of the Angiosperms Reveals a Familiar Tale. Syst Biol 2014; 63:368-82. [DOI: 10.1093/sysbio/syt108] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
127
|
Massoni J, Forest F, Sauquet H. Increased sampling of both genes and taxa improves resolution of phylogenetic relationships within Magnoliidae, a large and early-diverging clade of angiosperms. Mol Phylogenet Evol 2014; 70:84-93. [DOI: 10.1016/j.ympev.2013.09.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 08/30/2013] [Accepted: 09/11/2013] [Indexed: 11/25/2022]
|
128
|
Naumann J, Salomo K, Der JP, Wafula EK, Bolin JF, Maass E, Frenzke L, Samain MS, Neinhuis C, dePamphilis CW, Wanke S. Single-copy nuclear genes place haustorial Hydnoraceae within piperales and reveal a cretaceous origin of multiple parasitic angiosperm lineages. PLoS One 2013; 8:e79204. [PMID: 24265760 PMCID: PMC3827129 DOI: 10.1371/journal.pone.0079204] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 09/20/2013] [Indexed: 11/19/2022] Open
Abstract
Extreme haustorial parasites have long captured the interest of naturalists and scientists with their greatly reduced and highly specialized morphology. Along with the reduction or loss of photosynthesis, the plastid genome often decays as photosynthetic genes are released from selective constraint. This makes it challenging to use traditional plastid genes for parasitic plant phylogenetics, and has driven the search for alternative phylogenetic and molecular evolutionary markers. Thus, evolutionary studies, such as molecular clock-based age estimates, are not yet available for all parasitic lineages. In the present study, we extracted 14 nuclear single copy genes (nSCG) from Illumina transcriptome data from one of the “strangest plants in the world”, Hydnora visseri (Hydnoraceae). A ∼15,000 character molecular dataset, based on all three genomic compartments, shows the utility of nSCG for reconstructing phylogenetic relationships in parasitic lineages. A relaxed molecular clock approach with the same multi-locus dataset, revealed an ancient age of ∼91 MYA for Hydnoraceae. We then estimated the stem ages of all independently originated parasitic angiosperm lineages using a published dataset, which also revealed a Cretaceous origin for Balanophoraceae, Cynomoriaceae and Apodanthaceae. With the exception of Santalales, older parasite lineages tend to be more specialized with respect to trophic level and have lower species diversity. We thus propose the “temporal specialization hypothesis” (TSH) implementing multiple independent specialization processes over time during parasitic angiosperm evolution.
Collapse
Affiliation(s)
- Julia Naumann
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
- * E-mail: (JN); (SW)
| | - Karsten Salomo
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Joshua P. Der
- Department of Biology and Institute of Molecular Evolutionary Genetics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Eric K. Wafula
- Department of Biology and Institute of Molecular Evolutionary Genetics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jay F. Bolin
- Department of Biology, Catawba College, Salisbury, North Carolina, United States of America
| | - Erika Maass
- Department of Biological Sciences, University of Namibia, Windhoek, Namibia
| | - Lena Frenzke
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | | | | | - Claude W. dePamphilis
- Department of Biology and Institute of Molecular Evolutionary Genetics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Stefan Wanke
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
- * E-mail: (JN); (SW)
| |
Collapse
|
129
|
Salas-Leiva DE, Meerow AW, Calonje M, Griffith MP, Francisco-Ortega J, Nakamura K, Stevenson DW, Lewis CE, Namoff S. Phylogeny of the cycads based on multiple single-copy nuclear genes: congruence of concatenated parsimony, likelihood and species tree inference methods. ANNALS OF BOTANY 2013; 112:1263-78. [PMID: 23997230 PMCID: PMC3806525 DOI: 10.1093/aob/mct192] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/15/2013] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Despite a recent new classification, a stable phylogeny for the cycads has been elusive, particularly regarding resolution of Bowenia, Stangeria and Dioon. In this study, five single-copy nuclear genes (SCNGs) are applied to the phylogeny of the order Cycadales. The specific aim is to evaluate several gene tree-species tree reconciliation approaches for developing an accurate phylogeny of the order, to contrast them with concatenated parsimony analysis and to resolve the erstwhile problematic phylogenetic position of these three genera. METHODS DNA sequences of five SCNGs were obtained for 20 cycad species representing all ten genera of Cycadales. These were analysed with parsimony, maximum likelihood (ML) and three Bayesian methods of gene tree-species tree reconciliation, using Cycas as the outgroup. A calibrated date estimation was developed with Bayesian methods, and biogeographic analysis was also conducted. KEY RESULTS Concatenated parsimony, ML and three species tree inference methods resolve exactly the same tree topology with high support at most nodes. Dioon and Bowenia are the first and second branches of Cycadales after Cycas, respectively, followed by an encephalartoid clade (Macrozamia-Lepidozamia-Encephalartos), which is sister to a zamioid clade, of which Ceratozamia is the first branch, and in which Stangeria is sister to Microcycas and Zamia. CONCLUSIONS A single, well-supported phylogenetic hypothesis of the generic relationships of the Cycadales is presented. However, massive extinction events inferred from the fossil record that eliminated broader ancestral distributions within Zamiaceae compromise accurate optimization of ancestral biogeographical areas for that hypothesis. While major lineages of Cycadales are ancient, crown ages of all modern genera are no older than 12 million years, supporting a recent hypothesis of mostly Miocene radiations. This phylogeny can contribute to an accurate infrafamilial classification of Zamiaceae.
Collapse
Affiliation(s)
- Dayana E. Salas-Leiva
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- USDA-ARS-SHRS, National Germplasm Repository, Miami, FL 33158, USA
| | - Alan W. Meerow
- USDA-ARS-SHRS, National Germplasm Repository, Miami, FL 33158, USA
| | - Michael Calonje
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- Montgomery Botanical Center, Miami, FL 33156, USA
| | | | - Javier Francisco-Ortega
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- Fairchild Tropical Botanic Garden, Coral Gables, FL 33156, USA
| | - Kyoko Nakamura
- USDA-ARS-SHRS, National Germplasm Repository, Miami, FL 33158, USA
| | | | | | - Sandra Namoff
- Rancho Santa Ana Botanic Garden and Claremont Graduate University, Claremont, CA 91711, USA
| |
Collapse
|
130
|
Zhao L, Zhang N, Ma PF, Liu Q, Li DZ, Guo ZH. Phylogenomic analyses of nuclear genes reveal the evolutionary relationships within the BEP clade and the evidence of positive selection in Poaceae. PLoS One 2013; 8:e64642. [PMID: 23734211 PMCID: PMC3667173 DOI: 10.1371/journal.pone.0064642] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/16/2013] [Indexed: 11/23/2022] Open
Abstract
BEP clade of the grass family (Poaceae) is composed of three subfamilies, i.e. Bambusoideae, Ehrhartoideae, and Pooideae. Controversies on the phylogenetic relationships among three subfamilies still persist in spite of great efforts. However, previous evidence was mainly provided from plastid genes with only a few nuclear genes utilized. Given different evolutionary histories recorded by plastid and nuclear genes, it is indispensable to uncover their relationships based on nuclear genes. Here, eleven species with whole-sequenced genome and six species with transcriptomic data were included in this study. A total of 121 one-to-one orthologous groups (OGs) were identified and phylogenetic trees were reconstructed by different tree-building methods. Genes which might have undergone positive selection and played important roles in adaptive evolution were also investigated from 314 and 173 one-to-one OGs in two bamboo species and 14 grass species, respectively. Our results support the ((B, P) E) topology with high supporting values. Besides, our findings also indicate that 24 and nine orthologs with statistically significant evidence of positive selection are mainly involved in abiotic and biotic stress response, reproduction and development, plant metabolism and enzyme etc. from two bamboo species and 14 grass species, respectively. In summary, this study demonstrates the power of phylogenomic approach to shed lights on the evolutionary relationships within the BEP clade, and offers valuable insights into adaptive evolution of the grass family.
Collapse
Affiliation(s)
- Lei Zhao
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ning Zhang
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Peng-Fei Ma
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Qi Liu
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - De-Zhu Li
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhen-Hua Guo
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
131
|
Endress PK, Davis CC, Matthews ML. Advances in the floral structural characterization of the major subclades of Malpighiales, one of the largest orders of flowering plants. ANNALS OF BOTANY 2013; 111:969-85. [PMID: 23486341 PMCID: PMC3631340 DOI: 10.1093/aob/mct056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/24/2013] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND AIMS Malpighiales are one of the largest angiosperm orders and have undergone radical systematic restructuring based on molecular phylogenetic studies. The clade has been recalcitrant to molecular phylogenetic reconstruction, but has become much more resolved at the suprafamilial level. It now contains so many newly identified clades that there is an urgent need for comparative studies to understand their structure, biology and evolution. This is especially true because the order contains a disproportionally large diversity of rain forest species and includes numerous agriculturally important plants. This study is a first broad systematic step in this endeavour. It focuses on a comparative structural overview of the flowers across all recently identified suprafamilial clades of Malpighiales, and points towards areas that desperately need attention. METHODS The phylogenetic comparative analysis of floral structure for the order is based on our previously published studies on four suprafamilial clades of Malpighiales, including also four related rosid orders (Celastrales, Crossosomatales, Cucurbitales, Oxalidales). In addition, the results are compiled from a survey of over 3000 publications on macrosystematics, floral structure and embryology across all orders of the core eudicots. KEY RESULTS Most new suprafamilial clades within Malpighiales are well supported by floral structural features. Inner morphological structures of the gynoecium (i.e. stigmatic lobes, inner shape of the locules, placentation, presence of obturators) and ovules (i.e. structure of the nucellus, thickness of the integuments, presence of vascular bundles in the integuments, presence of an endothelium in the inner integument) appear to be especially suitable for characterizing suprafamilial clades within Malpighiales. CONCLUSIONS Although the current phylogenetic reconstruction of Malpighiales is much improved compared with earlier versions, it is incomplete, and further focused phylogenetic and morphological studies are needed. Once all major subclades of Malpighiales are elucidated, more in-depth studies on promising structural features can be conducted. In addition, once the phylogenetic tree of Malpighiales, including closely related orders, is more fully resolved, character optimization studies will be possible to reconstruct evolution of structural and biological features within the order.
Collapse
Affiliation(s)
- Peter K Endress
- Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland.
| | | | | |
Collapse
|