101
|
Zhang Y, Whiteley M, Kreth J, Lei Y, Khammanivong A, Evavold JN, Fan J, Herzberg MC. The two-component system BfrAB regulates expression of ABC transporters in Streptococcus gordonii and Streptococcus sanguinis. MICROBIOLOGY (READING, ENGLAND) 2009; 155:165-173. [PMID: 19118357 PMCID: PMC2672948 DOI: 10.1099/mic.0.023168-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The putative two-component system BfrAB is involved in Streptococcus gordonii biofilm development. Here, we provide evidence that BfrAB regulates the expression of bfrCD and bfrEFG, which encode two ATP-binding cassette (ABC) transporters, and bfrH, which encodes a CAAX amino-terminal protease family protein. BfrC and BfrE are ATP-binding proteins, and BfrD, BfrF and BfrG are homologous membrane-spanning polypeptides. Similarly, BfrABss, the BfrAB homologous system in Streptococcus sanguinis, controls the expression of two bfrCD-homologous operons (bfrCDss and bfrXYss), a bfrH-homologous gene (bfrH1ss) and another CAAX amino-terminal protease family protein gene (bfrH2ss). Furthermore, we demonstrate that the purified BfrA DNA-binding domain from S. gordonii binds to the promoter regions of bfrCD, bfrEFG, bfrH, bfrCDss, bfrXYss and bfrH1ss in vitro. Finally, we show that the BfrA DNA-binding domain recognizes a conserved DNA motif with a consensus sequence of TTTCTTTAGAAATATTTTAGAATT. These data suggest, therefore, that S. gordonii BfrAB controls biofilm formation by regulating multiple ABC-transporter systems.
Collapse
Affiliation(s)
- Yongshu Zhang
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Marvin Whiteley
- Section of Molecular Genetics and Microbiology, the University of Texas at Austin, Austin, Texas 78712
| | - Jens Kreth
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Yu Lei
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Ali Khammanivong
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Jamie N. Evavold
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Jingyuan Fan
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota 55455
- Mucosal and Vaccine Research Center, Minneapolis VA Medical Center, Minneapolis, Minnesota 55417
| |
Collapse
|
102
|
Jakubovics NS, Gill SR, Vickerman MM, Kolenbrander PE. Role of hydrogen peroxide in competition and cooperation between Streptococcus gordonii and Actinomyces naeslundii. FEMS Microbiol Ecol 2008; 66:637-44. [PMID: 18785881 PMCID: PMC2820160 DOI: 10.1111/j.1574-6941.2008.00585.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In dental plaque alpha-haemolytic streptococci, including Streptococcus gordonii, are considered beneficial for oral health. These organisms produce hydrogen peroxide (H(2)O(2)) at concentrations sufficient to kill many oral bacteria. Streptococci do not produce catalase yet tolerate H(2)O(2). We recently demonstrated that coaggregation with Actinomyces naeslundii stabilizes arginine biosynthesis in S. gordonii. Protein arginine residues are sensitive to oxidation by H(2)O(2). Here, the ability of A. naeslundii to protect S. gordonii against self-produced H(2)O(2) was investigated. Coaggregation with A. naeslundii enabled S. gordonii to grow in the absence of arginine, and promoted survival of S. gordonii following growth with or without added arginine. Arginine-replete S. gordonii monocultures contained 20-30 microM H(2)O(2) throughout exponential growth. Actinomyces naeslundii did not produce H(2)O(2) but synthesized catalase, removed H(2)O(2) from coaggregate cultures and decreased protein oxidation in S. gordonii. On solid medium, S. gordonii inhibited growth of A. naeslundii; exogenous catalase overcame this inhibition. In coaggregate cultures, A. naeslundii cell numbers were >90% lower than in monocultures after 24 h. These results indicate that coaggregation with A. naeslundii protects S. gordonii from oxidative damage. However, high cell densities of S. gordonii inhibit A. naeslundii. Therefore, H(2)O(2) may drive these organisms towards an ecologically balanced community in natural dental plaque.
Collapse
Affiliation(s)
| | - Steven R. Gill
- Department of Oral Biology, University at Buffalo School of Dentistry, Buffalo, NY, USA
| | - M. Margaret Vickerman
- Department of Oral Biology, University at Buffalo School of Dentistry, Buffalo, NY, USA
| | - Paul E. Kolenbrander
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
103
|
|
104
|
Characterization of a Streptococcus sp.-Veillonella sp. community micromanipulated from dental plaque. J Bacteriol 2008; 190:8145-54. [PMID: 18805978 DOI: 10.1128/jb.00983-08] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococci and veillonellae occur in mixed-species colonies during formation of early dental plaque. One factor hypothesized to be important in assembly of these initial communities is coaggregation (cell-cell recognition by genetically distinct bacteria). Intrageneric coaggregation of streptococci occurs when a lectin-like adhesin on one streptococcal species recognizes a receptor polysaccharide (RPS) on the partner species. Veillonellae also coaggregate with streptococci. These genera interact metabolically; lactic acid produced by streptococci is a carbon source for veillonellae. To transpose these interactions from undisturbed dental plaque to an experimentally tractable in vitro biofilm model, a community consisting of RPS-bearing streptococci juxtaposed with veillonellae was targeted by quantum dot-based immunofluorescence and then micromanipulated off the enamel surface and cultured. Besides the expected antibody-reactive cell types, a non-antibody-reactive streptococcus invisible during micromanipulation was obtained. The streptococci were identified as Streptococcus oralis (RPS bearing) and Streptococcus gordonii (adhesin bearing). The veillonellae could not be cultivated; however, a veillonella 16S rRNA gene sequence was amplified from the original isolation mixture, and this sequence was identical to the sequence of the previously studied organism Veillonella sp. strain PK1910, an oral isolate in our culture collection. S. oralis coaggregated with S. gordonii by an RPS-dependent mechanism, and both streptococci coaggregated with PK1910, which was used as a surrogate during in vitro community reconstruction. The streptococci and strain PK1910 formed interdigitated three-species clusters when grown as a biofilm using saliva as the nutritional source. PK1910 grew only when streptococci were present. This study confirms that RPS-mediated intrageneric coaggregation occurs in the earliest stages of plaque formation by bringing bacteria together to create a functional community.
Collapse
|
105
|
Bond strengthening in oral bacterial adhesion to salivary conditioning films. Appl Environ Microbiol 2008; 74:5511-5. [PMID: 18641154 DOI: 10.1128/aem.01119-08] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transition from reversible to irreversible bacterial adhesion is a highly relevant but poorly understood step in initial biofilm formation. We hypothesize that in oral biofilm formation, irreversible adhesion is caused by bond strengthening due to specific bacterial interactions with salivary conditioning films. Here, we compared the initial adhesion of six oral bacterial strains to salivary conditioning films with their adhesion to a bovine serum albumin (BSA) coating and related their adhesion to the strengthening of the binding forces measured with bacteria-coated atomic force microscopy cantilevers. All strains adhered in higher numbers to salivary conditioning films than to BSA coatings, and specific bacterial interactions with salivary conditioning films were accompanied by stronger initial adhesion forces. Bond strengthening occurred on a time scale of several tens of seconds and was slower for actinomyces than for streptococci. Nonspecific interactions between bacteria and BSA coatings strengthened twofold faster than their specific interactions with salivary conditioning films, likely because specific interactions require a closer approach of interacting surfaces with the removal of interfacial water and a more extensive rearrangement of surface structures. After bond strengthening, bacterial adhesion forces with a salivary conditioning film remained stronger than those with BSA coatings.
Collapse
|
106
|
Evaluation of the antimicrobial, antioxidant, and anti-inflammatory activities of hydroxychavicol for its potential use as an oral care agent. Antimicrob Agents Chemother 2008; 53:216-22. [PMID: 18573934 DOI: 10.1128/aac.00045-08] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydroxychavicol isolated from the chloroform extraction of aqueous extract of Piper betle leaves showed inhibitory activity against oral cavity pathogens. It exhibited an inhibitory effect on all of the oral cavity pathogens tested (MICs of 62.5 to 500 microg/ml) with a minimal bactericidal concentration that was twofold greater than the inhibitory concentration. Hydroxychavicol exhibited concentration-dependent killing of Streptococcus mutans ATCC 25175 up to 4x MIC and also prevented the formation of water-insoluble glucan. Interestingly, hydroxychavicol exhibited an extended postantibiotic effect of 6 to 7 h and prevented the emergence of mutants of S. mutans ATCC 25175 and Actinomyces viscosus ATCC 15987 at 2x MIC. Furthermore, it also inhibited the growth of biofilms generated by S. mutans and A. viscosus and reduced the preformed biofilms by these bacteria. Increased uptake of propidium iodide by hydroxychavicol-treated cells of S. mutans and A. viscosus indicated that hydroxychavicol probably works through the disruption of the permeability barrier of microbial membrane structures. Hydroxychavicol also exhibited potent antioxidant and anti-inflammatory activities. This was evident from its concentration-dependent inhibition of lipid peroxidation and significant suppression of tumor necrosis factor alpha expression in human neutrophils. Its efficacy against adherent cells of S. mutans in water-insoluble glucan in the presence of sucrose suggests that hydroxychavicol would be a useful compound for the development of antibacterial agents against oral pathogens and that it has great potential for use in mouthwash for preventing and treating oral infections.
Collapse
|
107
|
Regulation of gene expression in a mixed-genus community: stabilized arginine biosynthesis in Streptococcus gordonii by coaggregation with Actinomyces naeslundii. J Bacteriol 2008; 190:3646-57. [PMID: 18359813 DOI: 10.1128/jb.00088-08] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interactions involving genetically distinct bacteria, for example, between oral streptococci and actinomyces, are central to dental plaque development. A DNA microarray identified Streptococcus gordonii genes regulated in response to coaggregation with Actinomyces naeslundii. The expression of 23 genes changed >3-fold in coaggregates, including that of 9 genes involved in arginine biosynthesis and transport. The capacity of S. gordonii to synthesize arginine was assessed using a chemically defined growth medium. In monoculture, streptococcal arginine biosynthesis was inefficient and streptococci could not grow aerobically at low arginine concentrations. In dual-species cultures containing coaggregates, however, S. gordonii grew to high cell density at low arginine concentrations. Equivalent cocultures without coaggregates showed no growth until coaggregation was evident (9 h). An argH mutant was unable to grow at low arginine concentrations with or without A. naeslundii, indicating that arginine biosynthesis was essential for coaggregation-induced streptococcal growth. Using quantitative reverse transcriptase PCR, the expression of argC, argG, and pyrA(b) was strongly (10- to 100-fold) up-regulated in S. gordonii monocultures after 3 h of growth when exogenous arginine was depleted. Cocultures without induced coaggregation showed similar regulation. However, within 1 h after coaggregation with A. naeslundii, the expression of argC, argG, and pyrA(b) in S. gordonii was partially up-regulated although arginine was plentiful, and mRNA levels did not increase further when arginine was diminished. Thus, A. naeslundii stabilizes S. gordonii expression of arginine biosynthesis genes in coaggregates but not cocultures and enables aerobic growth when exogenous arginine is limited.
Collapse
|
108
|
Tanzer JM, Thompson AM, Grant LP, Vickerman MM, Scannapieco FA. Streptococcus gordonii's sequenced strain CH1 glucosyltransferase determines persistent but not initial colonization of teeth of rats. Arch Oral Biol 2008; 53:133-40. [PMID: 17961499 PMCID: PMC2243221 DOI: 10.1016/j.archoralbio.2007.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 08/02/2007] [Accepted: 08/03/2007] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Extracellular glucan synthesis from sucrose by Streptococcus gordonii, a major dental plaque biofilm bacterium, is assumed important for colonization of teeth; but this hypothesis is un-tested in vivo. METHODS To do so, we studied an isogenic glucosyltransferase (Gtf)-negative mutant (strain AMS12, gtfG(-)) of S. gordonii sequenced wild type (WT, strain Challis CH1, gtfG(+)), comparing their in vitro abilities to grow in the presence of glucose and sucrose and, in vivo, to colonize and persist on teeth and induce caries in rats. Weanling rats of two breeding colonies, TAN:SPFOM(OM)BR and TAN:SPFOM(OMASF)BR, eating high sucrose diet, were inoculated with either the WT (gtfG(+)), its isogenic gtfG(-) mutant, or reference strains of Streptococcus mutans. Control animals were not inoculated. RESULTS In vitro, the gtfG(-) strain grew at least as rapidly in the presence of sucrose as its WT gtfG(+) progenitor, but formed soft colonies on sucrose agar, consistent with its lack of insoluble glucan synthesis. It also had a higher growth yield due apparently to its inability to channel carbon flow into extracellular glucan. In vivo, the gtfG(-) mutant initially colonized as did the WT but, unlike the WT, failed to persist on the teeth as shown over time. By comparison to three S. mutans strains, S. gordonii WT, despite its comparable ecological success on the teeth, was associated with only modest caries induction. Failure of the gtfG(-) mutant to persistently colonize was associated with slight diminution of caries scores by comparison with its gtfG(+) WT. CONCLUSIONS Initial S. gordonii colonization does not depend on Gtf-G synthesis; rather, Gtf-G production determines S. gordonii's ability to persist on the teeth of sucrose-fed rats. S. gordonii appears weakly cariogenic by comparison with S. mutans reference strains.
Collapse
Affiliation(s)
- J M Tanzer
- Division of Oral Medicine, Department of Oral Health and Diagonistic Science, University of Connecticut Health Center, Farmington, CT 06030-1605, USA.
| | | | | | | | | |
Collapse
|
109
|
Mandlik A, Swierczynski A, Das A, Ton-That H. Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol 2008; 16:33-40. [PMID: 18083568 PMCID: PMC2841691 DOI: 10.1016/j.tim.2007.10.010] [Citation(s) in RCA: 310] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 10/29/2007] [Accepted: 10/29/2007] [Indexed: 02/03/2023]
Abstract
Various cell-surface multisubunit protein polymers, known as pili or fimbriae, have a pivotal role in the colonization of specific host tissues by many pathogenic bacteria. In contrast to Gram-negative bacteria, Gram-positive bacteria assemble pili by a distinct mechanism involving a transpeptidase called sortase. Sortase crosslinks individual pilin monomers and ultimately joins the resulting covalent polymer to the cell-wall peptidoglycan. Here we review current knowledge of this mechanism and the roles of Gram-positive pili in the colonization of specific host tissues, modulation of host immune responses and the development of bacterial biofilms.
Collapse
Affiliation(s)
- Anjali Mandlik
- Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
110
|
Chalmers NI, Palmer RJ, Du-Thumm L, Sullivan R, Shi W, Kolenbrander PE. Use of quantum dot luminescent probes to achieve single-cell resolution of human oral bacteria in biofilms. Appl Environ Microbiol 2006; 73:630-6. [PMID: 17114321 PMCID: PMC1796960 DOI: 10.1128/aem.02164-06] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Oral biofilms are multispecies communities, and in their nascent stages of development, numerous bacterial species engage in interspecies interactions. Better insight into the spatial relationship between different species and how species diversity increases over time can guide our understanding of the role of interspecies interactions in the development of the biofilms. Quantum dots (QD) are semiconductor nanocrystals and have emerged as a promising tool for labeling and detection of bacteria. We sought to apply QD-based primary immunofluorescence for labeling of bacterial cells with in vitro and in vivo biofilms and to compare this approach with the fluorophore-based primary immunofluorescence approach we have used previously. To investigate QD-based primary immunofluorescence as the means to detect distinct targets with single-cell resolution, we conjugated polyclonal and monoclonal antibodies to the QD surface. We also conducted simultaneous QD conjugate-based and fluorophore conjugate-based immunofluorescence and showed that these conjugates were complementary tools in immunofluorescence applications. Planktonic and biofilm cells were labeled effectively by considering two factors: the final nanomolar concentration of QD conjugate and the amount of antibody conjugated to the QD, which we define as the degree of labeling. These advances in the application of QD-based immunofluorescence for the study of biofilms in vitro and in vivo will help to define bacterial community architecture and to facilitate investigations of interactions between bacterial species in these communities.
Collapse
Affiliation(s)
- Natalia I Chalmers
- Department of Biomedical Sciences, University of Maryland Dental School, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
111
|
Yoshida Y, Ganguly S, Bush CA, Cisar JO. Molecular basis of L-rhamnose branch formation in streptococcal coaggregation receptor polysaccharides. J Bacteriol 2006; 188:4125-30. [PMID: 16707704 PMCID: PMC1482913 DOI: 10.1128/jb.01843-05] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The presence of L-rhamnose (Rha) branches in the coaggregation receptor polysaccharides (RPS) of Streptococcus gordonii 38 and Streptococcus oralis J22 was eliminated by replacement of wefB with ermAM in these strains. The expression of this gene in S. oralis 34 did not, however, result in the addition of Rha branches to the linear RPS of this strain, which is identical to that produced by the wefB-deficient mutant of S. gordonii 38. This paradoxical finding was explained by a subtle difference in acceptor specificity of the galactose-1-phosphotransferases encoded by downstream wefC in S. gordonii 38 and wefH in S. oralis 34. These genes were distinguished by the unique ability of WefC to act on the branched acceptor formed by the action of WefB.
Collapse
Affiliation(s)
- Yasuo Yoshida
- Oral Infection and Immnunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Building 30, 30 Convent Drive, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
112
|
Palmer RJ, Diaz PI, Kolenbrander PE. Rapid succession within the Veillonella population of a developing human oral biofilm in situ. J Bacteriol 2006; 188:4117-24. [PMID: 16707703 PMCID: PMC1482915 DOI: 10.1128/jb.01958-05] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococci are the primary component of the multispecies oral biofilm known as supragingival dental plaque; they grow by fermentation of sugars to organic acids, e.g., lactic acid. Veillonellae, a ubiquitous component of early plaque, are unable to use sugars; they ferment organic acids, such as lactate, to a mixture of shorter-chain-length acids, CO(2), and hydrogen. Certain veillonellae bind to (coaggregate with) streptococci in vitro. We show that, between 4 and 8 hours into plaque development, the dominant strains of Veillonella change in their phenotypic characteristics (coaggregation and antibody reactivity) as well as in their genotypic characteristics (16S RNA gene sequences as well as strain level fingerprint patterns). This succession is coordinated with the development of mixed-species bacterial colonies. Changes in community structure can occur very rapidly in natural biofilm development, and we suggest that this process may influence evolution within this ecosystem.
Collapse
Affiliation(s)
- Robert J Palmer
- Oral Biofilm Communication Unit, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Building 30, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
113
|
Diaz PI, Chalmers NI, Rickard AH, Kong C, Milburn CL, Palmer RJ, Kolenbrander PE. Molecular characterization of subject-specific oral microflora during initial colonization of enamel. Appl Environ Microbiol 2006; 72:2837-48. [PMID: 16597990 PMCID: PMC1449052 DOI: 10.1128/aem.72.4.2837-2848.2006] [Citation(s) in RCA: 297] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The initial microbial colonization of tooth surfaces is a repeatable and selective process, with certain bacterial species predominating in the nascent biofilm. Characterization of the initial microflora is the first step in understanding interactions among community members that shape ensuing biofilm development. Using molecular methods and a retrievable enamel chip model, we characterized the microbial diversity of early dental biofilms in three subjects. A total of 531 16S rRNA gene sequences were analyzed, and 97 distinct phylotypes were identified. Microbial community composition was shown to be statistically different among subjects. In all subjects, however, 4-h and 8-h communities were dominated by Streptococcus spp. belonging to the Streptococcus oralis/Streptococcus mitis group. Other frequently observed genera (comprising at least 5% of clone sequences in at least one of the six clone libraries) were Actinomyces, Gemella, Granulicatella, Neisseria, Prevotella, Rothia, and Veillonella. Fluorescence in situ hybridization (FISH) confirmed that the proportion of Streptococcus sp. sequences in the clone libraries coincided with the proportion of streptococcus probe-positive organisms on the chip. FISH also revealed that, in the undisturbed plaque, not only Streptococcus spp. but also the rarer Prevotella spp. were usually seen in small multigeneric clusters of cells. This study shows that the initial dental plaque community of each subject is unique in terms of diversity and composition. Repetitive and distinctive community composition within subjects suggests that the spatiotemporal interactions and ecological shifts that accompany biofilm maturation also occur in a subject-dependent manner.
Collapse
Affiliation(s)
- Patricia I Diaz
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Building 30, Room 310, 30 Convent Dr., Bethesda, MD 20892-4350, USA
| | | | | | | | | | | | | |
Collapse
|
114
|
Yoshida Y, Palmer RJ, Yang J, Kolenbrander PE, Cisar JO. Streptococcal receptor polysaccharides: recognition molecules for oral biofilm formation. BMC Oral Health 2006; 6 Suppl 1:S12. [PMID: 16934113 PMCID: PMC2147599 DOI: 10.1186/1472-6831-6-s1-s12] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Strains of viridans group streptococci that initiate colonization of the human tooth surface typically coaggregate with each other and with Actinomyces naeslundii, another member of the developing biofilm community. These interactions generally involve adhesin-mediated recognition of streptococcal receptor polysaccharides (RPS). The objective of our studies is to understand the role of these polysaccharides in oral biofilm development. Methods Different structural types of RPS have been characterized by their reactions with specific antibodies and lectin-like adhesins. Streptococcal gene clusters for RPS biosynthesis were identified, sequenced, characterized and compared. RPS-producing bacteria were detected in biofilm samples using specific antibodies and gene probes. Results Six different types of RPS have been identified from representative viridans group streptococci that coaggregate with A. naeslundii. Each type is composed of a different hexa- or heptasaccharide repeating unit, the structures of which contain host-like motifs, either GalNAcβ1-3Gal or Galβ1-3GalNAc. These motifs account for RPS-mediated recognition, whereas other features of these polysaccharides are more closely associated with RPS antigenicity. The RPS-dependent interaction of S. oralis with A. naeslundii promotes growth of these bacteria and biofilm formation in flowing saliva. Type specific differences in RPS production have been noted among the resident streptococcal floras of different individuals, raising the possibility of RPS-based differences in the composition of oral biofilm communities. Conclusion The structural, functional and molecular properties of streptococcal RPS support a recognition role of these cell surface molecules in oral biofilm formation.
Collapse
Affiliation(s)
- Yasuo Yoshida
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4352, USA
| | - Robert J Palmer
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4352, USA
| | - Jinghua Yang
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4352, USA
| | - Paul E Kolenbrander
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4352, USA
| | - John O Cisar
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4352, USA
| |
Collapse
|
115
|
Kreth J, Merritt J, Shi W, Qi F. Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. J Bacteriol 2005; 187:7193-203. [PMID: 16237003 PMCID: PMC1272965 DOI: 10.1128/jb.187.21.7193-7203.2005] [Citation(s) in RCA: 342] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human mucosal surface is colonized by the indigenous microflora, which normally maintains an ecological balance among different species. Certain environmental or biological factors, however, may trigger disruption of this balance, leading to microbial diseases. In this study, we used two oral bacterial species, Streptococcus mutans and Streptococcus sanguinis (formerly S. sanguis), as a model to probe the possible mechanisms of competition/coexistence between different species which occupy the same ecological niche. We show that the two species engage in a multitude of antagonistic interactions temporally and spatially; occupation of a niche by one species precludes colonization by the other, while simultaneous colonization by both species results in coexistence. Environmental conditions, such as cell density, nutritional availability, and pH, play important roles in determining the outcome of these interactions. Genetic and biochemical analyses reveal that these interspecies interactions are possibly mediated through a well-regulated production of chemicals, such as bacteriocins (produced by S. mutans) and hydrogen peroxide (produced by S. sanguinis). Consistent with the phenotypic characteristics, production of bacteriocins and H2O2 are regulated by environmental conditions, as well as by juxtaposition of the two species. These sophisticated interspecies interactions could play an essential part in balancing competition/coexistence within multispecies microbial communities.
Collapse
Affiliation(s)
- Jens Kreth
- Department of Oral Biology and Medicine, UCLA School of Dentistry, P.O. Box 951668, Los Angeles, CA 90095-1668, USA
| | | | | | | |
Collapse
|
116
|
Loimaranta V, Jakubovics NS, Hytönen J, Finne J, Jenkinson HF, Strömberg N. Fluid- or surface-phase human salivary scavenger protein gp340 exposes different bacterial recognition properties. Infect Immun 2005; 73:2245-52. [PMID: 15784568 PMCID: PMC1087402 DOI: 10.1128/iai.73.4.2245-2252.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Salivary scavenger receptor cysteine-rich protein gp340 aggregates streptococci and other bacteria as part of the host innate defense system at mucosal surfaces. In this article, we have investigated the properties of fluid-phase gp340 and hydroxylapatite surface-adsorbed gp340 in aggregation and adherence, respectively, of viridans group streptococci (e.g., Streptococcus gordonii and Streptococcus mutans), non-viridans group streptococci (e.g., Streptococcus pyogenes and Streptococcus suis), and oral Actinomyces. Fluid-phase gp340 and surface-phase gp340 bioforms were differentially recognized by streptococci, which formed three phenotypic groupings according to their modes of interaction with gp340. Group I streptococci were aggregated by and adhered to gp340, and group II streptococci preferentially adhered to surface-bound gp340, while group III streptococci were preferentially aggregated by gp340. Each species of Streptococcus tested was found to contain strains representative of at least two of these gp340 interaction groupings. The gp340 interaction modes I to III and sugar specificities of gp340 binding strains coincided for several species. Many gp340 interactions were sialidase sensitive, and each of the interaction modes (I to III) for S. gordonii was correlated with a variant of sialic acid specificity. Adherence of S. gordonii DL1 (Challis) to surface-bound gp340 was dependent upon expression of the sialic acid binding adhesin Hsa. However, aggregation of cells by fluid-phase gp340 was independent of Hsa and involved SspA and SspB (antigen I/II family) polypeptides. Conversely, both gp340-mediated aggregation and adherence of S. mutans NG8 involved antigen I/II polypeptide. Deletion of the mga virulence regulator gene in S. pyogenes resulted in increased cell aggregation by gp340. These results suggest that salivary gp340 recognizes different bacterial receptors according to whether gp340 is present in the fluid phase or surface bound. This phase-associated differential recognition by gp340 of streptococcal species of different levels of virulence and diverse origins may mediate alternative host responses to commensal or pathogenic bacterial phenotypes.
Collapse
Affiliation(s)
- V Loimaranta
- Department of Odontology/Cariology, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
117
|
Abdus Salam M, Matsumoto N, Matin K, Tsuha Y, Nakao R, Hanada N, Senpuku H. Establishment of an animal model using recombinant NOD.B10.D2 mice to study initial adhesion of oral streptococci. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2004; 11:379-86. [PMID: 15013991 PMCID: PMC371204 DOI: 10.1128/cdli.11.2.379-386.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An oral biofilm is a community of surface-attached microorganisms that coats the oral cavity, including the teeth, and provides a protective reservoir for oral microbial pathogens, which are the primary cause of persistent and chronic infectious diseases in patients with dry mouth or Sjögren's syndrome (SS). The purpose of this study was to establish an animal model for studying the initial adhesion of oral streptococci that cause biofilm formation in patients with dry mouth and SS in an attempt to decrease the influence of cariogenic organisms and their substrates. In nonobese diabetogenic (NOD) mice that spontaneously develop insulin-dependent diabetes mellitus (IDDM) and SS, we replaced major histocompatibility complex (MHC) class II (A(g7) E(g7)) and class I D(b) with MHC class II (A(d) E(d)) and class I D(d) from nondiabetic B10.D2 mice to produce an animal model that inhibited IDDM without affecting SS. The adhesion of oral streptococci, including Streptococcus mutans, onto tooth surfaces was then investigated and quantified in homologous recombinant N5 (NOD.B10.D2) and N9 (NOD.B10.D2) mice. We found that a higher number of oral streptococci adhered to the tooth surfaces of N5 (NOD.B10.D2) and N9 (NOD.B10.D2) mice than to those of the control C57BL/6 and B10.D2 mice. On the basis of our observation, we concluded that these mouse models might be useful as animal models of dry mouth and SS for in vivo biological studies of oral biofilm formation on the tooth surfaces.
Collapse
Affiliation(s)
- Mohammad Abdus Salam
- Department of Bacteriology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | |
Collapse
|
118
|
Suzuki N, Nakano Y, Yoshida A, Yamashita Y, Kiyoura Y. Real-time TaqMan PCR for quantifying oral bacteria during biofilm formation. J Clin Microbiol 2004; 42:3827-30. [PMID: 15297540 PMCID: PMC497611 DOI: 10.1128/jcm.42.8.3827-3830.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A TaqMan PCR was developed for quantifying early colonizer microorganisms in dental biofilms. To design species-specific primers and TaqMan probes, genomic subtractive hybridization was used. This quantitative assay in combination with subtractive hybridization may be of value in the study of microbial ecosystems consisting of related species that are involved in the formation and etiology of biofilms.
Collapse
Affiliation(s)
- Nao Suzuki
- Department of Oral Bacteriology, Ohu University School of Dentistry, Tomitamachi, Koriyama, Japan
| | | | | | | | | |
Collapse
|
119
|
Foster JS, Kolenbrander PE. Development of a multispecies oral bacterial community in a saliva-conditioned flow cell. Appl Environ Microbiol 2004; 70:4340-8. [PMID: 15240317 PMCID: PMC444820 DOI: 10.1128/aem.70.7.4340-4348.2004] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial communities within the human oral cavity are dynamic associations of more than 500 bacterial species that form biofilms on the soft and hard tissues of the mouth. Understanding the development and spatial organization of oral biofilms has been facilitated by the use of in vitro models. We used a saliva-conditioned flow cell, with saliva as the sole nutritional source, as a model to examine the development of multispecies biofilm communities from an inoculum containing the coaggregation partners Streptococcus gordonii, Actinomyces naeslundii, Veillonella atypica, and Fusobacterium nucleatum. Biofilms inoculated with individual species in a sequential order were compared with biofilms inoculated with coaggregates of the four species. Our results indicated that flow cells inoculated sequentially produced biofilms with larger biovolumes compared to those biofilms inoculated with coaggregates. Individual-species biovolumes within the four-species communities also differed between the two modes of inoculation. Fluorescence in situ hybridization with genus- and species-specific probes revealed that the majority of cells in both sequentially and coaggregate-inoculated biofilms were S. gordonii, regardless of the inoculation order. However, the representation of A. naeslundii and V. atypica was significantly higher in biofilms inoculated with coaggregates compared to sequentially inoculated biofilms. Thus, these results indicate that the development of multispecies biofilm communities is influenced by coaggregations preformed in planktonic phase. Coaggregating bacteria such as certain streptococci are especially adapted to primary colonization of saliva-conditioned surfaces independent of the mode of inoculation and order of addition in the multispecies inoculum. Preformed coaggregations favor other bacterial strains and may facilitate symbiotic relationships.
Collapse
Affiliation(s)
- Jamie S Foster
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Building 30, Room 310, 30 Convent Dr., MSC 4350, Bethesda, MD 20892, USA
| | | |
Collapse
|
120
|
Zhang Y, Lei Y, Khammanivong A, Herzberg MC. Identification of a novel two-component system in Streptococcus gordonii V288 involved in biofilm formation. Infect Immun 2004; 72:3489-94. [PMID: 15155656 PMCID: PMC415666 DOI: 10.1128/iai.72.6.3489-3494.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus gordonii is a pioneer colonizer of the teeth, contributing to the initiation of the oral biofilm called dental plaque. To identify genes that may be important in biofilm formation, a plasmid integration library of S. gordonii V288 was used. After screening for in vitro biofilm formation on polystyrene, a putative biofilm-defective mutant was isolated. In this mutant, pAK36 was inserted into a locus encoding a novel two-component system (bfr [biofilm formation related]) with two cotranscribed genes that form an operon. bfrA encodes a putative response regulator, while bfrB encodes a receptor histidine kinase. The bfr mutant and wild-type strain V288 showed similar growth rates in Todd-Hewitt broth (THB). A bfr-cat fusion strain was constructed. During growth in THB, the reporter activity (chloramphenicol acetyltransferase) was first detected in mid-log phase and reached a maximum in stationary phase, suggesting that transcription of bfr was growth stage dependent. After being harvested from THB, the bfr mutant adhered less effectively than did wild-type strain V288 to saliva-coated hydroxyapatite (sHA). To simulate pioneer colonization of teeth, S. gordonii V288 was incubated with sHA for 4 h in THB with 10% saliva to develop biofilms. RNA was isolated, and expression of bfrAB was estimated. In comparison to that of cells grown in suspension (free-growing cells), bfr mRNA expression by sessile cells on sHA was 1.8-fold greater and that by surrounding planktonic cells was 3.5-fold greater. Therefore, bfrAB is a novel two-component system regulated in association with S. gordonii biofilm formation in vitro.
Collapse
Affiliation(s)
- Yongshu Zhang
- Department of Oral Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
121
|
Adderson EE, Takahashi S, Wang Y, Armstrong J, Miller DV, Bohnsack JF. Subtractive hybridization identifies a novel predicted protein mediating epithelial cell invasion by virulent serotype III group B Streptococcus agalactiae. Infect Immun 2004; 71:6857-63. [PMID: 14638773 PMCID: PMC308952 DOI: 10.1128/iai.71.12.6857-6863.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group B Streptococcus agalactiae bacteria (group B streptococci [GBS]) are the most common cause of serious bacterial infection in newborn infants. The majority of serotype III-related cases of neonatal disease are caused by a genetically related subgroup of bacteria, restriction fragment digest pattern (RDP) type III-3, suggesting that these strains possess unique genes contributing to virulence. We used genomic subtractive hybridization to identify regions of genomic DNA unique to virulent RDP type III-3 GBS strains. Within one of these III-3-specific regions is a 1,506-bp open reading frame, spb1 (surface protein of group B streptococcus 1). A mutant type III GBS strain lacking Spb1 was constructed in virulent RDP type III-3 strain 874391, and the interactions of the wild-type and spb1 isogenic mutant with a variety of epithelial cells important to GBS colonization and infection were compared. While adherence of the spb1 isogenic mutant to A549 respiratory, C2Bbe1 colonic, and HeLa cervical epithelial cells was slightly lower than that of the 874391 strain, invasion of the Spb1(-) mutant was significantly reduced with these cell lines compared to what was seen with 874391. The defect in epithelial invasion was corrected by supplying spb1 in trans. These observations suggest that Spb1 contributes to the pathogenesis of neonatal GBS infection by mediating internalization of virulent serotype III GBS and confirm that understanding of the population structure of bacteria may lead to insights into the pathogenesis of human infections.
Collapse
Affiliation(s)
- Elisabeth E Adderson
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| | | | | | | | | | | |
Collapse
|
122
|
Xu DQ, Thompson J, Cisar JO. Genetic loci for coaggregation receptor polysaccharide biosynthesis in Streptococcus gordonii 38. J Bacteriol 2003; 185:5419-30. [PMID: 12949094 PMCID: PMC193766 DOI: 10.1128/jb.185.18.5419-5430.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell wall polysaccharide of Streptococcus gordonii 38 functions as a coaggregation receptor for surface adhesins on other members of the oral biofilm community. The structure of this receptor polysaccharide (RPS) is defined by a heptasaccharide repeat that includes a GalNAcbeta1-->3Gal-containing recognition motif. The same RPS has now been identified from S. gordonii AT, a partially sequenced strain. PCR primers designed from sequences in the genomic database of strain AT were used to identify and partially characterize the S. gordonii 38 RPS gene cluster. This cluster includes genes for seven putative glycosyltransferases, a polysaccharide polymerase (Wzy), an oligosaccharide repeating unit transporter (Wzx), and a galactofuranose mutase, the enzyme that promotes synthesis of UDP-Galf, one of five predicted RPS precursors. Genes outside this region were identified for the other four nucleotide-linked sugar precursors of RPS biosynthesis, namely, those for formation of UDP-Glc, UDP-Gal, UDP-GalNAc, and dTDP-Rha. Two genes for putative galactose 4-epimerases were identified. The first, designated galE1, was identified as a pseudogene in the galactose operon, and the second, designated galE2, was transcribed with three of the four genes for dTDP-Rha biosynthesis (i.e., rmlA, rmlC, and rmlB). Insertional inactivation of galE2 abolished (i) RPS production, (ii) growth on galactose, and (iii) both UDP-Gal and UDP-GalNAc 4-epimerase activities in cell extracts. Repair of the galE1 pseudogene in this galE2 mutant restored growth on galactose but not RPS production. Cell extracts containing functional GalE1 but not GalE2 contained UDP-Gal 4-epimerase but not UDP-GalNAc 4-epimerase activity. Thus, provision of both UDP-Gal and UDP-GalNAc for RPS production by S. gordonii 38 depends on the dual specificity of the epimerase encoded by galE2.
Collapse
Affiliation(s)
- De-Qi Xu
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
123
|
Blehert DS, Palmer RJ, Xavier JB, Almeida JS, Kolenbrander PE. Autoinducer 2 production by Streptococcus gordonii DL1 and the biofilm phenotype of a luxS mutant are influenced by nutritional conditions. J Bacteriol 2003; 185:4851-60. [PMID: 12897005 PMCID: PMC166464 DOI: 10.1128/jb.185.16.4851-4860.2003] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The luxS gene, present in many bacterial genera, encodes the autoinducer 2 (AI-2) synthase. AI-2 has been implicated in bacterial signaling, and this study investigated its role in biofilm formation by Streptococcus gordonii, an organism that colonizes human tooth enamel within the first few hours after professional cleaning. Northern blotting and primer extension analyses revealed that S. gordonii luxS is monocistronic. AI-2 production was dependent on nutritional conditions, and maximum AI-2 induction was detected when S. gordonii was grown in the presence of serum and carbonate. In planktonic cultures, AI-2 production rose sharply during the transition from exponential to stationary phase, and the AI-2 concentration peaked approximately 4 h into stationary phase. An S. gordonii luxS mutant that did not produce AI-2 was constructed by homologous recombination. Complementation of the mutant by insertion of an intact luxS gene into the chromosome in tandem with the disrupted gene restored AI-2 production to a level similar to that of the wild-type strain. In planktonic culture, no growth differences were observed between the mutant and wild-type strains when five different media were used. However, when grown for 4 h as biofilms in 25% human saliva under flow, the luxS mutant formed tall microcolonies that differed from those formed by the wild-type and complemented mutant strains. Biofilms of the luxS mutant exhibited finger-like projections of cells that extended into the flow cell lumen. Thus, the inability to produce AI-2 is associated with altered microcolony architecture within S. gordonii biofilms formed in saliva during a time frame consistent with initial colonization of freshly cleaned enamel surfaces.
Collapse
Affiliation(s)
- David S Blehert
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
124
|
Gilmore KS, Srinivas P, Akins DR, Hatter KL, Gilmore MS. Growth, development, and gene expression in a persistent Streptococcus gordonii biofilm. Infect Immun 2003; 71:4759-66. [PMID: 12874358 PMCID: PMC166047 DOI: 10.1128/iai.71.8.4759-4766.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A model for the protracted (30-day) colonization of smooth surfaces by Streptococcus gordonii that incorporates the nutrient flux that occurs in the oral cavity was developed. This model was used to characterize the biphasic expansion of the adherent bacterial population, which corresponded with the emergence of higher-order architectures characteristic of biofilms. Biofilm formation by S. gordonii was observed to be influenced by the presence of simple sugars including sucrose, glucose, and fructose. Real-time PCR was used to quantify changes in expression of S. gordonii genes known or thought to be involved in biofilm formation. Morphological changes were accompanied by a significant shift in gene expression patterns. The majority of S. gordonii genes examined were observed to be downregulated in the biofilm phase. Genes found to be upregulated in the biofilm state were observed to encode products related to environmental sensing and signaling.
Collapse
Affiliation(s)
- Keeta S Gilmore
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | |
Collapse
|
125
|
Palmer RJ, Gordon SM, Cisar JO, Kolenbrander PE. Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque. J Bacteriol 2003; 185:3400-9. [PMID: 12754239 PMCID: PMC155391 DOI: 10.1128/jb.185.11.3400-3409.2003] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococci and actinomyces that initiate colonization of the tooth surface frequently coaggregate with each other as well as with other oral bacteria. These observations have led to the hypothesis that interbacterial adhesion influences spatiotemporal development of plaque. To assess the role of such interactions in oral biofilm formation in vivo, antibodies directed against bacterial surface components that mediate coaggregation interactions were used as direct immunofluorescent probes in conjunction with laser confocal microscopy to determine the distribution and spatial arrangement of bacteria within intact human plaque formed on retrievable enamel chips. In intrageneric coaggregation, streptococci such as Streptococcus gordonii DL1 recognize receptor polysaccharides (RPS) borne on other streptococci such as Streptococcus oralis 34. To define potentially interactive subsets of streptococci in the developing plaque, an antibody against RPS (anti-RPS) was used together with an antibody against S. gordonii DL1 (anti-DL1). These antibodies reacted primarily with single cells in 4-h-old plaque and with mixed-species microcolonies in 8-h-old plaque. Anti-RPS-reactive bacteria frequently formed microcolonies with anti-DL1-reactive bacteria and with other bacteria distinguished by general nucleic acid stains. In intergeneric coaggregation between streptococci and actinomyces, type 2 fimbriae of actinomyces recognize RPS on the streptococci. Cells reactive with antibody against type 2 fimbriae of Actinomyces naeslundii T14V (anti-type-2) were much less frequent than either subset of streptococci. However, bacteria reactive with anti-type-2 were seen in intimate association with anti-RPS-reactive cells. These results are the first direct demonstration of coaggregation-mediated interactions during initial plaque accumulation in vivo. Further, these results demonstrate the spatiotemporal development and prevalence of mixed-species communities in early dental plaque.
Collapse
Affiliation(s)
- Robert J Palmer
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892-4350, USA
| | | | | | | |
Collapse
|
126
|
Batten MR, Senior BW, Kilian M, Woof JM. Amino acid sequence requirements in the hinge of human immunoglobulin A1 (IgA1) for cleavage by streptococcal IgA1 proteases. Infect Immun 2003; 71:1462-9. [PMID: 12595464 PMCID: PMC148859 DOI: 10.1128/iai.71.3.1462-1469.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The amino acid sequence requirements in the hinge of human immunoglobulin A1 (IgA1) for cleavage by IgA1 proteases of different species of Streptococcus were investigated. Recombinant IgA1 antibodies were generated with point mutations at proline 227 and threonine 228, the residues lying on either side of the peptide bond at which all streptococcal IgA1 proteases cleave wild-type human IgA1. The amino acid substitutions produced no major effect upon the structure of the mutant IgA1 antibodies or their functional ability to bind to Fcalpha receptors. However, the substitutions had a substantial effect upon sensitivity to cleavage with some streptococcal IgA1 proteases, with, in some cases, a single point mutation rendering the antibody resistant to a particular IgA1 protease. This effect was least marked with the IgA1 protease from Streptococcus pneumoniae, which showed no absolute requirement for either proline or threonine at residues 227 to 228. By contrast, the IgA1 proteases of Streptococcus oralis, Streptococcus sanguis, and Streptococcus mitis had an absolute requirement for proline at 227 but not for threonine at 228, which could be replaced by valine. There was evidence in S. mitis that proteases from different strains may have different amino acid requirements for cleavage. Remarkably, some streptococcal proteases appeared able to cleave the hinge at a distant alternative site if substitution prevented efficient cleavage of the original site. Hence, this study has identified key residues required for the recognition of the IgA1 hinge as a substrate by streptococcal IgA1 proteases, and it marks a preliminary step towards development of specific enzyme inhibitors.
Collapse
Affiliation(s)
- Margaret R Batten
- Department of Molecular and Cellular Pathology, University of Dundee Medical School, Ninewells Hospital, Dundee DD1 9SY, United Kingdom
| | | | | | | |
Collapse
|
127
|
Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ. Communication among oral bacteria. Microbiol Mol Biol Rev 2002; 66:486-505, table of contents. [PMID: 12209001 PMCID: PMC120797 DOI: 10.1128/mmbr.66.3.486-505.2002] [Citation(s) in RCA: 625] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human oral bacteria interact with their environment by attaching to surfaces and establishing mixed-species communities. As each bacterial cell attaches, it forms a new surface to which other cells can adhere. Adherence and community development are spatiotemporal; such order requires communication. The discovery of soluble signals, such as autoinducer-2, that may be exchanged within multispecies communities to convey information between organisms has emerged as a new research direction. Direct-contact signals, such as adhesins and receptors, that elicit changes in gene expression after cell-cell contact and biofilm growth are also an active research area. Considering that the majority of oral bacteria are organized in dense three-dimensional biofilms on teeth, confocal microscopy and fluorescently labeled probes provide valuable approaches for investigating the architecture of these organized communities in situ. Oral biofilms are readily accessible to microbiologists and are excellent model systems for studies of microbial communication. One attractive model system is a saliva-coated flowcell with oral bacterial biofilms growing on saliva as the sole nutrient source; an intergeneric mutualism is discussed. Several oral bacterial species are amenable to genetic manipulation for molecular characterization of communication both among bacteria and between bacteria and the host. A successful search for genes critical for mixed-species community organization will be accomplished only when it is conducted with mixed-species communities.
Collapse
Affiliation(s)
- Paul E Kolenbrander
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892-4350, USA.
| | | | | | | | | | | |
Collapse
|
128
|
Koo H, Rosalen PL, Cury JA, Park YK, Bowen WH. Effects of compounds found in propolis on Streptococcus mutans growth and on glucosyltransferase activity. Antimicrob Agents Chemother 2002; 46:1302-9. [PMID: 11959560 PMCID: PMC127145 DOI: 10.1128/aac.46.5.1302-1309.2002] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Propolis, a resinous bee product, has been shown to inhibit the growth of oral microorganisms and the activity of bacterium-derived glucosyltransferases (GTFs). Several compounds, mainly polyphenolics, have been identified in this natural product. The present study evaluated the effects of distinct chemical groups found in propolis on the activity of GTF enzymes in solution and on the surface of saliva-coated hydroxyapatite (sHA) beads. Thirty compounds, including flavonoids, cinnamic acid derivatives, and terpenoids, were tested for the ability to inhibit GTFs B, C, and D from Streptococcus mutans and GTF from S. sanguinis (GTF Ss). Flavones and flavonols were potent inhibitors of GTF activity in solution; lesser effects were noted on insolubilized enzymes. Apigenin, a 4',5,7-trihydroxyflavone, was the most effective inhibitor of GTFs, both in solution (90.5 to 95% inhibition at a concentration of 135 microg/ml) and on the surface of sHA beads (30 to 60% at 135 microg/ml). Antibacterial activity was determined by using MICs, minimum bactericidal concentrations (MBCs), and time-kill studies. Flavanones and some dihydroflavonols, as well as the sesquiterpene tt-farnesol, inhibited the growth of S. mutans and S. sobrinus; tt-farnesol was the most effective antibacterial compound (MICs of 14 to 28 microg/ml and MBCs of 56 to 112 microg/ml). tt-Farnesol (56 to 112 microg/ml) produced a 3-log-fold reduction in the bacterial population after 4 h of incubation. Cinnamic acid derivatives had negligible biological activities. Several of the compounds identified in propolis inhibit GTF activities and bacterial growth. Apigenin is a novel and potent inhibitor of GTF activity, and tt-farnesol was found to be an effective antibacterial agent.
Collapse
Affiliation(s)
- Hyun Koo
- Center for Oral Biology and Eastman Department of Dentistry, University of Rochester Medical Center, Rochester, New York 14642, USA.
| | | | | | | | | |
Collapse
|
129
|
Sarkonen N, Könönen E, Summanen P, Könönen M, Jousimies-Somer H. Phenotypic identification of Actinomyces and related species isolated from human sources. J Clin Microbiol 2001; 39:3955-61. [PMID: 11682514 PMCID: PMC88471 DOI: 10.1128/jcm.39.11.3955-3961.2001] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2001] [Accepted: 08/21/2001] [Indexed: 01/16/2023] Open
Abstract
Recent advancements in chemotaxonomic and molecular biology-based identification methods have clarified the taxonomy of the genus Actinomyces and have led to the recognition of several new Actinomyces and related species. Actinomyces-like gram-positive rods have increasingly been isolated from various clinical specimens. Thus, an easily accessible scheme for reliable differentiation at the species level is needed in clinical and oral microbiology laboratories, where bacterial identification is mainly based on conventional biochemical methods. In the present study we designed a two-step protocol that consists of a flowchart that describes rapid, cost-efficient tests for preliminary identification of Actinomyces and closely related species and an updated more comprehensive scheme that also uses fermentation reactions for accurate differentiation of Actinomyces and closely related species.
Collapse
Affiliation(s)
- N Sarkonen
- Anaerobe Reference Laboratory, National Public Health Institute, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
130
|
Rogers JD, Palmer RJ, Kolenbrander PE, Scannapieco FA. Role of Streptococcus gordonii amylase-binding protein A in adhesion to hydroxyapatite, starch metabolism, and biofilm formation. Infect Immun 2001; 69:7046-56. [PMID: 11598080 PMCID: PMC100085 DOI: 10.1128/iai.69.11.7046-7056.2001] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interactions between bacteria and salivary components are thought to be important in the establishment and ecology of the oral microflora. alpha-Amylase, the predominant salivary enzyme in humans, binds to Streptococcus gordonii, a primary colonizer of the tooth. Previous studies have implicated this interaction in adhesion of the bacteria to salivary pellicles, catabolism of dietary starches, and biofilm formation. Amylase binding is mediated at least in part by the amylase-binding protein A (AbpA). To study the function of this protein, an erythromycin resistance determinant [erm(AM)] was inserted within the abpA gene of S. gordonii strains Challis and FAS4 by allelic exchange, resulting in abpA mutant strains Challis-E1 and FAS4-E1. Comparison of the wild-type and mutant strains did not reveal any significant differences in colony morphology, biochemical metabolic profiles, growth in complex or defined media, surface hydrophobicity, or coaggregation properties. Scatchard analysis of adhesion isotherms demonstrated that the wild-type strains adhered better to human parotid-saliva- and amylase-coated hydroxyapatite than did the AbpA mutants. In contrast, the mutant strains bound to whole-saliva-coated hydroxyapatite to a greater extent than did the wild-type strains. While the wild-type strains preincubated with purified salivary amylase grew well in defined medium with potato starch as the sole carbohydrate source, the AbpA mutants did not grow under the same conditions even after preincubation with amylase. In addition, the wild-type strain produced large microcolonies in a flow cell biofilm model, while the abpA mutant strains grew much more poorly and produced relatively small microcolonies. Taken together, these results suggest that AbpA of S. gordonii functions as an adhesin to amylase-coated hydroxyapatite, in salivary-amylase-mediated catabolism of dietary starches and in human saliva-supported biofilm formation by S. gordonii.
Collapse
Affiliation(s)
- J D Rogers
- Department of Oral Biology, School of Dental Medicine, The State University of New York, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
131
|
Palmer RJ, Kazmerzak K, Hansen MC, Kolenbrander PE. Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source. Infect Immun 2001; 69:5794-804. [PMID: 11500457 PMCID: PMC98697 DOI: 10.1128/iai.69.9.5794-5804.2001] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During initial dental plaque formation, the ability of a species to grow when others cannot would be advantageous, and enhanced growth through interspecies and intergeneric cooperation could be critical. These characteristics were investigated in three coaggregating early colonizers of the tooth surface (Streptococcus gordonii DL1, Streptococcus oralis 34, and Actinomyces naeslundii T14V). Area coverage and cell cluster size measurements showed that attachment of A. naeslundii and of S. gordonii to glass flowcells was enhanced by a salivary conditioning film, whereas attachment of S. oralis was hindered. Growth experiments using saliva as the sole carbon and nitrogen source showed that A. naeslundii was unable to grow either in planktonic culture or as a biofilm, whereas S. gordonii grew under both conditions. S. oralis grew planktonically, but to a much lower maximum cell density than did S. gordonii; S. oralis did not grow reproducibly as a biofilm. Thus, only S. gordonii possessed all traits advantageous for growth as a solitary and independent resident of the tooth. Two-species biofilm experiments analyzed by laser confocal microscopy showed that neither S. oralis nor A. naeslundii grew when coaggregated pairwise with S. gordonii. However, both S. oralis and A. naeslundii showed luxuriant, interdigitated growth when paired together in coaggregated microcolonies. Thus, the S. oralis-A. naeslundii pair formed a mutualistic relationship, potentially contact dependent, that allows each to grow where neither could survive alone. S. gordonii, in contrast, neither was hindered by nor benefited from the presence of either of the other strains. The formation of mutually beneficial interactions within the developing biofilm may be essential for certain initial colonizers to be retained during early plaque development, whereas other initial colonizers may be unaffected by neighboring cells on the substratum.
Collapse
Affiliation(s)
- R J Palmer
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
132
|
Abstract
Biofilms are complex communities of microorganisms attached to surfaces or associated with interfaces. Despite the focus of modern microbiology research on pure culture, planktonic (free-swimming) bacteria, it is now widely recognized that most bacteria found in natural, clinical, and industrial settings persist in association with surfaces. Furthermore, these microbial communities are often composed of multiple species that interact with each other and their environment. The determination of biofilm architecture, particularly the spatial arrangement of microcolonies (clusters of cells) relative to one another, has profound implications for the function of these complex communities. Numerous new experimental approaches and methodologies have been developed in order to explore metabolic interactions, phylogenetic groupings, and competition among members of the biofilm. To complement this broad view of biofilm ecology, individual organisms have been studied using molecular genetics in order to identify the genes required for biofilm development and to dissect the regulatory pathways that control the plankton-to-biofilm transition. These molecular genetic studies have led to the emergence of the concept of biofilm formation as a novel system for the study of bacterial development. The recent explosion in the field of biofilm research has led to exciting progress in the development of new technologies for studying these communities, advanced our understanding of the ecological significance of surface-attached bacteria, and provided new insights into the molecular genetic basis of biofilm development.
Collapse
Affiliation(s)
- M E Davey
- Department of Microbiology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
133
|
Caufield PW, Dasanayake AP, Li Y, Pan Y, Hsu J, Hardin JM. Natural history of Streptococcus sanguinis in the oral cavity of infants: evidence for a discrete window of infectivity. Infect Immun 2000; 68:4018-23. [PMID: 10858217 PMCID: PMC101685 DOI: 10.1128/iai.68.7.4018-4023.2000] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The heterogeneous group of oral bacteria within the sanguinis (sanguis) streptococci comprise members of the indigenous biota of the human oral cavity. While the association of Streptococcus sanguinis with bacterial endocarditis is well described in the literature, S. sanguinis is thought to play a benign, if not a beneficial, role in the oral cavity. Little is known, however, about the natural history of S. sanguinis and its specific relationship with other oral bacteria. As part of a longitudinal study concerning the transmission and acquisition of oral bacteria within mother-infant pairs, we examined the initial acquisition of S. sanguinis and described its colonization relative to tooth emergence and its proportions in plaque and saliva as a function of other biological events, including subsequent colonization with mutans streptococci. A second cohort of infants was recruited to define the taxonomic affiliation of S. sanguinis. We found that the colonization of the S. sanguinis occurs during a discrete "window of infectivity" at a median age of 9 months in the infants. Its colonization is tooth dependent and correlated to the time of tooth emergence; its proportions in saliva increase as new teeth emerge. In addition, early colonization of S. sanguinis and its elevated levels in the oral cavity were correlated to a significant delay in the colonization of mutans streptococci. Underpinning this apparent antagonism between S. sanguinis and mutans streptococci is the observation that after mutans streptococci colonize the infant, the levels of S. sanguinis decrease. Children who do not harbor detectable levels of mutans streptococci have significantly higher levels of S. sanguinis in their saliva than do children colonized with mutans streptococci. Collectively, these findings suggest that the colonization of S. sanguinis may influence the subsequent colonization of mutans streptococci, and this in turn may suggest several ecological approaches toward controlling dental caries.
Collapse
Affiliation(s)
- P W Caufield
- School of Dentistry, University of Alabama, Birmingham, Alabama 35294, USA.
| | | | | | | | | | | |
Collapse
|
134
|
Fujiwara T, Hoshino T, Ooshima T, Sobue S, Hamada S. Purification, characterization, and molecular analysis of the gene encoding glucosyltransferase from Streptococcus oralis. Infect Immun 2000; 68:2475-83. [PMID: 10768934 PMCID: PMC97449 DOI: 10.1128/iai.68.5.2475-2483.2000] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus oralis is a member of the oral streptococcal family and an early-colonizing microorganism in the oral cavity of humans. S. oralis is known to produce glucosyltransferase (GTase), which synthesizes glucans from sucrose. The enzyme was purified chromatographically from a culture supernatant of S. oralis ATCC 10557. The purified enzyme, GTase-R, had a molecular mass of 173 kDa and a pI of 6.3. This enzyme mainly synthesized water-soluble glucans with no primer dependency. The addition of GTase markedly enhanced the sucrose-dependent resting cell adhesion of Streptococcus mutans at a level similar to that found in growing cells of S. mutans. The antibody against GTase-R inhibited the glucan-synthesizing activities of Streptococcus gordonii and Streptococcus sanguis, as well as S. oralis. The N-terminal amino acid sequence of GTase-R exhibited no similarities to known GTase sequences of oral streptococci. Using degenerate PCR primers, an 8.1-kb DNA fragment, carrying the gene (gtfR) coding for GTase-R and its regulator gene (rgg), was cloned and sequenced. Comparison of the deduced amino acid sequence revealed that the rgg genes of S. oralis and S. gordonii exhibited a close similarity. The gtfR gene was found to possess a species-specific nucleotide sequence corresponding to the N-terminal 130 amino acid residues. Insertion of erm or aphA into the rgg or gtfR gene resulted in decreased GTase activity by the organism and changed the colony morphology of these transformants. These results indicate that S. oralis GTase may play an important role in the subsequent colonizing of mutans streptoccoci.
Collapse
Affiliation(s)
- T Fujiwara
- Department of Pedodontics, Osaka University Faculty of Dentistry, Suita-Osaka 565-0871, Japan.
| | | | | | | | | |
Collapse
|
135
|
Froeliger EH, Oetjen J, Bond JP, Fives-Taylor P. Streptococcus parasanguis pepO encodes an endopeptidase with structure and activity similar to those of enzymes that modulate peptide receptor signaling in eukaryotic cells. Infect Immun 1999; 67:5206-14. [PMID: 10496897 PMCID: PMC96872 DOI: 10.1128/iai.67.10.5206-5214.1999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies in our laboratory have identified two fimbria-associated adhesins, FimA and Fap1, of Streptococcus parasanguis FW213. In this study, we isolated and sequenced DNA fragments linked to fimA to determine if they contained additional factors associated with adherence, virulence, or survival in the host. An open reading frame just upstream and divergently transcribed from the fimA operon was identified and named pepO. Northern hybridization indicated that pepO is transcribed as a monocistronic message. pepO encodes a predicted 631-amino-acid protein with a molecular mass of approximately 70.6 kDa. PepO contains the essential motif HEXXH, typical of many zinc-dependent metalloproteases and metallopeptidases. PepO has significant sequence identity to mammalian metallopeptidases, including endothelin-converting enzyme, which converts a potent vasoconstrictor into its active form, and neutral endopeptidase (NEP), which is involved in terminating the activity of opioid peptides. The opioid peptide metenkephalin is a natural substrate of NEP. Cell extracts of FW213 cleaved metenkephalin at the same site as does NEP, while an extract from an insertionally inactivated pepO mutant did not. These results indicate that FW213 pepO encodes an enzyme with activity similar to that of known mammalian endopeptidases. Phylogenetic analysis of PepO and its homologues suggests lateral genetic exchange between bacteria and eukaryotes.
Collapse
Affiliation(s)
- E H Froeliger
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
136
|
Cisar JO, Sandberg AL, Reddy GP, Abeygunawardana C, Bush CA. Structural and antigenic types of cell wall polysaccharides from viridans group streptococci with receptors for oral actinomyces and streptococcal lectins. Infect Immun 1997; 65:5035-41. [PMID: 9393793 PMCID: PMC175726 DOI: 10.1128/iai.65.12.5035-5041.1997] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Lectin-mediated interactions between oral viridans group streptococci and actinomyces may play an important role in microbial colonization of the tooth surface. The presence of two host-like motifs, either GalNAc beta1-->3Gal (Gn) or Gal beta1-->3GalNAc (G), in the cell wall polysaccharides of five streptococcal strains accounts for the lactose-sensitive coaggregations of these bacteria with Actinomyces naeslundii. Three streptococcal strains which have Gn-containing polysaccharides also participate in GalNAc-sensitive coaggregations with strains of Streptococcus gordonii and S. sanguis. Each Gn- or G-containing polysaccharide is composed of a distinct phosphodiester-linked hexa- or heptasaccharide repeating unit. The occurrence of these polysaccharides on 19 additional viridans group streptococcal strains that participate in lactose-sensitive coaggregations with actinomyces was examined. Negatively charged polysaccharides that reacted with Bauhinia purpurea agglutinin, a Gal and GalNAc binding plant lectin, were isolated from 17 strains by anion exchange column chromatography of mutanolysin-cell wall digests. Results from nuclear magnetic resonance and immunodiffusion identified each of 16 polysaccharides as a known Gn- or G-containing structural type and one polysaccharide as a new but closely related Gn-containing type. Unlike the reactions of lectins, the cross-reactions of most rabbit antisera with these polysaccharides were correlated with structural features other than the host-like motifs. Gn-containing polysaccharides occurred primarily on the strains of S. sanguis and S. oralis while G-containing polysaccharides were more common among the strains of S. gordonii and S. mitis examined. The findings strongly support the hypothesis that lectin-mediated recognition of these streptococci by other oral bacteria depends on a family of antigenically diverse Gn- and G-containing cell wall polysaccharides, the occurrence of which may differ between streptococcal species.
Collapse
Affiliation(s)
- J O Cisar
- Oral Infection and Immunity Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
137
|
Yeung MK, Ragsdale PA. Synthesis and function of Actinomyces naeslundii T14V type 1 fimbriae require the expression of additional fimbria-associated genes. Infect Immun 1997; 65:2629-39. [PMID: 9199430 PMCID: PMC175372 DOI: 10.1128/iai.65.7.2629-2639.1997] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The nucleotide sequence of the chromosomal DNA flanking the Actinomyces naeslundii (formerly A. viscosus) T14V type 1 fimbrial structural subunit gene (fimP) was determined. Six open reading frames (ORFs), in the order 5' ORF3, ORF2, ORF1,fimP, ORF4, ORF5, ORF6 3', were identified. ORF1 encoded a protein of 408 amino acid residues (Mr = 39,270) and had significant sequence homology with the A. naeslundii T14V type 1 and A. naeslundii WVU45 type 2 fimbrial structural subunits. An in-frame fusion of ORF1 to the malE gene of the expression vector, pMAL-c2, yielded a protein that was immunostained with antibodies raised against the maltose binding protein and A. naeslundii T14V whole bacteria. Digestion of the fusion protein with factor Xa released a protein (apparent molecular mass of 34 kDa) that was immunostained only with the antibody directed against A. naeslundii T14V whole bacterial cells. Integration plasmids carrying a kanamycin resistance gene (kan) that was used to substitute for ORF1 or for DNA fragments internal to the coding region of the other five ORFs were used to transform A. naeslundii T14V. Neither type 1 fimbriae nor the 65-kDa fimbrial structural subunit was detected in mutants obtained by allelic replacement of ORF1 or ORF2. Mutants obtained by allelic replacement of ORF3 or ORF4 expressed only the 65-kDa fimbrial structural subunit. These mutants did not bind, in vitro, to proline-rich proteins that serve as the receptors for Actinomyces type 1 fimbriae. In contrast, a mutant in which the integration plasmid DNA had been inserted at a site close to the carboxyl terminus of ORF6 expressed type 1 fimbriae and had adherence properties similar to those observed in the wild-type strain. These results demonstrate the existence of additional genes near fimP that are likely to be involved in the synthesis and function of cell surface fimbriae of A. naeslundii T14V.
Collapse
Affiliation(s)
- M K Yeung
- Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, 78284, USA.
| | | |
Collapse
|
138
|
Abstract
Dental plaque is the diverse microbial community found on the tooth surface embedded in a matrix of polymers of bacterial and salivary origin. Once a tooth surface is cleaned, a conditioning film of proteins and glycoproteins is adsorbed rapidly to the tooth surface. Plaque formation involves the interaction between early bacterial colonisers and this film (the acquired enamel pellicle). To facilitate colonisation of the tooth surface, some receptors on salivary molecules are only exposed to bacteria once the molecule is adsorbed to a surface. Subsequently, secondary colonisers adhere to the already attached early colonisers (co-aggregation) through specific molecular interactions. These can involve protein-protein or carbohydrate-protein (lectin) interactions, and this process contributes to determining the pattern of bacterial succession. As the biofilm develops, gradients in biologically significant factors develop, and these permit the co-existence of species that would be incompatible with each other in a homogenous environment. Dental plaque develops naturally, but it is also associated with two of the most prevalent diseases affecting industrialised societies (caries and periodontal diseases). Future strategies to control dental plaque will be targeted to interfering with the formation, structure and pattern of development of this biofilm.
Collapse
Affiliation(s)
- P D Marsh
- Department of Microbial Pathogenicity, CAMR, Porton Down, Salisbury, UK
| | | |
Collapse
|
139
|
Clemans DL, Kolenbrander PE. Isolation and characterization of coaggregation-defective (Cog-) mutants of Streptococcus gordonii DL1 (Challis). JOURNAL OF INDUSTRIAL MICROBIOLOGY 1995; 15:193-7. [PMID: 8519477 DOI: 10.1007/bf01569825] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Streptococcus gordonii DL1 (Challis) bears coaggregation-mediating surface adhesins which recognize galactoside-containing surface polysaccharides on Streptococcus oralis 34, Streptococcus oralis C104, and Streptococcus SM PK509. Fifty-nine spontaneously-occurring coaggregation-defective (Cog-) mutants of S. gordonii DL1 unable to coaggregate with partner streptococci were isolated. Six representative Cog- mutants were characterized by their coaggregation properties with four Actinomyces naeslundii strains (T14V, PK947, PK606, PK984), Veillonella atypica PK1910, and Propionibacterium acnes PK93. The six representative Cog- mutants showed altered coaggregation with their streptococcal partners, A. naeslundii PK947, and P. acnes PK93. Based on the coaggregation phenotypes of these mutants, a model for the lactose-inhibitable coaggregation between S. gordonii DL1 and its partner bacteria is proposed. The potential use of these mutants in studies of oral biofilms is discussed.
Collapse
Affiliation(s)
- D L Clemans
- Laboratory of Microbial Ecology, National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
140
|
Scannapieco FA. Saliva-bacterium interactions in oral microbial ecology. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1994; 5:203-48. [PMID: 7703323 DOI: 10.1177/10454411940050030201] [Citation(s) in RCA: 221] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Saliva is thought to have a significant impact on the colonization of microorganisms in the oral cavity. Salivary components may participate in this process by one of four general mechanisms: binding to microorganisms to facilitate their clearance from the oral cavity, serving as receptors in oral pellicles for microbial adhesion to host surfaces, inhibiting microbial growth or mediating microbial killing, and serving as microbial nutritional substrates. This article reviews information pertinent to the molecular interaction of salivary components with bacteria (primarily the oral streptococci and Actinomyces) and explores the implications of these interactions for oral bacterial colonization and dental plaque formation. Knowledge of the molecular mechanisms controlling bacterial colonization of the oral cavity may suggest methods to prevent not only dental plaque formation but also serious medical infections that may follow microbial colonization of the oral cavity.
Collapse
Affiliation(s)
- F A Scannapieco
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo 14214, USA
| |
Collapse
|
141
|
Rudney JD, Larson CJ. Use of restriction fragment polymorphism analysis of rRNA genes to assign species to unknown clinical isolates of oral viridans streptococci. J Clin Microbiol 1994; 32:437-43. [PMID: 7512095 PMCID: PMC263050 DOI: 10.1128/jcm.32.2.437-443.1994] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
This study evaluated restriction fragment length polymorphisms of rRNA genes (ribotyping) for genotypic identification of 53 oral isolates classified as "Streptococcus sanguis" by colony morphology. Isolates were from 8-h buccal plaque on lower first permanent molars of 20 subjects. DNA was digested with AatII and hybridized with digoxygenin-labeled cDNA of Escherichia coli 16S and 23S rRNA. Strains were ribotyped again with AlwNI or PvuII on the basis of the presence or absence of a 2,290-bp AatII band. Band patterns were compared with reference ribotypes for Streptococcus gordonii, Streptococcus sanguis, Streptococcus crista, Streptococcus oralis, Streptococcus mitis, and Streptococcus parasanguis strains. Forty-eight isolates could be assigned to a species (22 S. sanguis, 14 S. oralis, 12 S. gordonii). Multiple species were seen in 14 subjects; multiple strains of the same species occurred in 11 subjects. Our findings suggest that ribotyping can be used for genotypic identification of S. sanguis, S. oralis, and S. gordonii isolates.
Collapse
Affiliation(s)
- J D Rudney
- Department of Oral Science, School of Dentistry, University of Minnesota, Minneapolis 55455
| | | |
Collapse
|
142
|
Rudney JD, Larson CJ. Species identification of oral viridans streptococci by restriction fragment polymorphism analysis of rRNA genes. J Clin Microbiol 1993; 31:2467-73. [PMID: 7691875 PMCID: PMC265779 DOI: 10.1128/jcm.31.9.2467-2473.1993] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Oral streptococci formerly classified as Streptococcus sanguis have been divided into six genetic groups. Methods to identify those species by genotype are needed. This study compared restriction fragment polymorphisms of rRNA genes (ribotypes) for seven S. gordonii, three S. sanguis, four S. oralis, three S. mitis, one S. crista, and seven S. parasanguis strains classified in previous DNA hybridization studies, as well as one clinical isolate. DNA was digested with HindIII, PvuII, HindIII and PvuII combined, EcoRI, BamHI, AatII, AlwNI, and DraII. DNA fragments were hybridized with a digoxigenin-labeled cDNA probe obtained by reverse transcription of Escherichia coli 16S and 23S rRNA. S. oralis, S. mitis, and S. parasanguis all showed an isolated 2,290-bp band in AatII ribotypes that was absent from S. gordonii, S. sanguis, and S. crista. The last three groups showed species-specific bands with AatII and also with PvuII. S. oralis could be distinguished from S. mitis and S. parasanguis in AlwNI and DraII ribotypes. S. mitis and S. parasanguis could not be distinguished, since they shared multiple bands in PvuII, AlwNI, and EcoRI patterns. The clinical isolate in the panel was very similar to S. sanguis by all enzymes used. Our findings suggest that ribotyping may be useful for genotypic identification of oral viridans streptococci. Initial digests of clinical isolates might be made with AatII, followed by PvuII or AlwNI. Isolates then could be identified by comparing ribotype patterns with those of reference strains. This approach could facilitate clinical studies of these newly defined species.
Collapse
Affiliation(s)
- J D Rudney
- Department of Oral Science, School of Dentistry, University of Minnesota, Minneapolis 55455
| | | |
Collapse
|
143
|
Andersen RN, Ganeshkumar N, Kolenbrander PE. Cloning of the Streptococcus gordonii PK488 gene, encoding an adhesin which mediates coaggregation with Actinomyces naeslundii PK606. Infect Immun 1993; 61:981-7. [PMID: 8432618 PMCID: PMC302829 DOI: 10.1128/iai.61.3.981-987.1993] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Coaggregation between Streptococcus gordonii PK488 and Actinomyces naeslundii PK606 is mediated by a 38-kDa streptococcal protein, designated ScaA. The gene, scaA, which encodes this protein has been cloned into Escherichia coli. A genomic S. gordonii PK488 library (in Lambda ZAP II) was screened with anti-S. gordonii immunoglobulin G absorbed with S. gordonii PK1804, an isogenic coaggregation-defective mutant of strain PK488. A positive recombinant phage was isolated, and a phagemid designated pRA1 was obtained which contained a 6.6-kb insert. Expression of scaA from pRA1 and from a subcloned internal 2.1-kb fragment was observed. The absorbed antiserum cross-reacted with a 34.7-kDa protein, SsaB, from S. sanguis 12, also a coaggregation partner of A. naeslundii PK606. Absorbed antiserum to S. gordonii PK488 and antiserum to SsaB both reacted with 38-kDa proteins in supernatants from mildly sonicated preparations from 11 other coaggregation partners of A. naeslundii PK606. Putative adhesin genes were identified in each of these coaggregation partners by Southern analysis of their genomic DNA with the cloned 2.1-kb fragment as a probe. A 30-base oligonucleotide probe based on the sequence of ssaB of S. sanguis 12 hybridized in an identical manner. These data extend the notion that most of the viridans streptococci that coaggregate with actinomyces are capable of expressing ScaA-related proteins.
Collapse
Affiliation(s)
- R N Andersen
- Laboratory of Microbial Ecology, National Institute of Dental Research, Bethesda, Maryland 20892
| | | | | |
Collapse
|
144
|
Scannapieco FA, Haraszthy GG, Cho MI, Levine MJ. Characterization of an amylase-binding component of Streptococcus gordonii G9B. Infect Immun 1992; 60:4726-33. [PMID: 1383157 PMCID: PMC258224 DOI: 10.1128/iai.60.11.4726-4733.1992] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The goal of the present study was to begin characterizing the amylase-binding component(s) on the surface of Streptococcus gordonii G9B. Alkali extracts but not phenol-water extracts of this bacterium inhibited 125I-amylase binding to S. gordonii G9B. To identify the bacterial components involved in amylase binding, the alkali extract was subjected to affinity chromatography on amylase-Sepharose. Immunoblotting with a rabbit antiserum against S. gordonii G9B revealed that a 20-kDa streptococcal component was eluted from the amylase-Sepharose with 1% sodium dodecyl sulfate (SDS), 2 M KSCN, or 0.1 M sodium citrate buffer, pH 4.5. Subsequently, the 20-kDa component was prepared from alkali extracts by electroelution from preparative SDS electrophoresis or by gel filtration chromatography. This component was trypsin sensitive, and an antibody raised against it inhibited the binding of 125I-amylase to S. gordonii G9B. Indirect immunofluorescence microscopy and immunogold electron microscopy demonstrated that both bound amylase and the 20-kDa component were localized to the cell division septum on dividing cells or to polar zones on single cells. In addition, exponentially growing bacteria bound more 125I-amylase than stationary-phase cells did. Collectively, these results suggest that a 20-kDa amylase-binding component is present on the surface of the nascent streptococcal cell wall.
Collapse
Affiliation(s)
- F A Scannapieco
- Department of Oral Biology, School of Dental Medicine, State University of New York, Buffalo 14214
| | | | | | | |
Collapse
|
145
|
Yeung MK. Conservation of an Actinomyces viscosus T14V type 1 fimbrial subunit homolog among divergent groups of Actinomyces spp. Infect Immun 1992; 60:1047-54. [PMID: 1347285 PMCID: PMC257592 DOI: 10.1128/iai.60.3.1047-1054.1992] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type 1 fimbrial subunit gene of the human Actinomyces viscosus T14V was used as a DNA probe in Southern analyses to detect related DNA sequences in 16 of 30 strains of Actinomyces spp. under conditions of high stringency. The organisms with homology to the DNA probe included two human and six nonhuman A. viscosus, three human and three nonhuman A. naeslundii, and two A. bovis isolates. Homologous DNA sequences were not detected in strains of A. odontolyticus and A. israelii examined in this study. Northern (RNA) blot analysis revealed expression of a transcript from each of the A. viscosus and A. naeslundii strains and from one A. bovis strain that was comparable in size to that detected from A. viscosus T14V. Cell surface fimbriae were observed on a majority of the strains that expressed the transcript. Various degrees of cross-immunoreactivities between these strains and antibodies specific for type 1 fimbriae of A. viscosus T14V were also observed by colony immunoassay. Thus, the data clearly demonstrate the existence in, and expression by, divergent Actinomyces groups of genomic sequences that are closely related to the type 1 fimbriae of A. viscosus T14V.
Collapse
Affiliation(s)
- M K Yeung
- Department of Pediatric Dentistry, University of Texas Health Science Center, San Antonio 78284
| |
Collapse
|
146
|
Ganeshkumar N, Hannam PM, Kolenbrander PE, McBride BC. Nucleotide sequence of a gene coding for a saliva-binding protein (SsaB) from Streptococcus sanguis 12 and possible role of the protein in coaggregation with actinomyces. Infect Immun 1991; 59:1093-9. [PMID: 1671775 PMCID: PMC258372 DOI: 10.1128/iai.59.3.1093-1099.1991] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The nucleotide sequence of a 2.9-kb streptococcal DNA fragment which codes for two proteins with MrS of 36,000 (Streptococcus sanguis adhesin B [SsaB]) and 20,000 has been determined. The ssaB gene is 927 bp and codes for a 34,684-Da protein. The open reading frame coding for the 20-kDa protein is 489 bp and codes for a protein of 17,885 Da. The SsaB protein has a putative hydrophobic 19-amino-acid signal sequence resulting in a 32,620-Mr secreted protein, whereas the 20-kDa protein has no signal sequence. Both proteins are hydrophilic, and neither appears to have a hydrophobic membrane anchor sequence in the carboxy-terminal region. A DNA sequence homology of 73% exists between the cloned fragment containing the ssaB gene from S. sanguis 12 and the cloned fragment containing the type 1 fimbrial gene of S. sanguis FW213 (J.C. Fenno, D.J. LeBlanc, and P. Fives-Taylor, Infect. Immun. 57:3527-3533, 1989). Amino acid comparisons of the SsaB and type 1 fimbrial proteins show 87% homology, indicating a close similarity of the two proteins. Antiserum raised against the cloned SsaB protein cross-reacts with a 38-kDa protein identified from Streptococcus gordonii (S. sanguis) PK488 which was proposed to mediate coaggregation with Actinomyces naeslundii PK606 (P.E. Kolenbrander and R.N. Andersen, Infect. Immun. 58:3064-3072, 1990). The SsaB adhesion may play a role in oral colonization by binding either to a receptor on saliva or to a receptor on actinomyces.
Collapse
Affiliation(s)
- N Ganeshkumar
- Laboratory of Microbial Ecology, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
147
|
Kolenbrander PE, Andersen RN, Moore LV. Intrageneric coaggregation among strains of human oral bacteria: potential role in primary colonization of the tooth surface. Appl Environ Microbiol 1990; 56:3890-4. [PMID: 2082831 PMCID: PMC185088 DOI: 10.1128/aem.56.12.3890-3894.1990] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Of the 122 human oral bacterial strains tested from 11 genera, only streptococci and a few actinomyces exhibited coaggregation among the strains within their respective genera. Eight of the ten streptococci showed multiple intrageneric coaggregations, all of which were inhibited by galactosides. The widespread intrageneric coaggregation among the streptococci and the less extensive coaggregation among the actinomyces offers an explanation for their accretion on cleaned tooth surfaces and their dominance as primary colonizers.
Collapse
Affiliation(s)
- P E Kolenbrander
- Laboratory of Microbial Ecology, National Institute of Dental Research, Bethesda, Maryland 20892
| | | | | |
Collapse
|
148
|
Reinholdt J, Tomana M, Mortensen SB, Kilian M. Molecular aspects of immunoglobulin A1 degradation by oral streptococci. Infect Immun 1990; 58:1186-94. [PMID: 2182537 PMCID: PMC258608 DOI: 10.1128/iai.58.5.1186-1194.1990] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Using a panel of 143 strains classified according to a novel taxonomic system for oral viridans-type streptococci, we reexamined the ability of oral streptococci to attack human immunoglobulin A1 (IgA1) molecules with IgA1 protease or glycosidases. IgA1 protease production was an exclusive property of all strains belonging to Streptococcus sanguis and Streptococcus oralis (previously S. mitior) and of some strains of Streptococcus mitis biovar 1. These are all dominant initiators of dental plaque formation. Degradation of the carbohydrate moiety of IgA1 molecules accompanied IgA1 protease activity in S. oralis and protease-producing strains of S. mitis biovar 1. Neuraminidase and beta-galactosidase were identified as extracellular enzymes in organisms of these taxa. By examination with enzyme-neutralizing antisera, four distinct IgA1 proteases were detected in S. sanguis biovars 1 to 3, S. sanguis biovar 4, S. oralis, and strains of S. mitis, respectively. The cleavage of IgA1 molecules by streptococcal IgA proteases was found to be influenced by their state of glycosylation. Treatment of IgA1 with bacterial (including streptococcal) neuraminidase increased susceptibility to protease, suggesting a cooperative activity of streptococcal IgA1 protease and neuraminidase. In contrast, a decrease in susceptibility was observed after extensive deglycosylation of the hinge region with endo-alpha-N acetylgalactosaminidase. The effector functions of IgA antibodies depend on the carbohydrate-containing Fc portion. Hence, the observation that oral streptococci may cleave not only the alpha 1 chains but also the carbohydrate moiety of IgA1 molecules suggests that the ability to evade secretory immune mechanisms may contribute to the successful establishment of these bacteria in the oral cavity.
Collapse
Affiliation(s)
- J Reinholdt
- Department of Oral Biology, Royal Dental College, Aarhus C, Denmark
| | | | | | | |
Collapse
|
149
|
Abstract
This review traces the history of the human, nonhemolytic, or viridans, streptococci and describes improvements in their taxonomy wrought by study of their biochemical profiles and analysis of their nucleic acids. The goal was to define species on the basis of genetic relationships and to describe these species by their phenotypic characteristics so that they can be easily identified. This method has resulted in the division of some species. Streptococcus mutans has been divided into four species, two of which are common in humans. Three more mutans group species are indigenous to animals. Conversely, S. constellatus, S. intermedius, and "S. milleri" have been combined under S. anginosus. S. mitis (or "S. mitior") can be well-defined and includes S. sanguis II. There is genetic heterogeneity within S. sanguis, but the species is usually easy to identify. There is also some heterogeneity in S. bovis, but most human isolates are genetically related. Discussions of the taxonomy of these species are accompanied by descriptions of the characteristics by which these streptococci can be identified. Among these species are potential pathogens which should be suspected in cases of endocarditis and purulent infections of liver, brain, and other tissues.
Collapse
Affiliation(s)
- A L Coykendall
- Department of Oral Diagnosis, School of Dental Medicine, University of Connecticut Health Center, Farmington 06032
| |
Collapse
|