101
|
Wang B, Liang X, Gleason ML, Zhang R, Sun G. Genome sequence of the ectophytic fungus Ramichloridium luteum reveals unique evolutionary adaptations to plant surface niche. BMC Genomics 2017; 18:729. [PMID: 28915794 PMCID: PMC5602860 DOI: 10.1186/s12864-017-4118-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/05/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Ectophytic fungi occupy the waxy plant surface, an extreme environment characterized by prolonged desiccation, nutrient limitation, and exposure to solar radiation. The nature of mechanisms that facilitate adaptation to this environment remains unclear. In this study, we sequenced the complete genome of an ectophytic fungus, Ramichloridium luteum, which colonizes the surface of apple fruit, and carried out comparative genomic and transcriptome analysis. RESULTS The R. luteum genome was 28.18 Mb and encoded 9466 genes containing 1.85% repetitive elements. Compared with cell-penetrating pathogens, genes encoding plant cell wall degrading enzymes (PCWDEs), PTH11-like G protein-coupled receptors (GPCRs) and effectors were drastically reduced. In contrast, genes encoding cutinases and secretory lipases were strikingly expanded, and four of nine secretory lipases were probably acquired by horizontal gene transfer from Basidiomycota. Transcriptomic analysis revealed elevated expression of genes involved in cuticle degradation (cutinase, secretory lipase) and stress responses (melanin biosynthesis, aquaporins, lysozymes and HOG pathway). CONCLUSIONS Taken together, our results highlight genomic features associated with evolution of surface niche adaptation by the ectophytic fungus R. luteum, namely the contraction of PCWDEs, PTH11-like GPCRs and effectors, and the expansion of cuticle degradation and stress tolerance.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100 China
| | - Xiaofei Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100 China
| | - Mark L. Gleason
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011 USA
| | - Rong Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100 China
| | - Guangyu Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100 China
| |
Collapse
|
102
|
|
103
|
Cohrs KC, Schumacher J. The Two Cryptochrome/Photolyase Family Proteins Fulfill Distinct Roles in DNA Photorepair and Regulation of Conidiation in the Gray Mold Fungus Botrytis cinerea. Appl Environ Microbiol 2017; 83:e00812-17. [PMID: 28667107 PMCID: PMC5561282 DOI: 10.1128/aem.00812-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/24/2017] [Indexed: 12/13/2022] Open
Abstract
The plant-pathogenic leotiomycete Botrytis cinerea is known for the strict regulation of its asexual differentiation programs by environmental light conditions. Sclerotia are formed in constant darkness; black/near-UV (NUV) light induces conidiation; and blue light represses both differentiation programs. Sensing of black/NUV light is attributed to proteins of the cryptochrome/photolyase family (CPF). To elucidate the molecular basis of the photoinduction of conidiation, we functionally characterized the two CPF proteins encoded in the genome of B. cinerea as putative positive-acting components. B. cinerea CRY1 (BcCRY1), a cyclobutane pyrimidine dimer (CPD) photolyase, acts as the major enzyme of light-driven DNA repair (photoreactivation) and has no obvious role in signaling. In contrast, BcCRY2, belonging to the cry-DASH proteins, is dispensable for photorepair but performs regulatory functions by repressing conidiation in white and especially black/NUV light. The transcription of bccry1 and bccry2 is induced by light in a White Collar complex (WCC)-dependent manner, but neither light nor the WCC is essential for the repression of conidiation through BcCRY2 when bccry2 is constitutively expressed. Further, BcCRY2 affects the transcript levels of both WCC-induced and WCC-repressed genes, suggesting a signaling function downstream of the WCC. Since both CPF proteins are dispensable for photoinduction by black/NUV light, the origin of this effect remains elusive and may be connected to a yet unknown UV-light-responsive system.IMPORTANCEBotrytis cinerea is an economically important plant pathogen that causes gray mold diseases in a wide variety of plant species, including high-value crops and ornamental flowers. The spread of disease in the field relies on the formation of conidia, a process that is regulated by different light qualities. While this feature has been known for a long time, we are just starting to understand the underlying molecular mechanisms. Conidiation in B. cinerea is induced by black/near-UV light, whose sensing is attributed to the action of cryptochrome/photolyase family (CPF) proteins. Here we report on the distinct functions of two CPF proteins in the photoresponse of B. cinerea While BcCRY1 acts as the major photolyase in photoprotection, BcCRY2 acts as a cryptochrome with a signaling function in regulating photomorphogenesis (repression of conidiation).
Collapse
Affiliation(s)
- Kim C Cohrs
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität (WWU), Münster, Germany
| | - Julia Schumacher
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität (WWU), Münster, Germany
| |
Collapse
|
104
|
Niehaus EM, Schumacher J, Burkhardt I, Rabe P, Spitzer E, Münsterkötter M, Güldener U, Sieber CMK, Dickschat JS, Tudzynski B. The GATA-Type Transcription Factor Csm1 Regulates Conidiation and Secondary Metabolism in Fusarium fujikuroi. Front Microbiol 2017; 8:1175. [PMID: 28694801 PMCID: PMC5483468 DOI: 10.3389/fmicb.2017.01175] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/08/2017] [Indexed: 11/13/2022] Open
Abstract
GATA-type transcription factors (TFs) such as the nitrogen regulators AreA and AreB, or the light-responsive TFs WC-1 and WC-2, play global roles in fungal growth and development. The conserved GATA TF NsdD is known as an activator of sexual development and key repressor of conidiation in Aspergillus nidulans, and as light-regulated repressor of macroconidia formation in Botrytis cinerea. In the present study, we functionally characterized the NsdD ortholog in Fusarium fujikuroi, named Csm1. Deletion of this gene resulted in elevated microconidia formation in the wild-type (WT) and restoration of conidiation in the non-sporulating velvet mutant Δvel1 demonstrating that Csm1 also plays a role as repressor of conidiation in F. fujikuroi. Furthermore, biosynthesis of the PKS-derived red pigments, bikaverin and fusarubins, is de-regulated under otherwise repressing conditions. Cross-species complementation of the Δcsm1 mutant with the B. cinerea ortholog LTF1 led to full restoration of WT-like growth, conidiation and pigment formation. In contrast, the F. fujikuroi CSM1 rescued only the defects in growth, the tolerance to H2O2 and virulence, but did not restore the light-dependent differentiation when expressed in the B. cinerea Δltf1 mutant. Microarray analysis comparing the expression profiles of the F. fujikuroi WT and the Δcsm1 mutant under different nitrogen conditions revealed a strong impact of this GATA TF on 19 of the 47 gene clusters in the genome of F. fujikuroi. One of the up-regulated silent gene clusters is the one containing the sesquiterpene cyclase-encoding key gene STC1. Heterologous expression of STC1 in Escherichia coli enabled us to identify the product as the volatile bioactive compound (-)-germacrene D.
Collapse
Affiliation(s)
- Eva-Maria Niehaus
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität MünsterMünster, Germany
| | - Julia Schumacher
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität MünsterMünster, Germany
| | - Immo Burkhardt
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität BonnBonn, Germany
| | - Patrick Rabe
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität BonnBonn, Germany
| | - Eduard Spitzer
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität MünsterMünster, Germany
| | - Martin Münsterkötter
- Institute of Bioinformatics and Systems Biology, German Research Center for Environmental Health (GmbH), Helmholtz Zentrum MünchenNeuherberg, Germany
| | - Ulrich Güldener
- Department of Genome-Oriented Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität MünchenFreising, Germany
| | | | - Jeroen S Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität BonnBonn, Germany
| | - Bettina Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität MünsterMünster, Germany
| |
Collapse
|
105
|
Zhang P, Wang X, Fan A, Zheng Y, Liu X, Wang S, Zou H, Oakley BR, Keller NP, Yin WB. A cryptic pigment biosynthetic pathway uncovered by heterologous expression is essential for conidial development inPestalotiopsis fici. Mol Microbiol 2017; 105:469-483. [DOI: 10.1111/mmi.13711] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Mycology; Institute of Microbiology, Chinese Academy of Sciences; Beijing People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences; Beijing People's Republic of China
| | - Xiuna Wang
- State Key Laboratory of Mycology; Institute of Microbiology, Chinese Academy of Sciences; Beijing People's Republic of China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences; Fujian Agriculture and Forestry University; Fuzhou People's Republic of China
| | - Aili Fan
- State Key Laboratory of Mycology; Institute of Microbiology, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Yanjing Zheng
- Zhejiang Provincial (Wenzhou) Key Lab for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science; Wenzhou University; Wenzhou People's Republic of China
| | - Xingzhong Liu
- State Key Laboratory of Mycology; Institute of Microbiology, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences; Fujian Agriculture and Forestry University; Fuzhou People's Republic of China
| | - Huixi Zou
- Zhejiang Provincial (Wenzhou) Key Lab for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science; Wenzhou University; Wenzhou People's Republic of China
| | - Berl R. Oakley
- Department of Molecular Biosciences; University of Kansas; Lawrence KS USA
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology; University of Wisconsin-Madison; Madison Wisconsin, WI USA
| | - Wen-Bing Yin
- State Key Laboratory of Mycology; Institute of Microbiology, Chinese Academy of Sciences; Beijing People's Republic of China
- College of Life Science, University of Chinese Academy of Sciences; Beijing People's Republic of China
| |
Collapse
|
106
|
Abstract
The eukaryotic microbes called oomycetes include many important saprophytes and pathogens, with the latter exhibiting necrotrophy, biotrophy, or obligate biotrophy. Understanding oomycete metabolism is fundamental to understanding these lifestyles. Genome mining and biochemical studies have shown that oomycetes, which belong to the kingdom Stramenopila, secrete suites of carbohydrate- and protein-degrading enzymes adapted to their environmental niches and produce unusual lipids and energy storage compounds. Despite having limited secondary metabolism, many oomycetes make chemicals for communicating within their species or with their hosts. Horizontal and endosymbiotic gene transfer events have diversified oomycete metabolism, resulting in biochemical pathways that often depart from standard textbook descriptions by amalgamating enzymes from multiple sources. Gene fusions and duplications have further shaped the composition and expression of the enzymes. Current research is helping us learn how oomycetes interact with host and environment, understand eukaryotic diversity and evolution, and identify targets for drugs and crop protection chemicals.
Collapse
Affiliation(s)
- Howard S Judelson
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521;
| |
Collapse
|
107
|
Regulation of conidiation in Botrytis cinerea involves the light-responsive transcriptional regulators BcLTF3 and BcREG1. Curr Genet 2017; 63:931-949. [PMID: 28382431 DOI: 10.1007/s00294-017-0692-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 01/25/2023]
Abstract
Botrytis cinerea is a plant pathogenic fungus with a broad host range. Due to its rapid growth and reproduction by asexual spores (conidia), which increases the inoculum pressure, the fungus is a serious problem in different fields of agriculture. The formation of the conidia is promoted by light, whereas the formation of sclerotia as survival structures occurs in its absence. Based on this observation, putative transcription factors (TFs) whose expression is induced upon light exposure have been considered as candidates for activating conidiation and/or repressing sclerotial development. Previous studies reported on the identification of six light-responsive TFs (LTFs), and two of them have been confirmed as crucial developmental regulators: BcLTF2 is the positive regulator of conidiation, whose expression is negatively regulated by BcLTF1. Here, the functional characterization of the four remaining LTFs is reported. BcLTF3 has a dual function, as it represses conidiophore development by repressing bcltf2 in light and darkness, and is moreover essential for conidiogenesis. In bcltf3 deletion mutants conidium initials grow out to hyphae, which develop secondary conidiophores. In contrast, no obvious functions could be assigned to BcLTF4, BcLTF5 and BcLTF6 in these experiments. BcREG1, previously reported to be required for virulence and conidiogenesis, has been re-identified as light-responsive transcriptional regulator. Studies with bcreg1 overexpression strains indicated that BcREG1 differentially affects conidiation by acting as a repressor of BcLTF2-induced conidiation in the light and as an activator of a BcLTF2-independent conidiation program in the dark.
Collapse
|
108
|
Cohrs KC, Burbank J, Schumacher J. A new transformant selection system for the gray mold fungus Botrytis cinerea based on the expression of fenhexamid-insensitive ERG27 variants. Fungal Genet Biol 2017; 100:42-51. [PMID: 28188884 DOI: 10.1016/j.fgb.2017.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 11/19/2022]
Abstract
The gray mold fungus Botrytis cinerea features a wide host range and causes severe economic losses, making it an important object for molecular research. Thus far, genetic modification of the fungus mainly is relied on two selection systems (nourseothricin and hygromycin), while other selection systems hold significant disadvantages. To broaden the spectrum of available molecular tools, a new selection system based on the cheap and widely used fungicide fenhexamid (hydroxyanilide group) was established. Fenhexamid specifically targets the 3-ketoreductase ERG27 from the ergosterol biosynthesis pathway. We generated a set of expression vectors suitable for deletion or expression of genes of interest (GOIs) in B. cinerea based on fenhexamid-insensitive ERG27 variants. Expression of BcERG27F412I and Fusarium fujikuroi ERG27 in the sensitive B. cinerea strain B05.10 causes resistance towards fenhexamid (fenR) and allows for the selection of transformants and their genetic purification. A modified split-marker approach facilitates the site-specific integration and expression of GOIs at the bcerg27 locus. No undesired secondary phenotypes regarding virulence, stress responses, the formation of reproductive structures or conidial germination were observed in strains expressing fenhexamid-insensitive ERG27 variants. Thus, the fenR system represents a third reliable selection system for genetic modifications of fenhexamid-sensitive B. cinerea strains.
Collapse
Affiliation(s)
- Kim Christopher Cohrs
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48153 Münster, Germany
| | - Joachim Burbank
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48153 Münster, Germany
| | - Julia Schumacher
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48153 Münster, Germany.
| |
Collapse
|
109
|
Feng HQ, Li GH, Du SW, Yang S, Li XQ, de Figueiredo P, Qin QM. The septin protein Sep4 facilitates host infection by plant fungal pathogens via mediating initiation of infection structure formation. Environ Microbiol 2017; 19:1730-1749. [PMID: 27878927 DOI: 10.1111/1462-2920.13613] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/17/2016] [Accepted: 11/16/2016] [Indexed: 11/26/2022]
Abstract
Many phytopathogenic fungi use infection structures (IFSs, i.e., appressoria and infection cushions) to penetrate host cuticles. However, the conserved mechanisms that mediate initiation of IFS formation in divergent pathogens upon sensing the presence of host plants remain obscure. Here, we demonstrate that a conserved septin gene SEP4 plays crucial roles in this process. Disruption of SEP4 in the plant grey mould fungus Botrytis cinerea completely blocked IFS formation and abolished the virulence of ΔBcsep4 mutants on unwounded hosts. During IFS formation, mutants lacking SEP4 could produce reactive oxygen species (ROS) normally. Inhibition of ROS production in strains harbouring the SEP4 gene resulted in disordered assembly of Sep4 and the subsequent failure to form infection cushions, suggesting that proper Sep4 assembly regulated by ROS is required for initiation of IFS formation and infection. Moreover, loss of SEP4 severely impaired mutant conidiation, melanin and chitin accumulation in hyphal tips and lesion expansion on wounded hosts, but significantly promoted germ tube elongation and sclerotium production. SEP4-mediated fungal pathogenic development, including IFS formation, was validated in the hemibiotroph Magnaporthe oryzae. Our findings indicate that Sep4 plays pleiotropic roles in B. cinerea development and specifically facilities host infection by mediating initiation of IFS formation in divergent plant fungal pathogens in response to ROS signaling.
Collapse
Affiliation(s)
- Hui-Qiang Feng
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Gui-Hua Li
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Shun-Wen Du
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Song Yang
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Xue-Qian Li
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Paul de Figueiredo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX, 77843, USA.,Norman Borlaug Center, Texas A&M University, College Station, TX, 77843, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Qing-Ming Qin
- College of Plant Sciences, Jilin University, Changchun, 130062, China.,Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, 130062, China
| |
Collapse
|
110
|
Pigné S, Zykwinska A, Janod E, Cuenot S, Kerkoud M, Raulo R, Bataillé-Simoneau N, Marchi M, Kwasiborski A, N'Guyen G, Mabilleau G, Simoneau P, Guillemette T. A flavoprotein supports cell wall properties in the necrotrophic fungus Alternaria brassicicola. Fungal Biol Biotechnol 2017; 4:1. [PMID: 28955470 PMCID: PMC5611651 DOI: 10.1186/s40694-016-0029-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Flavin-dependent monooxygenases are involved in key biological processes as they catalyze a wide variety of chemo-, regio- and enantioselective oxygenation reactions. Flavoprotein monooxygenases are frequently encountered in micro-organisms, most of which require further functional and biocatalytic assessment. Here we investigated the function of the AbMak1 gene, which encodes a group A flavin monooxygenase in the plant pathogenic fungus Alternaria brassicicola, by generating a deficient mutant and examining its phenotype. RESULTS Functional analysis indicates that the AbMak1 protein is involved in cell wall biogenesis and influences the melanization process. We documented a significant decrease in melanin content in the Δabmak1 strain compared to the wild-type and complemented strains. We investigated the cell wall morphology and physical properties in the wild-type and transformants using electron and atomic force microscopy. These approaches confirmed the aberrant morphology of the conidial wall structure in the Δabmak1 strain which had an impact on hydrophilic adhesion and conidial surface stiffness. However, there was no significant impairment in growth, conidia formation, pathogenicity or susceptibility to various environmental stresses in the Δabmak1 strain. CONCLUSION This study sheds new light on the function of a fungal flavin-dependent monooxygenase, which plays an important role in melanization.
Collapse
Affiliation(s)
- Sandrine Pigné
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France
| | - Agata Zykwinska
- UMR 6502, Institut des Matériaux Jean Rouxel, 2, Rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3, France.,Present Address: Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies, IFREMER, Rue de l'île d'Yeu, BP 21105, 44311 Nantes Cedex 3, France
| | - Etienne Janod
- UMR 6502, Institut des Matériaux Jean Rouxel, 2, Rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3, France
| | - Stéphane Cuenot
- UMR 6502, Institut des Matériaux Jean Rouxel, 2, Rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3, France
| | - Mohammed Kerkoud
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France
| | - Roxane Raulo
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France
| | | | - Muriel Marchi
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France
| | - Anthony Kwasiborski
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France
| | - Guillaume N'Guyen
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France
| | - Guillaume Mabilleau
- Plateforme SCIAM, Institut de Biologie en Santé, CHU, Université d'Angers, 4, Rue Larrey, 49933 Angers Cedex, France
| | - Philippe Simoneau
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France
| | - Thomas Guillemette
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France
| |
Collapse
|
111
|
Fan R, Klosterman SJ, Wang C, Subbarao KV, Xu X, Shang W, Hu X. Vayg1 is required for microsclerotium formation and melanin production in Verticillium dahliae. Fungal Genet Biol 2017; 98:1-11. [DOI: 10.1016/j.fgb.2016.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 10/11/2016] [Accepted: 11/16/2016] [Indexed: 11/24/2022]
|
112
|
Porquier A, Morgant G, Moraga J, Dalmais B, Luyten I, Simon A, Pradier JM, Amselem J, Collado IG, Viaud M. The botrydial biosynthetic gene cluster of Botrytis cinerea displays a bipartite genomic structure and is positively regulated by the putative Zn(II)2Cys6 transcription factor BcBot6. Fungal Genet Biol 2016; 96:33-46. [DOI: 10.1016/j.fgb.2016.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/30/2016] [Accepted: 10/05/2016] [Indexed: 11/16/2022]
|
113
|
Cohrs KC, Simon A, Viaud M, Schumacher J. Light governs asexual differentiation in the grey mould fungus Botrytis cinerea via the putative transcription factor BcLTF2. Environ Microbiol 2016; 18:4068-4086. [PMID: 27347834 DOI: 10.1111/1462-2920.13431] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/27/2016] [Accepted: 06/21/2016] [Indexed: 11/26/2022]
Abstract
Botrytis cinerea is a plant pathogenic fungus known for its utilization of light as environmental cue to regulate asexual differentiation: conidia are formed in the light, while sclerotia are formed in the dark. As no orthologues of known regulators of conidiation (e.g., Aspergillus nidulans BrlA, Neurospora crassa FL) exist in the Leotiomycetes, we initiated a de novo approach to identify the functional counterpart in B. cinerea. The search revealed the light-responsive C2H2 transcription factor BcLTF2 whose expression - usually restricted to light conditions - is necessary and sufficient to induce conidiation and simultaneously to suppress sclerotial development. Light-induced expression of bcltf2 is mediated via a so far unknown pathway, and is attenuated in a (blue) light-dependent fashion by the White Collar complex, BcLTF1 and the VELVET complex. Mutation of either component leads to increased bcltf2 expression and causes light-independent conidiation (always conidia phenotype). Hence, the tight regulation of bcltf2 governs the balance between vegetative growth that allows for the colonization of the substrate and subsequent reproduction via conidia in the light. The orthologue ssltf2 in the closely related species Sclerotinia sclerotiorum is not significantly expressed suggesting that its deregulation may cause the lack of the conidiation program in this fungus.
Collapse
Affiliation(s)
- Kim C Cohrs
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität (WWU) Münster, Schlossplatz 8, Münster, 48143, Germany
| | - Adeline Simon
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, 78850, France
| | - Muriel Viaud
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, 78850, France
| | - Julia Schumacher
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität (WWU) Münster, Schlossplatz 8, Münster, 48143, Germany
| |
Collapse
|
114
|
Qi X, Su X, Guo H, Qi J, Cheng H. VdThit, a Thiamine Transport Protein, Is Required for Pathogenicity of the Vascular Pathogen Verticillium dahliae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:545-559. [PMID: 27089469 DOI: 10.1094/mpmi-03-16-0057-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Verticillium dahliae causes a serious wilt disease of important crops and is difficult to control. Few plasma-membrane transport proteins for nutrient acquisition have been identified for this fungus, and their involvement in the disease process is unknown. Here, a plasma-membrane protein, the V. dahliae thiamine transporter protein VdThit, was characterized functionally by deletion of the VdThit gene in V. dahliae. Disruption strains were viable, but growth and conidial germination and production were reduced and virulence was impaired. Interestingly, by supplementing exogenous thiamine, growth, conidiation, and virulence of the VdΔThit mutants were partially restored. Stress-tolerance assays showed that the VdΔThit mutant strains were markedly more susceptible to oxidative stress and UV damage. High-pressure liquid chromatography-mass spectrometry (HPLC-MS) and gas chromatography-mass spectrometry (GC-MS) analyses showed low levels of pyruvate metabolism intermediates acetoin and acetyl coenzyme A (acetyl-CoA) in the VdΔThit mutant strains, suggesting that pyruvate metabolism was suppressed. Expression analysis of VdThit confirmed the importance of VdThit in vegetative growth, reproduction, and invasive hyphal growth. Furthermore, a green fluorescent protein (GFP)-labeled VdΔThit mutant (VdΔThit-7-GFP) was suppressed in initial infection and root colonization, as viewed with light microscopy. Together, these results showed that VdThit plays an indispensable role in the pathogenicity of V. dahliae.
Collapse
Affiliation(s)
- Xiliang Qi
- 1 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; and
- 2 Agriculture College of Shihezi University, Shihezi 832000, China
| | - Xiaofeng Su
- 1 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; and
| | - Huiming Guo
- 1 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; and
| | - Juncang Qi
- 2 Agriculture College of Shihezi University, Shihezi 832000, China
| | - Hongmei Cheng
- 1 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; and
| |
Collapse
|
115
|
Belmondo S, Marschall R, Tudzynski P, López Ráez JA, Artuso E, Prandi C, Lanfranco L. Identification of genes involved in fungal responses to strigolactones using mutants from fungal pathogens. Curr Genet 2016; 63:201-213. [DOI: 10.1007/s00294-016-0626-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 11/30/2022]
|
116
|
Marschall R, Tudzynski P. BcIqg1, a fungal IQGAP homolog, interacts with NADPH oxidase, MAP kinase and calcium signaling proteins and regulates virulence and development inBotrytis cinerea. Mol Microbiol 2016; 101:281-98. [DOI: 10.1111/mmi.13391] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Robert Marschall
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms Universität; Schlossplatz 8 D-48143 Münster Germany
| | - Paul Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms Universität; Schlossplatz 8 D-48143 Münster Germany
| |
Collapse
|
117
|
Marschall R, Tudzynski P. Reactive oxygen species in development and infection processes. Semin Cell Dev Biol 2016; 57:138-146. [PMID: 27039026 DOI: 10.1016/j.semcdb.2016.03.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/29/2016] [Accepted: 03/29/2016] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species (ROS) are important signaling molecules that affect vegetative and pathogenic processes in pathogenic fungi. There is growing evidence that ROS are not only secreted during the interaction of host and pathogen but also involved in tightly controlled intracellular processes. The major ROS producing enzymes are NADPH oxidases (Nox). Recent investigations in fungi revealed that Nox-activity is responsible for the formation of infection structures, cytoskeleton architecture as well as interhyphal communication. However, information about the localization and site of action of the Nox complexes in fungi is limited and signaling pathways and intracellular processes affected by ROS have not been fully elucidated. This review focuses on the role of ROS as signaling molecules in fungal "model" organisms: it examines the role of ROS in vegetative and pathogenic processes and gives special attention to Nox complexes and their function as important signaling hubs.
Collapse
Affiliation(s)
- Robert Marschall
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms Universität, Schlossplatz 8, D-48143 Münster, Germany
| | - Paul Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms Universität, Schlossplatz 8, D-48143 Münster, Germany.
| |
Collapse
|
118
|
Studt L, Janevska S, Niehaus EM, Burkhardt I, Arndt B, Sieber CMK, Humpf HU, Dickschat JS, Tudzynski B. Two separate key enzymes and two pathway-specific transcription factors are involved in fusaric acid biosynthesis in Fusarium fujikuroi. Environ Microbiol 2016; 18:936-56. [PMID: 26662839 DOI: 10.1111/1462-2920.13150] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 01/03/2023]
Abstract
Fusaric acid (FSA) is a mycotoxin produced by several fusaria, including the rice pathogen Fusarium fujikuroi. Genes involved in FSA biosynthesis were previously identified as a cluster containing a polyketide synthase (PKS)-encoding (FUB1) and four additional genes (FUB2-FUB5). However, the biosynthetic steps leading to FSA as well as the origin of the nitrogen atom, which is incorporated into the polyketide backbone, remained unknown. In this study, seven additional cluster genes (FUB6-FUB12) were identified via manipulation of the global regulator FfSge1. The extended FUB gene cluster encodes two Zn(II)2 Cys6 transcription factors: Fub10 positively regulates expression of all FUB genes, whereas Fub12 is involved in the formation of the two FSA derivatives, i.e. dehydrofusaric acid and fusarinolic acid, serving as a detoxification mechanism. The major facilitator superfamily transporter Fub11 functions in the export of FSA out of the cell and is essential when FSA levels become critical. Next to Fub1, a second key enzyme was identified, the non-canonical non-ribosomal peptide synthetase Fub8. Chemical analyses of generated mutant strains allowed for the identification of a triketide as PKS product and the proposition of an FSA biosynthetic pathway, thereby unravelling the unique formation of a hybrid metabolite consisting of this triketide and an amino acid moiety.
Collapse
Affiliation(s)
- Lena Studt
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University, Schlossplatz 8, 48143, Münster, Germany
| | - Slavica Janevska
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University, Schlossplatz 8, 48143, Münster, Germany
| | - Eva-Maria Niehaus
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University, Schlossplatz 8, 48143, Münster, Germany
| | - Immo Burkhardt
- Kekulé Institute for Organic Chemistry and Biochemistry, Rheinische Friedrich-Wilhelms-University Bonn, 53121, Bonn, Germany
| | - Birgit Arndt
- Institute of Food Chemistry, Westfälische Wilhelms-University, Corrensstr. 45, 48149, Münster, Germany
| | - Christian M K Sieber
- Lawrence Berkeley National Lab, DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-University, Corrensstr. 45, 48149, Münster, Germany
| | - Jeroen S Dickschat
- Kekulé Institute for Organic Chemistry and Biochemistry, Rheinische Friedrich-Wilhelms-University Bonn, 53121, Bonn, Germany
| | - Bettina Tudzynski
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University, Schlossplatz 8, 48143, Münster, Germany
| |
Collapse
|