101
|
Borghi M, Fernie AR, Schiestl FP, Bouwmeester HJ. The Sexual Advantage of Looking, Smelling, and Tasting Good: The Metabolic Network that Produces Signals for Pollinators. TRENDS IN PLANT SCIENCE 2017; 22:338-350. [PMID: 28111171 DOI: 10.1016/j.tplants.2016.12.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/10/2016] [Accepted: 12/21/2016] [Indexed: 05/08/2023]
Abstract
A striking feature of the angiosperms that use animals as pollen carriers to sexually reproduce is the great diversity of their flowers with regard to morphology and traits such as color, odor, and nectar. These traits are underpinned by the synthesis of secondary metabolites such as pigments and volatiles, as well as carbohydrates and amino acids, which are used by plants to lure and reward animal pollinators. We review here the knowledge of the metabolic network that supports the biosynthesis of these compounds and the behavioral responses that these molecules elicit in the animal pollinators. Such knowledge provides us with a deeper insight into the ecology and evolution of plant-pollinator interactions, and should help us to better manage these ecologically essential interactions in agricultural ecosystems.
Collapse
Affiliation(s)
- Monica Borghi
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam-Golm, Germany
| | - Florian P Schiestl
- Department of Systematic and Evolutionary Botany, University of Zürich, Zollikerstrasse 107, 8008 Zürich
| | - Harro J Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Present address: Plant Hormone Biology group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
102
|
Cao H, Wang L, Nawaz MA, Niu M, Sun J, Xie J, Kong Q, Huang Y, Cheng F, Bie Z. Ectopic Expression of Pumpkin NAC Transcription Factor CmNAC1 Improves Multiple Abiotic Stress Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:2052. [PMID: 29234347 PMCID: PMC5712414 DOI: 10.3389/fpls.2017.02052] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/16/2017] [Indexed: 05/03/2023]
Abstract
Drought, cold and salinity are the major environmental stresses that limit agricultural productivity. NAC transcription factors regulate the stress response in plants. Pumpkin (Cucurbita moschata) is an important cucurbit vegetable crop and it has strong resistance to abiotic stress; however, the biological functions of stress-related NAC genes in this crop are largely unknown. This study reports the function of CmNAC1, a stress-responsive pumpkin NAC domain protein. The CmNAC1-GFP fusion protein was transiently expressed in tobacco leaves for subcellular localization analysis, and we found that CmNAC1 is localized in the nucleus. Transactivation assay in yeast cells revealed that CmNAC1 functions as a transcription activator, and its transactivation domain is located in the C-terminus. CmNAC1 was ubiquitously expressed in different organs, and its transcript was induced by salinity, cold, dehydration, H2O2, and abscisic acid (ABA) treatment. Furthermore, the ectopic expression (EE) of CmNAC1 in Arabidopsis led to ABA hypersensitivity and enhanced tolerance to salinity, drought and cold stress. In addition, five ABA-responsive elements were enriched in CmNAC1 promoter. The CmNAC1-EE plants exhibited different root architecture, leaf morphology, and significantly high concentration of ABA compared with WT Arabidopsis under normal conditions. Our results indicated that CmNAC1 is a critical factor in ABA signaling pathways and it can be utilized in transgenic breeding to improve the abiotic stress tolerance of crops.
Collapse
|
103
|
Zhou X, Li J, Zhu Y, Ni S, Chen J, Feng X, Zhang Y, Li S, Zhu H, Wen Y. De novo Assembly of the Camellia nitidissima Transcriptome Reveals Key Genes of Flower Pigment Biosynthesis. FRONTIERS IN PLANT SCIENCE 2017; 8:1545. [PMID: 28936220 PMCID: PMC5594225 DOI: 10.3389/fpls.2017.01545] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/23/2017] [Indexed: 05/20/2023]
Abstract
The golden camellia, Camellia nitidissima Chi., is a well-known ornamental plant that is known as "the queen of camellias" because of its golden yellow flowers. The principal pigments in the flowers are carotenoids and flavonol glycosides. Understanding the biosynthesis of the golden color and its regulation is important in camellia breeding. To obtain a comprehensive understanding of flower development in C. nitidissima, a number of cDNA libraries were independently constructed during flower development. Using the Illumina Hiseq2500 platform, approximately 71.8 million raw reads (about 10.8 gigabase pairs) were obtained and assembled into 583,194 transcripts and 466, 594 unigenes. A differentially expressed genes (DEGs) and co-expression network was constructed to identify unigenes correlated with flower color. The analysis of DEGs and co-expressed network involved in the carotenoid pathway indicated that the biosynthesis of carotenoids is regulated mainly at the transcript level and that phytoene synthase (PSY), β -carotene 3-hydroxylase (CrtZ), and capsanthin synthase (CCS1) exert synergistic effects in carotenoid biosynthesis. The analysis of DEGs and co-expressed network involved in the flavonoid pathway indicated that chalcone synthase (CHS), naringenin 3-dioxygenase (F3H), leucoanthocyanidin dioxygenase(ANS), and flavonol synthase (FLS) play critical roles in regulating the formation of flavonols and anthocyanidin. Based on the gene expression analysis of the carotenoid and flavonoid pathways, and determinations of the pigments, we speculate that the high expression of PSY and CrtZ ensures the production of adequate levels of carotenoids, while the expression of CHS, FLS ensures the production of flavonols. The golden yellow color is then the result of the accumulation of carotenoids and flavonol glucosides in the petals. This study of the mechanism of color formation in golden camellia points the way to breeding strategies that exploit gene technology approaches to increase the content of carotenoids and flavonol glucosides and to decrease anthocyanidin synthesis.
Collapse
Affiliation(s)
- Xingwen Zhou
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi UniversityNanning, China
- College of Biology and Pharmacy, Yulin Normal UniversityYulin, China
- *Correspondence: Xingwen Zhou
| | - Jiyuan Li
- Research Institute of Subtropical Forestry, Chinese Academy of ForestryFuyang, China
| | - Yulin Zhu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi UniversityNanning, China
- College of Biology and Pharmacy, Yulin Normal UniversityYulin, China
| | - Sui Ni
- College of Marine Sciences, Ningbo UniversityNingbo, China
| | - Jinling Chen
- College of Biology and Pharmacy, Yulin Normal UniversityYulin, China
| | - Xiaojuan Feng
- College of Biology and Pharmacy, Yulin Normal UniversityYulin, China
| | - Yunfeng Zhang
- College of Biology and Pharmacy, Yulin Normal UniversityYulin, China
| | - Shuangquan Li
- College of Biology and Pharmacy, Yulin Normal UniversityYulin, China
| | - Hongguang Zhu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi UniversityNanning, China
| | - Yuanguang Wen
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi UniversityNanning, China
- Yuanguang Wen
| |
Collapse
|
104
|
Ahrazem O, Gómez-Gómez L, Rodrigo MJ, Avalos J, Limón MC. Carotenoid Cleavage Oxygenases from Microbes and Photosynthetic Organisms: Features and Functions. Int J Mol Sci 2016; 17:E1781. [PMID: 27792173 PMCID: PMC5133782 DOI: 10.3390/ijms17111781] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 11/17/2022] Open
Abstract
Apocarotenoids are carotenoid-derived compounds widespread in all major taxonomic groups, where they play important roles in different physiological processes. In addition, apocarotenoids include compounds with high economic value in food and cosmetics industries. Apocarotenoid biosynthesis starts with the action of carotenoid cleavage dioxygenases (CCDs), a family of non-heme iron enzymes that catalyze the oxidative cleavage of carbon-carbon double bonds in carotenoid backbones through a similar molecular mechanism, generating aldehyde or ketone groups in the cleaving ends. From the identification of the first CCD enzyme in plants, an increasing number of CCDs have been identified in many other species, including microorganisms, proving to be a ubiquitously distributed and evolutionarily conserved enzymatic family. This review focuses on CCDs from plants, algae, fungi, and bacteria, describing recent progress in their functions and regulatory mechanisms in relation to the different roles played by the apocarotenoids in these organisms.
Collapse
Affiliation(s)
- Oussama Ahrazem
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Facultad de Farmacia, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| | - María J Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Departamento de Ciencia de los Alimentos, Calle Catedrático Agustín Escardino 7, 46980 Paterna, Spain.
| | - Javier Avalos
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Sevilla, Spain.
| | - María Carmen Limón
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Sevilla, Spain.
| |
Collapse
|
105
|
Ellis TJ, Field DL. Repeated gains in yellow and anthocyanin pigmentation in flower colour transitions in the Antirrhineae. ANNALS OF BOTANY 2016; 117:1133-40. [PMID: 27192708 PMCID: PMC4904171 DOI: 10.1093/aob/mcw043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/04/2016] [Accepted: 02/11/2016] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS Angiosperms display remarkable diversity in flower colour, implying that transitions between pigmentation phenotypes must have been common. Despite progress in understanding transitions between anthocyanin (blue, purple, pink or red) and unpigmented (white) flowers, little is known about the evolutionary patterns of flower-colour transitions in lineages with both yellow and anthocyanin-pigmented flowers. This study investigates the relative rates of evolutionary transitions between different combinations of yellow- and anthocyanin-pigmentation phenotypes in the tribe Antirrhineae. METHODS We surveyed taxonomic literature for data on anthocyanin and yellow floral pigmentation for 369 species across the tribe. We then reconstructed the phylogeny of 169 taxa and used phylogenetic comparative methods to estimate transition rates among pigmentation phenotypes across the phylogeny. KEY RESULTS In contrast to previous studies we found a bias towards transitions involving a gain in pigmentation, although transitions to phenotypes with both anthocyanin and yellow taxa are nevertheless extremely rare. Despite the dominance of yellow and anthocyanin-pigmented taxa, transitions between these phenotypes are constrained to move through a white intermediate stage, whereas transitions to double-pigmentation are very rare. The most abundant transitions are between anthocyanin-pigmented and unpigmented flowers, and similarly the most abundant polymorphic taxa were those with anthocyanin-pigmented and unpigmented flowers. CONCLUSIONS Our findings show that pigment evolution is limited by the presence of other floral pigments. This interaction between anthocyanin and yellow pigments constrains the breadth of potential floral diversity observed in nature. In particular, they suggest that selection has repeatedly acted to promote the spread of single-pigmented phenotypes across the Antirrhineae phylogeny. Furthermore, the correlation between transition rates and polymorphism suggests that the forces causing and maintaining variance in the short term reflect evolutionary processes on longer time scales.
Collapse
Affiliation(s)
- Tom J Ellis
- IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria Evolutionary Biology Centre, Norbyvägen 18D, Uppsala University, 75236 Uppsala, Sweden
| | - David L Field
- IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
106
|
Ng J, Smith SD. How to make a red flower: the combinatorial effect of pigments. AOB PLANTS 2016; 8:plw013. [PMID: 26933150 PMCID: PMC4804202 DOI: 10.1093/aobpla/plw013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/13/2016] [Indexed: 05/21/2023]
Abstract
Red flowers have evolved repeatedly across angiosperms and are frequently examined in an ecological context. However, less is known about the biochemical basis of red colouration in different taxa. In this study, we examine the spectral properties, anthocyanin composition and carotenoid expression of red flowers in the tomato family, Solanaceae, which have evolved independently multiple times across the group. Our study demonstrates that Solanaceae typically make red flowers either by the sole production of red anthocyanins or, more commonly, by the dual production of purple or blue anthocyanins and orange carotenoids. In using carotenoids to modify the effect of purple and/or blue anthocyanins, these Solanaceae species have converged on the same floral hue as those solely producing red anthocyanins, even when considering the visual system of pollinators. The use of blue anthocyanins in red flowers appears to differ from other groups, and suggests that the genetic changes underlying evolutionary shifts to red flowers may not be as predictable as previously suggested.
Collapse
Affiliation(s)
- Julienne Ng
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
107
|
Mushtaq MA, Pan Q, Chen D, Zhang Q, Ge X, Li Z. Comparative Leaves Transcriptome Analysis Emphasizing on Accumulation of Anthocyanins in Brassica: Molecular Regulation and Potential Interaction with Photosynthesis. FRONTIERS IN PLANT SCIENCE 2016; 7:311. [PMID: 27047501 PMCID: PMC4796009 DOI: 10.3389/fpls.2016.00311] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/29/2016] [Indexed: 05/04/2023]
Abstract
The purple leaf pigmentation mainly associated with anthocyanins accumulation is common in Brassica but the mechanisms of its production and its potential physiological functions are poorly understood. Here, we performed the phenotypic, cytological, physiological, and comparative leaves transcriptome analyses of 11 different varieties belonging to five Brassica species with purple or green leaves. We observed that the anthocyanin was accumulated in most of vegetative tissues in all species and also in reproduction organs of B. carinata. Anthocyanin accumulated in different part of purple leaves including adaxial and abaxial epidermal cells as well as palisade and spongy mesophyll cells. Leave transcriptome analysis showed that almost all late biosynthetic genes (LBGs) of anthocyanin, especially Dihydroflavonol 4-Reductase (DFR), Anthocyanidin Synthase (ANS) and Transparent Testa 19 (TT19), were highly up-regulated in all purple leaves. However, only one of transcript factors in anthocyanin biosynthesis pathway, Transparent Testa 8 (TT8), was up regulated along with those genes in all purple leaves, indicating its pivotal role for anthocyanin production in Brassica. Interestingly, with the up-regulation of genes for anthocyanin synthesis, Cytosolic 6-phosphogluconolactonase (PLG5) which involved in the oxidative pentose-phosphate pathway was up-regulated in all purple leaves and three genes FTSH PROTEASE 8 (FTS8), GLYCOLATE OXIDASE 1 (GOX1), and GLUTAMINE SYNTHETASE 1;4 (GLN1;4) related to degradation of photo-damaged proteins in photosystem II and light respiration were down-regulated. These results highlighted the potential physiological functions of anthocyanin accumulation related to photosynthesis which might be of great worth in future.
Collapse
Affiliation(s)
| | | | | | | | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | | |
Collapse
|
108
|
Rottet S, Devillers J, Glauser G, Douet V, Besagni C, Kessler F. Identification of Plastoglobules as a Site of Carotenoid Cleavage. FRONTIERS IN PLANT SCIENCE 2016; 7:1855. [PMID: 28018391 PMCID: PMC5161054 DOI: 10.3389/fpls.2016.01855] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/24/2016] [Indexed: 05/18/2023]
Abstract
Carotenoids play an essential role in light harvesting and protection from excess light. During chloroplast senescence carotenoids are released from their binding proteins and are eventually metabolized. Carotenoid cleavage dioxygenase 4 (CCD4) is involved in carotenoid breakdown in senescing leaf and desiccating seed, and is part of the proteome of plastoglobules (PG), which are thylakoid-associated lipid droplets. Here, we demonstrate that CCD4 is functionally active in PG. Leaves of Arabidopsis thaliana ccd4 mutants constitutively expressing CCD4 fused to yellow fluorescent protein showed strong fluorescence in PG and reduced carotenoid levels upon dark-induced senescence. Lipidome-wide analysis indicated that β-carotene, lutein, and violaxanthin were the principle substrates of CCD4 in vivo and were cleaved in senescing chloroplasts. Moreover, carotenoids were shown to accumulate in PG of ccd4 mutant plants during senescence, indicating translocation of carotenoids to PG prior to degradation.
Collapse
Affiliation(s)
- Sarah Rottet
- Laboratory of Plant Physiology, Institute of Biology, University of NeuchâtelNeuchâtel, Switzerland
| | - Julie Devillers
- Laboratory of Plant Physiology, Institute of Biology, University of NeuchâtelNeuchâtel, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of NeuchâtelNeuchâtel, Switzerland
| | - Véronique Douet
- Laboratory of Plant Physiology, Institute of Biology, University of NeuchâtelNeuchâtel, Switzerland
| | - Céline Besagni
- Laboratory of Plant Physiology, Institute of Biology, University of NeuchâtelNeuchâtel, Switzerland
| | - Felix Kessler
- Laboratory of Plant Physiology, Institute of Biology, University of NeuchâtelNeuchâtel, Switzerland
- *Correspondence: Felix Kessler,
| |
Collapse
|
109
|
Saini RK, Nile SH, Park SW. Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Res Int 2015; 76:735-750. [DOI: 10.1016/j.foodres.2015.07.047] [Citation(s) in RCA: 403] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/23/2015] [Accepted: 07/31/2015] [Indexed: 11/30/2022]
|
110
|
Affiliation(s)
- Carolyn A Wessinger
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|