101
|
Zhou Q, Petersen CC, Nicoll RA. Effects of reduced vesicular filling on synaptic transmission in rat hippocampal neurones. J Physiol 2000; 525 Pt 1:195-206. [PMID: 10811737 PMCID: PMC2269926 DOI: 10.1111/j.1469-7793.2000.t01-1-00195.x] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/1999] [Accepted: 02/21/2000] [Indexed: 11/28/2022] Open
Abstract
The consequence of reduced uptake of neurotransmitters into synaptic vesicles on synaptic transmission was examined in rat hippocampal slices and culture using bafilomycin A1 (Baf), a potent and specific blocker of the vacuolar-type (V-type) ATPase, which eliminates the driving force for the uptake of both glutamate and GABA into synaptic vesicles. After incubation with Baf, both the amplitude and frequency of GABAergic miniature inhibitory postsynaptic currents (mIPSCs) were reduced in the slice preparation. Similar effects were seen with glutamatergic miniature excitatory postsynaptic currents (mEPSCs) and GABAergic mIPSCs from cultured neurons. This result indicates that vesicular content is reduced by Baf. The dramatic reduction in the frequency of mPSCs could result either from the exocytosis of empty vesicles or from a mechanism which prevents the exocytosis of depleted vesicles. Vesicle cycling was directly examined using confocal imaging with FM 1-43. In the presence of Baf, vesicles could still be endocytosed and they were released at the same probability as from control untreated synapses. Prolonged high-frequency electrical stimulation of synapses in culture failed to alter the amplitude of mEPSCs, suggesting that the filling of vesicles is rapid compared to the rate of vesicle recycling during repetitive synaptic stimulation. Profound release of glutamate with alpha-latrotoxin did cause a small, but reproducible, reduction in quantal size. These results indicate that decreasing the amount of glutamate and GABA in synaptic vesicles reduces quantal size. Furthermore, the probability of vesicle exocytosis appears to be entirely independent of the state of filling of the vesicle. However, even during high-frequency action potential-evoked release of glutamate, quantal size remained unchanged.
Collapse
Affiliation(s)
- Q Zhou
- Departments of Cellular & Molecular Pharmacology and Physiology, University of California, San Francisco, San Francisco, CA 94143-0450, USA
| | | | | |
Collapse
|
102
|
Abstract
Images of vesicle openings in the presynaptic membrane have regularly been shown to increase in number after stimulation of cholinergic nerves. However, with a very few exceptions, the occurrence of vesicle openings is delayed in time with respect to the precise moment of transmitter release. In contrast, a transient change in the size and distribution of intramembrane particles (IMPs) has constantly been found as a characteristic change affecting the presynaptic membrane in a strict time coincidence with the release of acetylcholine quanta. This is illustrated here in a rapid-freezing experiment performed on small specimens of the Torpedo electric organ during transmission of a single nerve impulse. A marked change affected IMPs in the presynaptic membrane for 3-4 ms, i.e., a population of IMPs larger than 10 nm momentarily occurred in coincidence with the passage of the impulse. The nicotinic receptors, abundantly visible in the postsynaptic membranes, also underwent very fleeting structural changes during synaptic transmission. In conclusion, for rapidly operating neurotransmitters like acetylcholine, a characteristic IMP change was regularly found to coincide in the presynaptic membrane with the production of neurotransmitter quanta, whereas images of vesicles fusion were either delayed or even dissociated from the release process. This is discussed in connection to the different modes of release recently described for other secreting systems.
Collapse
Affiliation(s)
- Y Dunant
- Département de Pharmacologie, Centre Médical Universitaire, CH-1211 Geneve 4, Switzerland.
| |
Collapse
|
103
|
Bennett MR, Farnell L, Gibson WG, Macleod GT, Dickens P. Quantal potential fields around individual active zones of amphibian motor-nerve terminals. Biophys J 2000; 78:1106-18. [PMID: 10692301 PMCID: PMC1300714 DOI: 10.1016/s0006-3495(00)76669-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The release of a quantum from a nerve terminal is accompanied by the flow of extracellular current, which creates a field around the site of transmitter action. We provide a solution for the extent of this field for the case of a quantum released from a site on an amphibian motor-nerve terminal branch onto the receptor patch of a muscle fiber and compare this with measurements of the field using three extracellular electrodes. Numerical solution of the equations for the quantal potential field in cylindrical coordinates show that the density of the field at the peak of the quantal current gives rise to a peak extracellular potential, which declines approximately as the inverse of the distance from the source at distances greater than about 4 microm from the source along the length of the fiber. The peak extracellular potential declines to 20% of its initial value in a distance of about 6 microm, both along the length of the fiber and in the circumferential direction around the fiber. Simultaneous recordings of quantal potential fields, made with three electrodes placed in a line at right angles to an FM1-43 visualized branch, gave determinations of the field strengths in accord with the numerical solutions. In addition, the three electrodes were placed so as to straddle the visualized release sites of a branch. The positions of these sites were correctly predicted on the basis of the theory and independently ascertained by FM1-43 staining of the sites. It is concluded that quantal potential fields at the neuromuscular junction that can be measured with available recording techniques are restricted to regions within about 10 microm of the release site.
Collapse
Affiliation(s)
- M R Bennett
- The Neurobiology Laboratory, Department of Physiology, Institute for Biomedical Research, University of Sydney, New South Wales 2006, Australia
| | | | | | | | | |
Collapse
|
104
|
Van der Kloot W, Colasante C, Cameron R, Molgó J. Recycling and refilling of transmitter quanta at the frog neuromuscular junction. J Physiol 2000; 523 Pt 1:247-58. [PMID: 10673559 PMCID: PMC2269784 DOI: 10.1111/j.1469-7793.2000.00247.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
1. Fluorescent dyes have been used at the frog neuromuscular junction to label synaptic vesicular membrane. Retrieved membrane is reformed into vesicles, which are released along with pre-existing vesicles. Consequently, if vesicular refilling with acetylcholine (ACh) is depressed by inhibitors, two sizes of quanta should be released: normal and smaller. As recycling continues the fraction of smaller size quanta should increase exponentially. 2. We enhanced the rate of quantal release by elevating the K+ concentration. The principal inhibitors were (-)-vesamicol (VES), hemicholinium-3 (HC3), and NH4+. Quantal size measurements were fitted to one and to two cumulative lognormal probability distribution functions. When two fitted better, the statistical significance assessment took into account the three additional parameters used in calculating the fit. 3. After recycling in the presence of inhibitor, many sets were fitted better by two lognormal functions. As recycling continued, the fraction of the miniature endplate potential voltage-time integrals ( MEPPs) in the larger sub-population decreased exponentially. 4. The size of the releasable pool was estimated by counting the quanta released by carbonyl cyanide m-chlorophenylhydrazone (CCCP). This was compared to pool sizes calculated from the inhibitor experiments. The two estimates of pool size were indistinguishable, with mean values ranging from about 170,000 to 270,000. 5. With all of the treatments tested, the means of the sizes in the smaller sub-population of MEPPs were about 1/3 those of the larger sub-populations. 6. Recycling synaptic vesicles appear to be incorporated into the releasable pool from which they have roughly the same probability of release as the pre-existing vesicles.
Collapse
Affiliation(s)
- W Van der Kloot
- Department of Physiology and Biophysics, SUNY, Stony Brook, NY 11794-8661, USA.
| | | | | | | |
Collapse
|
105
|
Bugnard E, Sors P, Roulet E, Bloc A, Loctin F, Dunant Y. Morphological changes related to reconstituted acetylcholine release in a release-deficient cell line. Neuroscience 1999; 94:329-38. [PMID: 10613523 DOI: 10.1016/s0306-4522(99)00241-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The membrane changes accompanying Ca(2+)-dependent acetylcholine release were investigated by comparing release-competent and release-incompetent clones of mouse neuroblastoma N18TG-2 cells. No release could be elicited in native N18 cells or in a N18-choline acetyltransferase clone in which acetylcholine synthesis was induced by transfection with the gene for rat choline acetyltransferase. However, acetylcholine release was operative in a To/9 clone which was co-transfected with complementary DNAs from rat choline acetyltransferase and Torpedo mediatophore 16,000 mol. wt subunit. In thin sections, the aspect of resting N18 and To/9 cells was identical: a very dense cytoplasm with practically no vesicle-like organelles. Cells were chemically fixed at different times during a stimulation using A-23187 and Ca2+, and examined following both freeze-fracture and thin section. Stimulation of To/9 cells induced a marked change affecting the intramembrane particles. The number of medium-sized particles (9.9-12.38 nm) increased, while that of the small particles decreased. This change was not observed in control, release-incompetent cell lines. In the To/9 clone (but not in control clones), this was followed by occurrence of a large new population of pits which initially had a large diameter, but subsequently became smaller as their number decreased. Coated depressions and invaginations became abundant after stimulation, suggesting an endocytosis process. By considering the succession of events and by comparison with data from experiments performed on synapses in situ, it is proposed that a particle alteration was the counterpart of acetylcholine release in co-transfected To/9 cells; this was followed by a massive endocytosis.
Collapse
Affiliation(s)
- E Bugnard
- Département de Pharmacologie/APSIC, Centre Médical Universitaire, Genève 4, Switzerland
| | | | | | | | | | | |
Collapse
|
106
|
Abstract
Membrane dynamics within the chick ciliary neuronal growth cone were investigated by using the membrane-impermeant dye FM1-43. A depolarization-evoked endocytosis was observed that shared many properties with the synaptic vesicle recycling previously described at the presynaptic terminal. In addition, in the absence of depolarization a basal level of constitutive endocytotic activity was observed at approximately 30% of the rate of evoked endocytosis. This constitutive endocytosis accounted for large amounts of membrane retrieval: the equivalent of the entire growth cone surface area could be internalized within a 30 min period. Endosomes generated via constitutive and evoked processes were highly mobile and could move considerable distances both within the growth cone and out to the neurite. In addition to their different requirements for formation, evoked and constitutive endosomes displayed a significant difference in release properties. After a subsequent depolarization of labeled growth cones, evoked endosomes were released although constitutive endosomes were not released. Furthermore, treatment with latrotoxin released evoked endosomes, but not constitutive endosomes. Although the properties of evoked endosomes are highly reminiscent of synaptic vesicles, constitutive endosomes appear to be a separate pool resulting from a distinct and highly active process within the neuronal growth cone.
Collapse
|
107
|
Diefenbach TJ, Guthrie PB, Stier H, Billups B, Kater SB. Membrane recycling in the neuronal growth cone revealed by FM1-43 labeling. J Neurosci 1999; 19:9436-44. [PMID: 10531447 PMCID: PMC6782927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Membrane dynamics within the chick ciliary neuronal growth cone were investigated by using the membrane-impermeant dye FM1-43. A depolarization-evoked endocytosis was observed that shared many properties with the synaptic vesicle recycling previously described at the presynaptic terminal. In addition, in the absence of depolarization a basal level of constitutive endocytotic activity was observed at approximately 30% of the rate of evoked endocytosis. This constitutive endocytosis accounted for large amounts of membrane retrieval: the equivalent of the entire growth cone surface area could be internalized within a 30 min period. Endosomes generated via constitutive and evoked processes were highly mobile and could move considerable distances both within the growth cone and out to the neurite. In addition to their different requirements for formation, evoked and constitutive endosomes displayed a significant difference in release properties. After a subsequent depolarization of labeled growth cones, evoked endosomes were released although constitutive endosomes were not released. Furthermore, treatment with latrotoxin released evoked endosomes, but not constitutive endosomes. Although the properties of evoked endosomes are highly reminiscent of synaptic vesicles, constitutive endosomes appear to be a separate pool resulting from a distinct and highly active process within the neuronal growth cone.
Collapse
Affiliation(s)
- T J Diefenbach
- Department of Neurobiology, University of Utah, Salt Lake City, Utah 84132, USA
| | | | | | | | | |
Collapse
|
108
|
Wu LG, Betz WJ. Spatial variability in release at the frog neuromuscular junction measured with FM1-43. Can J Physiol Pharmacol 1999. [DOI: 10.1139/y99-078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We quantified the spatial variability in release properties at different synaptic vesicle clusters in frog motor nerve terminals, using a combination of fluorescence and electron microscopy. Individual synaptic vesicle clusters labeled with FM1-43 varied more than 10-fold in initial intensity (integrated FM1-43 fluorescence) and in absolute rate of dye loss during tetanic electrical nerve stimulation. Most of this variability arose because large vesicle clusters spanned more than one presynaptic active zone (inferred from postsynaptic acetylcholine receptor stripes labeled with rhodamine-conjugated alpha-bungarotoxin); when the rate of dye loss was normalized to the length of receptor stripe covered, variability from spot to spot was greatly reduced. In addition, electron microscopic measurements showed that large vesicle clusters (i.e., those spanning multiple active zones) were also thicker, and the increased depth of vesicles led to increased total spot fluorescence without a corresponding increase in the rate of dye loss during stimulation. These results did not reveal the presence of "hot zones" of secretory activity.Key words: synaptic transmission, exocytosis, synaptic vesicles, neuromuscular junction.
Collapse
|
109
|
Macleod GT, Gan J, Bennett MR. Vesicle-associated proteins and quantal release at single active zones of amphibian (Bufo marinus) motor-nerve terminals. J Neurophysiol 1999; 82:1133-46. [PMID: 10482733 DOI: 10.1152/jn.1999.82.3.1133] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A study was made to determine the disposition of vesicle-associated proteins (syntaxin, SV2, SNAP-25) and calcium channels with respect to the spatial extent of spontaneous and evoked quantal release within regions of amphibian motor-nerve terminal branches delineated by FM1-43 stained vesicle clusters (blobs). Discrete concentrations of vesicles revealed approximately 2 microm apart along the length of terminal branches through FM1-43 staining were identical in size and spacing to those identified along terminal branches with SV2 antibody (AbSV2). Fluorescent antibodies to syntaxin 1 (AbS), SNAP-25 (AbS25) and the calcium channel alpha1B subunit (Abalpha1B) were found in relatively high concentrations coincident with the AbSV2 blobs. Three extracellular recording electrodes were placed in the vicinity of individual FM1-43 blobs, and an algorithm was used to determine the spatial origin of miniature endplate potentials (MEPPs) and EPPs together with their relative amplitudes. MEPPs and EPPs originated throughout the region stained by FM1-43 but not elsewhere; amplitude-frequency distributions of MEPPs and EPPs were similar for all FM1-43 blobs with average coefficients of variation of no less than 0.28. A linear relationship existed between the size of an FM1-43 blob, measured as the integrated extent of FM1-43 staining of a blob, and the frequency of MEPPs as well as the probability of EPPs from the blob. There was a proximo-distal gradient in the size of FM1-43 blobs along the length of single terminal branches, suggesting a gradient in release probability along the branches. The frequency distribution of the distances between blobs was approximately Gaussian, whereas the frequency distribution of the size of blobs was highly skewed and was best fitted with a gamma distribution. It is concluded that there are correlations among the extent of labeling of SNAP-25, syntaxin and calcium channels at a release site, the store of vesicles to be found there, and the probability of spontaneous and evoked quantal release.
Collapse
Affiliation(s)
- G T Macleod
- The Neurobiology Laboratory, Department of Physiology and Institute for Biomedical Research, University of Sydney, New South Wales 2006, Australia
| | | | | |
Collapse
|
110
|
Correlation of miniature synaptic activity and evoked release probability in cultures of cortical neurons. J Neurosci 1999. [PMID: 10414971 DOI: 10.1523/jneurosci.19-15-06427.1999] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spontaneous miniature synaptic activity is caused by action potential (AP)-independent release of transmitter vesicles and is regulated at the level of single synapses. In cultured cortical neurons we have used this spontaneous vesicle turnover to load the styryl dye FM1-43 into synapses with high rates of miniature synaptic activity. Automated selection procedures restricted analysis to synapses with sufficient levels of miniature activity-mediated FM1-43 uptake. After FM1-43 loading, vesicular FM1-43 release in response to AP stimulation was recorded at single synapses as a measure of release probability. We find that synapses with high rates of miniature activity possess significantly enhanced evoked release rates compared with a control population. Because the difference in release rates between the two populations is [Ca(2+)](o)-dependent, it is most likely caused by a difference in release probability. Within the subpopulation of synapses with high miniature activity, we find that the probabilities for miniature and AP-evoked release are correlated at single synaptic sites. Furthermore, the degree of miniature synaptic activity is correlated with the vesicle pool size. These findings suggest that both evoked and miniature vesicular release are regulated in parallel and that the frequency of miniature synaptic activity can be used as an indicator for evoked release efficacy.
Collapse
|
111
|
Prange O, Murphy TH. Correlation of miniature synaptic activity and evoked release probability in cultures of cortical neurons. J Neurosci 1999; 19:6427-38. [PMID: 10414971 PMCID: PMC6782811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
Abstract
Spontaneous miniature synaptic activity is caused by action potential (AP)-independent release of transmitter vesicles and is regulated at the level of single synapses. In cultured cortical neurons we have used this spontaneous vesicle turnover to load the styryl dye FM1-43 into synapses with high rates of miniature synaptic activity. Automated selection procedures restricted analysis to synapses with sufficient levels of miniature activity-mediated FM1-43 uptake. After FM1-43 loading, vesicular FM1-43 release in response to AP stimulation was recorded at single synapses as a measure of release probability. We find that synapses with high rates of miniature activity possess significantly enhanced evoked release rates compared with a control population. Because the difference in release rates between the two populations is [Ca(2+)](o)-dependent, it is most likely caused by a difference in release probability. Within the subpopulation of synapses with high miniature activity, we find that the probabilities for miniature and AP-evoked release are correlated at single synaptic sites. Furthermore, the degree of miniature synaptic activity is correlated with the vesicle pool size. These findings suggest that both evoked and miniature vesicular release are regulated in parallel and that the frequency of miniature synaptic activity can be used as an indicator for evoked release efficacy.
Collapse
Affiliation(s)
- O Prange
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | | |
Collapse
|
112
|
Abstract
We have used a sensitive activity-dependent probe, sulforhodamine 101 (SR101), to view endocytic events within snake motor nerve terminals. After very brief neural stimulation at reduced temperature, SR101 is visualized exclusively at punctate sites located just inside the presynaptic membrane of each terminal bouton. The number of sites (approximately 26 sites/bouton) and their location (in register with postsynaptic folds) are similar to the number and location of active zones in snake motor terminals, suggesting a spatial association between exocytosis and endocytosis under these stimulus conditions. With more prolonged stimulation, larger SR101-containing structures appear at the bouton margins. Thus endocytosis occurs initially at distinct sites, which we call "endocytic active zones," whereas further stimulation recruits a second endocytic paradigm.
Collapse
|
113
|
Teng H, Cole JC, Roberts RL, Wilkinson RS. Endocytic active zones: hot spots for endocytosis in vertebrate neuromuscular terminals. J Neurosci 1999; 19:4855-66. [PMID: 10366620 PMCID: PMC6782649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/1998] [Revised: 03/22/1999] [Accepted: 03/29/1999] [Indexed: 02/12/2023] Open
Abstract
We have used a sensitive activity-dependent probe, sulforhodamine 101 (SR101), to view endocytic events within snake motor nerve terminals. After very brief neural stimulation at reduced temperature, SR101 is visualized exclusively at punctate sites located just inside the presynaptic membrane of each terminal bouton. The number of sites (approximately 26 sites/bouton) and their location (in register with postsynaptic folds) are similar to the number and location of active zones in snake motor terminals, suggesting a spatial association between exocytosis and endocytosis under these stimulus conditions. With more prolonged stimulation, larger SR101-containing structures appear at the bouton margins. Thus endocytosis occurs initially at distinct sites, which we call "endocytic active zones," whereas further stimulation recruits a second endocytic paradigm.
Collapse
Affiliation(s)
- H Teng
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
114
|
Parsons RL, Calupca MA, Merriam LA, Prior C. Empty synaptic vesicles recycle and undergo exocytosis at vesamicol-treated motor nerve terminals. J Neurophysiol 1999; 81:2696-700. [PMID: 10368389 DOI: 10.1152/jn.1999.81.6.2696] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated whether recycled cholinergic synaptic vesicles, which were not refilled with ACh, would join other synaptic vesicles in the readily releasable store near active zones, dock, and continue to undergo exocytosis during prolonged stimulation. Snake nerve-muscle preparations were treated with 5 microM vesamicol to inhibit the vesicular ACh transporter and then were exposed to an elevated potassium solution, 35 mM potassium propionate (35 KP), to release all preformed quanta of ACh. At vesamicol-treated endplates, miniature endplate current (MEPC) frequency increased initially from 0.4 to >300 s-1 in 35 KP but then declined to <1 s-1 by 90 min. The decrease in frequency was not accompanied by a decrease in MEPC average amplitude. Nerve terminals accumulated the activity-dependent dye FM1-43 when exposed to the dye for the final 6 min of a 120-min exposure to 35 KP. Thus synaptic membrane endocytosis continued at a high rate, although MEPCs occurred infrequently. After a 120-min exposure in 35 KP, nerve terminals accumulated FM1-43 and then destained, confirming that exocytosis also still occurred at a high rate. These results demonstrate that recycled cholinergic synaptic vesicles that were not refilled with ACh continued to dock and undergo exocytosis after membrane retrieval. Thus transport of ACh into recycled cholinergic vesicles is not a requirement for repeated cycles of exocytosis and retrieval of synaptic vesicle membrane during prolonged stimulation of motor nerve terminals.
Collapse
Affiliation(s)
- R L Parsons
- Department of Anatomy and Neurobiology, University of Vermont, College of Medicine, Burlington, Vermont 05405-0160, USA
| | | | | | | |
Collapse
|
115
|
Everett AW, Packard SJ, Cosby M, Milne RK. Membrane recycling due to low and high rates of nerve stimulation at release sites in the amphibian (Bufo marinus) neuromuscular junction. Synapse 1999; 32:110-8. [PMID: 10231130 DOI: 10.1002/(sici)1098-2396(199905)32:2<110::aid-syn4>3.0.co;2-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The activity-dependent labelling of motor nerve terminals with the dye FM1-43 has been used to estimate the relative levels of membrane recycling (due to synaptic vesicle exocytosis and recovery) at release sites in response to 1,200 nerve stimulations delivered at either low (0.5 Hz) or high (30 Hz) frequency. Dye in terminals appears as fluorescent spots distributed along the terminal branches; each spot is thought to be a cluster of labelled vesicles associated with a release site. Relative fluorescence in spots was quantified from images obtained with a confocal microscope. Spot intensities varied widely within branches following labelling at both frequencies, but the distribution was highly skewed towards lower intensities at low frequency stimulation; at high frequency, more spots had stronger fluorescence. Both weak and strongly stained spots were uniformly distributed along the length of terminal branches after low frequency stimulation; however, there was a gradual decline in all spot intensities towards the distal end of branches loaded with dye at high frequency stimulation. Antibody staining for synaptic vesicles was, on average, uniformly distributed along the branches. The increase in number of more strongly FM1-43-labelled spots in terminal branches stimulated at high compared with low frequency suggests that more release sites are active at high rates of nerve stimulation. This "recruitment" of release sites at high frequency stimulation occurs mostly in the proximal half of terminal branches and is not related to the abundance of synaptic vesicles in the terminal.
Collapse
Affiliation(s)
- A W Everett
- Department of Physiology, The University of Western Australia, Nedlands, Australia.
| | | | | | | |
Collapse
|
116
|
Abstract
FM1-43 and similar styryl dyes have proven useful as probes for membrane trafficking because they reversibly stain membranes, are impermeable to membranes, and are more fluorescent when bound to membranes than when in solution. Because these dyes stain membranes in an activity-dependent manner, they are ideal for studies of neurotransmitter release mechanisms such as synaptic vesicle recycling, exocytosis, and endocytosis. FM dyes have been used in conjunction with other techniques such as fluorescent calcium indicator dyes and electrophysiological techniques to elucidate mechanisms of presynaptic calcium homeostasis and modulation of neurotransmitter release. Presynaptic membranes have been marked by FM dyes in studies of synaptogenesis and reinnervation. As a probe for endocytosed membranes, these dyes have been used to examine vacuole formation in yeast. These versatile membrane dyes are useful in a variety of applications.
Collapse
Affiliation(s)
- A J Cochilla
- Department of Physiology and Biophysics, University of Colorado Medical School 80262, USA.
| | | | | |
Collapse
|
117
|
Abstract
We have investigated whether rat motor nerve terminals with different in vivo activity patterns also have different vesicle trafficking characteristics. To do this, we monitored, using combined optical and electrical techniques, the rate of exocytosis (during different frequencies and patterns of activity), the releasable pool size, and the recycle time of synaptic vesicles in terminals on soleus (slow-twitch) and extensor digitorum longus [(EDL); fast-twitch] muscle fibers. EDL terminals had a higher initial quantal content (QC) than soleus, but during tonic or phasic stimulation at 20-80 Hz, EDL QC ran down to a greater extent than soleus QC. By recording loss of fluorescence from exocytosing vesicles labeled with the dye FM1-43, EDL terminals were found to destain faster than those in soleus. Simultaneous intracellular recording of end plate potentials, to count the number of vesicles released, permitted estimation of the total vesicle pool (VP) size and the recycle time by combining the optical and electrophysiological data. Soleus vesicle pool was larger than EDL, but recycle time was not significantly different. These terminals, therefore, are adapted to their in vivo activity patterns by alterations in QC and VP size but not recycle time.
Collapse
|
118
|
Reid B, Slater CR, Bewick GS. Synaptic vesicle dynamics in rat fast and slow motor nerve terminals. J Neurosci 1999; 19:2511-21. [PMID: 10087065 PMCID: PMC6786086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
We have investigated whether rat motor nerve terminals with different in vivo activity patterns also have different vesicle trafficking characteristics. To do this, we monitored, using combined optical and electrical techniques, the rate of exocytosis (during different frequencies and patterns of activity), the releasable pool size, and the recycle time of synaptic vesicles in terminals on soleus (slow-twitch) and extensor digitorum longus [(EDL); fast-twitch] muscle fibers. EDL terminals had a higher initial quantal content (QC) than soleus, but during tonic or phasic stimulation at 20-80 Hz, EDL QC ran down to a greater extent than soleus QC. By recording loss of fluorescence from exocytosing vesicles labeled with the dye FM1-43, EDL terminals were found to destain faster than those in soleus. Simultaneous intracellular recording of end plate potentials, to count the number of vesicles released, permitted estimation of the total vesicle pool (VP) size and the recycle time by combining the optical and electrophysiological data. Soleus vesicle pool was larger than EDL, but recycle time was not significantly different. These terminals, therefore, are adapted to their in vivo activity patterns by alterations in QC and VP size but not recycle time.
Collapse
Affiliation(s)
- B Reid
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | | | | |
Collapse
|
119
|
Abstract
Patch-clamp capacitance measurements can monitor in real time the kinetics of exocytosis and endocytosis in living cells. We review the application of this technique to the giant presynaptic terminals of goldfish bipolar cells. These terminals secrete glutamate via the fusion of small, clear-core vesicles at specialized, active zones of release called synaptic ribbons. We compare the functional characteristics of transmitter release at ribbon-type and conventional synapses, both of which have a unique capacity for fast and focal vesicle fusion. Subsequent rapid retrieval and recycling of fused synaptic vesicle membrane allow presynaptic terminals to function independently of the cell soma and, thus, as autonomous computational units. Together with the mobilization of reserve vesicle pools, local cycling of synaptic vesicles may delay the onset of vesicle pool depletion and sustain neuronal output during high stimulation frequencies.
Collapse
Affiliation(s)
- H von Gersdorff
- Max Planck Institute for Biophysical Chemistry, Department of Membrane Biophysics, Göttingen, Germany.
| | | |
Collapse
|
120
|
Prange O, Murphy TH. Analysis of multiquantal transmitter release from single cultured cortical neuron terminals. J Neurophysiol 1999; 81:1810-7. [PMID: 10200215 DOI: 10.1152/jn.1999.81.4.1810] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Application of single synapse recording methods indicates that the amplitude of postsynaptic responses of single CNS synapses can vary greatly among repeated stimuli. To determine whether this observation could be attributed to synapses releasing a variable number of transmitter quanta, we assessed the prevalence of multiquantal transmitter release in primary cultures of cortical neurons with the action potential (AP)-dependent presynaptic turnover of the styryl dye FM1-43 (,; ). It was assumed that if a high proportion of vesicles within a terminal were loaded with FM1-43 the amount of dye released per stimulus would be proportional to the number of quanta released and/or the probability of release at a terminal. To rule out differences in the amount of release (between terminals) caused by release probability or incomplete loading of terminals, conditions were chosen to maximize both release probability and terminal loading. Three-dimensional reconstruction of terminals was employed to ensure that bouton fluorescence was accurately measured. Analysis of the relationship between the loading of terminals and release indicated that presumed larger terminals (>FM1-43 uptake) release a greater amount of dye per stimulus than smaller terminals, suggesting multiquantal release. The distribution of release amounts across terminals was significantly skewed toward higher values, with 13-17% of synaptic terminals apparently releasing multiple quanta per AP. In conclusion, our data suggest that most synaptic terminals release a relatively constant amount of transmitter per stimulus; however, a subset of terminals releases amounts of FM1-43 that are greater than that expected from a unimodal release process.
Collapse
Affiliation(s)
- O Prange
- Graduate Program in Neuroscience, Kinsmen Laboratory, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
121
|
Kavalali ET, Klingauf J, Tsien RW. Properties of fast endocytosis at hippocampal synapses. Philos Trans R Soc Lond B Biol Sci 1999; 354:337-46. [PMID: 10212482 PMCID: PMC1692492 DOI: 10.1098/rstb.1999.0385] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Regulation of synaptic transmission is a widespread means for dynamic alterations in nervous system function. In several cases, this regulation targets vesicular recycling in presynaptic terminals and may result in substantial changes in efficiency of synaptic transmission. Traditionally, experimental accessibility of the synaptic vesicle cycle in central neuronal synapses has been largely limited to the exocytotic side, which can be monitored with electrophysiological responses to neurotransmitter release. Recently, physiological measurements on the endocytotic portion of the cycle have been made possible by the introduction of styryl dyes such as FM1-43 as fluorescent markers for recycling synaptic vesicles. Here we demonstrate the existence of fast endocytosis in hippocampal nerve terminals and derive its kinetics from fluorescence measurements using dyes with varying rates of membrane departitioning. The rapid mode of vesicular retrieval was greatly speeded by exposure to staurosporine or elevated extracellular calcium. The effective time-constant for retrieval can be < 2 seconds under appropriate conditions. Thus, hippocampal synapses capitalize on efficient mechanisms for endocytosis and their vesicular retrieval is subject to modulatory control.
Collapse
Affiliation(s)
- E T Kavalali
- Department of Molecular and Cellular Physiology, Stanford Medical Center, CA 94305, USA
| | | | | |
Collapse
|
122
|
Inhibitors of myosin light chain kinase block synaptic vesicle pool mobilization during action potential firing. J Neurosci 1999. [PMID: 9952409 DOI: 10.1523/jneurosci.19-04-01317.1999] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During repetitive action potential firing the maintenance of synaptic transmission relies on a continued supply of synaptic vesicles for fusion with the presynaptic plasma membrane. The mechanism of transport by which vesicles are delivered to the site of fusion from a reserve pool is unknown, as are the biochemical pathways linking intracellular Ca2+ elevation with vesicle mobilization. Here, using the fluorescent tracer FM1-43 in hippocampal synaptic terminals, I show that inhibitors of myosin light chain kinase can block mobilization of the reserve pool and not the immediately releasable pool.
Collapse
|
123
|
Ryan TA. Inhibitors of myosin light chain kinase block synaptic vesicle pool mobilization during action potential firing. J Neurosci 1999; 19:1317-23. [PMID: 9952409 PMCID: PMC6786038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
During repetitive action potential firing the maintenance of synaptic transmission relies on a continued supply of synaptic vesicles for fusion with the presynaptic plasma membrane. The mechanism of transport by which vesicles are delivered to the site of fusion from a reserve pool is unknown, as are the biochemical pathways linking intracellular Ca2+ elevation with vesicle mobilization. Here, using the fluorescent tracer FM1-43 in hippocampal synaptic terminals, I show that inhibitors of myosin light chain kinase can block mobilization of the reserve pool and not the immediately releasable pool.
Collapse
Affiliation(s)
- T A Ryan
- Department of Biochemistry, The Weill Medical College of Cornell University, New York, New York 10021, USA
| |
Collapse
|
124
|
Calupca MA, Hendricks GM, Hardwick JC, Parsons RL. Role of mitochondrial dysfunction in the Ca2+-induced decline of transmitter release at K+-depolarized motor neuron terminals. J Neurophysiol 1999; 81:498-506. [PMID: 10036254 DOI: 10.1152/jn.1999.81.2.498] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study tested whether a Ca2+-induced disruption of mitochondrial function was responsible for the decline in miniature endplate current (MEPC) frequency that occurs with nerve-muscle preparations maintained in a 35 mM potassium propionate (35 mM KP) solution containing elevated calcium. When the 35 mM KP contained control Ca2+ (1 mM), the MEPC frequency increased and remained elevated for many hours, and the mitochondria within twitch motor neuron terminals were similar in appearance to those in unstimulated terminals. All nerve terminals accumulated FM1-43 when the dye was present for the final 6 min of a 300-min exposure to 35 mM KP with control Ca2+. In contrast, when Ca2+ was increased to 3.6 mM in the 35 mM KP solution, the MEPC frequency initially reached frequencies >350 s-1 but then gradually fell approaching frequencies <50 s-1. A progressive swelling and eventual distortion of mitochondria within the twitch motor neuron terminals occurred during prolonged exposure to 35 mM KP with elevated Ca2+. After approximately 300 min in 35 mM KP with elevated Ca2+, only 58% of the twitch terminals accumulated FM1-43. The decline in MEPC frequency in 35 mM KP with elevated Ca2+ was less when 15 mM glucose was present or when preparations were pretreated with 10 microM oligomycin and then bathed in the 35 mM KP with glucose. When glucose was present, with or without oligomycin pretreatment, a greater percentage of twitch terminals accumulated FM1-43. However, the mitochondria in these preparations were still greatly swollen and distorted. We propose that prolonged depolarization of twitch motor neuron terminals by 35 mM KP with elevated Ca2+ produced a Ca2+-induced decrease in mitochondrial ATP production. Under these conditions, the cytosolic ATP/ADP ratio was decreased thereby compromising both transmitter release and refilling of recycled synaptic vesicles. The addition of glucose stimulated glycolysis which contributed to the maintenance of required ATP levels.
Collapse
Affiliation(s)
- M A Calupca
- Department of Anatomy and Neurobiology, College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
125
|
Zoccarato F, Cavallini L, Alexandre A. The pH-sensitive dye acridine orange as a tool to monitor exocytosis/endocytosis in synaptosomes. J Neurochem 1999; 72:625-33. [PMID: 9930734 DOI: 10.1046/j.1471-4159.1999.0720625.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We introduce the use of the pH-sensitive dye acridine orange (AO) to monitor exo/endocytosis of acidic neurotransmitter-containing vesicles in synaptosomes. AO is accumulated exclusively in acidic v-ATPase-dependent bafilomycin (Baf)-sensitive compartments. A fraction of the accumulated AO is rapidly released (fluorescence increase) upon depolarization with KCl in the presence of Ca2+. The release (completed in 5-6 s) is followed by reuptake to values below the predepolarization baseline. The reuptake, but not the release, is inhibited by Baf added 5 s prior to KCl. In a similar protocol, Baf does not affect the initial fast phase of glutamate release measured enzymatically, but it abolishes the subsequent slow phase. Thus, the fast AO release corresponds to the rapid phase of glutamate release and the slow phase depends on vesicle cycling. AO reuptake depends in part on the progressive accumulation of acid-loaded vesicles during cycling. Stopping exocytosis at selected times after KCl by Ca2+ removal with EGTA evidences endocytosis: Its T(1/2) was 12 +/- 0.6 s. The K(A)+, channel inhibitors 4-aminopyridine (100 microM) and alpha-dendrotoxin (10-100 nM) are known to induce glutamate release by inducing the firing of Na+ channels; their action is potentiated by the activation of protein kinase C. Also these agents promote a Ca2+-dependent AO release, which is prevented by the Na+ channel inhibitor tetrodotoxin and potentiated by 4beta-phorbol 12-myristate 13-acetate (PMA). With alpha-dendrotoxin, endocytosis was monitored by stopping exocytosis at selected times with EGTA or alternatively with Cd2+ or tetrodotoxin. The T(1/2) of endocytosis, which was unaffected by PMA, was 12 +/- 0.4 s with EGTA and Cd2+ and 9.5 +/- 0.5 s with tetrodotoxin. Protein kinase C activation appeared to facilitate vesicle turnover.
Collapse
Affiliation(s)
- F Zoccarato
- Department of Biological Chemistry, University of Padova, Italy
| | | | | |
Collapse
|
126
|
Quigley PA, Msghina M, Govind CK, Atwood HL. Visible evidence for differences in synaptic effectiveness with activity-dependent vesicular uptake and release of FM1-43. J Neurophysiol 1999; 81:356-70. [PMID: 9914295 DOI: 10.1152/jn.1999.81.1.356] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activity-dependent uptake and release of the fluorescent probe FM1-43 were used to compare synaptic performance (rates of transmitter release and synaptic vesicle turnover) at different frequencies in phasic and tonic motor neurons innervating the crayfish leg extensor muscle and in the tonic motor neuron of the opener muscle. The phasic extensor motor neuron, which has a high quantal content of transmitter release, accumulated and released FM1-43 more rapidly than the tonic motor neuron, especially at low frequencies of stimulation. Individual bright spots appeared on the varicosities of the junctional terminals during stimulation in FM1-43; these spots corresponded to zones of immunostaining for the synaptic vesicle associated protein synaptotagmin, but they were larger and less numerous than synapses identified by electron microscopy and appear to represent one to several synapses with their associated clusters of synaptic vesicles. The number of bright spots observed on varicosities of the tonic terminal after stimulation at >/=20 Hz is generally similar to values for responding units (n) calculated from binomial distributions derived from quantal analysis. At frequencies of </=10 Hz, bright spots did not usually appear on tonic extensor varicosities, and the quantal release patterns were best fitted with Poisson distributions. Another tonic motor neuron, the excitor of the opener muscle, showed individual bright spots at lower frequencies of stimulation, consistent with its higher quantal output at these frequencies and corresponding with the binomial fits for quantal release distributions. In this axon, the number of distinctive bright spots increased with frequency in the 2- to 20-Hz range, indicating increased participation of synapses during frequency facilitation. In the tonic extensor neuron terminals, the brightness and the size of the individual spots increased with frequency, and new foci of dye uptake appeared at the edges of preexisting spots. Relative intensity change varied considerably among individual spots during dye loading at different frequencies. Similarly, individual spots on a single tonic terminal destained at different rates when stimulated after previous loading with FM1-43. These results suggest differential performance of individual synapses or small groups of synapses, some being more effective in transmitter release than others, as inferred from previous ultrastructural and quantal analysis studies. The large overall differences between phasic and tonic synapses suggest differential regulation of transmitter release at individual synapses in the two neurons.
Collapse
Affiliation(s)
- P A Quigley
- Department of Physiology, Medical Research Council Neural Group, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|
127
|
Schote U, Seelig J. Interaction of the neuronal marker dye FM1-43 with lipid membranes. Thermodynamics and lipid ordering. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1415:135-46. [PMID: 9858712 DOI: 10.1016/s0005-2736(98)00188-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The fluorescent dye FM1-43 labels nerve terminals in an activity-dependent fashion and has been found increasingly useful in exploring the exo- and endocytosis of synaptic vesicles and other cells by fluorescence methods. The dye distributes between the aqueous phase and the lipid membrane but the physical-chemical parameters characterizing the adsorption/partition equilibrium have not yet been determined. Fluorescence spectroscopy alone is not sufficient for a detailed elucidation of the adsorption mechanism since the method can be applied only in a rather narrow low-concentration window. In addition to fluorescence spectroscopy, we have therefore employed high sensitivity isothermal titration calorimetry (ITC) and deuterium magnetic resonance (2H-NMR). ITC allows the measurement of the adsorption isotherm up to 100 microM dye concentration whereas 2H-NMR provides information on the location of the dye with respect to the plane of the membrane. Dye adsorption/partition isotherms were measured for neutral and negatively-charged phospholipid vesicles. A non-linear dependence between the extent of adsorption and the free dye concentration was observed. Though the adsorption was mainly driven by the insertion of the non-polar part of the dye into the hydrophobic membrane interior, the adsorption equilibrium was further modulated by an electrostatic attraction/repulsion interaction of the cationic dye (z=+2) with the membrane surface. The Gouy-Chapman theory was employed to separate electrostatic and hydrophobic effects. After correcting for electrostatic effects, the dye-membrane interaction could be described by a simple partition equilibrium (Xb=Kcdye) with a partition constant of 103-104 M-1, a partition enthalpy of DeltaH=-2.0 kcal/mol and a free energy of binding of DeltaG=-7.8 kcal/mol. The insertion of FM1-43 into lipid membranes at room temperature is thus an entropy-driven reaction following the classical hydrophobic effect. Deuterium nuclear magnetic resonance provided insight into the structural changes of the lipid bilayer induced by the insertion of FM1-43. The dye disturbed the packing of the fatty acyl chains and decreased the fatty acyl chain order. FM1-43 also induced a conformational change in the phosphocholine headgroup. The -P-N+ dipole was parallel to the membrane surface in the absence of dye and was rotated with its positive end towards the water phase upon dye insertion. The extent of rotation was, however, much smaller than that induced by other cationic molecules of similar charge, suggesting an alignment of FM1-43 such that the POPC phosphate group is sandwiched by the two quaternary FM1-43 ammonium groups. In such an arrangement the two cationic charges counteract each other in a rotation of the -P-N+ dipole.
Collapse
Affiliation(s)
- U Schote
- Department of Biophysical Chemistry, Biocenter of the University of Basel, Klingelbergstr. 70, CH-4056 Basel, Switzerland
| | | |
Collapse
|
128
|
Guatimosim C, Romano-Silva MA, Gomez MV, Prado MA. Use of fluorescent probes to follow membrane traffic in nerve terminals. Braz J Med Biol Res 1998; 31:1491-500. [PMID: 9921287 DOI: 10.1590/s0100-879x1998001100018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Optical tracers in conjunction with fluorescence microscopy have become widely used to follow the movement of synaptic vesicles in nerve terminals. The present review discusses the use of these optical methods to understand the regulation of exocytosis and endocytosis of synaptic vesicles. The maintenance of neurotransmission depends on the constant recycling of synaptic vesicles and important insights have been gained by visualization of vesicles with the vital dye FM1-43. A number of questions related to the control of recycling of synaptic vesicles by prolonged stimulation and the role of calcium to control membrane internalization are now being addressed. It is expected that optical monitoring of presynaptic activity coupled to appropriate genetic models will contribute to the understanding of membrane traffic in synaptic terminals.
Collapse
Affiliation(s)
- C Guatimosim
- Departamento de Farmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | | | | | | |
Collapse
|
129
|
Salem N, Faúndez V, Horng JT, Kelly RB. A v-SNARE participates in synaptic vesicle formation mediated by the AP3 adaptor complex. Nat Neurosci 1998; 1:551-6. [PMID: 10196561 DOI: 10.1038/2787] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Reconstitution of synaptic vesicle formation in vitro has revealed a pathway of synaptic vesicle biogenesis from endosomes that requires the heterotetrameric adaptor complex AP3. Because synaptic vesicles have a distinct protein composition, the AP3 complex should selectively recognize some or all of the synaptic vesicle proteins. Here we show that one element of this recognition process is the v-SNARE, VAMP-2, because tetanus toxin, which cleaves VAMP-2, inhibited the formation of synaptic vesicles and their coating with AP3 in vitro. Mutant tetanus toxin and botulinum toxins, which cleave t-SNAREs, did not inhibit synaptic vesicle production. AP3-containing complexes isolated from coated vesicles could be immunoprecipitated by a VAMP-2 antibody. These data imply that AP3 recognizes a component of the fusion machinery, which may prevent the production of inert synaptic vesicles.
Collapse
Affiliation(s)
- N Salem
- Department of Biochemistry & Biophysics, University of California, San Francisco 94143-0534, USA
| | | | | | | |
Collapse
|
130
|
Klingauf J, Kavalali ET, Tsien RW. Kinetics and regulation of fast endocytosis at hippocampal synapses. Nature 1998; 394:581-5. [PMID: 9707119 DOI: 10.1038/29079] [Citation(s) in RCA: 344] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Presynaptic nerve terminals often contain as few as a hundred vesicles and so must recycle them soon after exocytosis to preserve synaptic transmission and presynaptic morphology during repetitive firing. The kinetics and mechanisms of vesicular endocytosis and repriming have therefore been studied. Vesicles in hippocampal nerve terminals can become available to release their contents within approximately 40 s of the previous round of exocytosis. Studies using the styryl dye FM1-43 have estimated the time constant for endocytosis as approximately 20-30 s at least half of the total recycling time, which is much slower than endocytosis in other secretory systems. It seems paradoxical that the neurosecretory terminals that could benefit the most from rapid endocytosis do not use such a mechanism. Here we demonstrate the existence of fast endocytosis in hippocampal nerve terminals and derive its kinetics from fluorescence measurements using dyes with varying rates of membrane departitioning. The rapid mode of vesicular retrieval was much faster after exposure to staurosporine or elevated extracellular calcium. Thus hippocampal synapses take advantage of efficient mechanisms for endocytosis, and their vesicular retrieval is subject to modulatory control.
Collapse
Affiliation(s)
- J Klingauf
- Department of Molecular and Cellular Physiology, Stanford Medical Center, California 94305, USA
| | | | | |
Collapse
|
131
|
Abstract
Serotonin, a neuromodulator at the crayfish neuromuscular junction, regulates neurotransmission without changing intracellular calcium levels. However, the mechanism of this regulation remains unclear. By analysis of synaptic depression using a depletion model and measurement of vesicle recycling using the styryl dye FM1-43, we show that serotonin increases the number of vesicles available for transmitter release (total synaptic vesicle pool size). This regulation is due either to an increase in the number of vesicles at each release site or to an activation of previously nonsecreting or silent synapses. We also observed that low calcium medium rendered part of the vesicle pool unavailable for release. These results suggest a new mechanism for regulating synaptic transmission.
Collapse
Affiliation(s)
- C Wang
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | |
Collapse
|
132
|
Wu LG, Betz WJ. Kinetics of synaptic depression and vesicle recycling after tetanic stimulation of frog motor nerve terminals. Biophys J 1998; 74:3003-9. [PMID: 9635754 PMCID: PMC1299641 DOI: 10.1016/s0006-3495(98)78007-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We measured the time courses of two key components of the synaptic vesicle cycle during recovery from synaptic depression under different conditions, and used this and other information to create a kinetic model of the vesicle cycle. End plate potential (EPP) amplitudes were used to follow recovery from synaptic depression after different amounts of tetanic stimulation. This provided an estimate of the time course of vesicle mobilization from the reserve pool to the docked (readily releasable) pool. In addition, FM1-43 was used to measure the rate of membrane retrieval after tetanic stimulation, and the amount of membrane transferred to the surface membrane. This provided a measure of the rate of refilling of the reserve pool with recycled vesicles. The time courses of both synaptic depression and endocytosis were slowed by prolonged tetanic stimulation. This behavior could be fitted by a simple model, assuming a first-order kinetics for both vesicle endocytosis and mobilization. The results show that a nearly 20-fold decrease in the rate constant of endocytosis greatly delays refilling of the depleted reserve pool. However, to fully account for the slower recovery of depression, a decrease in the rate constant of vesicle mobilization from the reserve pool of about sixfold is also required.
Collapse
Affiliation(s)
- L G Wu
- Department of Physiology, University of Colorado Health Science Center, Denver 80262, USA
| | | |
Collapse
|
133
|
Abstract
The vesicular hypothesis has stimulated fruitful investigations on many secreting systems. In the case of rapid synaptic transmission, however, the hypothesis has been found difficult to reconcile with a number of well established observations. Brief impulses of transmitter molecules (quanta) are emitted from nerve terminals at the arrival of an action potential by a mechanism which is under the control of multiple regulations. It is therefore not surprising that quantal release could be disrupted by experimental manipulation of a variety of cellular processes, such as a) transmitter uptake, synthesis, or transport, b) energy supply, c) calcium entry, sequestration and extrusion, d) exo- or endocytosis, e) expression of vesicular and plasmalemmal proteins, f) modulatory systems and second messengers, g) cytoskeleton integrity, etc. Hence, the approaches by "ablation strategy" do not provide unequivocal information on the final step of the release process since there are so many ways to stop the release. We propose an alternate approach: the "reconstitution strategy". To this end, we developed several preparations for determining the minimal system supporting Ca2+-dependent transmitter release. Release was reconstituted in proteoliposomes, Xenopus oocytes and transfected cell lines. Using these systems, it appears that a presynaptic plasmalemmal proteolipid, that we called mediatophore should be considered as a key molecule for the generation of transmitter quanta in natural synapses.
Collapse
Affiliation(s)
- Y Dunant
- Département de Pharmacologie, Université de Genève, Centre Médical Universitaire, Switzerland.
| | | |
Collapse
|
134
|
Neher E. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 1998; 20:389-99. [PMID: 9539117 DOI: 10.1016/s0896-6273(00)80983-6] [Citation(s) in RCA: 793] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- E Neher
- Department of Membrane Biophysics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Federal Republic of Germany
| |
Collapse
|
135
|
Cysteine string protein is required for calcium secretion coupling of evoked neurotransmission in drosophila but not for vesicle recycling. J Neurosci 1998. [PMID: 9437017 DOI: 10.1523/jneurosci.18-03-00956.1998] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The entire deletion of the cysteine string protein (CSP) gene causes a temperature-sensitive (ts) block of evoked neurotransmission in Drosophila. CSP has been found to interact in vitro with the clathrin-uncoating ATPase HSC70, suggesting a potential role of CSP in vesicle recycling. Using FM1-43 imaging, we analyzed whether the ts block of neurotransmission in csp mutants is caused by a defect in vesicle exocytosis or vesicle recycling. We determined that FM1-43-labeled synaptic boutons of csp mutant neuromuscular junctions fail to destain at 32 degrees C after K+ depolarization, and that FM1-43 dye uptake cannot be evoked by K+ stimulation at 32 degrees C. However, when we stimulated dye uptake independent of depolarization by using black widow spider venom (BWSV), we observed endocytotic uptake of FM1-43. This suggests that endocytosis exhibits no primary ts defect. In addition, we found no ts defect of vesicle recycling at 32 degrees C that would correlate with the ts block of neurotransmission. We also discovered that BWSV and the calcium ionophore calcimycin stimulate FM1-43 destaining and quantal release in csp mutants at 32 degrees C when depolarization fails to evoke any response. The wild-type-like, calcimycin-induced response in csp null mutants indicates that some aspect of the depolarization-dependent calcium signaling pathway must be impaired, either calcium entry, calcium action, or both. Collectively, our results indicate that the csp mutation affects calcium secretion coupling of evoked exocytosis but not vesicle recycling. This supports the hypothesis that CSP links synaptic vesicles to calcium secretion coupling.
Collapse
|
136
|
Ranjan R, Bronk P, Zinsmaier KE. Cysteine string protein is required for calcium secretion coupling of evoked neurotransmission in drosophila but not for vesicle recycling. J Neurosci 1998; 18:956-64. [PMID: 9437017 PMCID: PMC6792780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The entire deletion of the cysteine string protein (CSP) gene causes a temperature-sensitive (ts) block of evoked neurotransmission in Drosophila. CSP has been found to interact in vitro with the clathrin-uncoating ATPase HSC70, suggesting a potential role of CSP in vesicle recycling. Using FM1-43 imaging, we analyzed whether the ts block of neurotransmission in csp mutants is caused by a defect in vesicle exocytosis or vesicle recycling. We determined that FM1-43-labeled synaptic boutons of csp mutant neuromuscular junctions fail to destain at 32 degrees C after K+ depolarization, and that FM1-43 dye uptake cannot be evoked by K+ stimulation at 32 degrees C. However, when we stimulated dye uptake independent of depolarization by using black widow spider venom (BWSV), we observed endocytotic uptake of FM1-43. This suggests that endocytosis exhibits no primary ts defect. In addition, we found no ts defect of vesicle recycling at 32 degrees C that would correlate with the ts block of neurotransmission. We also discovered that BWSV and the calcium ionophore calcimycin stimulate FM1-43 destaining and quantal release in csp mutants at 32 degrees C when depolarization fails to evoke any response. The wild-type-like, calcimycin-induced response in csp null mutants indicates that some aspect of the depolarization-dependent calcium signaling pathway must be impaired, either calcium entry, calcium action, or both. Collectively, our results indicate that the csp mutation affects calcium secretion coupling of evoked exocytosis but not vesicle recycling. This supports the hypothesis that CSP links synaptic vesicles to calcium secretion coupling.
Collapse
Affiliation(s)
- R Ranjan
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6074, USA
| | | | | |
Collapse
|
137
|
Abstract
Choline acetyltransferase and vesicular acetylcholine-transporter genes are adjacent and coregulated. They define a cholinergic locus that can be turned on under the control of several factors, including the neurotrophins and the cytokines. Hirschprung's disease, or congenital megacolon, is characterized by agenesis of intramural cholinergic ganglia in the colorectal region. It results from mutations of the RET (GDNF-activated) and the endothelin-receptor genes, causing a disregulation in the cholinergic locus. Using cultured cells, it was shown that the cholinergic locus and the proteins involved in acetylcholine (ACh) release can be expressed separately ACh release could be demonstrated by means of biochemical and electrophysiological assays even in noncholinergic cells following preloading with the transmitter. Some noncholinergic or even nonneuronal cell types were found to be capable of releasing ACh quanta. In contrast, other cells were incompetent for ACh release. Among them, neuroblastoma N18TG-2 cells were rendered release-competent by transfection with the mediatophore gene. Mediatophore is an ACh-translocating protein that has been purified from plasma membranes of Torpedo nerve terminal; it confers a specificity for ACh to the release process. The mediatophores are activated by Ca2+; but with a slower time course, they can be desensitized by Ca2+. A strictly regulated calcium microdomain controls the synchronized release of ACh quanta at the active zone. In addition to ACh and ATP, synaptic vesicles have an ATP-dependent Ca2+ uptake system; they transiently accumulate Ca2+ after a brief period of stimulation. Those vesicles that are docked close to Ca2+ channels are therefore in the best position to control the profile and dynamics of the Ca2+ microdomains. Thus, vesicles and their whole set of associated proteins (SNAREs and others) are essential for the regulation of the release mechanism in which the mediatophore seems to play a key role.
Collapse
Affiliation(s)
- M Israël
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, C.N.R.S. F-91198 Gif-sur-Yvette, France
| | | |
Collapse
|
138
|
Brain KL, Bennett MR. Calcium in sympathetic varicosities of mouse vas deferens during facilitation, augmentation and autoinhibition. J Physiol 1997; 502 ( Pt 3):521-36. [PMID: 9279805 PMCID: PMC1159525 DOI: 10.1111/j.1469-7793.1997.521bj.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. The sympathetic nerve terminals of the mouse vas deferens were loaded with the calcium indicator Oregon Green 488 BAPTA-1 by orthograde transport along the postganglionic nerves. Changes in the calcium concentration in the varicosity (delta [Ca2+]v) were determined following single impulses, and short (5-impulse) and long (200-impulse) trains at 5 Hz. 2. All varicosities showed a significant delta [Ca2+]v in response to every single impulse. The elevated delta [Ca2+]v declined in two phases with similar kinetics for all varicosities: a fast phase (time constant, 0.42 +/- 0.05 s) and a moderate phase (3.6 +/- 0.4 s). 3. Line scanning confocal microscopy revealed that the delta [Ca2+] of a single terminal following single impulses was smaller for the intervaricose regions than for the varicosities. 4. Blockade of the voltage-sensitive calcium channels with Cd2+ (in calcium-free solution) completely blocked the delta [Ca2+]v on stimulation. The addition of either nifedipine (10 microM), omega-conotoxin GVIA (100 nM) or omega-agatoxin TK (100 nM) showed that 47 +/- 6% of the evoked response was mediated by N-type calcium channels. 5. Ryanodine (10 microM) did not significantly change the amplitude of delta [Ca2+]v in response to short trains. 6. Spontaneous increases in delta [Ca2+]v were observed in individual varicosities, with coupling in the increase of delta [Ca2+]v between varicosities. 7. The presynaptic alpha 2-receptor antagonist yohimbine (10 microM) increased the amplitude of delta [Ca2+]v in response to five impulses (5 Hz) by 54 +/- 14%, while the alpha 2-receptor agonist clonidine (1 microM) decreased the delta [Ca2+]v by 55 +/- 4%. 8. These results are discussed in terms of the hypotheses that the increased probability for secretion at sympathetic nerve terminals which accompanies facilitation and augmentation is due to the residual delta [Ca2+]v remaining after the calcium influx following impulses and that noradrenaline acts presynaptically to decrease the probability of secretion by modifying calcium influx.
Collapse
Affiliation(s)
- K L Brain
- Department of Physiology F13, University of Sydney, NSW, Australia
| | | |
Collapse
|
139
|
Cleves AE, Clift-O'Grady L, Kelly RB. ATP-dependent formation of free synaptic vesicles from PC12 membranes in vitro. Neurochem Res 1997; 22:933-40. [PMID: 9239748 DOI: 10.1023/a:1022462523315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Synaptic vesicles are released from membranes during incubation at 37 degrees C in the presence of ATP (adenosine triphosphate). The donor membranes are a rapidly sedimenting fraction derived from the neuroendocrine cell line PC12 (pheochromocytoma 12). These starting membranes contain the synaptic vesicle proteins, synaptophysin and SV2, and the endosomal markers transferrin receptor and cation-independent MPR (mannose 6-phosphate receptor). Incubating the membranes in vitro increased the amount of organelles that migrate as synaptic vesicles in velocity sedimentation gradients. The synaptic vesicle fractions that contain both synaptophysin and SV2 do not contain endosomal markers. A synaptic vesicle increase in vitro is time-, cytosol-, ATP- and temperature-dependent and is inhibited by NEM (N-ethylmaleimide), BFA (brefeldin A) and aluminum fluoride, but not GTP gamma S (guanosine-5'O-C3-thiotriphosphate). The production of synaptic vesicles under these conditions is unlike the de novo generation of vesicles from endosomes (1). Incubation in vitro under the conditions described here may allow the final stages of synaptic vesicle formation, uncoating or undocking, to occur but not the initiation of formation de novo.
Collapse
Affiliation(s)
- A E Cleves
- Department of Biochemistry & Biophysics, University of California, San Francisco 94143-0534, USA
| | | | | |
Collapse
|
140
|
Angleson JK, Betz WJ. Monitoring secretion in real time: capacitance, amperometry and fluorescence compared. Trends Neurosci 1997; 20:281-7. [PMID: 9223217 DOI: 10.1016/s0166-2236(97)01083-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Techniques for measuring exocytosis, endocytosis and vesicle cycling in living cells in real time have resulted in a rapid expansion in the knowledge of these processes in neurons and other secretory cells. Several experimental approaches, developed during the past decade, have played key roles in this expansion. In this review we focus on three techniques: electrophysiological methods for monitoring membrane capacitance, electrochemical methods for detecting released secretory contents and optical methods for imaging membranes of endosomes and recycled vesicles that are stained with fluorescent dyes. Each technique has contributed unique and complementary information about the vesicle cycle, advancing our knowledge of the kinetics of membrane fusion and retrieval, the identity of the secretory contents and the spatial patterns and directional pathways involved in secretory membrane recycling. Naturally, each technique has inherent limitations; some of these shortcomings have recently been resolved by using more than one method simultaneously.
Collapse
Affiliation(s)
- J K Angleson
- Dept of Physiology, University of Colorado Medical School, Denver 80262, USA
| | | |
Collapse
|
141
|
Abstract
Rapid membrane recycling in nerve terminals is required to maintain rapid synaptic transmission. Following the fusion of synaptic vesicles with synaptic plasma membranes, recycling can occur via clathrin-coated vesicles (CCVs) [1-3]. The fate of these vesicles is uncertain: they could simply uncoat and acquire other proteins from the cytosol to regenerate synaptic vesicles or they may fuse with endosomal structures from which synaptic vesicles could then bud. We have purified both CCVs and synaptic vesicles from rat brain, and measured the ability of these vesicle fractions to take up the excitatory neurotransmitter glutamic acid. We found that the normalized levels of glutamate uptake by the two types of vesicle were very similar. For each vesicle fraction, uptake required ATP and Cl- and could be fully inhibited by the specific vacuolar proton pump (v-ATPase) inhibitor concanamycin. We suggest that this ability to refill vesicles with neurotransmitter at the earliest intermediate on the recycling pathway - the CCV - may allow uncoated vesicles to immediately enter the releasable pool without sacrificing the quantal nature of neurotransmitter release.
Collapse
Affiliation(s)
- I A Prior
- Physiological Laboratory, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | | |
Collapse
|
142
|
Parducz A, Corrèges P, Sors P, Dunant Y. Zinc blocks acetylcholine release but not vesicle fusion at the Torpedo nerve-electroplate junction. Eur J Neurosci 1997; 9:732-8. [PMID: 9153579 DOI: 10.1111/j.1460-9568.1997.tb01421.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The combined effects of Zn2+ treatment and nerve stimulation were studied on cholinergic synapses of the Torpedo marmorata electric organ. Incubation of small pieces of electric tissue in 250 microM ZnCl2 for 2 h irreversibly blocked synaptic transmission by inhibiting the release of acetylcholine. This treatment, however, did not cause any significant fine structural alteration in the nerve-electroplate junctions. Preparations treated with Zn2+ were submitted to electrical stimulation. In spite of the fact that no transmitter was released, stimulation resulted in the accumulation of calcium in the tissue, and in marked ultrastructural changes. The density of synaptic vesicles was significantly reduced and many of the remaining vesicles were found in close proximity to the presynaptic membrane. Images of vesicles fused with the plasmalemma were abundant, indicating that numerous vesicles were caught in different phases of exocytosis or endocytosis. Freeze-fracture replicas made from quick-frozen or chemically fixed material showed a high number of vesicle openings (pits) in the presynaptic plasmalemma. No recovery occurred even after a prolonged period of rest, indicating that retrieval was impaired by zinc treatment. In conclusion, the present experimental paradigm created an unusual situation where fusion of synaptic vesicles to the plasma membrane could be activated independently from the release of transmitter.
Collapse
Affiliation(s)
- A Parducz
- Pharmacologie, Faculté de Médicine, CMU, Genève, Switzerland
| | | | | | | |
Collapse
|
143
|
Connor EA, Dunaevsky A, Griffiths DJ, Hardwick JC, Parsons RL. Transmitter release differs at snake twitch and tonic endplates during potassium-induced nerve terminal depolarization. J Neurophysiol 1997; 77:749-60. [PMID: 9065847 DOI: 10.1152/jn.1997.77.2.749] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Twitch and tonic muscle fibers of snake skeletal muscle differ in their synpatic as well as mechanical properties. These experiments were aimed at detemining the basis of the difference in vesicular release properties of nerve terminals at twitch and tonic endplates. Miniature endplate currents (MEPCs) were recorded from voltage-clamped garter snake muscle fibers depolarized by high K+ in either a control Ca2+ or high-Ca2+ solution. MEPC frequency increased at twitch and tonic endplates and remained elevated for 8 h during depolarization in control Ca2+. At twitch endplates depolarized in the presence of high Ca2+, an increase in MEPC frequency was followed by a progressive decline. In contrast, MEPC frequency remained elevated in high Ca2+ at tonic endplates. The observed decrease in MEPC frequency at depolarized twitch endplates in high Ca2+ was not a function of the level of depolarization or initial MEPC frequency, nor was it due to a reduction in MEPC amplitude and loss of MEPCs in baseline noise. An optical assay of presynaptic function in which the activity-dependent dye FM1-43 was used confirmed that quantal releases differs at twitch and tonic endplates. Most twitch nerve terminals were labeled by FM1-43 during prolonged depolarization with control Ca2+ or after brief depolarization with high Ca2+. In contrast, the number of twitch nerve terminals and the degree to which they were stained was greatly reduced after prolonged exposure to high K+ and high Ca2+, whereas depolarized tonic endplates were well stained by FM1-43 during brief and prolonged exposure to high Ca2+. FM1-43 staining also revealed variable levels of quantal release between individual boutons at twitch endplates after prolonged depolarization in high-Ca2+ solution. The observed reduction in presynaptic function at twitch nerve terminals after prolonged depolarization in high-Ca2+ solution was reversible and therefore not due to irreversible damage to terminal boutons. MEPC frequency increased at both twitch and tonic endplates when either Sr2+ or Ba2+ was substituted for high Ca2+ during K(+)-induced depolarization. Over time, in Sr2+ or Ba2+ solutions, MEPC frequency remained elevated at tonic endplates but declined at twitch endplates with a time course similar to that observed in high Ca2+. MEPC amplitudes at both endplates remained constant. We conclude that the regulation of quantal release differs in nerve terminals innervating twitch and tonic endplates and postulate that differential intraterminal accumulation of Ca2+ may underlie the observed difference in presynaptic function.
Collapse
Affiliation(s)
- E A Connor
- Department of Biology, University of Massachusetts, Amherst 01003, USA
| | | | | | | | | |
Collapse
|
144
|
Affiliation(s)
- R Rahamimoff
- Department of Physiology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
145
|
Isaacson JS, Hille B. GABA(B)-mediated presynaptic inhibition of excitatory transmission and synaptic vesicle dynamics in cultured hippocampal neurons. Neuron 1997; 18:143-52. [PMID: 9010212 DOI: 10.1016/s0896-6273(01)80053-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Local recycling of synaptic vesicle membrane at nerve terminals is necessary to maintain a readily releasable pool of transmitter. To what extent are the dynamics of vesicle recycling subject to modulation? We examined the influence of presynaptic GABA(B) receptors on vesicle dynamics at single synapses using optical imaging of FM1-43 in cultured rat hippocampal neurons. The kinetics of FM1-43 destaining indicate that synapses from a single neuron have a unimodal distribution of release probabilities, and GABA(B)-mediated inhibition occurs uniformly at all sites. Electrical and optical recordings from single cells show that the inhibition of excitatory transmission is entirely accounted for by a rapidly reversible reduction of exocytosis. In contrast, GABA(B) receptors do not alter the rate or extent of endocytosis.
Collapse
Affiliation(s)
- J S Isaacson
- Department of Physiology and Biophysics, University of Washington, Seattle 98195-7290, USA
| | | |
Collapse
|
146
|
Bennett MR. Neuromuscular transmission at an active zone: the secretosome hypothesis. JOURNAL OF NEUROCYTOLOGY 1996; 25:869-91. [PMID: 9023731 DOI: 10.1007/bf02284848] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- M R Bennett
- Department of Physiology, University of Sydney, NSW, Australia
| |
Collapse
|
147
|
Abstract
Multielectrode recordings were used to identify and measure the axonal inputs to each end plate on contiguous surface fibers covering about 25% of the Xenopus pectoralis muscle in mature and developing animals. The mature innervation pattern was remarkably precise. Individual axons tended to innervate fibers of similar input resistance (R(in)) in compact motor units restricted to only a portion of the region studied. Motor units comprising fibers of similar R(in) overlapped mainly near their borders. Most fibers had two end plates. In more than 80% of these fibers, both end plates received input from the same axon. In 57%, this was the only input to both end plates. This implies a powerful mechanism for excluding or eliminating inputs from other axons. About 16% of the mature junctions showed focal polyneuronal innervation, with the weaker end plate potential component often less than 1 mV in noncurarized preparation. However, we have no evidence that the weaker inputs were being eliminated. During development, motor units became more compact, which was associated with synapse elimination; but from the earliest times studied, soon after metamorphosis when many fibers were adding second end plates, a majority of those that had two end plates were innervated at both sites by the same axon.
Collapse
Affiliation(s)
- A D Grinnell
- Department of Physiology, Jerry Lewis Neuromuscular Research Unit, UCLA School of Medicine 90095, USA.
| | | |
Collapse
|
148
|
Affiliation(s)
- T A Ryan
- Molecular and Cellular Physiology, Stanford University Medical School, California 94305, USA
| |
Collapse
|
149
|
Abstract
Endocytosis and exocytosis were investigated in the synaptic terminal of retinal bipolar cells by monitoring the uptake and loss of the fluorescent dye FM1-43. Depolarization in the presence of Ca2+ stimulated a continuous cycle of exocytosis and endocytosis that was approximately balanced at rates up to 3800 vesicles per s. Vesicles became available for exocytosis within 1 min of endocytosis, and about 700,000 releasable vesicles were specifically localized to a region within 2 microm of the plasma membrane. Release of caged Ca2+ using NP-EGTA while simultaneously monitoring cytosolic Ca2+ with Fura-2 indicated that continuous exocytosis was stimulated by sub-micromolar levels of Ca2+. It has been suggested that the ribbon synapse of bipolar cells only supports transient exocytosis, but our results demonstrate that this synapse is specialized for the continuous secretion of neurotransmitter.
Collapse
Affiliation(s)
- L Lagnado
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | |
Collapse
|
150
|
Abstract
In this paper, evidence is presented that two distinct synaptic vesicle recycling pathways exist within a single terminal. One pathway emanates from the active zone, has a fast time course, involves no intermediate structures, and is blocked by exposure to high Mg2+/low Ca2+ saline, while the second pathway emanates at sites away from the active zone, has a slower time course, involves an endosomal intermediate, and is not sensitive to high Mg2+/low Ca2+. To visualize these two recycling pathways, the temperature-sensitive Drosophila mutant, shibire, in which vesicle recycling is normal at 19 degrees C but is blocked at 29 degrees C, was used. With exposure to 29 degrees C, complete vesicle depletion occurs as exocytosis proceeds while endocytosis is blocked. When the temperature is lowered to 26 degrees C, vesicle recycling membrane begins to accumulate as invaginations of the plasmalemma, but pinch-off is blocked. Under these experimental conditions, it was possible to distinguish the two separate pathways by electron microscopic analysis. These two pathways were further characterized by observing the normal recycling process at the permissive temperature, 19 degrees C. It is suggested that the function of these two recycling pathways might be to produce two distinct vesicle populations: the active zone and nonactive zone populations. The possibility that these two populations have different release characteristics and functions is discussed.
Collapse
Affiliation(s)
- J H Koenig
- Division of Neurosciences, Beckman Research Institute, City of Hope, Duarte, California 91010, USA.
| | | |
Collapse
|