101
|
Anton SD, Woods AJ, Ashizawa T, Barb D, Buford TW, Carter CS, Clark DJ, Cohen RA, Corbett DB, Cruz-Almeida Y, Dotson V, Ebner N, Efron PA, Fillingim RB, Foster TC, Gundermann DM, Joseph AM, Karabetian C, Leeuwenburgh C, Manini TM, Marsiske M, Mankowski RT, Mutchie HL, Perri MG, Ranka S, Rashidi P, Sandesara B, Scarpace PJ, Sibille KT, Solberg LM, Someya S, Uphold C, Wohlgemuth S, Wu SS, Pahor M. Successful aging: Advancing the science of physical independence in older adults. Ageing Res Rev 2015; 24:304-27. [PMID: 26462882 DOI: 10.1016/j.arr.2015.09.005] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/08/2015] [Accepted: 09/30/2015] [Indexed: 02/08/2023]
Abstract
The concept of 'successful aging' has long intrigued the scientific community. Despite this long-standing interest, a consensus definition has proven to be a difficult task, due to the inherent challenge involved in defining such a complex, multi-dimensional phenomenon. The lack of a clear set of defining characteristics for the construct of successful aging has made comparison of findings across studies difficult and has limited advances in aging research. A consensus on markers of successful aging is furthest developed is the domain of physical functioning. For example, walking speed appears to be an excellent surrogate marker of overall health and predicts the maintenance of physical independence, a cornerstone of successful aging. The purpose of the present article is to provide an overview and discussion of specific health conditions, behavioral factors, and biological mechanisms that mark declining mobility and physical function and promising interventions to counter these effects. With life expectancy continuing to increase in the United States and developed countries throughout the world, there is an increasing public health focus on the maintenance of physical independence among all older adults.
Collapse
|
102
|
Suppa A, Rocchi L, Li Voti P, Papazachariadis O, Casciato S, Di Bonaventura C, Giallonardo A, Berardelli A. The Photoparoxysmal Response Reflects Abnormal Early Visuomotor Integration in the Human Motor Cortex. Brain Stimul 2015; 8:1151-61. [DOI: 10.1016/j.brs.2015.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 04/23/2015] [Accepted: 05/22/2015] [Indexed: 11/29/2022] Open
|
103
|
Cheng CPW, Chan SSM, Mak ADP, Chan WC, Cheng ST, Shi L, Wang D, Lam LCW. Would transcranial direct current stimulation (tDCS) enhance the effects of working memory training in older adults with mild neurocognitive disorder due to Alzheimer's disease: study protocol for a randomized controlled trial. Trials 2015; 16:479. [PMID: 26499250 PMCID: PMC4619532 DOI: 10.1186/s13063-015-0999-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/06/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND There has been longstanding interesting in cognitive training for older adults with cognitive impairment. In this study, we will investigate the effects of working memory training, and explore augmentation strategies that could possibly consolidate the effects in older adults with mild neurocognitive disorder. Transcranial direct current stimulation (tDCS) has been demonstrated to affect the neuronal excitability and reported to enhance memory performance. As tDCS may also modulate cognitive function through changes in neuroplastic response, it would be adopted as an augmentation strategy for working memory training in the present study. METHODS/DESIGN This is a 4-week intervention double-blind randomized controlled trial (RCT) of tDCS. Chinese older adults (aged 60 to 90 years) with mild neurocognitive disorder due to Alzheimer's disease (DSM-5 criteria) would be randomized into a 4-week intervention of either tDCS-working memory (DCS-WM), tDCS-control cognitive training (DCS-CC), and sham tDCS-working memory (WM-CD) groups. The primary outcome would be working memory test - the n-back task performance and the Chinese version of the Alzheimer's Disease Assessment Scale - Cognitive Subscale (ADAS-Cog). Secondary outcomes would be test performance of specific cognitive domains and mood. Intention-to-treat analysis would be carried out. Changes of efficacy indicators with time and intervention would be tested with mixed effect models. DISCUSSION This study adopts the theory of neuroplasticity to evaluate the potential cognitive benefits of non-invasive electrical brain stimulation, working memory training and dual stimulation in older adults at risk of cognitive decline. It would also examine the tolerability, program adherence and adverse effects of this novel intervention. Information would be helpful for further research of dementia prevention studies. TRIAL REGISTRATION ChiCTR-TRC- 14005036 Date of registration: 31 July 2014.
Collapse
Affiliation(s)
- Calvin P W Cheng
- Department of Psychiatry, Tai Po Hospital, 9 Chuen On Road, Tai Po, Hong Kong.
| | - Sandra S M Chan
- Department of Psychiatry, The Chinese University of Hong Kong, Rm G25, G/F, Multi-center, Tai Po Hospital, 9 Chuen On Road, Tai Po, Hong Kong.
| | - Arthur D P Mak
- Department of Psychiatry, The Chinese University of Hong Kong, Rm G25, G/F, Multi-center, Tai Po Hospital, 9 Chuen On Road, Tai Po, Hong Kong.
| | - Wai Chi Chan
- Department of Psychiatry, The University of Hong Kong, 3/F, HKJC for Interdisciplinary Research, 5 Sassoon Road, Pokfulam, Hong Kong.
| | - Sheung Tak Cheng
- Department of Health and Physical Education, Hong Kong Institute of Education, Rm D4-2/F-03, Block D4, 10 Lo Ping Road, Tai Po, NT, Hong Kong.
| | - Lin Shi
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, 9/F, Lui Che Woo Sciences Building, Prince of Wales Hospital, Shatin, Hong Kong.
| | - Defeng Wang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong.
| | - Linda Chiu-Wa Lam
- Department of Psychiatry, The Chinese University of Hong Kong, Rm G25, G/F, Multi-center, Tai Po Hospital, 9 Chuen On Road, Tai Po, Hong Kong.
| |
Collapse
|
104
|
Palm U, Ayache SS, Padberg F, Lefaucheur JP. [Transcranial direct current stimulation (tDCS) for depression: Results of nearly a decade of clinical research]. Encephale 2015. [PMID: 26216792 DOI: 10.1016/j.encep.2015.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Since 2006 transcranial direct current stimulation (tDCS) has been investigated in the treatment of depression. In this review, we discuss the implications and clinical perspectives that tDCS may have as a therapeutic tool in depression from the results reported in this domain. METHODS A comprehensive literature review has found nearly thirty articles - all in English - on this topic, corresponding to clinical studies, placebo-controlled or not, case reports and reviews. RESULTS Several meta-analyses showed that the antidepressant effects of active tDCS are significant against placebo, but variable, mainly due to the heterogeneity of the patients included in the studies, for example regarding the resistance to antidepressant treatment. CONCLUSIONS Specific recommendations for the use of tDCS in treating depression may not yet be available, but some elements of good practice can be highlighted. Of particular note is that anodal tDCS of the left prefrontal cortex at 2mA for 20 minutes per day has a potential therapeutic value without risk of significant side effects: tDCS offers safe conditions for clinical use in the treatment of depression.
Collapse
Affiliation(s)
- U Palm
- EA 4391, faculté de médecine, université Paris-Est Créteil, 94000 Créteil, France; Département de psychiatrie et psychothérapie, laboratoire de stimulation non invasive du cerveau et de neuroplasticité, université Ludwig-Maximilian, 80336 Munich, Allemagne.
| | - S S Ayache
- EA 4391, faculté de médecine, université Paris-Est Créteil, 94000 Créteil, France; Explorations fonctionnelles, service de physiologie, hôpital Henri-Mondor, Assistance publique-Hôpitaux de Paris, 94000 Créteil, France
| | - F Padberg
- Département de psychiatrie et psychothérapie, laboratoire de stimulation non invasive du cerveau et de neuroplasticité, université Ludwig-Maximilian, 80336 Munich, Allemagne
| | - J-P Lefaucheur
- EA 4391, faculté de médecine, université Paris-Est Créteil, 94000 Créteil, France; Explorations fonctionnelles, service de physiologie, hôpital Henri-Mondor, Assistance publique-Hôpitaux de Paris, 94000 Créteil, France
| |
Collapse
|
105
|
Shin YI, Foerster Á, Nitsche MA. Reprint of: Transcranial direct current stimulation (tDCS) – Application in neuropsychology. Neuropsychologia 2015; 74:74-95. [DOI: 10.1016/j.neuropsychologia.2015.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 01/07/2023]
|
106
|
|
107
|
Li LM, Uehara K, Hanakawa T. The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Front Cell Neurosci 2015; 9:181. [PMID: 26029052 PMCID: PMC4428123 DOI: 10.3389/fncel.2015.00181] [Citation(s) in RCA: 292] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 04/25/2015] [Indexed: 01/08/2023] Open
Abstract
There has been an explosion of research using transcranial direct current stimulation (tDCS) for investigating and modulating human cognitive and motor function in healthy populations. It has also been used in many studies seeking to improve deficits in disease populations. With the slew of studies reporting “promising results” for everything from motor recovery after stroke to boosting memory function, one could be easily seduced by the idea of tDCS being the next panacea for all neurological ills. However, huge variability exists in the reported effects of tDCS, with great variability in the effect sizes and even contradictory results reported. In this review, we consider the interindividual factors that may contribute to this variability. In particular, we discuss the importance of baseline neuronal state and features, anatomy, age and the inherent variability in the injured brain. We additionally consider how interindividual variability affects the results of motor-evoked potential (MEP) testing with transcranial magnetic stimulation (TMS), which, in turn, can lead to apparent variability in response to tDCS in motor studies.
Collapse
Affiliation(s)
- Lucia M Li
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry Tokyo, Japan ; Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Restorative Neurosciences, Imperial College London London, UK
| | - Kazumasa Uehara
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry Tokyo, Japan ; Research Fellow of the Japan Society for the Promotion of Science Tokyo Japan
| | - Takashi Hanakawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry Tokyo, Japan
| |
Collapse
|
108
|
Vidal-Piñeiro D, Martín-Trias P, Falcón C, Bargalló N, Clemente IC, Valls-Solé J, Junqué C, Pascual-Leone A, Bartrés-Faz D. Neurochemical Modulation in Posteromedial Default-mode Network Cortex Induced by Transcranial Magnetic Stimulation. Brain Stimul 2015; 8:937-44. [PMID: 25981159 DOI: 10.1016/j.brs.2015.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The Default Mode Network (DMN) is severely compromised in several psychiatric and neurodegenerative disorders where plasticity alterations are observed. Glutamate and GABA are the major excitatory and inhibitory brain neurotransmitters respectively and are strongly related to plasticity responses and large-scale network expression. OBJECTIVE To investigate whether regional Glx (Glutamate + Glutamine) and GABA could be modulated within the DMN after experimentally-controlled induction of plasticity and to study the effect of intrinsic connectivity over brain responses to stimulation. METHODS We applied individually-guided neuronavigated Theta Burst Stimulation (TBS) to the left inferior parietal lobe (IPL) in-between two magnetic resonance spectroscopy (MRS) acquisitions to 36 young subjects. A resting-state fMRI sequence was also acquired before stimulation. RESULTS After intermittent TBS, distal GABA increases in posteromedial DMN areas were observed. Instead, no significant changes were detected locally, in left IPL areas. Neurotransmitter modulation in posteromedial areas was related to baseline fMRI connectivity between this region and the TBS-targeted area. CONCLUSIONS The prediction of neurotransmitter modulation by connectivity highlights the relevance of connectivity patterns to understand brain responses to plasticity-inducing protocols. The ability to modulate GABA in a key core of the DMN by means of TBS may open new avenues to evaluate plasticity mechanisms in a key area for major neurodegenerative and psychiatric conditions.
Collapse
Affiliation(s)
- Dídac Vidal-Piñeiro
- Department of Psychiatry and Clinical Psychobiology, Faculty of Medicine, University of Barcelona, Spain
| | - Pablo Martín-Trias
- Department of Psychiatry and Clinical Psychobiology, Faculty of Medicine, University of Barcelona, Spain
| | - Carles Falcón
- Medical Imaging Group, University of Barcelona, CIBER-BBN, Spain
| | - Núria Bargalló
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; Neuroradiology Section, Radiology Service, Centre de Diagnòstic per la Imatge, Hospital Clinic de Barcelona, Spain
| | - Imma C Clemente
- Department of Psychiatry and Clinical Psychobiology, Faculty of Psychology, University of Barcelona, Spain
| | - Josep Valls-Solé
- EMG Unit, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Carme Junqué
- Department of Psychiatry and Clinical Psychobiology, Faculty of Medicine, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Institut Universitari de Neurorehabilitació Guttmann, Universitat Autònoma de Barcelona, Badalona, Spain
| | - David Bartrés-Faz
- Department of Psychiatry and Clinical Psychobiology, Faculty of Medicine, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain.
| |
Collapse
|
109
|
Plewnia C, Schroeder PA, Wolkenstein L. Targeting the biased brain: non-invasive brain stimulation to ameliorate cognitive control. Lancet Psychiatry 2015; 2:351-6. [PMID: 26360088 DOI: 10.1016/s2215-0366(15)00056-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/05/2015] [Indexed: 01/05/2023]
Abstract
Non-invasive brain stimulation has become important for the investigation of healthy and impaired neuronal functioning. Moreover, non-invasive brain stimulation has emerged as a new means of psychiatric treatment, although the mechanisms of action are still not understood and the optimal mode of application is still under development. Dysfunctional cognitive control is a central characteristic of various psychiatric disorders and is associated with dysregulations of prefrontal cortex activity and biased information processing. With non-invasive brain stimulation, enhancement and reduction of prefrontal cortex activity were shown to ameliorate and impair cognitive control, respectively. These findings suggest a neurocognitive mechanism of therapeutic effects and that non-invasive brain stimulation can be combined with training to target dysfunctional cognitive control and related clinical symptomatology. Nevertheless, the intra-individual and inter-individual diversity of neurocognitive processes, the multiplicity of possible stimulation parameters, and the complexity of interactions between those factors pose considerable challenges for interpretation of these findings and their clinical application.
Collapse
Affiliation(s)
- Christian Plewnia
- Department of Psychiatry and Psychotherapy, Neurophysiology & Interventional Neuropsychiatry, University of Tübingen, D-72076 Tübingen, Germany.
| | - Philipp A Schroeder
- Department of Psychiatry and Psychotherapy, Neurophysiology & Interventional Neuropsychiatry, University of Tübingen, D-72076 Tübingen, Germany
| | - Larissa Wolkenstein
- Department of Clinical Psychology, University of Tübingen, D-72076 Tübingen, Germany
| |
Collapse
|
110
|
Transcranial direct current stimulation (tDCS) – Application in neuropsychology. Neuropsychologia 2015; 69:154-75. [DOI: 10.1016/j.neuropsychologia.2015.02.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 12/21/2022]
|
111
|
Pelletier SJ, Cicchetti F. Cellular and molecular mechanisms of action of transcranial direct current stimulation: evidence from in vitro and in vivo models. Int J Neuropsychopharmacol 2015; 18:pyu047. [PMID: 25522391 PMCID: PMC4368894 DOI: 10.1093/ijnp/pyu047] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transcranial direct current stimulation is a noninvasive technique that has been experimentally tested for a number of psychiatric and neurological conditions. Preliminary observations suggest that this approach can indeed influence a number of cellular and molecular pathways that may be disease relevant. However, the mechanisms of action underlying its beneficial effects are largely unknown and need to be better understood to allow this therapy to be used optimally. In this review, we summarize the physiological responses observed in vitro and in vivo, with a particular emphasis on cellular and molecular cascades associated with inflammation, angiogenesis, neurogenesis, and neuroplasticity recruited by direct current stimulation, a topic that has been largely neglected in the literature. A better understanding of the neural responses to transcranial direct current stimulation is critical if this therapy is to be used in large-scale clinical trials with a view of being routinely offered to patients suffering from various conditions affecting the central nervous system.
Collapse
Affiliation(s)
| | - Francesca Cicchetti
- Centre Hospitalier Universitaire de Québec, Axe Neuroscience, Québec, QC, Canada (Mr Pelletier and Dr Cicchetti); Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada (Mr Pelletier and Dr Cicchetti).
| |
Collapse
|
112
|
Abad VC, Guilleminault C. Pharmacological treatment of sleep disorders and its relationship with neuroplasticity. Curr Top Behav Neurosci 2015; 25:503-53. [PMID: 25585962 DOI: 10.1007/7854_2014_365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sleep and wakefulness are regulated by complex brain circuits located in the brain stem, thalamus, subthalamus, hypothalamus, basal forebrain, and cerebral cortex. Wakefulness and NREM and REM sleep are modulated by the interactions between neurotransmitters that promote arousal and neurotransmitters that promote sleep. Various lines of evidence suggest that sleep disorders may negatively affect neuronal plasticity and cognitive function. Pharmacological treatments may alleviate these effects but may also have adverse side effects by themselves. This chapter discusses the relationship between sleep disorders, pharmacological treatments, and brain plasticity, including the treatment of insomnia, hypersomnias such as narcolepsy, restless legs syndrome (RLS), obstructive sleep apnea (OSA), and parasomnias.
Collapse
Affiliation(s)
- Vivien C Abad
- Psychiatry and Behavioral Science-Division of Sleep Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | | |
Collapse
|
113
|
Bolzoni F, Jankowska E. Presynaptic and postsynaptic effects of local cathodal DC polarization within the spinal cord in anaesthetized animal preparations. J Physiol 2014; 593:947-66. [PMID: 25416625 DOI: 10.1113/jphysiol.2014.285940] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/11/2014] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Trans-spinal DC stimulation affects both postsynaptic neurons and the presynaptic axons providing input to these neurons. In the present study, we show that intraspinally applied cathodal current replicates the effects of trans-spinal direct current stimulation in deeply anaesthetized animals and affects spinal neurons both during the actual current application and during a post-polarization period. Presynaptic effects of local cathodal polarization were expressed in an increase in the excitability of skin afferents (in the dorsal horn) and group Ia afferents (in motor nuclei), both during and at least 30 min after DC application. However, although the postsynaptic facilitation (i.e. more effective) activation of motoneurons by stimuli applied in a motor nucleus was very potent during local DC application, it was only negligible once DC was discontinued. The results suggest that the prolonged effects of cathodal polarization are primarily associated with changes in synaptic transmission. ABSTRACT The present study aimed to compare presynaptic and postsynaptic actions of direct current polarization in the spinal cord, focusing on DC effects on primary afferents and motoneurons. To reduce the directly affected spinal cord region, a weak polarizing direct current (0.1-0.3 μA) was applied locally in deeply anaesthetized cats and rats; within the hindlimb motor nuclei in the caudal lumbar segments, or in the dorsal horn within the terminal projection area of low threshold skin afferents. Changes in the excitability of primary afferents activated by intraspinal stimuli (20-50 μA) were estimated using increases or decreases in compound action potentials recorded from the dorsal roots or peripheral nerves as their measure. Changes in the postsynaptic actions of the afferents were assessed from intracellularly recorded monosynaptic EPSPs in hindlimb motoneurons and monosynaptic extracellular field potentials (evoked by group Ia afferents in motor nuclei, or by low threshold cutaneous afferents in the dorsal horn). The excitability of motoneurons activated by intraspinal stimuli was assessed using intracellular records or motoneuronal discharges recorded from a ventral root or a muscle nerve. Cathodal polarization was found to affect motoneurons and afferents providing input to them to a different extent. The excitability of both was markedly increased during DC application, although post-polarization facilitation was found to involve presynaptic afferents and some of their postsynaptic actions, but only negligibly motoneurons themselves. Taken together, these results indicate that long-lasting post-polarization facilitation of spinal activity induced by locally applied cathodal current primarily reflects the facilitation of synaptic transmission.
Collapse
Affiliation(s)
- F Bolzoni
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Human Physiology Section of the DEPT, Università degli Studi di Milano, Milano, Italy
| | | |
Collapse
|
114
|
Reato D, Bikson M, Parra LC. Lasting modulation of in vitro oscillatory activity with weak direct current stimulation. J Neurophysiol 2014; 113:1334-41. [PMID: 25505103 DOI: 10.1152/jn.00208.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is emerging as a versatile tool to affect brain function. While the acute neurophysiological effects of stimulation are well understood, little is know about the long-term effects. One hypothesis is that stimulation modulates ongoing neural activity, which then translates into lasting effects via physiological plasticity. Here we used carbachol-induced gamma oscillations in hippocampal rat slices to establish whether prolonged constant current stimulation has a lasting effect on endogenous neural activity. During 10 min of stimulation, the power and frequency of gamma oscillations, as well as multiunit activity, were modulated in a polarity specific manner. Remarkably, the effects on power and multiunit activity persisted for more than 10 min after stimulation terminated. Using a computational model we propose that altered synaptic efficacy in excitatory and inhibitory pathways could be the source of these lasting effects. Future experimental studies using this novel in vitro preparation may be able to confirm or refute the proposed hypothesis.
Collapse
Affiliation(s)
- Davide Reato
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York
| | - Lucas C Parra
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York
| |
Collapse
|
115
|
Ziemann U, Reis J, Schwenkreis P, Rosanova M, Strafella A, Badawy R, Müller-Dahlhaus F. TMS and drugs revisited 2014. Clin Neurophysiol 2014; 126:1847-68. [PMID: 25534482 DOI: 10.1016/j.clinph.2014.08.028] [Citation(s) in RCA: 483] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/03/2014] [Accepted: 08/24/2014] [Indexed: 12/18/2022]
Abstract
The combination of pharmacology and transcranial magnetic stimulation to study the effects of drugs on TMS-evoked EMG responses (pharmaco-TMS-EMG) has considerably improved our understanding of the effects of TMS on the human brain. Ten years have elapsed since an influential review on this topic has been published in this journal (Ziemann, 2004). Since then, several major developments have taken place: TMS has been combined with EEG to measure TMS evoked responses directly from brain activity rather than by motor evoked potentials in a muscle, and pharmacological characterization of the TMS-evoked EEG potentials, although still in its infancy, has started (pharmaco-TMS-EEG). Furthermore, the knowledge from pharmaco-TMS-EMG that has been primarily obtained in healthy subjects is now applied to clinical settings, for instance, to monitor or even predict clinical drug responses in neurological or psychiatric patients. Finally, pharmaco-TMS-EMG has been applied to understand the effects of CNS active drugs on non-invasive brain stimulation induced long-term potentiation-like and long-term depression-like plasticity. This is a new field that may help to develop rationales of pharmacological treatment for enhancement of recovery and re-learning after CNS lesions. This up-dated review will highlight important knowledge and recent advances in the contribution of pharmaco-TMS-EMG and pharmaco-TMS-EEG to our understanding of normal and dysfunctional excitability, connectivity and plasticity of the human brain.
Collapse
Affiliation(s)
- Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University Tübingen, Tübingen, Germany.
| | - Janine Reis
- Department of Neurology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Peter Schwenkreis
- Department of Neurology, BG-University Hospital Bergmannsheil Bochum, Bochum, Germany
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy; Fondazione Europea di Ricerca Biomedica, FERB Onlus, Milan, Italy
| | - Antonio Strafella
- Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, University of Toronto, Ontario, Canada; Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Ontario, Canada
| | - Radwa Badawy
- Department of Neurology, Saint Vincent's Hospital, Fitzroy, The University of Melbourne, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Florian Müller-Dahlhaus
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University Tübingen, Tübingen, Germany
| |
Collapse
|
116
|
Di Pino G, Pellegrino G, Assenza G, Capone F, Ferreri F, Formica D, Ranieri F, Tombini M, Ziemann U, Rothwell JC, Di Lazzaro V. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nat Rev Neurol 2014; 10:597-608. [DOI: 10.1038/nrneurol.2014.162] [Citation(s) in RCA: 480] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
117
|
Abstract
Purpose of review Noninvasive brain stimulation (NIBS) is increasingly used to enhance the recovery of function after stroke. The purpose of this review is to highlight and discuss some unresolved questions that need to be addressed to better understand and exploit the potential of NIBS as a therapeutic tool. Recent findings Recent meta-analyses showed that the treatment effects of NIBS in patients with stroke are rather inconsistent across studies and the evidence for therapeutic efficacy is still uncertain. This raises the question of how NIBS can be developed further to improve its therapeutic efficacy. Summary This review addressed six questions: How does NIBS facilitate the recovery of function after stroke? Which brain regions should be targeted by NIBS? Is there a particularly effective NIBS modality that should be used? Does the location of the stroke influence the therapeutic response? How often should NIBS be repeated? Is the functional state of the brain during or before NIBS relevant to therapeutic efficacy of NIBS? We argue that these questions need to be tackled to obtain sufficient mechanistic understanding of how NIBS facilitates the recovery of function. This knowledge will be critical to fully unfold the therapeutic effects of NIBS and will pave the way towards adaptive NIBS protocols, in which NIBS is tailored to the individual patient.
Collapse
|
118
|
Bączyk M, Jankowska E. Presynaptic actions of transcranial and local direct current stimulation in the red nucleus. J Physiol 2014; 592:4313-28. [PMID: 25085891 DOI: 10.1113/jphysiol.2014.276691] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The main aim of the present study was to examine to what extent long-lasting subcortical actions of transcranial direct current stimulation (tDCS) may be related to its presynaptic actions. This was investigated in the red nucleus, where tDCS was recently demonstrated to facilitate transmission between interpositorubral and rubrospinal neurons. Changes in the excitability of preterminal axonal branches of interpositorubral neurons close to rubrospinal neurons were investigated during and after tDCS (0.2 mA) applied over the sensorimotor cortical area in deeply anaesthetized rats and cats. As a measure of the excitability, we used the probability of antidromic activation of individual interpositorubral neurons by electrical stimuli applied in the red nucleus. Our second aim was to compare effects of weak (≤1 μA) direct current applied within the red nucleus with effects of tDCS to allow the use of local depolarization in a further analysis of mechanisms of tDCS instead of widespread and more difficult to control depolarization evoked by distant electrodes. Local cathodal polarization was found to replicate all effects of cathodal tDCS hitherto demonstrated in the rat, including long-lasting facilitation of trans-synaptically evoked descending volleys and trisynaptically evoked EMG responses in neck muscles. It also replicated all effects of anodal tDCS in the cat. In both species, it increased the excitability of preterminal axonal branches of interpositorubral neurons up to 1 h post-tDCS. Local anodal polarization evoked opposite effects. We thus show that presynaptic actions of polarizing direct current may contribute to both immediate and prolonged effects of tDCS.
Collapse
Affiliation(s)
- M Bączyk
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30, Göteborg, Sweden Department of Neurobiology, University School of Physical Education, 61-871, Poznań, Poland
| | - E Jankowska
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30, Göteborg, Sweden
| |
Collapse
|
119
|
Müller-Dahlhaus F, Vlachos A. Unraveling the cellular and molecular mechanisms of repetitive magnetic stimulation. Front Mol Neurosci 2013; 6:50. [PMID: 24381540 PMCID: PMC3865432 DOI: 10.3389/fnmol.2013.00050] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 11/29/2013] [Indexed: 11/13/2022] Open
Abstract
Despite numerous clinical studies, which have investigated the therapeutic potential of repetitive transcranial magnetic stimulation (rTMS) in various brain diseases, our knowledge of the cellular and molecular mechanisms underlying rTMS-based therapies remains limited. Thus, a deeper understanding of rTMS-induced neural plasticity is required to optimize current treatment protocols. Studies in small animals or appropriate in vitro preparations (including models of brain diseases) provide highly useful experimental approaches in this context. State-of-the-art electrophysiological and live-cell imaging techniques that are well established in basic neuroscience can help answering some of the major questions in the field, such as (i) which neural structures are activated during TMS, (ii) how does rTMS induce Hebbian plasticity, and (iii) are other forms of plasticity (e.g., metaplasticity, structural plasticity) induced by rTMS? We argue that data gained from these studies will support the development of more effective and specific applications of rTMS in clinical practice.
Collapse
Affiliation(s)
- Florian Müller-Dahlhaus
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, Eberhard-Karls-University Tübingen Tübingen, Germany
| | - Andreas Vlachos
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt Frankfurt am Main, Germany
| |
Collapse
|
120
|
Carson RG, Kennedy NC. Modulation of human corticospinal excitability by paired associative stimulation. Front Hum Neurosci 2013; 7:823. [PMID: 24348369 PMCID: PMC3847812 DOI: 10.3389/fnhum.2013.00823] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 11/14/2013] [Indexed: 12/04/2022] Open
Abstract
Paired Associative Stimulation (PAS) has come to prominence as a potential therapeutic intervention for the treatment of brain injury/disease, and as an experimental method with which to investigate Hebbian principles of neural plasticity in humans. Prototypically, a single electrical stimulus is directed to a peripheral nerve in advance of transcranial magnetic stimulation (TMS) delivered to the contralateral primary motor cortex (M1). Repeated pairing of the stimuli (i.e., association) over an extended period may increase or decrease the excitability of corticospinal projections from M1, in manner that depends on the interstimulus interval (ISI). It has been suggested that these effects represent a form of associative long-term potentiation (LTP) and depression (LTD) that bears resemblance to spike-timing dependent plasticity (STDP) as it has been elaborated in animal models. With a large body of empirical evidence having emerged since the cardinal features of PAS were first described, and in light of the variations from the original protocols that have been implemented, it is opportune to consider whether the phenomenology of PAS remains consistent with the characteristic features that were initially disclosed. This assessment necessarily has bearing upon interpretation of the effects of PAS in relation to the specific cellular pathways that are putatively engaged, including those that adhere to the rules of STDP. The balance of evidence suggests that the mechanisms that contribute to the LTP- and LTD-type responses to PAS differ depending on the precise nature of the induction protocol that is used. In addition to emphasizing the requirement for additional explanatory models, in the present analysis we highlight the key features of the PAS phenomenology that require interpretation.
Collapse
Affiliation(s)
- Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin Dublin, Ireland ; School of Psychology, Queen's University Belfast Belfast, UK
| | - Niamh C Kennedy
- School of Psychology, Queen's University Belfast Belfast, UK ; School of Rehabilitation Sciences University of East Anglia Norwich, UK
| |
Collapse
|
121
|
Turner DL, Ramos-Murguialday A, Birbaumer N, Hoffmann U, Luft A. Neurophysiology of robot-mediated training and therapy: a perspective for future use in clinical populations. Front Neurol 2013; 4:184. [PMID: 24312073 PMCID: PMC3826107 DOI: 10.3389/fneur.2013.00184] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/27/2013] [Indexed: 12/28/2022] Open
Abstract
The recovery of functional movements following injury to the central nervous system (CNS) is multifaceted and is accompanied by processes occurring in the injured and non-injured hemispheres of the brain or above/below a spinal cord lesion. The changes in the CNS are the consequence of functional and structural processes collectively termed neuroplasticity and these may occur spontaneously and/or be induced by movement practice. The neurophysiological mechanisms underlying such brain plasticity may take different forms in different types of injury, for example stroke vs. spinal cord injury (SCI). Recovery of movement can be enhanced by intensive, repetitive, variable, and rewarding motor practice. To this end, robots that enable or facilitate repetitive movements have been developed to assist recovery and rehabilitation. Here, we suggest that some elements of robot-mediated training such as assistance and perturbation may have the potential to enhance neuroplasticity. Together the elemental components for developing integrated robot-mediated training protocols may form part of a neurorehabilitation framework alongside those methods already employed by therapists. Robots could thus open up a wider choice of options for delivering movement rehabilitation grounded on the principles underpinning neuroplasticity in the human CNS.
Collapse
Affiliation(s)
- Duncan L Turner
- Neurorehabilitation Unit, University of East London , London , UK ; Lewin Stroke Rehabilitation Unit, Department of Clinical Neurosciences, Cambridge University NHS Foundation Trust , Cambridge , UK
| | | | | | | | | |
Collapse
|
122
|
Rosa AM, Silva MF, Ferreira S, Murta J, Castelo-Branco M. Plasticity in the human visual cortex: an ophthalmology-based perspective. BIOMED RESEARCH INTERNATIONAL 2013; 2013:568354. [PMID: 24205505 PMCID: PMC3800612 DOI: 10.1155/2013/568354] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/05/2013] [Accepted: 08/19/2013] [Indexed: 11/17/2022]
Abstract
Neuroplasticity refers to the ability of the brain to reorganize the function and structure of its connections in response to changes in the environment. Adult human visual cortex shows several manifestations of plasticity, such as perceptual learning and adaptation, working under the top-down influence of attention. Plasticity results from the interplay of several mechanisms, including the GABAergic system, epigenetic factors, mitochondrial activity, and structural remodeling of synaptic connectivity. There is also a downside of plasticity, that is, maladaptive plasticity, in which there are behavioral losses resulting from plasticity changes in the human brain. Understanding plasticity mechanisms could have major implications in the diagnosis and treatment of ocular diseases, such as retinal disorders, cataract and refractive surgery, amblyopia, and in the evaluation of surgical materials and techniques. Furthermore, eliciting plasticity could open new perspectives in the development of strategies that trigger plasticity for better medical and surgical outcomes.
Collapse
Affiliation(s)
- Andreia Martins Rosa
- Departamento de Oftalmologia, Centro Hospitalar e Universitário de Coimbra, 3000 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria Fátima Silva
- Visual Neuroscience Laboratory, IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Sónia Ferreira
- Visual Neuroscience Laboratory, IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Joaquim Murta
- Departamento de Oftalmologia, Centro Hospitalar e Universitário de Coimbra, 3000 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Visual Neuroscience Laboratory, IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Miguel Castelo-Branco
- Visual Neuroscience Laboratory, IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
123
|
Serum levels of brain-derived neurotrophic factor are unchanged after transcranial direct current stimulation in treatment-resistant depression. J Affect Disord 2013; 150:659-63. [PMID: 23664268 DOI: 10.1016/j.jad.2013.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) plays an important role in differentiation and repair of neurons in the adult brain. BDNF serum levels have been found to be lower in depressed patients than in healthy subjects. In a couple of studies, effective antidepressant treatment including electroconvulsive therapy led to an increase in BDNF serum levels. As transcranial direct current stimulation (tDCS) is currently discussed as novel therapeutic intervention in major depression, we investigated BDNF serum levels during tDCS in therapy-resistant depression. METHODS Twenty-two patients with a major depressive episode participated in a double-blind placebo-controlled trial and received randomized cross over treatment with 2 weeks active and 2 weeks sham tDCS (1 or 2 mA for 20 min, anode over the left dorsolateral prefrontal cortex, cathode right supraorbital cortex). RESULTS Clinical assessment only showed a modest and non-significant improvement in HAMD, BDI and CGI in both groups. BDNF serum levels were measured at baseline, after 2 and after 4 weeks. There was neither a significant change of BDNF levels following active tDCS, nor were severity of depressive symptoms and BDNF levels correlated. LIMITATIONS The small sample size, its heterogeneity, the short observation period and a cross-over design without an interval between both conditions. CONCLUSIONS tDCS did not change BDNF serum levels unlike other established antidepressant interventions in this treatment resistant sample. However, larger studies are needed.
Collapse
|
124
|
Kim GW, Ko MH. Facilitation of corticospinal tract excitability by transcranial direct current stimulation combined with voluntary grip exercise. Neurosci Lett 2013; 548:181-4. [DOI: 10.1016/j.neulet.2013.05.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/16/2013] [Accepted: 05/15/2013] [Indexed: 10/26/2022]
|
125
|
Noninvasive brain stimulation: from physiology to network dynamics and back. Nat Neurosci 2013; 16:838-44. [PMID: 23799477 DOI: 10.1038/nn.3422] [Citation(s) in RCA: 388] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/06/2013] [Indexed: 02/07/2023]
Abstract
Noninvasive brain stimulation techniques have been widely used for studying the physiology of the CNS, identifying the functional role of specific brain structures and, more recently, exploring large-scale network dynamics. Here we review key findings that contribute to our understanding of the mechanisms underlying the physiological and behavioral effects of these techniques. We highlight recent innovations using noninvasive stimulation to investigate global brain network dynamics and organization. New combinations of these techniques, in conjunction with neuroimaging, will further advance the utility of their application.
Collapse
|
126
|
Kuo MF, Paulus W, Nitsche MA. Therapeutic effects of non-invasive brain stimulation with direct currents (tDCS) in neuropsychiatric diseases. Neuroimage 2013; 85 Pt 3:948-60. [PMID: 23747962 DOI: 10.1016/j.neuroimage.2013.05.117] [Citation(s) in RCA: 278] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/30/2013] [Accepted: 05/23/2013] [Indexed: 12/19/2022] Open
Abstract
Neuroplasticity, which is the dynamic structural and functional reorganization of central nervous system connectivity due to environmental and internal demands, is recognized as a major physiological basis for adaption of cognition, and behavior, and thus of utmost importance for normal brain function. Pathological alterations of plasticity are increasingly explored as pathophysiological foundation of diverse neurological and psychiatric diseases. Non-invasive brain stimulation techniques (NIBS), such as repetitive transcranial magnetic stimulation (rTMS), and transcranial direct current stimulation (tDCS), are able to induce and modulate neuroplasticity in humans. Therefore, they have potential to alter pathological plasticity on the one hand, and foster physiological plasticity on the other, in neuropsychiatric diseases to reduce symptoms, and enhance rehabilitation. tDCS is an emerging NIBS tool, which induces glutamatergic plasticity via application of relatively weak currents through the scalp in humans. In the last years its efficacy to treat neuropsychiatric diseases has been explored increasingly. In this review, we will give an overview of pathological alterations of plasticity in neuropsychiatric diseases, gather clinical studies involving tDCS to ameliorate symptoms, and discuss future directions of application, with an emphasis on optimizing stimulation effects.
Collapse
Affiliation(s)
- Min-Fang Kuo
- University Medical Center, Clinic for Clinical Neurophysiology, Georg-August-University, Robert-Koch-Str. 40, 37099 Goettingen, Germany.
| | | | | |
Collapse
|
127
|
Palm U, Hasan A, Keeser D, Falkai P, Padberg F. Transcranial random noise stimulation for the treatment of negative symptoms in schizophrenia. Schizophr Res 2013; 146:372-3. [PMID: 23517664 DOI: 10.1016/j.schres.2013.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/19/2013] [Accepted: 03/01/2013] [Indexed: 12/28/2022]
|
128
|
Abstract
Tardive dyskinesia (TDK) includes orobuccolingual movements and "piano-playing" movements of the limbs. It is a movement disorder of delayed onset that can occur in the setting of neuroleptic treatment as well as in other diseases and following treatment with other drugs. The specific pathophysiology resulting in TDK is still not completely understood but possible mechanisms include postsynaptic dopamine receptor hypersensitivity, abnormalities of striatal gamma-aminobutyric acid (GABA) neurons, and degeneration of striatal cholinergic interneurons. More recently, the theory of synaptic plasticity has been proposed. Considering these proposed mechanisms of disease, therapeutic interventions have attempted to manipulate dopamine, GABA, acetylcholine, norepinephrine and serotonin pathways and receptors. The data for the effectiveness of each class of drugs and the side effects were considered in turn.
Collapse
|