101
|
Campbell MD, Marcinek DJ. Evaluation of in vivo mitochondrial bioenergetics in skeletal muscle using NMR and optical methods. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:716-724. [PMID: 26708941 PMCID: PMC4788529 DOI: 10.1016/j.bbadis.2015.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/20/2015] [Accepted: 12/16/2015] [Indexed: 12/13/2022]
Abstract
It is now clear that mitochondria are involved as either a cause or consequence of many chronic diseases. This central role of the mitochondria is due to their position in the cell as important integrators of cellular energetics and signaling. Mitochondrial function affects many aspects of the cellular environment such as redox homeostasis and calcium signaling, which then also exert control over mitochondrial function. This complex dynamic between mitochondrial function and the cellular environment highlights the value of examining mitochondria in vivo in the intact physiological environment. This review discusses NMR and optical approaches used to measure mitochondria ATP and oxygen fluxes that provide in vivo measures of mitochondrial capacity and quality in animal and human models. Combining these in vivo measurements with more traditional ex vivo analyses can lead to new insights into the importance of the cellular environment in controlling mitochondrial function under pathological conditions. Interpretation and underlying assumptions for each technique are discussed with the goal of providing an overview of some of the most common approaches used to measure in vivo mitochondrial function encountered in the literature.
Collapse
Affiliation(s)
- Matthew D Campbell
- University of Washington, Seattle, 850 Republican St., Brotman D142, Seattle, WA 98109, USA.
| | - David J Marcinek
- University of Washington, Seattle, 850 Republican St., Brotman D142, Seattle, WA 98109, USA.
| |
Collapse
|
102
|
Jones S, Chiesa ST, Chaturvedi N, Hughes AD. Recent developments in near-infrared spectroscopy (NIRS) for the assessment of local skeletal muscle microvascular function and capacity to utilise oxygen. Artery Res 2016; 16:25-33. [PMID: 27942271 PMCID: PMC5134760 DOI: 10.1016/j.artres.2016.09.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose of review Continuous wave near infrared spectroscopy (CW NIRS) provides non-invasive technology to measure relative changes in oxy- and deoxy-haemoglobin in a dynamic environment. This allows determination of local skeletal muscle O2 saturation, muscle oxygen consumption (V˙O2) and blood flow. This article provides a brief overview of the use of CW NIRS to measure exercise-limiting factors in skeletal muscle. Recent findings NIRS parameters that measure O2 delivery and capacity to utilise O2 in the muscle have been developed based on response to physiological interventions and exercise. NIRS has good reproducibility and agreement with gold standard techniques and can be used in clinical populations where muscle oxidative capacity or oxygen delivery (or both) are impaired. CW NIRS has limitations including: the unknown contribution of myoglobin to the overall signals, the impact of adipose tissue thickness, skin perfusion during exercise, and variations in skin pigmentation. These, in the main, can be circumvented through appropriate study design or measurement of absolute tissue saturation. Summary CW NIRS can assess skeletal muscle O2 delivery and utilisation without the use of expensive or invasive procedures and is useable in large population-based samples, including older adults. An overview of CW NIRS to measure O2 utilisation and delivery is presented. CW NIRS is cheap, non-invasive, portable and useable in population-based samples. It is useful for understanding underlying mechanisms of deterioration in capacity.
Collapse
Affiliation(s)
- Siana Jones
- Corresponding author. UCL Institute of Cardiovascular Science, 10th Floor, 1-19 Torrington Place, London WC1E 7HB, UK. Fax: +44 207 594 1706.UCL Institute of Cardiovascular Science10th Floor, 1-19 Torrington PlaceLondonWC1E 7HEUK
| | | | | | | |
Collapse
|
103
|
Skovereng K, Ettema G, van Beekvelt M. Local muscle oxygen consumption related to external and joint specific power. Hum Mov Sci 2015; 45:161-71. [PMID: 26650852 DOI: 10.1016/j.humov.2015.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
Abstract
The purpose of the present study was to examine the effects of external work rate on joint specific power and the relationship between knee extension power and vastus lateralis muscle oxygen consumption (mVO2). We measured kinematics and pedal forces and used inverse dynamics to calculate joint power for the hip, knee and ankle joints during an incremental cycling protocol performed by 21 recreational cyclists. Vastus lateralis mVO2 was estimated using near-infrared spectroscopy with an arterial occlusion. The main finding was a non-linear relationship between vastus lateralis mVO2 and external work rate that was characterised by an increase followed by a tendency for a levelling off (R(2)=0.99 and 0.94 for the quadratic and linear models respectively, p<0.05). When comparing 100W and 225W, there was a ∼43W increase in knee extension but still a ∼9% decrease in relative contribution of knee extension to external work rate resulting from a ∼47W increase in hip extension. When vastus lateralis mVO2 was related to knee extension power, the relationship was still non-linear (R(2)=0.99 and 0.97 for the quadratic and linear models respectively, p<0.05). These results demonstrate a non-linear response in mVO2 relative to a change in external work rate. Relating vastus lateralis mVO2 to knee extension power showed a better fit to a linear equation compared to external work rate, but it is not a straight line.
Collapse
Affiliation(s)
- Knut Skovereng
- Centre for Elite Sports Research, Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Gertjan Ettema
- Centre for Elite Sports Research, Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mireille van Beekvelt
- Centre for Elite Sports Research, Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
104
|
Granata C, Oliveira RSF, Little JP, Renner K, Bishop DJ. Training intensity modulates changes in PGC-1α and p53 protein content and mitochondrial respiration, but not markers of mitochondrial content in human skeletal muscle. FASEB J 2015; 30:959-70. [PMID: 26572168 DOI: 10.1096/fj.15-276907] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/28/2015] [Indexed: 12/28/2022]
Abstract
Exercise training has been associated with increased mitochondrial content and respiration. However, no study to date has compared in parallel how training at different intensities affects mitochondrial respiration and markers of mitochondrial biogenesis. Twenty-nine healthy men performed 4 wk (12 cycling sessions) of either sprint interval training [SIT; 4-10 × 30-s all-out bouts at ∼200% of peak power output (WPeak)], high-intensity interval training (HIIT; 4-7 × 4-min intervals at ∼90% WPeak), or sublactate threshold continuous training (STCT; 20-36 min at ∼65% WPeak). The STCT and HIIT groups were matched for total work. Resting biopsy samples (vastus lateralis) were obtained before and after training. The maximal mitochondrial respiration in permeabilized muscle fibers increased significantly only after SIT (25%). Similarly, the protein content of peroxisome proliferator-activated receptor γ coactivator (PGC)-1α, p53, and plant homeodomain finger-containing protein 20 (PHF20) increased only after SIT (60-90%). Conversely, citrate synthase activity, and the protein content of TFAM and subunits of the electron transport system complexes remained unchanged throughout. Our findings suggest that training intensity is an important factor that regulates training-induced changes in mitochondrial respiration and that there is an apparent dissociation between training-induced changes in mitochondrial respiration and mitochondrial content. Moreover, changes in the protein content of PGC-1α, p53, and PHF20 are more strongly associated with training-induced changes in mitochondrial respiration than mitochondrial content.
Collapse
Affiliation(s)
- Cesare Granata
- *Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, Victoria, Australia; School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada; and Department of Internal Medicine III, University Hospital of Regensburg, Regensburg, Germany
| | - Rodrigo S F Oliveira
- *Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, Victoria, Australia; School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada; and Department of Internal Medicine III, University Hospital of Regensburg, Regensburg, Germany
| | - Jonathan P Little
- *Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, Victoria, Australia; School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada; and Department of Internal Medicine III, University Hospital of Regensburg, Regensburg, Germany
| | - Kathrin Renner
- *Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, Victoria, Australia; School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada; and Department of Internal Medicine III, University Hospital of Regensburg, Regensburg, Germany
| | - David J Bishop
- *Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, Victoria, Australia; School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada; and Department of Internal Medicine III, University Hospital of Regensburg, Regensburg, Germany
| |
Collapse
|
105
|
Polley KR, Jenkins N, O'Connor P, McCully K. Influence of exercise training with resveratrol supplementation on skeletal muscle mitochondrial capacity. Appl Physiol Nutr Metab 2015; 41:26-32. [PMID: 26638911 DOI: 10.1139/apnm-2015-0370] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Physical inactivity reduces, and exercise training increases, mitochondrial capacity. In rodents, exercise training effects can be augmented by large doses of resveratrol supplementation but whether this can occur in humans with a smaller dose is unclear. This study sought to determine the effects of resveratrol supplementation in combination with exercise training on skeletal muscle mitochondrial capacity. Sixteen healthy young adults were randomly assigned in a double-blind fashion to consume either placebo or 500 mg of resveratrol plus 10 mg of piperine, a bioenhancer to increase bioavailibilty and bioefficacy of resveratrol. Participants ingested the pills daily for 4 weeks and completed 3 sessions per week of submaximal endurance training of the wrist flexor muscles of the nondominant arm. The contralateral arm served as an untrained control. Skeletal muscle mitochondrial capacity was measured using near-infrared spectroscopy. Changes in mitochondrial capacity from baseline to post-testing indicated significant differences between the resveratrol+piperine-trained arm and the placebo-trained arm (p = 0.02), with the resveratrol+piperine group increasing about 40% from baseline (Δk = 0.58), while the placebo group increased about 10% from baseline (Δk = 0.13). Neither the placebo group nor the resveratrol+piperine group exhibited changes in mitochondrial capacity in the untrained arm. In conclusion, low-intensity exercise training can increase forearm skeletal muscle mitochondrial capacity when combined with resveratrol and piperine supplementation.
Collapse
Affiliation(s)
- Kristine R Polley
- Department of Kinesiology, 330 River Road, University of Georgia, Athens, GA 30602, USA.,Department of Kinesiology, 330 River Road, University of Georgia, Athens, GA 30602, USA
| | - Nathan Jenkins
- Department of Kinesiology, 330 River Road, University of Georgia, Athens, GA 30602, USA.,Department of Kinesiology, 330 River Road, University of Georgia, Athens, GA 30602, USA
| | - Patrick O'Connor
- Department of Kinesiology, 330 River Road, University of Georgia, Athens, GA 30602, USA.,Department of Kinesiology, 330 River Road, University of Georgia, Athens, GA 30602, USA
| | - Kevin McCully
- Department of Kinesiology, 330 River Road, University of Georgia, Athens, GA 30602, USA.,Department of Kinesiology, 330 River Road, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
106
|
Salin K, Auer SK, Rey B, Selman C, Metcalfe NB. Variation in the link between oxygen consumption and ATP production, and its relevance for animal performance. Proc Biol Sci 2015; 282:20151028. [PMID: 26203001 PMCID: PMC4528520 DOI: 10.1098/rspb.2015.1028] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/24/2015] [Indexed: 12/17/2022] Open
Abstract
It is often assumed that an animal's metabolic rate can be estimated through measuring the whole-organism oxygen consumption rate. However, oxygen consumption alone is unlikely to be a sufficient marker of energy metabolism in many situations. This is due to the inherent variability in the link between oxidation and phosphorylation; that is, the amount of adenosine triphosphate (ATP) generated per molecule of oxygen consumed by mitochondria (P/O ratio). In this article, we describe how the P/O ratio can vary within and among individuals, and in response to a number of environmental parameters, including diet and temperature. As the P/O ratio affects the efficiency of cellular energy production, its variability may have significant consequences for animal performance, such as growth rate and reproductive output. We explore the adaptive significance of such variability and hypothesize that while a reduction in the P/O ratio is energetically costly, it may be associated with advantages in terms of somatic maintenance through reduced production of reactive oxygen species. Finally, we discuss how considering variation in mitochondrial efficiency, together with whole-organism oxygen consumption, can permit a better understanding of the relationship between energy metabolism and life history for studies in evolutionary ecology.
Collapse
Affiliation(s)
- Karine Salin
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Sonya K Auer
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Benjamin Rey
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon 1, Lyon, France Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Neil B Metcalfe
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
107
|
Southern WM, Ryan TE, Kepple K, Murrow JR, Nilsson KR, McCully KK. Reduced skeletal muscle oxidative capacity and impaired training adaptations in heart failure. Physiol Rep 2015; 3:3/4/e12353. [PMID: 25855248 PMCID: PMC4425959 DOI: 10.14814/phy2.12353] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Systolic heart failure (HF) is associated with exercise intolerance that has been attributed, in part, to skeletal muscle dysfunction. The purpose of this study was to compare skeletal muscle oxidative capacity and training-induced changes in oxidative capacity in participants with and without HF. Participants with HF (n = 16, 65 ± 6.6 years) were compared with control participants without HF (n = 23, 61 ± 5.0 years). A subset of participants (HF: n = 7, controls: n = 5) performed 4 weeks of wrist-flexor exercise training. Skeletal muscle oxidative capacity was determined from the recovery kinetics of muscle oxygen consumption measured by near-infrared spectroscopy (NIRS) following a brief bout of wrist-flexor exercise. Oxidative capacity, prior to exercise training, was significantly lower in the HF participants in both the dominant (1.31 ± 0.30 min−1 vs. 1.59 ± 0.25 min−1, P = 0.002; HF and control groups, respectively) and nondominant arms (1.29 ± 0.24 min−1 vs. 1.46 ± 0.23 min−1, P = 0.04; HF and control groups, respectively). Following 4 weeks of endurance training, there was a significant difference in the training response between HF and controls, as the difference in oxidative training adaptations was 0.69 ± 0.12 min−1 (P < 0.001, 95% CI 0.43, 0.96). The wrist-flexor training induced a ∼50% improvement in oxidative capacity in participants without HF (mean difference from baseline = 0.66 ± 0.09 min−1, P < 0.001, 95% CI 0.33, 0.98), whereas participants with HF showed no improvement in oxidative capacity (mean difference from baseline = −0.04 ± 0.08 min−1, P = 0.66, 95% CI −0.24, 0.31), suggesting impairments in mitochondrial biogenesis. In conclusion, participants with HF had reduced oxidative capacity and impaired oxidative adaptations to endurance exercise compared to controls.
Collapse
Affiliation(s)
| | | | | | - Jonathan R Murrow
- University of Georgia, Athens, Georgia Georgia Regents University, Athens, Georgia
| | - Kent R Nilsson
- University of Georgia, Athens, Georgia Georgia Regents University, Athens, Georgia
| | | |
Collapse
|