101
|
Li X, Wu R, Chen H, Li T, Jiang H, Xu X, Tang X, Wan M, Mao C, Shi D. Near-Infrared Light-Driven Multifunctional Tubular Micromotors for Treatment of Atherosclerosis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30930-30940. [PMID: 34156244 DOI: 10.1021/acsami.1c03600] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One of the difficulties in atherosclerosis treatment is that the ablation of inflammatory macrophages, repair of vascular endothelial injury, and anti-tissue proliferation should be considered. However, there are few studies that can solve the abovementioned problems simultaneously. Herein, we present a kind of near-infrared (NIR) light-driven multifunctional mesoporous/macroporous tubular micromotor which can rapidly target the damaged blood vessels and release different drugs. Their motion effect can promote themselves to penetrate into the plaque site, and the generated heat effect caused by NIR irradiation can realize the photothermal ablation of inflammatory macrophages. Furthermore, these micromotors can rapidly release the vascular endothelial growth factor for endothelialization and slowly release paclitaxel for antiproliferation to achieve synergistic treatment of atherosclerosis. In vivo results demonstrated that the micromotors can achieve a good therapeutic effect for atherosclerosis. This kind of micro/nanomotor technology with a complex porous structure for drug loading will bring a more potential treatment platform for the disease.
Collapse
Affiliation(s)
- Xiaoyun Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Rui Wu
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Huan Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Huiming Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xingquan Xu
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xueting Tang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Dongquan Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
102
|
Engineering Active Micro and Nanomotors. MICROMACHINES 2021; 12:mi12060687. [PMID: 34208386 PMCID: PMC8231110 DOI: 10.3390/mi12060687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022]
Abstract
Micro- and nanomotors (MNMs) are micro/nanoparticles that can perform autonomous motion in complex fluids driven by different power sources. They have been attracting increasing attention due to their great potential in a variety of applications ranging from environmental science to biomedical engineering. Over the past decades, this field has evolved rapidly, with many significant innovations contributed by global researchers. In this review, we first briefly overview the methods used to propel motors and then present the main strategies used to design proper MNMs. Next, we highlight recent fascinating applications of MNMs in two examplary fields, water remediation and biomedical microrobots, and conclude this review with a brief discussion of challenges in the field.
Collapse
|
103
|
Wan M, Li T, Chen H, Mao C, Shen J. Biosafety, Functionalities, and Applications of Biomedical Micro/nanomotors. Angew Chem Int Ed Engl 2021; 60:13158-13176. [PMID: 33145879 DOI: 10.1002/anie.202013689] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Indexed: 12/23/2022]
Abstract
Due to their unique ability to actively move, micro/nanomotors offer the possibility of breaking through the limitations of traditional passive drug delivery systems for the treatment of many diseases, and have attracted the increasing attention of researchers. However, at present, the realization of many advantages of micro/nanomotors in disease treatment in vivo is still in its infancy, because of the complexity and particularity of diseases in different parts of human body. In this Minireview, we first focus on the biosafety and functionality of micro/nanomotors as a biomedical treatment system. Then, we address the treatment difficulties of various diseases in vivo (such as ophthalmic disease, orthopedic disease, gastrointestinal disease, cardiovascular disease, and cancer), and then review the research progress of biomedical micro/nanomotors in the past 20 years, Finally, we propose the challenges in this field and possible future development directions.
Collapse
Affiliation(s)
- Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Huan Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
104
|
Hettie KS. Targeting Contrast Agents With Peak Near-Infrared-II (NIR-II) Fluorescence Emission for Non-invasive Real-Time Direct Visualization of Thrombosis. Front Mol Biosci 2021; 8:670251. [PMID: 34026844 PMCID: PMC8138325 DOI: 10.3389/fmolb.2021.670251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
Thrombosis within the vasculature arises when pathological factors compromise normal hemostasis. On doing so, arterial thrombosis (AT) and venous thrombosis (VT) can lead to life-threatening cardio-cerebrovascular complications. Unfortunately, the therapeutic window following the onset of AT and VT is insufficient for effective treatment. As such, acute AT is the leading cause of heart attacks and constitutes ∼80% of stroke incidences, while acute VT can lead to fatal therapy complications. Early lesion detection, their accurate identification, and the subsequent appropriate treatment of thrombi can reduce the risk of thrombosis as well as its sequelae. As the success rate of therapy of fresh thrombi is higher than that of old thrombi, detection of the former and accurate identification of lesions as thrombi are of paramount importance. Magnetic resonance imaging, x-ray computed tomography (CT), and ultrasound (US) are the conventional non-invasive imaging modalities used for the detection and identification of AT and VT, but these modalities have the drawback of providing only image-delayed indirect visualization of only late stages of thrombi development. To overcome such limitations, near-infrared (NIR, ca. 700-1,700 nm) fluorescence (NIRF) imaging has been implemented due to its capability of providing non-invasive real-time direct visualization of biological structures and processes. Contrast agents designed for providing real-time direct or indirect visualization of thrombi using NIRF imaging primarily provide peak NIR-I fluorescence emission (ca. 700-1,000 nm), which affords limited tissue penetration depth and suboptimal spatiotemporal resolution. To facilitate the enhancement of the visualization of thrombosis via providing detection of smaller, fresh, and/or deep-seated thrombi in real time, the development of contrast agents with peak NIR-II fluorescence emission (ca. 1000-1,700 nm) has been recently underway. Currently, however, most contrast agents that provide peak NIR-II fluorescence emissions that are purportedly capable of providing direct visualization of thrombi or their resultant occlusions actually afford only the indirect visualization of such because they only provide for the (i) measuring of the surrounding vascular blood flow and/or (ii) simple tracing of the vasculature. These contrast agents do not target thrombi or occlusions. As such, this mini review summarizes the extremely limited number of targeting contrast agents with peak NIR-II fluorescence emission developed for non-invasive real-time direct visualization of thrombosis that have been recently reported.
Collapse
Affiliation(s)
- Kenneth S. Hettie
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
105
|
Bose RJ, Ha K, McCarthy JR. Bio-inspired nanomaterials as novel options for the treatment of cardiovascular disease. Drug Discov Today 2021; 26:1200-1211. [PMID: 33561512 PMCID: PMC8205945 DOI: 10.1016/j.drudis.2021.01.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 11/28/2022]
Abstract
Cardiovascular disease (CVD) and its sequelae have long been the leading causes of death and disability in the developed world. Although mortality associated with CVD has been decreasing, due in large part to novel therapeutic options, the rate of decrease has flattened. Thus, there is a great need to investigate alternate therapeutic strategies that can increase efficacy while decreasing adverse effects. Nanomaterials have been widely investigated and have emerged as promising tools for both therapeutic and diagnostic purposes in oncology; however, the potential of nanomaterials has not been extensively explored for cardiovascular medicine. In this review, we focus on recent developments in the field of nanomedicines targeted for CVDs, with a special emphasis on cell membrane-coated nanoparticles (NPs) and their applications.
Collapse
Affiliation(s)
- Rajendran Jc Bose
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, USA
| | - Khan Ha
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, USA
| | - Jason R McCarthy
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, USA.
| |
Collapse
|
106
|
Sun B, Hettie KS, Zhu S. Near-infrared Fluorophores for Thrombosis Diagnosis and Therapy. ADVANCED THERAPEUTICS 2021; 4:2000278. [PMID: 33997270 PMCID: PMC8115206 DOI: 10.1002/adtp.202000278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Indexed: 12/23/2022]
Abstract
Thrombosis is an adverse physiological event wherein the resulting thrombus and thrombus-induced diseases collectively result in high morbidity and mortality rates. Currently, nano-medicines that incorporate fluorophores emitting in the near-infrared-I (NIR-I, 700-900 nm) spectral region into their systems have been adopted to afford thrombosis theranostics. However, several unsolved problems such as limited penetration depth and image quality severely impede further applications of such nano-medicine systems. Fortunately, the ability to incorporate fluorophores emitting in the NIR-II (1000-1700 nm) window into nano-medicine systems can unambiguously identify biological processes with high signal-to-noise, deep tissue penetration depth, and high image resolution. Considering the inherently favorable properties of NIR-II fluorophores, we believe such have enormous potential to quickly become incorporated into nano-medicine systems for thrombosis theranostics. In this review, we i) discuss the development of NIR fluorescence as an imaging modality and fluorescent agents; ii) comprehensively summarize the recent development of NIR-I fluorophore-based nano-medicine systems for thrombosis theranostics; iii) highlight the state-of-the-art NIR-II fluorophores that have been designed for the specific purpose of affording thrombotic diagnosis; iv) speculate on possible forward avenues for the use of NIR-II fluorophores towards thrombosis diagnosis and therapy; and v) discuss the potential for their clinical translation.
Collapse
Affiliation(s)
- Bin Sun
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130061, P.R. China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Kenneth S Hettie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130061, P.R. China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
107
|
Deng Q, Zhang L, Lv W, Liu X, Ren J, Qu X. Biological Mediator-Propelled Nanosweeper for Nonpharmaceutical Thrombus Therapy. ACS NANO 2021; 15:6604-6613. [PMID: 33724000 DOI: 10.1021/acsnano.0c09939] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Traditional thrombolytic drugs offer limited outcomes due to short circulation half-life and low utilization. Herein, we have designed and constructed a biological mediator-propelled nanosweeper for highly efficient nonpharmaceutical thrombolysis and prevention of thrombus recurrence. Under the near-infrared light irradiation, the nanosweepers were activated to trigger nitric oxide (NO) release, which propelled the nanosweepers to penetrate deeply into the thrombus and resulted in enhanced site-pecific mechanical and photothermal thrombolysis. The experimental evidence confirmed that the ingenious nanosweeper displayed excellent site-specific thrombolytic efficacy even when compared with the clinical thrombolytic drug. In the meantime, as a biological mediator, the release of NO could effectively prevent thrombus recurrence in vivo. Overall, we anticipated that the nanosweeper would provide a promising strategy for the treatment of thrombi.
Collapse
Affiliation(s)
- Qingqing Deng
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lu Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wei Lv
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xuemeng Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
108
|
Zhang X, Fu Q, Duan H, Song J, Yang H. Janus Nanoparticles: From Fabrication to (Bio)Applications. ACS NANO 2021; 15:6147-6191. [PMID: 33739822 DOI: 10.1021/acsnano.1c01146] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Janus nanoparticles (JNPs) refer to the integration of two or more chemically discrepant composites into one structure system. Studies into JNPs have been of significant interest due to their interesting characteristics stemming from their asymmetric structures, which can integrate different functional properties and perform more synergetic functions simultaneously. Herein, we present recent progress of Janus particles, comprehensively detailing fabrication strategies and applications. First, the classification of JNPs is divided into three blocks, consisting of polymeric composites, inorganic composites, and hybrid polymeric/inorganic JNPs composites. Then, the fabrication strategies are alternately summarized, examining self-assembly strategy, phase separation strategy, seed-mediated polymerization, microfluidic preparation strategy, nucleation growth methods, and masking methods. Finally, various intriguing applications of JNPs are presented, including solid surfactants agents, micro/nanomotors, and biomedical applications such as biosensing, controlled drug delivery, bioimaging, cancer therapy, and combined theranostics. Furthermore, challenges and future works in this field are provided.
Collapse
Affiliation(s)
- Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| |
Collapse
|
109
|
Wang Q, Shi T, Wan M, Wei J, Wang F, Mao C. Research progress of using micro/nanomotors in the detection and therapy of diseases related to the blood environment. J Mater Chem B 2021; 9:283-294. [PMID: 33241834 DOI: 10.1039/d0tb02055a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Micro/nanomotors bring new possibilities for the detection and therapy of diseases related to the blood environment with their unique motion effect. This work reviews the research progress of using micro/nanomotors in the detection and therapy of diseases related to the blood environment. First, we outline the advantages of using micro/nanomotors in blood-related disease detection. To be specific, the motion capability of micro/nanomotors can increase plasma or blood fluid convection and accelerate the interaction between the sample and the capture probe. This allows the effective reduction of the amount of reagents and treatment steps. Therefore, the application of micro/nanomotors significantly improves the analytical performance. Second, we discuss the key challenges and future prospects of micro/nanomotors in the treatment of blood-environment related diseases. It is very important to design a unique treatment plan according to the etiology and specific microenvironment of the disease. The next generation of micro/nanomotors is expected to bring exciting progress to the detection and therapy of blood-environment related diseases.
Collapse
Affiliation(s)
- Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China. and School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Tao Shi
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Fenghe Wang
- Jiangsu Province Key Laboratory of Environmental Engineering, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
110
|
Study on hemostatic effect and mechanism of starch-based nano-microporous particles. Int J Biol Macromol 2021; 179:507-518. [PMID: 33711370 DOI: 10.1016/j.ijbiomac.2021.03.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/22/2021] [Accepted: 03/08/2021] [Indexed: 11/21/2022]
Abstract
The powdered hemostatic particles have broad application prospects in large open wounds, internal organ injuries and penetrating injuries of the body. In this study, nanoscale mescoporous and macroporous silica (MMSN), nanoscale mescoporous and macroporous bioactive glass (MBG), micron-scale cross-linked corn starch porous microspheres (CMS), MMSN@CMS and MBG@CMS starch-based nano-microporous particles were synthesized and their hemostatic effect and hemostatic mechanism were studied. The results showed that comparted with the single particle of CMS, the combination particles MBG@CMS and MMSN@CMS significantly increased the water absorption rate, activated both internal and external coagulation pathways, significantly shortened CBT, as well as the improved hemostatic effects in vitro. The immediately released Ca2+ from MBG@CMS in the blood to participate in the coagulation pathway, and MMSN@CMS activated platelets by concentrating blood coagulation factors, might be the main hemostatic mechanisms for the starch-based nano-microporous particles. Furthermore, the hemostatic efficacy of particles, both in the model of tail-amputation and liver injury in SD rats, showed the starch-based nano-microporous particles, especial MBG@CMS, could significantly reduce the weight of blood loss and shorten the bleeding time. Our research work stated that the starch-based nano-microporous particles MBG@CMS might be a hemostasis biomaterial with the potential applications for the emergency bleeding.
Collapse
|
111
|
Wan M, Li T, Chen H, Mao C, Shen J. Biosafety, Functionalities, and Applications of Biomedical Micro/nanomotors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Huan Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| |
Collapse
|
112
|
Wang W, Zhou C. A Journey of Nanomotors for Targeted Cancer Therapy: Principles, Challenges, and a Critical Review of the State-of-the-Art. Adv Healthc Mater 2021; 10:e2001236. [PMID: 33111501 DOI: 10.1002/adhm.202001236] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/04/2020] [Indexed: 12/11/2022]
Abstract
A nanomotor is a miniaturized device that converts energy stored in the environment into mechanical motion. The last two decades have witnessed a surge of research interests in the biomedical applications of nanomotors, but little clinical translation. To accelerate this process, targeted cancer therapy is used as an example to describe a "survive, locate, operate, and terminate" (SLOT) mission of a nanomotor, where it must 1) survive in the unfriendly in vivo environment, 2) locate its target as well as be located by human operators, 3) carry out specific operations, and 4) terminate after the mission is completed. Along this journey, the challenges presented to a nanomotor, including to power, navigate, steer, target, release, control, image, and communicate are discussed, and how state-of-the-art nanomotors meet or fall short of these requirements is critically reviewed. These discussions are then condensed into a table for easy reference. In particular, it is argued that chemically powered nanomotors are intrinsically ill-positioned for targeted cancer therapy, while nanomotors powered by magnetic fields or ultrasound show more promises. Following this argument, a tentative nanomotor design is then presented in the end to conform to the SLOT guideline, and to inspire practical, functional nanorobots that are yet to come.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials Science and Engineering Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Chao Zhou
- School of Materials Science and Engineering Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| |
Collapse
|
113
|
Lin R, Yu W, Chen X, Gao H. Self-Propelled Micro/Nanomotors for Tumor Targeting Delivery and Therapy. Adv Healthc Mater 2021; 10:e2001212. [PMID: 32975892 DOI: 10.1002/adhm.202001212] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/14/2020] [Indexed: 12/14/2022]
Abstract
Cancer is still one of the most serious diseases with threats to health and life. Although some advances have been made in targeting delivery of antitumor drugs over the past number of years, there are still many problems needing to be solved, such as poor efficacy and high systemic toxicity. Micro/nanomotors capable of self-propulsion in fluid provide promising platforms for improving the efficiency of tumor delivery. Herein, the recent progress in micro/nanomotors for tumor targeting delivery and therapy is reviewed, with special focus on the contributions of micro/nanomotors to the different stages of tumor targeting delivery as well as the combination therapy by micro/nanomotors. The present limitations and future directions are also put forward for further development.
Collapse
Affiliation(s)
- Ruyi Lin
- College of Materials Science and Engineering Sichuan University Chengdu 610064 P. R. China
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610064 P. R. China
| | - Wenqi Yu
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610064 P. R. China
| | - Xianchun Chen
- College of Materials Science and Engineering Sichuan University Chengdu 610064 P. R. China
| | - Huile Gao
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|
114
|
Wang B, Kostarelos K, Nelson BJ, Zhang L. Trends in Micro-/Nanorobotics: Materials Development, Actuation, Localization, and System Integration for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002047. [PMID: 33617105 DOI: 10.1002/adma.202002047] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/24/2020] [Indexed: 05/23/2023]
Abstract
Micro-/nanorobots (m-bots) have attracted significant interest due to their suitability for applications in biomedical engineering and environmental remediation. Particularly, their applications in in vivo diagnosis and intervention have been the focus of extensive research in recent years with various clinical imaging techniques being applied for localization and tracking. The successful integration of well-designed m-bots with surface functionalization, remote actuation systems, and imaging techniques becomes the crucial step toward biomedical applications, especially for the in vivo uses. This review thus addresses four different aspects of biomedical m-bots: design/fabrication, functionalization, actuation, and localization. The biomedical applications of the m-bots in diagnosis, sensing, microsurgery, targeted drug/cell delivery, thrombus ablation, and wound healing are reviewed from these viewpoints. The developed biomedical m-bot systems are comprehensively compared and evaluated based on their characteristics. The current challenges and the directions of future research in this field are summarized.
Collapse
Affiliation(s)
- Ben Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, The University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona, Spain
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Tannenstrasse 3, Zurich, CH-8092, Switzerland
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
- CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
| |
Collapse
|
115
|
Soto F, Wang J, Ahmed R, Demirci U. Medical Micro/Nanorobots in Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002203. [PMID: 33173743 PMCID: PMC7610261 DOI: 10.1002/advs.202002203] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/09/2020] [Indexed: 05/15/2023]
Abstract
Advances in medical robots promise to improve modern medicine and the quality of life. Miniaturization of these robotic platforms has led to numerous applications that leverages precision medicine. In this review, the current trends of medical micro and nanorobotics for therapy, surgery, diagnosis, and medical imaging are discussed. The use of micro and nanorobots in precision medicine still faces technical, regulatory, and market challenges for their widespread use in clinical settings. Nevertheless, recent translations from proof of concept to in vivo studies demonstrate their potential toward precision medicine.
Collapse
Affiliation(s)
- Fernando Soto
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| | - Jie Wang
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| | - Rajib Ahmed
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| | - Utkan Demirci
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| |
Collapse
|
116
|
|
117
|
Wang M, Bao T, Yan W, Fang D, Yu Y, Liu Z, Yin G, Wan M, Mao C, Shi D. Nanomotor-based adsorbent for blood Lead(II) removal in vitro and in pig models. Bioact Mater 2020; 6:1140-1149. [PMID: 33134607 PMCID: PMC7588752 DOI: 10.1016/j.bioactmat.2020.09.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/17/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022] Open
Abstract
Blood lead (Pb(II)) removal is very important but challenging. The main difficulty of blood Pb(II) removal currently lies in the fact that blood Pb(II) is mainly complexed with hemoglobin (Hb) inside the red blood cells (RBCs). Traditional blood Pb(II) removers are mostly passive particles that do not have the motion ability, thus the efficiency of the contact between the adsorbent and the Pb(II)-contaminated Hb is relatively low. Herein, a kind of magnetic nanomotor adsorbent with movement ability under alternating magnetic field based on Fe3O4 nanoparticle modified with meso-2, 3-dimercaptosuccinic acid (DMSA) was prepared and a blood Pb(II) removal strategy was further proposed. During the removal process, the nanomotor adsorbent can enter the RBCs, then the contact probability between the nanomotor adsorbent and the Pb(II)-contaminated Hb can be increased by the active movement of nanomotor. Through the strong coordination of functional groups in DMSA, the nanomotor adsorbent can adsorb Pb(II), and finally be separated from blood by permanent magnetic field. The in vivo extracorporeal blood circulation experiment verifies the ability of the adsorbent to remove blood Pb(II) in pig models, which may provide innovative ideas for blood heavy metal removal in the future.
Collapse
Affiliation(s)
- Meng Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tianyi Bao
- Department of Orthopaedics the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Wenqiang Yan
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Dan Fang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yueqi Yu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Zhiyong Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Guoyong Yin
- Department of Orthopaedics the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
- Corresponding author.
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
- Corresponding author.
| | - Dongquan Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
- Corresponding author.
| |
Collapse
|
118
|
Wang S, Wang R, Meng N, Guo H, Wu S, Wang X, Li J, Wang H, Jiang K, Xie C, Liu Y, Wang H, Lu W. Platelet membrane-functionalized nanoparticles with improved targeting ability and lower hemorrhagic risk for thrombolysis therapy. J Control Release 2020; 328:78-86. [PMID: 32853731 DOI: 10.1016/j.jconrel.2020.08.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022]
Abstract
Intravenous injection of thrombolytic drugs is the most effective strategy for the treatment of thrombotic diseases. However, the clinical application of most thrombolytic drugs is limited by hemorrhagic risks and narrow therapeutic index. The targeted drug delivery systems may help to address these problems. Inspired by the crucial role of platelets in the process of thrombus, Platelet membrane-coated PLGA cores loading lumbrokinase (PNPs/LBK) were designed for effective thrombolysis with reduced hemorrhagic risk. Using a mouse carotid thrombosis model, the affinity of platelet membrane-coated nanoparticles to the thrombus was confirmed. Also, the PNPs/LBK exhibited excellent thrombolytic efficacy at a low dose, compared with free LBK. More importantly, PNPs/LBK showed less adverse effect on the function of the coagulation system, and thus reduced hemorrhagic risk. These results indicated that a promising thrombus-targeted drug delivery system was achieved by coating PLGA nanoparticles with platelet membrane. Such rationally designed drug delivery system will provide a broad platform for thrombus treatment.
Collapse
Affiliation(s)
- Songli Wang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China; National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Ruifeng Wang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Nana Meng
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Haiyan Guo
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Sunyi Wu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Xiaoyi Wang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Jinyang Li
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Huan Wang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Kuan Jiang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Cao Xie
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Yu Liu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Hao Wang
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China.
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China; State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China; Institute of Integrative Medicine of Fudan University, Shanghai 200041, China; Minhang Branch, Zhongshan Hospital and Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China.
| |
Collapse
|
119
|
Wang M, Yan W, Chu M, Li T, Liu Z, Yu Y, Huang Y, Zhu T, Wan M, Mao C, Shi D. Erythrocyte Membrane-Wrapped Magnetic Nanotherapeutic Agents for Reduction and Removal of Blood Cr(VI). ACS APPLIED MATERIALS & INTERFACES 2020; 12:28014-28023. [PMID: 32525652 DOI: 10.1021/acsami.0c06437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The hazard of hexavalent chromium (Cr(VI)) from environmental pollution and medical implanted metal has been recognized widely. However, removal of trace amount of Cr(VI) in the blood circumstance faces tremendous difficulties for that most of Cr(VI) located in erythrocytes, thus there is almost no literature to report the removal of Cr(VI) in blood. Herein, a removal strategy, named as reduction-adsorption-separation, is proposed to realize the removal of Cr(VI) in blood. First, magnetic core-shell mesoporous nanocomposite is fabricated by using Fe3O4 nanoparticles as magnetic core and mesoporous silica (MS) as shell, hyperbranched polyamide (HPA) as mesoporous channel modifier and ascorbic acid (ASC) as the reductant drug loaded in the mesoporous channels, which is also denoted as Fe/MS/HPA/ASC. Then, on the basis of the bionic idea, the erythrocyte membrane (EM)-wrapped Fe/MS/HPA/ASC to protect ASC from deactivation is obtained and named as the therapeutic agent (Fe/MS/HPA/ASC@EM). During removal process, the therapeutic agent can enter in erythrocytes to use ASC to reduce Cr(VI) to Cr(III) and HPA in mesoporous channels to adsorb Cr(III) and can then be recollected from blood by magnetic separation. Finally, an animal model of blood Cr(VI) poisoning is constructed and used to test the removal ability of Cr(VI) from pig blood in vivo, verifying the effectiveness of this blood Cr(VI) removal strategy, providing a possible way to design more efficient and biosafe therapeutic agents for blood purification.
Collapse
Affiliation(s)
- Meng Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wenqiang Yan
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Meilin Chu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhiyong Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yueqi Yu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yangyang Huang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Tianyu Zhu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Dongquan Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
120
|
Wan M, Wang Q, Li X, Xu B, Fang D, Li T, Yu Y, Fang L, Wang Y, Wang M, Wang F, Mao C, Shen J, Wei J. Systematic Research and Evaluation Models of Nanomotors for Cancer Combined Therapy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002452] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Xiaoyun Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Bo Xu
- The Comprehensive Cancer Centre of Drum Tower Hospital Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University Nanjing 210008 China
| | - Dan Fang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Yueqi Yu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Leyi Fang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Yue Wang
- The Comprehensive Cancer Centre of Drum Tower Hospital Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University Nanjing 210008 China
| | - Meng Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Fenghe Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Jia Wei
- The Comprehensive Cancer Centre of Drum Tower Hospital Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University Nanjing 210008 China
| |
Collapse
|
121
|
Wan M, Wang Q, Li X, Xu B, Fang D, Li T, Yu Y, Fang L, Wang Y, Wang M, Wang F, Mao C, Shen J, Wei J. Systematic Research and Evaluation Models of Nanomotors for Cancer Combined Therapy. Angew Chem Int Ed Engl 2020; 59:14458-14465. [DOI: 10.1002/anie.202002452] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/27/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Xiaoyun Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Bo Xu
- The Comprehensive Cancer Centre of Drum Tower Hospital Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University Nanjing 210008 China
| | - Dan Fang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Yueqi Yu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Leyi Fang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Yue Wang
- The Comprehensive Cancer Centre of Drum Tower Hospital Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University Nanjing 210008 China
| | - Meng Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Fenghe Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Jia Wei
- The Comprehensive Cancer Centre of Drum Tower Hospital Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University Nanjing 210008 China
| |
Collapse
|
122
|
Huang Y, Li T, Gao W, Wang Q, Li X, Mao C, Zhou M, Wan M, Shen J. Platelet-derived nanomotor coated balloon for atherosclerosis combination therapy. J Mater Chem B 2020; 8:5765-5775. [DOI: 10.1039/d0tb00789g] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A nanorobot is used to realize deep penetration of drugs in atherosclerotic plaque, photothermal ablation of inflammatory macrophages and long-term anti-proliferation effects.
Collapse
Affiliation(s)
- Yangyang Huang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- P. R. China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- P. R. China
| | - Wentao Gao
- Department of Vascular Surgery
- Nanjing Drum Tower Hospital
- The Affiliated Hospital of Nanjing University Medical School
- P. R. China
| | - Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- P. R. China
| | - Xiaoyun Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- P. R. China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- P. R. China
| | - Min Zhou
- Department of Vascular Surgery
- Nanjing Drum Tower Hospital
- The Affiliated Hospital of Nanjing University Medical School
- P. R. China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- P. R. China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- P. R. China
| |
Collapse
|