101
|
Liu S, Zhao Y, Shen M, Hao Y, Wu X, Yao Y, Li Y, Yang Q. Hyaluronic acid targeted and pH-responsive multifunctional nanoparticles for chemo-photothermal synergistic therapy of atherosclerosis. J Mater Chem B 2022; 10:562-570. [PMID: 34982089 DOI: 10.1039/d1tb02000e] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is a global disease with an extremely high morbidity and fatality rate, so it is necessary to develop effective treatments to reduce its impact. In this work, we successfully prepared a multifunctional drug-loaded nano-delivery system with pH-responsive, CD44-targeted, and chemical-photothermal synergistic treatment. Dendritic mesoporous silica nanoparticles capped with copper sulfide (CuS) were synthesized via an oil-water biphase stratification reaction system; these served as the carrier material and encapsulated the anticoagulant drug heparin (Hep). The pH-sensitive Schiff base bond was used as a gatekeeper and targeting agent to modify hyaluronic acid (HA) on the surface of the nanocarrier. HA coating endowed the nanocomposite with the ability to respond to pH and target CD44-positive inflammatory macrophages. Based on this multifunctional nanocomposite, we achieved precise drug delivery, controlled drug release, and chemical-photothermal synergistic treatment of atherosclerosis. The in vitro drug release results showed that the nanocarriers exhibited excellent drug-controlled release properties, and could release drugs in the weakly acidic microenvironment of atherosclerotic inflammation. Cytotoxicity and cell uptake experiments indicated that nanocarriers had low cytotoxicity against RAW 264.7 cells. Modification of HA to nanocarriers can be effectively internalized by RAW 264.7 cells stimulated by lipopolysaccharide (LPS). Combining CuS photothermal treatment with anti-atherosclerosis chemotherapy showed better effects than single treatment in vitro and in vivo. In summary, our research proved that H-CuS@DMSN-NC-HA has broad application prospects in anti-atherosclerosis.
Collapse
Affiliation(s)
- Shun Liu
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun 130012, China.
| | - Yun Zhao
- China-Japan Union Hospital of Jilin University, Changchun 130031, P. R. China
| | - Meili Shen
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun 130012, China.
| | - Yujiao Hao
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiaodong Wu
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun 130012, China.
| | - Yixuan Yao
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Yapeng Li
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun 130012, China.
| | - Qingbiao Yang
- College of Chemistry, Jilin University, Changchun 130012, China.,Key Laboratory of Lymphatic Surgery Jilin Province, Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun 130031, P. R. China
| |
Collapse
|
102
|
Yuan Y, Gao C, Wang Z, Fan J, Zhou H, Wang D, Zhou C, Zhu B, He Q. Upconversion-nanoparticle-functionalized Janus micromotors for efficient detection of uric acid. J Mater Chem B 2022; 10:358-363. [PMID: 35005767 DOI: 10.1039/d1tb02550c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report enzyme-powered upconversion-nanoparticle-functionalized Janus micromotors, which are prepared by immobilizing uricase asymmetrically onto the surface of silicon particles, to actively and rapidly detect uric acid. The asymmetric distribution of uricase on silicon particles allows the Janus micromotors to display efficient motion in urine under the propulsion of biocatalytic decomposition of uric acid and simultaneously detect uric acid based on the luminescence quenching effect of the UCNPs modified on the other side of SiO2. The efficient motion of the motors greatly enhances the interaction between UCNPs and the quenching substrate and improves the uric acid detection efficiency. Overall, such a platform using uric acid simultaneously as the detected substrate and motion fuel offers considerable promise for developing multifunctional micro/nanomotors for a variety of bioassay and biomedical applications.
Collapse
Affiliation(s)
- Ye Yuan
- Chemistry and Chemical Engineering College, Inner Mongolia University, Hohhot, 010021, China. .,Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150080, China.
| | - Changyong Gao
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science, Cixi, 315300, China.
| | - Zhexu Wang
- Chemistry and Chemical Engineering College, Inner Mongolia University, Hohhot, 010021, China.
| | - Jianming Fan
- Chemistry and Chemical Engineering College, Inner Mongolia University, Hohhot, 010021, China.
| | - Haofei Zhou
- Chemistry and Chemical Engineering College, Inner Mongolia University, Hohhot, 010021, China.
| | - Daolin Wang
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150080, China.
| | - Chang Zhou
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150080, China.
| | - Baohua Zhu
- Chemistry and Chemical Engineering College, Inner Mongolia University, Hohhot, 010021, China.
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150080, China.
| |
Collapse
|
103
|
Yan M, Liang K, Zhao D, Kong B. Core-Shell Structured Micro-Nanomotors: Construction, Shell Functionalization, Applications, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2102887. [PMID: 34611979 DOI: 10.1002/smll.202102887] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The successful integration of well-designed micro-nanomotors (MNMs) with diverse functional systems, such as, living systems, remote actuation systems, intelligent sensors, and sensing systems, offers many opportunities to not only endow them with diverse functionalization interfaces but also bring augmented or new properties in a wide variety of applications. Core-shell structured MNM systems have been considered to play an important role in a wide range of applications as they provide a platform to integrate multiple complementary components via decoration, encapsulation, or functionalization into a single functional system, being able to protect the active species from harsh environments, and bring improved propulsion performance, stability, non-toxicity, multi-functionality, and dispersibility, etc., which are not easily available from the isolated components. More importantly, the hetero-interfaces between individual components within a core-shell structure might give rise to boosted or new physiochemical properties. This review will bring together these key aspects of the core-shell structured MNMs, ranging from advanced protocols, enhanced/novel functionalities arising from diverse functional shells, to integrated core-shell structured MNMs for diverse applications. Finally, current challenges and future perspectives for the development of core-shell structured MNMs are discussed in term of synthesis, functions, propulsions, and applications.
Collapse
Affiliation(s)
- Miao Yan
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200438, P. R. China
| | - Kang Liang
- School of Chemical Engineering, Graduate School of Biomedical Engineering, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Dongyuan Zhao
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200438, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
104
|
Zhang H, Wang L, Li Z, Ji Y, Wu Z, He Q. Biosafety evaluation of dual-responsive neutrobots. J Mater Chem B 2022; 10:7556-7562. [DOI: 10.1039/d2tb00938b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neutrobots carrying antitumor drugs facilitate considerable safety in vivo upon intravenous administration with high dose.
Collapse
Affiliation(s)
- Hongyue Zhang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Liting Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
| | - Zesheng Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
| | - Yuxing Ji
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhiguang Wu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
| | - Qiang He
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
105
|
Cao W, Liu Y, Ran P, He J, Xie S, Weng J, Li X. Ultrasound-Propelled Janus Rod-Shaped Micromotors for Site-Specific Sonodynamic Thrombolysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58411-58421. [PMID: 34846117 DOI: 10.1021/acsami.1c19288] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antithrombosis therapy is confronted with short half-lives of thrombolytic agents, limited therapeutic effects, and bleeding complications. Drug delivery systems of thrombolytic agents face challenges in effective penetration into thrombi, which are characterized by well-organized fibrin filled with abundant activated platelets. Herein, Janus rod (JR)-shaped micromotors are constructed by side-by-side electrospinning and cryosection, possessing advantages in controlling the Janus structure and aspect ratio of microrods. Silicon phthalocyanine (Pc) and CaO2 nanoparticles (NPs) are loaded into the separate sides of JRs, and Arg-Gly-Asp (RGD) peptides are grafted on the surface to obtain Pc/Ca@r-JRs for the sonodynamic therapy (SDT) of thrombosis without using any thrombolytic agents. Decomposition of CaO2 NPs ejects O2 bubbles from one side of JRs, and ultrasonication of O2 bubbles produces the cavitation effect, both generating mechanical force to drive the thrombus penetration. The integration of ultrasonication-propelled motion and RGD mediation effectively increases the targeting capabilities of r-JRs to activated platelets. In addition to mechanical thrombolysis, ultrasonication of the released Pc produces 1O2 to destruct fibrin networks of clots. In vitro thrombolysis of whole blood clots shows that ultrasonication of Pc/Ca@r-JRs has a significantly higher thrombolysis rate (73.6%) than those without propelled motion or RGD-mediated clot targeting. In a lower limb thrombosis model, intravenous administration of Pc/Ca@r-JRs indicates 3.4-fold higher accumulations at the clot site than those of JRs, and ultrasonication-propelled motion further increases thrombus retention 2.1 times. Treatment with Pc/Ca@r-JRs and ultrasonication fully removes thrombi and significantly prolongs tail bleeding time. Thus, this study has achieved precise and prompt thrombolysis through selective targeting to clots, efficient penetration into dense networks of thrombi, and SDT-executed thrombolysis.
Collapse
Affiliation(s)
- Wenxiong Cao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Yuan Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Pan Ran
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Jie He
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Shuang Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Xiaohong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| |
Collapse
|
106
|
Tao Y, Li X, Wu Z, Chen C, Tan K, Wan M, Zhou M, Mao C. Nitric oxide-driven nanomotors with bowl-shaped mesoporous silica for targeted thrombolysis. J Colloid Interface Sci 2021; 611:61-70. [PMID: 34929439 DOI: 10.1016/j.jcis.2021.12.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/23/2021] [Accepted: 12/10/2021] [Indexed: 01/11/2023]
Abstract
Vein thrombosis is one of the most serious types of cardiovascular disease. During the traditional treatment, due to the excessive blood flow rate, the drug utilization rate at the thrombus site is low and the thrombolysis efficiency is poor. In this study, bowl-shaped silica nanomotors driven by nitric oxide (NO) are designed to target the thrombus surface by modifying arginine-glycine-aspartic acid (RGD) polypeptide, and simultaneously loading l-arginine (LA) and thrombolytic drug urokinase (UK) in its mesopore structure. LA can react with excessive reactive oxygen species (ROS) in the thrombus microenvironment to produce NO, thus promoting the movement of nanomotors to improve the retention efficiency and utilization rate of drugs in the thrombus site, and at the same time achieve the effect of eliminating ROS and reducing the oxidative stress of inflammatory endothelial cells. The loaded UK can dissolve thrombus quickly. It is worth mentioning that NO can not only be used as a power source of nanomotors, but also can be used as a therapeutic agent to stimulate the growth of endothelial cells and reduce vascular injury. This therapeutic agent based on nanomotor technology is expected to provide support for future research on thrombus treatment.
Collapse
Affiliation(s)
- Yingfang Tao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoyun Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ziyu Wu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Chenglong Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Kaiyuan Tan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
107
|
Li T, Chen T, Chen H, Wang Q, Liu Z, Fang L, Wan M, Mao C, Shen J. Engineered Platelet-Based Micro/Nanomotors for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104912. [PMID: 34741421 DOI: 10.1002/smll.202104912] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Engineered platelets (PLT) can bring new possibilities for diseases treatment due to the specific response for a variety of physiological disease environments. However, the deep penetration of engineered PLT in diseased tissues such as tumor is still an important challenge that restricts the therapeutic effect. Herein, the engineered PLT micromotor (PLT@PDA-DOX) is constructed by a universal self-polymerization modification method of dopamine, and the chemotherapeutic drug doxorubicin (DOX) is loaded by both π-π stacking interaction with polydopamine (PDA) and cellular endocytosis of PLT. The experimental results prove that PLT@PDA-DOX can target to tumor site by the specific binding of PLT with cancer cells, and then the secondary PLT-derived microparticles (PMP@PDA-DOX) are released with the activation of PLT@PDA-DOX by tumor microenvironment (TME). Besides, benefiting from the photothermal conversion capability of PDA, PLT@PDA-DOX micromotors and PMP@PDA-DOX nanomotors are driven by near-infrared light to realize deep penetration. And the PLT-based micro/nanomotors with propulsion capability possess good performance for tumor ablating in vitro and in vivo. In consideration of the operability, mildness, universality of this modification method and the good biocompatibility of PDA, this work may provide a general paradigm for the construction of engineered cells in disease treatment.
Collapse
Affiliation(s)
- Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Tiantian Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Huan Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zhiyong Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Leyi Fang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
108
|
Choi H, Jeong SH, Kim TY, Yi J, Hahn SK. Bioinspired urease-powered micromotor as an active oral drug delivery carrier in stomach. Bioact Mater 2021; 9:54-62. [PMID: 34820555 PMCID: PMC8586715 DOI: 10.1016/j.bioactmat.2021.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/16/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022] Open
Abstract
Self-propelling micro- and nano-motors (MNMs) have been extensively investigated as an emerging oral drug delivery carrier for gastrointestinal (GI) tract diseases. However, the propulsion of current MNMs reported so far is mostly based on the redox reaction of metals (such as Zn and Mg) with severe propulsion gas generation, remaining non-degradable residue in the GI tract. Here, we develop a bioinspired enzyme-powered biopolymer micromotor mimicking the mucin penetrating behavior of Helicobacter pylori in the stomach. It converts urea to ammonia and the subsequent increase of pH induces local gel-sol transition of the mucin layer facilitating the penetration into the stomach tissue layer. The successful fabrication of micromotors is confirmed by high-resolution transmission electron microscopy, electron energy loss spectroscopy, dynamic light scattering analysis, zeta-potential analysis. In acidic condition, the immobilized urease can efficiently converted urea to ammonia, comparable with that of neutral condition because of the increase of surrounding pH during propulsion. After administration into the stomach, the micromotors show enhanced penetration and prolonged retention in the stomach for 24 h. Furthermore, histological analysis shows that the micromotors are cleared within 3 days without causing any toxicity in the GI tract. The enhanced penetration and retention of the micromotors as an active oral delivery carrier in the stomach would be successfully harnessed for the treatment of various GI tract diseases. Polydopamine (PDA) hollow microcapsules are biocompatible, biodegradable, and muco-adhesive. Urease-powered PDA micromotors are propelled by the decomposition of urea to ammonia and carbon dioxide. Micromotors increase the local pH to induce the gel-sol transition of the mucus layer. Micromotors result in enhanced penetration and prolonged retention in the stomach. Micromotors can be effectively used for oral drug delivery with complete clearance from the GI tract.
Collapse
Affiliation(s)
- Hyunsik Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Sang Hoon Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Tae Yeon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Jeeyoon Yi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| |
Collapse
|
109
|
Chen K, Peng X, Dang M, Tao J, Ma J, Li Z, Zheng L, Su X, Wang L, Teng Z. General Thermodynamic-Controlled Coating Method to Prepare Janus Mesoporous Nanomotors for Improving Tumor Penetration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51297-51311. [PMID: 34668372 DOI: 10.1021/acsami.1c11838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Artificial nanomotors are undergoing significant developments in several biomedical applications. However, current experimental strategies for producing nanomotors still have inherent drawbacks such as the requirement for expensive equipment, strict controlling of experimental conditions, and strenuous processes with several complex procedures. In this study, we describe for the first time a facile single-step thermodynamic-controlled coating method to prepare Janus mesoporous organosilica nanomotors. By controlling the total free energy of organosilica oligomers (G) from a low development level to a high level in the reaction system, the nonspontaneous nucleation on the platinum (Pt) nanosurface and the spontaneous nucleation in a solvent can be controlled, respectively. More importantly, we reveal that the molecular arrangement and contact angle of deposited organosilica on Pt cores vary with the total free energy of organosilica oligomers (G). Different values of θ would change the trend of detachment from Pt for organosilica nucleated cores and carry out diverse coating modes. These are indicated by the morphology evolution of platinum/organosilica hybrids, from naked platinum nanoparticles, evenly distributed organosilica shell/core, nonconcentric to typical Janus nanomotor. The prepared Janus mesoporous nanomotor (JMN) showed typical mesopore structures and active propelling behaviors under H2O2 stimulation. In addition, the JMN modified with hyaluronic acid exhibited excellent biocompatibility and improved tumor penetration under H2O2 stimulation. The successful construction of other nanomotor frameworks based on a gold-templated core proves the perfect applicability of the thermodynamic-coating method for the production of nanomotors. In conclusion, this work establishes a manufacturing methodology for nanomotors and drives nanomotors for promising biomedical applications.
Collapse
Affiliation(s)
- Kun Chen
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210046, Jiangsu, P. R. China
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, P. R. China
| | - Xin Peng
- Department of Radiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, P. R. China
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, P. R. China
| | - Meng Dang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210046, Jiangsu, P. R. China
| | - Jun Tao
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210046, Jiangsu, P. R. China
| | - Jingbo Ma
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, P. R. China
| | - Zhijie Li
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, P. R. China
| | - Liuhai Zheng
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, P. R. China
| | - Xiaodan Su
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210046, Jiangsu, P. R. China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210046, Jiangsu, P. R. China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210046, Jiangsu, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University School of Chemistry and Chemical Engineering, Nanjing 210093, Jiangsu, P. R. China
| |
Collapse
|
110
|
Choi H, Yi J, Cho SH, Hahn SK. Multifunctional micro/nanomotors as an emerging platform for smart healthcare applications. Biomaterials 2021; 279:121201. [PMID: 34715638 DOI: 10.1016/j.biomaterials.2021.121201] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/23/2021] [Accepted: 10/20/2021] [Indexed: 01/06/2023]
Abstract
Self-propelling micro- and nano-motors (MNMs) are emerging as a multifunctional platform for smart healthcare applications such as biosensing, bioimaging, and targeted drug delivery with high tissue penetration, stirring effect, and rapid drug transport. MNMs can be propelled and/or guided by chemical substances or external stimuli including ultrasound, magnetic field, and light. In addition, enzymatically powered MNMs and biohybrid micromotors have been developed using the biological components in the body. In this review, we describe emerging MNMs focusing on their smart propulsion systems, and diagnostic and therapeutic applications. Finally, we highlight several MNMs for in vivo applications and discuss the future perspectives of MNMs on their current limitations and possibilities toward further clinical applications.
Collapse
Affiliation(s)
- Hyunsik Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Jeeyoon Yi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Seong Hwi Cho
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea.
| |
Collapse
|
111
|
Fang D, Li T, Wu Z, Wang Q, Wan M, Zhou M, Mao C. Dual drive mode polydopamine nanomotors for continuous treatment of an inferior vena cava thrombus. J Mater Chem B 2021; 9:8659-8666. [PMID: 34608926 DOI: 10.1039/d1tb01202a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is of great significance to find effective thrombolytic treatments due to the harm caused by thrombosis to human health. Based on the formation mechanism and complex microenvironment of a thrombus, polydopamine nanomotors (PDANMs) modified by the peptide of Arg-Gly-Asp (RGD) and loaded with urokinase (UK) were designed and prepared. A polydopamine (PDA) substrate has a good photothermal conversion effect. Under near-infrared (NIR) light irradiation, it can not only perform photothermal therapy (PTT) on thrombus, but also provide the driving force of PDANMs. Thrombolytic drug UK was loaded in the mesoporous structure of the PDA substrate and can be released at the thrombus site for drug therapy. The modified RGD can target the thrombus site, moreover, benefiting from the guanidine group of L-arginine in the peptide chain, and RGD can interact with reactive oxygen species (ROS) in the thrombus microenvironment to produce nitric oxide (NO). NO not only propelled the movement of nanomotors, but also promoted the growth of vascular endothelial cells to repair damaged blood vessels. The experimental results show that NIR and NO can provide dual driving sources for the nanosystem to achieve continuous and deep penetration of the drug-loaded nanomotors at the thrombus site, while realizing the photothermal and drug synergistic therapy to enhance the therapeutic effect and promote the growth of vascular endothelium cells. This kind of thrombus treatment strategy based on nanomotor drug delivery systems will provide good technical support for the clinical treatment of inferior vena cava thrombus.
Collapse
Affiliation(s)
- Dan Fang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, China.
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, China.
| | - Ziyu Wu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, China.
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, China.
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, China.
| |
Collapse
|
112
|
Wang W, Mallouk TE. A Practical Guide to Analyzing and Reporting the Movement of Nanoscale Swimmers. ACS NANO 2021; 15:15446-15460. [PMID: 34636550 DOI: 10.1021/acsnano.1c07503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The recent invention of nanoswimmers-synthetic, powered objects with characteristic lengths in the range of 10-500 nm-has sparked widespread interest among scientists and the general public. As more researchers from different backgrounds enter the field, the study of nanoswimmers offers new opportunities but also significant experimental and theoretical challenges. In particular, the accurate characterization of nanoswimmers is often hindered by strong Brownian motion, convective effects, and the lack of a clear way to visualize them. When coupled with improper experimental designs and imprecise practices in data analysis, these issues can translate to results and conclusions that are inconsistent and poorly reproducible. This Perspective follows the course of a typical nanoswimmer investigation from synthesis through to applications and offers suggestions for best practices in reporting experimental details, recording videos, plotting trajectories, calculating and analyzing mobility, eliminating drift, and performing control experiments, in order to improve the reliability of the reported results.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, United States
| |
Collapse
|
113
|
Chang LH, Chuang EY, Cheng TM, Lin C, Shih CM, Wu AT, Jheng PR, Lu HY, Shih CC, Mi FL. Thrombus-specific theranostic nanocomposite for codelivery of thrombolytic drug, algae-derived anticoagulant and NIR fluorescent contrast agent. Acta Biomater 2021; 134:686-701. [PMID: 34358695 DOI: 10.1016/j.actbio.2021.07.072] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/13/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
Thrombolysis is a standard treatment for rapidly restoring blood flow. However, the application of urokinase-type plasminogen activator (Uk) in clinical therapy is limited due to its nonspecific distribution and inadequate therapeutic accumulation. Precise thrombus imaging and site-specific drug delivery can enhance the diagnostic and therapeutic efficacy for thrombosis. Accordingly, we developed a P-selectin-specific, photothermal theranostic nanocomposite for thrombus-targeted codelivery of Uk and indocyanine green (ICG, a contrast agent for near-infrared (NIR) fluorescence imaging). We evaluated its capabilities for thrombus imaging and enzyme/hyperthermia combined thrombolytic therapy. Mesoporous silica-coated gold nanorods (Si-AuNRs) were functionalized with an arginine-rich peptide to create an organic template for the adsorption of ICG and fucoidan (Fu), an algae-derived anticoagulant. Uk was loaded into the SiO2 pores of the Si-AuNRs through the formation of a Fu-Uk-ICG complex on the peptide-functionalized template. The Fu-Uk/ICG@SiAu NRs nanocomposite increased the photostability of ICG and improved its targeting/accumulation at blood clot sites with a strong NIR fluorescence intensity for precise thrombus imaging. Furthermore, ICG incorporated into the nanocomposite enhanced the photothermal effect of Si-AuNRs. Fu, as a P-selectin-targeting ligand, enabled the nanocomposite to target a thrombus site where platelets were activated. The nanocomposite enabled a faster release of Uk for rapid clearing of blood clots and a slower release of Fu for longer lasting prevention of thrombosis regeneration. The nanocomposite with multiple functions, including thrombus-targeting drug delivery, photothermal thrombolysis, and NIR fluorescence imaging, is thus an advanced theranostic platform for thrombolytic therapy with reduced hemorrhaging risk and enhanced imaging/thrombolysis efficiency. STATEMENT OF SIGNIFICANCE: Herein, for the first time, a P-selectin specific, photothermal theranostic nanocomposite for thrombus-targeted co-delivery of urokinase and NIR fluorescence contrast agent indocyanine green (ICG) was developed. We evaluated the potential of this theranostic nanocomposite for thrombus imaging and enzyme/hyperthermia combined thrombolytic therapy. The nanocomposite showed multiple functions including thrombus targeting and imaging, and photothermal thrombolysis. Besides, it allowed faster release of the thrombolytic urokinase for rapidly clearing blood clots and slower release of a brown algae-derived anticoagulant fucoidan (also acting as a P-selectin ligand) for prevention of thrombosis regeneration. The nanocomposite is thus a new and advanced theranostic platform for targeted thrombolytic therapy.
Collapse
Affiliation(s)
- Lee-Hsin Chang
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsai-Mu Cheng
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Chi Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Ming Shih
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan; Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Alexander Th Wu
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsin-Ying Lu
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan; Institute of Clinical Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Che Shih
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan; Institute of Clinical Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Fwu-Long Mi
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
114
|
Jia Q, Li Z, Bai M, Yan H, Zhang R, Ji Y, Feng Y, Yang Z, Wang Z, Li J. Estimating dynamic vascular perfusion based on Er-based lanthanide nanoprobes with enhanced down-conversion emission beyond 1500 nm. Theranostics 2021; 11:9859-9872. [PMID: 34815791 PMCID: PMC8581431 DOI: 10.7150/thno.65771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Peripheral artery disease (PAD) is a common, yet serious, circulatory condition that can increase the risk of amputation, heart attack or stroke. Accurate identification of PAD and dynamic monitoring of the treatment efficacy of PAD in real time are crucial for optimizing therapeutic outcomes. However, current imaging techniques do not enable these requirements. Methods: A lanthanide-based nanoprobe with emission in the second near-infrared window b (NIR-IIb, 1500-1700 nm), Er-DCNPs, was utilized for continuous imaging of dynamic vascular structures and hemodynamic alterations in real time using PAD-related mouse models. The NIR-IIb imaging capability, stability, and biocompatibility of Er-DCNPs were evaluated in vitro and in vivo. Results: Owing to their high temporal-spatial resolution in the NIR-IIb imaging window, Er-DCNPs not only exhibited superior capability in visualizing anatomical and pathophysiological features of the vasculature of mice but also provided dynamic information on blood perfusion for quantitative assessment of blood recovery, thereby achieving the synergistic integration of diagnostic and therapeutic imaging functions, which is very meaningful for the successful management of PAD. Conclusion: Our findings indicate that Er-DCNPs can serve as a promising system to facilitate the diagnosis and treatment of PAD as well as other vasculature-related diseases.
Collapse
Affiliation(s)
- Qian Jia
- Engineering Research Center of Molecular and Neuro-imaging of ministry of education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126 China
| | - Zheng Li
- Engineering Research Center of Molecular and Neuro-imaging of ministry of education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126 China
| | - Mingli Bai
- Engineering Research Center of Molecular and Neuro-imaging of ministry of education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126 China
| | - Haohao Yan
- Engineering Research Center of Molecular and Neuro-imaging of ministry of education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126 China
| | - Ruili Zhang
- Engineering Research Center of Molecular and Neuro-imaging of ministry of education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126 China
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Yu Ji
- Engineering Research Center of Molecular and Neuro-imaging of ministry of education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126 China
| | - Yanbin Feng
- Engineering Research Center of Molecular and Neuro-imaging of ministry of education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126 China
| | - Zuo Yang
- Engineering Research Center of Molecular and Neuro-imaging of ministry of education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126 China
| | - Zhongliang Wang
- Engineering Research Center of Molecular and Neuro-imaging of ministry of education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126 China
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Jianxiong Li
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing, 100071, China
| |
Collapse
|
115
|
Li X, Wu R, Chen H, Li T, Jiang H, Xu X, Tang X, Wan M, Mao C, Shi D. Near-Infrared Light-Driven Multifunctional Tubular Micromotors for Treatment of Atherosclerosis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30930-30940. [PMID: 34156244 DOI: 10.1021/acsami.1c03600] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One of the difficulties in atherosclerosis treatment is that the ablation of inflammatory macrophages, repair of vascular endothelial injury, and anti-tissue proliferation should be considered. However, there are few studies that can solve the abovementioned problems simultaneously. Herein, we present a kind of near-infrared (NIR) light-driven multifunctional mesoporous/macroporous tubular micromotor which can rapidly target the damaged blood vessels and release different drugs. Their motion effect can promote themselves to penetrate into the plaque site, and the generated heat effect caused by NIR irradiation can realize the photothermal ablation of inflammatory macrophages. Furthermore, these micromotors can rapidly release the vascular endothelial growth factor for endothelialization and slowly release paclitaxel for antiproliferation to achieve synergistic treatment of atherosclerosis. In vivo results demonstrated that the micromotors can achieve a good therapeutic effect for atherosclerosis. This kind of micro/nanomotor technology with a complex porous structure for drug loading will bring a more potential treatment platform for the disease.
Collapse
Affiliation(s)
- Xiaoyun Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Rui Wu
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Huan Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Huiming Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xingquan Xu
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xueting Tang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Dongquan Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
116
|
Engineering Active Micro and Nanomotors. MICROMACHINES 2021; 12:mi12060687. [PMID: 34208386 PMCID: PMC8231110 DOI: 10.3390/mi12060687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022]
Abstract
Micro- and nanomotors (MNMs) are micro/nanoparticles that can perform autonomous motion in complex fluids driven by different power sources. They have been attracting increasing attention due to their great potential in a variety of applications ranging from environmental science to biomedical engineering. Over the past decades, this field has evolved rapidly, with many significant innovations contributed by global researchers. In this review, we first briefly overview the methods used to propel motors and then present the main strategies used to design proper MNMs. Next, we highlight recent fascinating applications of MNMs in two examplary fields, water remediation and biomedical microrobots, and conclude this review with a brief discussion of challenges in the field.
Collapse
|
117
|
Wan M, Li T, Chen H, Mao C, Shen J. Biosafety, Functionalities, and Applications of Biomedical Micro/nanomotors. Angew Chem Int Ed Engl 2021; 60:13158-13176. [PMID: 33145879 DOI: 10.1002/anie.202013689] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Indexed: 12/23/2022]
Abstract
Due to their unique ability to actively move, micro/nanomotors offer the possibility of breaking through the limitations of traditional passive drug delivery systems for the treatment of many diseases, and have attracted the increasing attention of researchers. However, at present, the realization of many advantages of micro/nanomotors in disease treatment in vivo is still in its infancy, because of the complexity and particularity of diseases in different parts of human body. In this Minireview, we first focus on the biosafety and functionality of micro/nanomotors as a biomedical treatment system. Then, we address the treatment difficulties of various diseases in vivo (such as ophthalmic disease, orthopedic disease, gastrointestinal disease, cardiovascular disease, and cancer), and then review the research progress of biomedical micro/nanomotors in the past 20 years, Finally, we propose the challenges in this field and possible future development directions.
Collapse
Affiliation(s)
- Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Huan Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
118
|
Hettie KS. Targeting Contrast Agents With Peak Near-Infrared-II (NIR-II) Fluorescence Emission for Non-invasive Real-Time Direct Visualization of Thrombosis. Front Mol Biosci 2021; 8:670251. [PMID: 34026844 PMCID: PMC8138325 DOI: 10.3389/fmolb.2021.670251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
Thrombosis within the vasculature arises when pathological factors compromise normal hemostasis. On doing so, arterial thrombosis (AT) and venous thrombosis (VT) can lead to life-threatening cardio-cerebrovascular complications. Unfortunately, the therapeutic window following the onset of AT and VT is insufficient for effective treatment. As such, acute AT is the leading cause of heart attacks and constitutes ∼80% of stroke incidences, while acute VT can lead to fatal therapy complications. Early lesion detection, their accurate identification, and the subsequent appropriate treatment of thrombi can reduce the risk of thrombosis as well as its sequelae. As the success rate of therapy of fresh thrombi is higher than that of old thrombi, detection of the former and accurate identification of lesions as thrombi are of paramount importance. Magnetic resonance imaging, x-ray computed tomography (CT), and ultrasound (US) are the conventional non-invasive imaging modalities used for the detection and identification of AT and VT, but these modalities have the drawback of providing only image-delayed indirect visualization of only late stages of thrombi development. To overcome such limitations, near-infrared (NIR, ca. 700-1,700 nm) fluorescence (NIRF) imaging has been implemented due to its capability of providing non-invasive real-time direct visualization of biological structures and processes. Contrast agents designed for providing real-time direct or indirect visualization of thrombi using NIRF imaging primarily provide peak NIR-I fluorescence emission (ca. 700-1,000 nm), which affords limited tissue penetration depth and suboptimal spatiotemporal resolution. To facilitate the enhancement of the visualization of thrombosis via providing detection of smaller, fresh, and/or deep-seated thrombi in real time, the development of contrast agents with peak NIR-II fluorescence emission (ca. 1000-1,700 nm) has been recently underway. Currently, however, most contrast agents that provide peak NIR-II fluorescence emissions that are purportedly capable of providing direct visualization of thrombi or their resultant occlusions actually afford only the indirect visualization of such because they only provide for the (i) measuring of the surrounding vascular blood flow and/or (ii) simple tracing of the vasculature. These contrast agents do not target thrombi or occlusions. As such, this mini review summarizes the extremely limited number of targeting contrast agents with peak NIR-II fluorescence emission developed for non-invasive real-time direct visualization of thrombosis that have been recently reported.
Collapse
Affiliation(s)
- Kenneth S. Hettie
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
119
|
Bose RJ, Ha K, McCarthy JR. Bio-inspired nanomaterials as novel options for the treatment of cardiovascular disease. Drug Discov Today 2021; 26:1200-1211. [PMID: 33561512 PMCID: PMC8205945 DOI: 10.1016/j.drudis.2021.01.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 11/28/2022]
Abstract
Cardiovascular disease (CVD) and its sequelae have long been the leading causes of death and disability in the developed world. Although mortality associated with CVD has been decreasing, due in large part to novel therapeutic options, the rate of decrease has flattened. Thus, there is a great need to investigate alternate therapeutic strategies that can increase efficacy while decreasing adverse effects. Nanomaterials have been widely investigated and have emerged as promising tools for both therapeutic and diagnostic purposes in oncology; however, the potential of nanomaterials has not been extensively explored for cardiovascular medicine. In this review, we focus on recent developments in the field of nanomedicines targeted for CVDs, with a special emphasis on cell membrane-coated nanoparticles (NPs) and their applications.
Collapse
Affiliation(s)
- Rajendran Jc Bose
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, USA
| | - Khan Ha
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, USA
| | - Jason R McCarthy
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, USA.
| |
Collapse
|
120
|
Sun B, Hettie KS, Zhu S. Near-infrared Fluorophores for Thrombosis Diagnosis and Therapy. ADVANCED THERAPEUTICS 2021; 4:2000278. [PMID: 33997270 PMCID: PMC8115206 DOI: 10.1002/adtp.202000278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Indexed: 12/23/2022]
Abstract
Thrombosis is an adverse physiological event wherein the resulting thrombus and thrombus-induced diseases collectively result in high morbidity and mortality rates. Currently, nano-medicines that incorporate fluorophores emitting in the near-infrared-I (NIR-I, 700-900 nm) spectral region into their systems have been adopted to afford thrombosis theranostics. However, several unsolved problems such as limited penetration depth and image quality severely impede further applications of such nano-medicine systems. Fortunately, the ability to incorporate fluorophores emitting in the NIR-II (1000-1700 nm) window into nano-medicine systems can unambiguously identify biological processes with high signal-to-noise, deep tissue penetration depth, and high image resolution. Considering the inherently favorable properties of NIR-II fluorophores, we believe such have enormous potential to quickly become incorporated into nano-medicine systems for thrombosis theranostics. In this review, we i) discuss the development of NIR fluorescence as an imaging modality and fluorescent agents; ii) comprehensively summarize the recent development of NIR-I fluorophore-based nano-medicine systems for thrombosis theranostics; iii) highlight the state-of-the-art NIR-II fluorophores that have been designed for the specific purpose of affording thrombotic diagnosis; iv) speculate on possible forward avenues for the use of NIR-II fluorophores towards thrombosis diagnosis and therapy; and v) discuss the potential for their clinical translation.
Collapse
Affiliation(s)
- Bin Sun
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130061, P.R. China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Kenneth S Hettie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130061, P.R. China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
121
|
Deng Q, Zhang L, Lv W, Liu X, Ren J, Qu X. Biological Mediator-Propelled Nanosweeper for Nonpharmaceutical Thrombus Therapy. ACS NANO 2021; 15:6604-6613. [PMID: 33724000 DOI: 10.1021/acsnano.0c09939] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Traditional thrombolytic drugs offer limited outcomes due to short circulation half-life and low utilization. Herein, we have designed and constructed a biological mediator-propelled nanosweeper for highly efficient nonpharmaceutical thrombolysis and prevention of thrombus recurrence. Under the near-infrared light irradiation, the nanosweepers were activated to trigger nitric oxide (NO) release, which propelled the nanosweepers to penetrate deeply into the thrombus and resulted in enhanced site-pecific mechanical and photothermal thrombolysis. The experimental evidence confirmed that the ingenious nanosweeper displayed excellent site-specific thrombolytic efficacy even when compared with the clinical thrombolytic drug. In the meantime, as a biological mediator, the release of NO could effectively prevent thrombus recurrence in vivo. Overall, we anticipated that the nanosweeper would provide a promising strategy for the treatment of thrombi.
Collapse
Affiliation(s)
- Qingqing Deng
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lu Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wei Lv
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xuemeng Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
122
|
Zhang X, Fu Q, Duan H, Song J, Yang H. Janus Nanoparticles: From Fabrication to (Bio)Applications. ACS NANO 2021; 15:6147-6191. [PMID: 33739822 DOI: 10.1021/acsnano.1c01146] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Janus nanoparticles (JNPs) refer to the integration of two or more chemically discrepant composites into one structure system. Studies into JNPs have been of significant interest due to their interesting characteristics stemming from their asymmetric structures, which can integrate different functional properties and perform more synergetic functions simultaneously. Herein, we present recent progress of Janus particles, comprehensively detailing fabrication strategies and applications. First, the classification of JNPs is divided into three blocks, consisting of polymeric composites, inorganic composites, and hybrid polymeric/inorganic JNPs composites. Then, the fabrication strategies are alternately summarized, examining self-assembly strategy, phase separation strategy, seed-mediated polymerization, microfluidic preparation strategy, nucleation growth methods, and masking methods. Finally, various intriguing applications of JNPs are presented, including solid surfactants agents, micro/nanomotors, and biomedical applications such as biosensing, controlled drug delivery, bioimaging, cancer therapy, and combined theranostics. Furthermore, challenges and future works in this field are provided.
Collapse
Affiliation(s)
- Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| |
Collapse
|
123
|
Wang Q, Shi T, Wan M, Wei J, Wang F, Mao C. Research progress of using micro/nanomotors in the detection and therapy of diseases related to the blood environment. J Mater Chem B 2021; 9:283-294. [PMID: 33241834 DOI: 10.1039/d0tb02055a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Micro/nanomotors bring new possibilities for the detection and therapy of diseases related to the blood environment with their unique motion effect. This work reviews the research progress of using micro/nanomotors in the detection and therapy of diseases related to the blood environment. First, we outline the advantages of using micro/nanomotors in blood-related disease detection. To be specific, the motion capability of micro/nanomotors can increase plasma or blood fluid convection and accelerate the interaction between the sample and the capture probe. This allows the effective reduction of the amount of reagents and treatment steps. Therefore, the application of micro/nanomotors significantly improves the analytical performance. Second, we discuss the key challenges and future prospects of micro/nanomotors in the treatment of blood-environment related diseases. It is very important to design a unique treatment plan according to the etiology and specific microenvironment of the disease. The next generation of micro/nanomotors is expected to bring exciting progress to the detection and therapy of blood-environment related diseases.
Collapse
Affiliation(s)
- Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China. and School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Tao Shi
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Fenghe Wang
- Jiangsu Province Key Laboratory of Environmental Engineering, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
124
|
Study on hemostatic effect and mechanism of starch-based nano-microporous particles. Int J Biol Macromol 2021; 179:507-518. [PMID: 33711370 DOI: 10.1016/j.ijbiomac.2021.03.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/22/2021] [Accepted: 03/08/2021] [Indexed: 11/21/2022]
Abstract
The powdered hemostatic particles have broad application prospects in large open wounds, internal organ injuries and penetrating injuries of the body. In this study, nanoscale mescoporous and macroporous silica (MMSN), nanoscale mescoporous and macroporous bioactive glass (MBG), micron-scale cross-linked corn starch porous microspheres (CMS), MMSN@CMS and MBG@CMS starch-based nano-microporous particles were synthesized and their hemostatic effect and hemostatic mechanism were studied. The results showed that comparted with the single particle of CMS, the combination particles MBG@CMS and MMSN@CMS significantly increased the water absorption rate, activated both internal and external coagulation pathways, significantly shortened CBT, as well as the improved hemostatic effects in vitro. The immediately released Ca2+ from MBG@CMS in the blood to participate in the coagulation pathway, and MMSN@CMS activated platelets by concentrating blood coagulation factors, might be the main hemostatic mechanisms for the starch-based nano-microporous particles. Furthermore, the hemostatic efficacy of particles, both in the model of tail-amputation and liver injury in SD rats, showed the starch-based nano-microporous particles, especial MBG@CMS, could significantly reduce the weight of blood loss and shorten the bleeding time. Our research work stated that the starch-based nano-microporous particles MBG@CMS might be a hemostasis biomaterial with the potential applications for the emergency bleeding.
Collapse
|
125
|
Wan M, Li T, Chen H, Mao C, Shen J. Biosafety, Functionalities, and Applications of Biomedical Micro/nanomotors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Huan Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| |
Collapse
|
126
|
Wang W, Zhou C. A Journey of Nanomotors for Targeted Cancer Therapy: Principles, Challenges, and a Critical Review of the State-of-the-Art. Adv Healthc Mater 2021; 10:e2001236. [PMID: 33111501 DOI: 10.1002/adhm.202001236] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/04/2020] [Indexed: 12/11/2022]
Abstract
A nanomotor is a miniaturized device that converts energy stored in the environment into mechanical motion. The last two decades have witnessed a surge of research interests in the biomedical applications of nanomotors, but little clinical translation. To accelerate this process, targeted cancer therapy is used as an example to describe a "survive, locate, operate, and terminate" (SLOT) mission of a nanomotor, where it must 1) survive in the unfriendly in vivo environment, 2) locate its target as well as be located by human operators, 3) carry out specific operations, and 4) terminate after the mission is completed. Along this journey, the challenges presented to a nanomotor, including to power, navigate, steer, target, release, control, image, and communicate are discussed, and how state-of-the-art nanomotors meet or fall short of these requirements is critically reviewed. These discussions are then condensed into a table for easy reference. In particular, it is argued that chemically powered nanomotors are intrinsically ill-positioned for targeted cancer therapy, while nanomotors powered by magnetic fields or ultrasound show more promises. Following this argument, a tentative nanomotor design is then presented in the end to conform to the SLOT guideline, and to inspire practical, functional nanorobots that are yet to come.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials Science and Engineering Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Chao Zhou
- School of Materials Science and Engineering Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| |
Collapse
|
127
|
Lin R, Yu W, Chen X, Gao H. Self-Propelled Micro/Nanomotors for Tumor Targeting Delivery and Therapy. Adv Healthc Mater 2021; 10:e2001212. [PMID: 32975892 DOI: 10.1002/adhm.202001212] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/14/2020] [Indexed: 12/14/2022]
Abstract
Cancer is still one of the most serious diseases with threats to health and life. Although some advances have been made in targeting delivery of antitumor drugs over the past number of years, there are still many problems needing to be solved, such as poor efficacy and high systemic toxicity. Micro/nanomotors capable of self-propulsion in fluid provide promising platforms for improving the efficiency of tumor delivery. Herein, the recent progress in micro/nanomotors for tumor targeting delivery and therapy is reviewed, with special focus on the contributions of micro/nanomotors to the different stages of tumor targeting delivery as well as the combination therapy by micro/nanomotors. The present limitations and future directions are also put forward for further development.
Collapse
Affiliation(s)
- Ruyi Lin
- College of Materials Science and Engineering Sichuan University Chengdu 610064 P. R. China
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610064 P. R. China
| | - Wenqi Yu
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610064 P. R. China
| | - Xianchun Chen
- College of Materials Science and Engineering Sichuan University Chengdu 610064 P. R. China
| | - Huile Gao
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|
128
|
Wang B, Kostarelos K, Nelson BJ, Zhang L. Trends in Micro-/Nanorobotics: Materials Development, Actuation, Localization, and System Integration for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002047. [PMID: 33617105 DOI: 10.1002/adma.202002047] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/24/2020] [Indexed: 05/23/2023]
Abstract
Micro-/nanorobots (m-bots) have attracted significant interest due to their suitability for applications in biomedical engineering and environmental remediation. Particularly, their applications in in vivo diagnosis and intervention have been the focus of extensive research in recent years with various clinical imaging techniques being applied for localization and tracking. The successful integration of well-designed m-bots with surface functionalization, remote actuation systems, and imaging techniques becomes the crucial step toward biomedical applications, especially for the in vivo uses. This review thus addresses four different aspects of biomedical m-bots: design/fabrication, functionalization, actuation, and localization. The biomedical applications of the m-bots in diagnosis, sensing, microsurgery, targeted drug/cell delivery, thrombus ablation, and wound healing are reviewed from these viewpoints. The developed biomedical m-bot systems are comprehensively compared and evaluated based on their characteristics. The current challenges and the directions of future research in this field are summarized.
Collapse
Affiliation(s)
- Ben Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, The University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona, Spain
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Tannenstrasse 3, Zurich, CH-8092, Switzerland
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
- CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
| |
Collapse
|
129
|
Soto F, Wang J, Ahmed R, Demirci U. Medical Micro/Nanorobots in Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002203. [PMID: 33173743 PMCID: PMC7610261 DOI: 10.1002/advs.202002203] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/09/2020] [Indexed: 05/15/2023]
Abstract
Advances in medical robots promise to improve modern medicine and the quality of life. Miniaturization of these robotic platforms has led to numerous applications that leverages precision medicine. In this review, the current trends of medical micro and nanorobotics for therapy, surgery, diagnosis, and medical imaging are discussed. The use of micro and nanorobots in precision medicine still faces technical, regulatory, and market challenges for their widespread use in clinical settings. Nevertheless, recent translations from proof of concept to in vivo studies demonstrate their potential toward precision medicine.
Collapse
Affiliation(s)
- Fernando Soto
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| | - Jie Wang
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| | - Rajib Ahmed
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| | - Utkan Demirci
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| |
Collapse
|
130
|
|
131
|
Wang M, Bao T, Yan W, Fang D, Yu Y, Liu Z, Yin G, Wan M, Mao C, Shi D. Nanomotor-based adsorbent for blood Lead(II) removal in vitro and in pig models. Bioact Mater 2020; 6:1140-1149. [PMID: 33134607 PMCID: PMC7588752 DOI: 10.1016/j.bioactmat.2020.09.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/17/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022] Open
Abstract
Blood lead (Pb(II)) removal is very important but challenging. The main difficulty of blood Pb(II) removal currently lies in the fact that blood Pb(II) is mainly complexed with hemoglobin (Hb) inside the red blood cells (RBCs). Traditional blood Pb(II) removers are mostly passive particles that do not have the motion ability, thus the efficiency of the contact between the adsorbent and the Pb(II)-contaminated Hb is relatively low. Herein, a kind of magnetic nanomotor adsorbent with movement ability under alternating magnetic field based on Fe3O4 nanoparticle modified with meso-2, 3-dimercaptosuccinic acid (DMSA) was prepared and a blood Pb(II) removal strategy was further proposed. During the removal process, the nanomotor adsorbent can enter the RBCs, then the contact probability between the nanomotor adsorbent and the Pb(II)-contaminated Hb can be increased by the active movement of nanomotor. Through the strong coordination of functional groups in DMSA, the nanomotor adsorbent can adsorb Pb(II), and finally be separated from blood by permanent magnetic field. The in vivo extracorporeal blood circulation experiment verifies the ability of the adsorbent to remove blood Pb(II) in pig models, which may provide innovative ideas for blood heavy metal removal in the future.
Collapse
Affiliation(s)
- Meng Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tianyi Bao
- Department of Orthopaedics the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Wenqiang Yan
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Dan Fang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yueqi Yu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Zhiyong Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Guoyong Yin
- Department of Orthopaedics the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
- Corresponding author.
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
- Corresponding author.
| | - Dongquan Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
- Corresponding author.
| |
Collapse
|
132
|
Wang S, Wang R, Meng N, Guo H, Wu S, Wang X, Li J, Wang H, Jiang K, Xie C, Liu Y, Wang H, Lu W. Platelet membrane-functionalized nanoparticles with improved targeting ability and lower hemorrhagic risk for thrombolysis therapy. J Control Release 2020; 328:78-86. [PMID: 32853731 DOI: 10.1016/j.jconrel.2020.08.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022]
Abstract
Intravenous injection of thrombolytic drugs is the most effective strategy for the treatment of thrombotic diseases. However, the clinical application of most thrombolytic drugs is limited by hemorrhagic risks and narrow therapeutic index. The targeted drug delivery systems may help to address these problems. Inspired by the crucial role of platelets in the process of thrombus, Platelet membrane-coated PLGA cores loading lumbrokinase (PNPs/LBK) were designed for effective thrombolysis with reduced hemorrhagic risk. Using a mouse carotid thrombosis model, the affinity of platelet membrane-coated nanoparticles to the thrombus was confirmed. Also, the PNPs/LBK exhibited excellent thrombolytic efficacy at a low dose, compared with free LBK. More importantly, PNPs/LBK showed less adverse effect on the function of the coagulation system, and thus reduced hemorrhagic risk. These results indicated that a promising thrombus-targeted drug delivery system was achieved by coating PLGA nanoparticles with platelet membrane. Such rationally designed drug delivery system will provide a broad platform for thrombus treatment.
Collapse
Affiliation(s)
- Songli Wang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China; National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Ruifeng Wang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Nana Meng
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Haiyan Guo
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Sunyi Wu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Xiaoyi Wang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Jinyang Li
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Huan Wang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Kuan Jiang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Cao Xie
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Yu Liu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China
| | - Hao Wang
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China.
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China; State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China; Institute of Integrative Medicine of Fudan University, Shanghai 200041, China; Minhang Branch, Zhongshan Hospital and Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China.
| |
Collapse
|
133
|
Wang M, Yan W, Chu M, Li T, Liu Z, Yu Y, Huang Y, Zhu T, Wan M, Mao C, Shi D. Erythrocyte Membrane-Wrapped Magnetic Nanotherapeutic Agents for Reduction and Removal of Blood Cr(VI). ACS APPLIED MATERIALS & INTERFACES 2020; 12:28014-28023. [PMID: 32525652 DOI: 10.1021/acsami.0c06437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The hazard of hexavalent chromium (Cr(VI)) from environmental pollution and medical implanted metal has been recognized widely. However, removal of trace amount of Cr(VI) in the blood circumstance faces tremendous difficulties for that most of Cr(VI) located in erythrocytes, thus there is almost no literature to report the removal of Cr(VI) in blood. Herein, a removal strategy, named as reduction-adsorption-separation, is proposed to realize the removal of Cr(VI) in blood. First, magnetic core-shell mesoporous nanocomposite is fabricated by using Fe3O4 nanoparticles as magnetic core and mesoporous silica (MS) as shell, hyperbranched polyamide (HPA) as mesoporous channel modifier and ascorbic acid (ASC) as the reductant drug loaded in the mesoporous channels, which is also denoted as Fe/MS/HPA/ASC. Then, on the basis of the bionic idea, the erythrocyte membrane (EM)-wrapped Fe/MS/HPA/ASC to protect ASC from deactivation is obtained and named as the therapeutic agent (Fe/MS/HPA/ASC@EM). During removal process, the therapeutic agent can enter in erythrocytes to use ASC to reduce Cr(VI) to Cr(III) and HPA in mesoporous channels to adsorb Cr(III) and can then be recollected from blood by magnetic separation. Finally, an animal model of blood Cr(VI) poisoning is constructed and used to test the removal ability of Cr(VI) from pig blood in vivo, verifying the effectiveness of this blood Cr(VI) removal strategy, providing a possible way to design more efficient and biosafe therapeutic agents for blood purification.
Collapse
Affiliation(s)
- Meng Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wenqiang Yan
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Meilin Chu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhiyong Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yueqi Yu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yangyang Huang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Tianyu Zhu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Dongquan Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
134
|
Wan M, Wang Q, Li X, Xu B, Fang D, Li T, Yu Y, Fang L, Wang Y, Wang M, Wang F, Mao C, Shen J, Wei J. Systematic Research and Evaluation Models of Nanomotors for Cancer Combined Therapy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Xiaoyun Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Bo Xu
- The Comprehensive Cancer Centre of Drum Tower Hospital Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University Nanjing 210008 China
| | - Dan Fang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Yueqi Yu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Leyi Fang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Yue Wang
- The Comprehensive Cancer Centre of Drum Tower Hospital Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University Nanjing 210008 China
| | - Meng Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Fenghe Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Jia Wei
- The Comprehensive Cancer Centre of Drum Tower Hospital Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University Nanjing 210008 China
| |
Collapse
|
135
|
Wan M, Wang Q, Li X, Xu B, Fang D, Li T, Yu Y, Fang L, Wang Y, Wang M, Wang F, Mao C, Shen J, Wei J. Systematic Research and Evaluation Models of Nanomotors for Cancer Combined Therapy. Angew Chem Int Ed Engl 2020; 59:14458-14465. [DOI: 10.1002/anie.202002452] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/27/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Xiaoyun Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Bo Xu
- The Comprehensive Cancer Centre of Drum Tower Hospital Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University Nanjing 210008 China
| | - Dan Fang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Yueqi Yu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Leyi Fang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Yue Wang
- The Comprehensive Cancer Centre of Drum Tower Hospital Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University Nanjing 210008 China
| | - Meng Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Fenghe Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Jia Wei
- The Comprehensive Cancer Centre of Drum Tower Hospital Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University Nanjing 210008 China
| |
Collapse
|
136
|
Huang Y, Li T, Gao W, Wang Q, Li X, Mao C, Zhou M, Wan M, Shen J. Platelet-derived nanomotor coated balloon for atherosclerosis combination therapy. J Mater Chem B 2020; 8:5765-5775. [DOI: 10.1039/d0tb00789g] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A nanorobot is used to realize deep penetration of drugs in atherosclerotic plaque, photothermal ablation of inflammatory macrophages and long-term anti-proliferation effects.
Collapse
Affiliation(s)
- Yangyang Huang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- P. R. China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- P. R. China
| | - Wentao Gao
- Department of Vascular Surgery
- Nanjing Drum Tower Hospital
- The Affiliated Hospital of Nanjing University Medical School
- P. R. China
| | - Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- P. R. China
| | - Xiaoyun Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- P. R. China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- P. R. China
| | - Min Zhou
- Department of Vascular Surgery
- Nanjing Drum Tower Hospital
- The Affiliated Hospital of Nanjing University Medical School
- P. R. China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- P. R. China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- P. R. China
| |
Collapse
|