101
|
Amini Mahabadi J, Sabzalipoor H, Kehtari M, Enderami SE, Soleimani M, Nikzad H. Derivation of male germ cells from induced pluripotent stem cells by inducers: A review. Cytotherapy 2018; 20:279-290. [PMID: 29397308 DOI: 10.1016/j.jcyt.2018.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 11/15/2017] [Accepted: 01/01/2018] [Indexed: 12/29/2022]
Abstract
Induced pluripotent stem cells (iPSCs) refer to stem cells that are artificially produced using a new technology known as cellular reprogramming, which can use gene transduction in somatic cells. There are numerous potential applications for iPSCs in the field of stem cell biology becauase they are able to give rise to several different cell features of lineages such as three-germ layers. Primordial germ cells, generated via in vitro differentiation of iPSCs, have been demonstrated to produce functional gametes. Therefore, in this review we discussed past and recent advances in the in vitro differentiation of germ cells using pluripotent stem cells with an emphasis on iPSCs. Although this domain of research is still in its infancy, exploring development mechanisms of germ cells is promising, especially in humans, to promote future reproductive and developmental engineering technologies. While few studies have evaluated the ability and efficiency of iPSCs to differentiate toward male germ cells in vitro by different inducers, the given effect was investigated in this review.
Collapse
Affiliation(s)
- Javad Amini Mahabadi
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Sabzalipoor
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mousa Kehtari
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Seyed Ehsan Enderami
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Masoud Soleimani
- Hematology Department, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Nikzad
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
102
|
Medrano JV, Andrés MDM, García S, Herraiz S, Vilanova-Pérez T, Goossens E, Pellicer A. Basic and Clinical Approaches for Fertility Preservation and Restoration in Cancer Patients. Trends Biotechnol 2018; 36:199-215. [DOI: 10.1016/j.tibtech.2017.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/13/2017] [Accepted: 10/18/2017] [Indexed: 12/20/2022]
|
103
|
Arkoun B, Livera G. [In vitro oogenesis: How far have we come?]. ACTA ACUST UNITED AC 2017; 46:41-46. [PMID: 29226802 DOI: 10.1016/j.gofs.2017.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Indexed: 11/18/2022]
Abstract
Oogenesis is a complex cellular and molecular process whose fundamental mechanisms are still poorly described or not yet elucidated, especially in human species. The development of an in vitro model of oogenesis, particularly during fetal development in humans, is a critical step that would allow: (i) a better understand of the biological mechanisms of oogenesis; (ii) a refinement of medical diagnosis for women suffering from infertility; and (iii) providing new therapeutics for reproductive pathologies. The genesis of this model could be considered from ES/iPS cells. In this article, we will trace the physiological mechanisms of oogenesis in vivo and discuss the studies carried out in the field of in vitro oogenesis from ES/iPS cells, as well as the challenges to be met in the future.
Collapse
Affiliation(s)
- B Arkoun
- Laboratoire de développement des Gonades, unité de stabilité génétique, cellules souches et radiation, UMR 967, Inserm, CEA/DRF/iRCM/SCSR, université Paris Diderot, Sorbonne Paris Cité, université Paris-Sud, université Paris-Saclay, 92265 Fontenay-aux-Roses, France
| | - G Livera
- Laboratoire de développement des Gonades, unité de stabilité génétique, cellules souches et radiation, UMR 967, Inserm, CEA/DRF/iRCM/SCSR, université Paris Diderot, Sorbonne Paris Cité, université Paris-Sud, université Paris-Saclay, 92265 Fontenay-aux-Roses, France.
| |
Collapse
|
104
|
Hayashi M, Kawaguchi T, Durcova-Hills G, Imai H. Generation of germ cells from pluripotent stem cells in mammals. Reprod Med Biol 2017; 17:107-114. [PMID: 29692667 PMCID: PMC5902460 DOI: 10.1002/rmb2.12077] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/07/2017] [Indexed: 01/01/2023] Open
Abstract
Background The germ cell lineage transmits genetic and epigenetic information to the next generation. Primordial germ cells (PGCs), the early embryonic precursors of sperm or eggs, have been studied extensively. Recently, in vitro models of PGC induction have been established in the mouse. Many attempts are reported to enhance our understanding of PGC development in other mammals, including human. Methods Here, original and review articles that have been published on PubMed are reviewed in order to give an overview of the literature that is focused on PGC development, including the specification of in vivo and in vitro in mice, human, porcine, and bovine. Results Mammalian PGC development, in vivo and in vitro, have been studied primarily by using the mouse model as a template to study PGC specification in other mammals, including human, porcine, and bovine. Conclusion The growing body of published works reveals similarities, as well as differences, in PGC establishment in and between mouse and human.
Collapse
Affiliation(s)
- Masafumi Hayashi
- Laboratory of Reproductive Biology Graduate School of Agriculture Kyoto University Kyoto Japan
| | - Takamasa Kawaguchi
- Laboratory of Reproductive Biology Graduate School of Agriculture Kyoto University Kyoto Japan.,The Fukui Research Institute Ono Pharmaceutical Companyy, Ltd. Fukui Japan
| | - Gabriela Durcova-Hills
- Laboratory of Reproductive Biology Graduate School of Agriculture Kyoto University Kyoto Japan
| | - Hiroshi Imai
- Laboratory of Reproductive Biology Graduate School of Agriculture Kyoto University Kyoto Japan
| |
Collapse
|
105
|
Asgari HR, Akbari M, Yazdekhasti H, Rajabi Z, Navid S, Aliakbari F, Abbasi N, Aval FS, Shams A, Abbasi M. Comparison of Human Amniotic, Chorionic, and Umbilical Cord Multipotent Mesenchymal Stem Cells Regarding Their Capacity for Differentiation Toward Female Germ Cells. Cell Reprogram 2017; 19:44-53. [PMID: 28112985 DOI: 10.1089/cell.2016.0035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Placenta harbors a plentiful source of various cells with stem cells or stem-like cell properties, which can be used in therapeutic procedures and research. Mesenchymal stem cells (MSCs) have attracted much attention due to their specific differentiation potential and tolerogenic properties. MSCs have been isolated from different parts of placenta; however, in this study, we isolated MSCs from amnion and chorion membrane, as well as umbilical cord (Wharton's jelly [WJ]) and compared their capacity regarding differentiation toward female germ cells under influence of 10 ng/mL BMP4. All placenta samples were collected from delivering mothers by normal cesarean section and cells were isolated by different methods. Results showed that all isolated cells were mostly positive for the MSC markers CD73, CD166, and CD105, and minimally reacted with CD34 and CD45 (hematopoietic markers). After differentiation induction using third passage cultured cells, immunocytochemistry staining showed that cells were positive for germline cell-related genes Ssea4, Oct4, and Ddx4, and oocyte-related gene Gdf9. RT-qPCR results indicated that human chorion MSCs (hCMSCs) had a greater potential to be differentiated into female germline cells. Moreover, the results of this study indicate that human umbilical cord MSCs originated from either male or female umbilical cord have the same differentiation potential into female germline cells. We recommend that for presumptive application of MSCs for infertility treatment and research, hUMSCs are best candidates due to their higher differentiation potential, ease of proliferation and expansion, and low immunogenicity.
Collapse
Affiliation(s)
- Hamid Reza Asgari
- 1 Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences , Tehran, Iran
| | - Mohammad Akbari
- 2 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Hossein Yazdekhasti
- 2 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Zahra Rajabi
- 2 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Shadan Navid
- 2 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Fereshte Aliakbari
- 2 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Niloufar Abbasi
- 3 Emergency Department of Vali-e-Asr Hospital, Brojen, Shahrekord University of Medical Sciences , Shahrekord, Iran
| | - Freidon Sargolzaei Aval
- 4 Department of Anatomy, School of Medicine, Zahedan University of Medical Sciences , Zahedan, Iran
| | - Alireza Shams
- 5 Department of Anatomy, School of Medicine, Alborz University of Medical Sciences , Karaj, Iran
| | - Mehdi Abbasi
- 2 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
106
|
Parvari S, Yazdekhasti H, Rajabi Z, Gerayeli Malek V, Rastegar T, Abbasi M. Differentiation of Mouse Ovarian Stem Cells Toward Oocyte-Like Structure by Coculture with Granulosa Cells. Cell Reprogram 2017; 18:419-428. [PMID: 27906587 DOI: 10.1089/cell.2016.0013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An increasing body of evidence has confirmed existence and function of ovarian stem cells (OSCs). In this study, a novel approach on differentiation of OSCs into oocyte-like cells (OLCs) has been addressed. Recently, different methods have been recruited to isolate and describe aspects of OSCs, but newer and more convenient strategies in isolation are still growing. Herein, a morphology-based method was used to isolate OSCs. Cell suspension of mouse neonatal ovaries was cultured and formed colonies were harvested mechanically and cultivated on mouse embryonic fibroblasts. For differentiation induction, colonies transferred on inactive granulosa cells. Results showed that cells in colonies were positive for alkaline phosphatase activity and reverse transcription-polymerase chain reaction (RT-PCR) confirmed the pluripotency characteristics of cells. Immunofluorescence revealed a positive signal for OCT4, DAZL, MVH, and SSEA1 in colonies as well. Results of RT-PCR and immunofluorescence confirmed that some OLCs were generated within the germ stem cell (GSCs) colonies. The applicability of morphological selection for isolation of GSCs was verified. This method is easier and more economic than other techniques. Our results demonstrate that granulosa cells were effective in inducing the differentiation of OSCs into OLCs through direct cell-to-cell contacts.
Collapse
Affiliation(s)
- Soraya Parvari
- 1 Department of Anatomy, Faculty of Medicine, Alborz University of Medical Sciences , Karaj, Iran
| | - Hossein Yazdekhasti
- 2 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Zahra Rajabi
- 2 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | | | - Tayebeh Rastegar
- 2 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Mehdi Abbasi
- 2 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
107
|
Bhartiya D, Anand S, Patel H, Parte S. Making gametes from alternate sources of stem cells: past, present and future. Reprod Biol Endocrinol 2017; 15:89. [PMID: 29145898 PMCID: PMC5691385 DOI: 10.1186/s12958-017-0308-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023] Open
Abstract
Infertile couples including cancer survivors stand to benefit from gametes differentiated from embryonic or induced pluripotent stem (ES/iPS) cells. It remains challenging to convert human ES/iPS cells into primordial germ-like cells (PGCLCs) en route to obtaining gametes. Considerable success was achieved in 2016 to obtain fertile offspring starting with mouse ES/iPS cells, however the specification of human ES/iPS cells into PGCLCs in vitro is still not achieved. Human ES cells will not yield patient-specific gametes unless and until hES cells are derived by somatic cell nuclear transfer (therapeutic cloning) whereas iPS cells retain the residual epigenetic memory of the somatic cells from which they are derived and also harbor genomic and mitochondrial DNA mutations. Thus, they may not be ideal starting material to produce autologus gametes, especially for aged couples. Pluripotent, very small embryonic-like stem cells (VSELs) have been reported in adult tissues including gonads, are relatively quiescent in nature, survive oncotherapy and can be detected in aged, non-functional gonads. Being developmentally equivalent to PGCs (natural precursors to gametes), VSELs spontaneously differentiate into gametes in vitro. It is also being understood that gonadal stem cells niche is compromised by oncotherapy and with age. Improving the gonadal somatic niche could regenerate non-functional gonads from endogenous VSELs to restore fertility. Niche cells (Sertoli/mesenchymal cells) can be directly transplanted and restore gonadal function by providing paracrine support to endogenous VSELs. This strategy has been successful in several mice studies already and resulted in live birth in a woman with pre-mature ovarian failure.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
| | - Sandhya Anand
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Hiren Patel
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Seema Parte
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| |
Collapse
|
108
|
Abstract
In mammalian development, primordial germ cells (PGCs) represent the initial population of cells that are committed to the germ cell lineage. PGCs segregate early in development, triggered by signals from the extra-embryonic ectoderm. They are distinguished from surrounding cells by their unique gene expression patterns. Some of the more common genes used to identify them are Blimp1, Oct3/4, Fragilis, Stella, c-Kit, Mvh, Dazl and Gcna1. These genes are involved in regulating their migration and differentiation, and in maintaining the pluripotency of these cells. Recent research has demonstrated the possibility of obtaining PGCs, and subsequently, mature germ cells from a starting population of embryonic stem cells (ESCs) in culture. This phenomenon has been investigated using a variety of methods, and ESC lines of both mouse and human origin. Embryonic stem cells can differentiate into germ cells of both the male and female phenotype and in one case has resulted in the birth of live pups from the fertilization of oocytes with ESC derived sperm. This finding leads to the prospect of using ESC derived germ cells as a treatment for sterility. This review outlines the evolvement of germ cells from ESCs in vitro in relation to in vivo events.
Collapse
Affiliation(s)
- Deshira Saiti
- Monash Immunology and Stem Cell Laboratories, Level 3, STRIP 1 – Buildings 75, Monash University, Wellington Rd., Clayton, Australia, 3800
| | - Orly Lacham-Kaplan
- Monash Immunology and Stem Cell Laboratories, Level 3, STRIP 1 – Buildings 75, Monash University, Wellington Rd., Clayton, Australia, 3800
| |
Collapse
|
109
|
Gill ME, Peters AH. Initiating meiosis in a dish. EMBO J 2017; 36:3097-3099. [PMID: 28978668 DOI: 10.15252/embj.201798101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Mark E Gill
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Antoine Hfm Peters
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Faculty of Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
110
|
Retinoic acid induces differentiation of buffalo (Bubalus bubalis) embryonic stem cells into germ cells. Gene 2017; 631:54-67. [DOI: 10.1016/j.gene.2017.07.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
111
|
Adib S, Valojerdi MR. Molecular assessment, characterization, and differentiation of theca stem cells imply the presence of mesenchymal and pluripotent stem cells in sheep ovarian theca layer. Res Vet Sci 2017; 114:378-387. [DOI: 10.1016/j.rvsc.2017.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/07/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022]
|
112
|
Cao H, Bian Y, Zhang F, Tang Y, Li C, Chen J, Zhang X. Functional role of Forskolin and PD166285 in the development of denuded mouse oocytes. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 31:344-353. [PMID: 28920413 PMCID: PMC5838339 DOI: 10.5713/ajas.17.0441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/08/2017] [Accepted: 09/04/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE cAMP and mature promoting factor (MPF) play critical roles during the maturation of mammalian oocytes. The aim of this study was to produce the offspring from denuded oocytes (DOs) in mice by regulating cAMP and MPF. METHODS In this study, we used DOs at the germinal vesicle (GV) stage in mice and regulated levels of cAMP and MPF in DOs by adding Forskolin and PD166285 during in vitro maturation without follicle stimulating hormone and luteinizing hormone, respectively. RESULTS Combined use of 50 μM Forskolin for 3 h and 2.5 μM PD166285 for additional 21 h enhanced the developmental competence of DOs, maturation rate of DOs was 76.71%± 4.11%, blastocyst rate was 18.33%±4.44% after parthenogenetic activation (PA). The DOs could successfully be fertilized with sperm in vitro, cleavage rate was 17.02%±5.82% and blastocyst rate was 5.65%±3.10%. Besides, 2-cell in vitro fertilization embryos from DOs produced 4 normal live offspring (4/34). CONCLUSION The results confirmed that the combination of Forskolin and PD166285 can induce DOs to complete meiosis process and produce normal offspring.
Collapse
Affiliation(s)
- Hongguo Cao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.,Anhui Provincial Laboratory of Local Animal Genetic Resources Conservation and Biobreeding, Hefei 230036, China
| | - Yani Bian
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Fei Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yunshu Tang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Caixia Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jiemei Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaorong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.,Anhui Provincial Laboratory of Local Animal Genetic Resources Conservation and Biobreeding, Hefei 230036, China
| |
Collapse
|
113
|
Shirzeyli MH, Khanlarkhani N, Amidi F, Shirzeyli FH, Aval FS, Sobhani A. Bones Morphogenic Protein-4 and retinoic acid combined treatment comparative analysis for in vitro differentiation potential of murine mesenchymal stem cells derived from bone marrow and adipose tissue into germ cells. Microsc Res Tech 2017; 80:1151-1160. [PMID: 28921810 DOI: 10.1002/jemt.22880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/16/2017] [Accepted: 03/29/2017] [Indexed: 01/08/2023]
Abstract
Nowadays, infertility is no longer considered as an unsolvable disorder due to progresses in germ cells derived from stem lineage with diverse origins. Technical and ethical challenges push researchers to investigate various tissue sources to approach more efficient gametes. The purpose of the current study is to investigate the efficacy of a combined medium, retinoic acid (RA) together with Bone Morphogenic Protein-4 (BMP4), on differentiation of Bone Marrow Mesenchymal Stem Cells (BMMSCs) and adipose-derived mesenchymal stem cells (ADMSCs) into germ cells. Murine MSCs were obtained from both Bone Marrow (BM) and Adipose Tissue (AT) samples and were analyzed for surface markers to get further verification of their nature. BMMSCs and ADMSCs were induced into osteogenic and adipogenic lineage cells respectively, to examine their multipotency. They were finally differentiated into germ cells using media enriched with BMP4 for 4 days followed by addition of RA for 7 days (11 days in total). Analyzing of differentiation potential of BMMSCs- and ADMSCs were performed via Immunofluorescence, Flowcytometry and Real time-PCR techniques for germ cell-specific markers (Mvh, Dazl, Stra8 and Scp3). Mesenchymal surface markers (CD90 and CD44) were expressed on both BMMSCs and ADMSCs, while endothelial and hematopoietic cell markers (CD31 and CD45) had no expression. Finally, all germ-specific markers were expressed in both BM and AT. Although germ cells differentiated from ADMSCs showed faster growth and proliferation as well as easy collection, they significantly expressed germ-specific markers lower than BMMSCs. This suggests stronger differentiation potential of murine BMMSCs than ADMSCs.
Collapse
Affiliation(s)
- Maryam H Shirzeyli
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Khanlarkhani
- Department of Anatomical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad H Shirzeyli
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Fereydoon S Aval
- Department of Anatomical Sciences, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Aligholi Sobhani
- Department of Anatomical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
114
|
Lipskind S, Lindsey JS, Gerami-Naini B, Eaton JL, O'Connell D, Kiezun A, Ho JWK, Ng N, Parasar P, Ng M, Nickerson M, Demirci U, Maas R, Anchan RM. An Embryonic and Induced Pluripotent Stem Cell Model for Ovarian Granulosa Cell Development and Steroidogenesis. Reprod Sci 2017; 25:712-726. [PMID: 28854867 DOI: 10.1177/1933719117725814] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Embryoid bodies (EBs) can serve as a system for evaluating pluripotency, cellular differentiation, and tissue morphogenesis. In this study, we use EBs derived from mouse embryonic stem cells (mESCs) and human amniocyte-derived induced pluripotent stem cells (hAdiPSCs) as a model for ovarian granulosa cell (GC) development and steroidogenic cell commitment. We demonstrated that spontaneously differentiated murine EBs (mEBs) and human EBs (hEBs) displayed ovarian GC markers, such as aromatase (CYP19A1), FOXL2, AMHR2, FSHR, and GJA1. Comparative microarray analysis identified both shared and unique gene expression between mEBs and the maturing mouse ovary. Gene sets related to gonadogenesis, lipid metabolism, and ovarian development were significantly overrepresented in EBs. Of the 29 genes, 15 that were differentially regulated in steroidogenic mEBs displayed temporal expression changes between embryonic, postnatal, and mature ovarian tissues by polymerase chain reaction. Importantly, both mEBs and hEBs were capable of gonadotropin-responsive estradiol (E2) synthesis in vitro (217-759 pg/mL). Live fluorescence-activated cell sorting-sorted AMHR2+ granulosa-like cells from mEBs continued to produce E2 after purification (15.3 pg/mL) and secreted significantly more E2 than AMHR2- cells (8.6 pg/mL, P < .05). We conclude that spontaneously differentiated EBs of both mESC and hAdiPSC origin can serve as a biologically relevant model for ovarian GC differentiation and steroidogenic cell commitment. These cells should be further investigated for therapeutic uses, such as stem cell-based hormone replacement therapy and in vitro maturation of oocytes.
Collapse
Affiliation(s)
- Shane Lipskind
- 1 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jennifer S Lindsey
- 1 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Behzad Gerami-Naini
- 2 Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jennifer L Eaton
- 2 Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniel O'Connell
- 2 Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Adam Kiezun
- 3 Computational Methods Development, Cancer Genome Analysis, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joshua W K Ho
- 4 Victor Chang Cardiac Research Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicholas Ng
- 1 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Parveen Parasar
- 1 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michelle Ng
- 1 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael Nickerson
- 1 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Utkan Demirci
- 5 Canary Center at Stanford for Early Cancer Detection, Stanford School of Medicine, Palo Alto, CA, USA
| | - Richard Maas
- 2 Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,6 Affiliated Faculty, Harvard Stem Cell Institute, Cambridge, MA, USA. Gerami-Naini is now with the Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston MA, USA. Eaton is now with the Division of Reproductive Endocrinology and Fertility, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA. O'Connell is now with the Intellia Therapeutics, Inc, Cambridge, MA, USA. Kiezun is now with the Amazon.com , Boston, MA, USA
| | - Raymond M Anchan
- 1 Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,6 Affiliated Faculty, Harvard Stem Cell Institute, Cambridge, MA, USA. Gerami-Naini is now with the Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston MA, USA. Eaton is now with the Division of Reproductive Endocrinology and Fertility, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA. O'Connell is now with the Intellia Therapeutics, Inc, Cambridge, MA, USA. Kiezun is now with the Amazon.com , Boston, MA, USA
| |
Collapse
|
115
|
|
116
|
Abstract
Recently, the existence of a mechanism for neo-oogenesis in the ovaries of adult mammals has generated much controversy within reproductive biology. This mechanism, which proposes that the ovary has cells capable of renewing the follicular reserve, has been described for various species of mammals. The first evidence was found in prosimians and humans. However, these findings were not considered relevant because the predominant dogma for reproductive biology at the time was that of Zuckerman. This dogma states that female mammals are born with finite numbers of oocytes that decline throughout postnatal life. Currently, the concept of neo-oogenesis has gained momentum due to the discovery of cells with mitotic activity in adult ovaries of various mammalian species (mice, humans, rhesus monkeys, domestic animals such as pigs, and wild animals such as bats). Despite these reports, the concept of neo-oogenesis has not been widely accepted by the scientific community, generating much criticism and speculation about its accuracy because it has been impossible to reproduce some evidence. This controversy has led to the creation of two positions: one in favour of neo-oogenesis and the other against it. Various animal models have been used in support of both camps, including both classic laboratory animals and domestic and wild animals. The aim of this review is to critically present the current literature on the subject and to evaluate the arguments pro and contra neo-oogenesis in mammals.
Collapse
|
117
|
Eyni H, Ghorbani S, Shirazi R, Salari Asl L, P Beiranvand S, Soleimani M. Three-dimensional wet-electrospun poly(lactic acid)/multi-wall carbon nanotubes scaffold induces differentiation of human menstrual blood-derived stem cells into germ-like cells. J Biomater Appl 2017; 32:373-383. [PMID: 28752802 DOI: 10.1177/0885328217723179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Infertility caused by the disruption or absence of germ cells is a major and largely incurable medical problem. Germ cells (i.e., sperm or egg) play a key role in the transmission of genetic and epigenetic information across generations. Generation of gametes derived in vitro from stem cells hold promising prospects which could potentially help infertile men and women. Menstrual blood-derived stem cells are a unique stem cell source. Evidence suggests that menstrual blood-derived stem cells exhibit a multi-lineage potential and have attracted extensive attention in regenerative medicine. To maintain the three-dimensional structure of natural extra cellular matrices in vitro, scaffolds can do this favor and mimic a microenvironment for cell proliferation and differentiation. According to previous studies, poly(lactic acid) and multi-wall carbon nanotubes have been introduced as novel and promising biomaterials for the proliferation and differentiation of stem cells. Some cell types have been successfully grown on a matrix containing carbon nanotubes in tissue engineering but there is no report for this material to support stem cells differentiation into germ cells lineage. This study designed a 3D wet-electrospun poly(lactic acid) and poly(lactic acid)/multi-wall carbon nanotubes composite scaffold to compare infiltration, proliferation, and differentiation potential of menstrual blood-derived stem cells toward germ cell lineage with 2D culture. Our primary data revealed that the fabricated scaffold has mechanical and biological suitable qualities for supporting and attachments of stem cells. The differentiated menstrual blood-derived stem cells tracking in scaffolds using scanning electron microscopy confirmed cell attachment, aggregation, and distribution on the porous scaffold. Based on the differentiation assay by RT-PCR analysis, stem cells and germ-like cells markers were expressed in 3D groups as well as 2D one. It seems that poly(lactic acid)/multi-wall carbon nanotubes scaffold-seeded menstrual blood-derived stem cells could be viewed as a novel, safe, and accessible construct for these cells, as they enhance germ-like generation from menstrual blood-derived stem cells.
Collapse
Affiliation(s)
- Hossein Eyni
- 1 Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | - Sadegh Ghorbani
- 1 Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | - Reza Shirazi
- 2 Department of Anatomical Sciences, Iran University of Medical Sciences University, Tehran, Islamic Republic of Iran
| | - Leila Salari Asl
- 1 Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | - Shahram P Beiranvand
- 1 Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | - Masoud Soleimani
- 3 Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| |
Collapse
|
118
|
Abstract
The germ cell lineage originates early in development and undergoes a series of complex developmental processes that culminate in the generation of fully matured gametes, the spermatozoa and the oocytes. Remarkably, researchers have been recapitulating these developmental pathways using mouse and human pluripotent stem cells (PSCs). With further studies, including those involving non-human primate models, human gametogenesis may be fully reconstituted from PSCs, which would profoundly facilitate our understanding of human germ cell development and infertility. Here we discuss groundbreaking studies that lay the foundation for this achievement, the current state of the field, and challenges for deriving gametes from hPSCs.
Collapse
Affiliation(s)
- Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Center for Induced Pluripotent Stem Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Hidetaka Miyauchi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
119
|
Telugu BP, Park KE, Park CH. Genome editing and genetic engineering in livestock for advancing agricultural and biomedical applications. Mamm Genome 2017; 28:338-347. [PMID: 28712062 DOI: 10.1007/s00335-017-9709-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 07/08/2017] [Indexed: 01/23/2023]
Abstract
Genetic modification of livestock has a longstanding and successful history, starting with domestication several thousand years ago. Modern animal breeding strategies predominantly based on marker-assisted and genomic selection, artificial insemination, and embryo transfer have led to significant improvement in the performance of domestic animals, and are the basis for regular supply of high quality animal derived food. However, the current strategy of breeding animals over multiple generations to introduce novel traits is not realistic in responding to the unprecedented challenges such as changing climate, pandemic diseases, and feeding an anticipated 3 billion increase in global population in the next three decades. Consequently, sophisticated genetic modifications that allow for seamless introgression of novel alleles or traits and introduction of precise modifications without affecting the overall genetic merit of the animal are required for addressing these pressing challenges. The requirement for precise modifications is especially important in the context of modeling human diseases for the development of therapeutic interventions. The animal science community envisions the genome editors as essential tools in addressing these critical priorities in agriculture and biomedicine, and for advancing livestock genetic engineering for agriculture, biomedical as well as "dual purpose" applications.
Collapse
Affiliation(s)
- Bhanu P Telugu
- Animal and Avian Science, University of Maryland, Bhanu Telugu, 2121 ANSC Building, College Park, MD, 20742, USA. .,Animal Bioscience and Biotechnology Laboratory, ARS, USDA, Beltsville, MD, USA. .,RenOVAte Biosciences Inc, Reisterstown, MD, USA.
| | - Ki-Eun Park
- Animal and Avian Science, University of Maryland, Bhanu Telugu, 2121 ANSC Building, College Park, MD, 20742, USA.,Animal Bioscience and Biotechnology Laboratory, ARS, USDA, Beltsville, MD, USA.,RenOVAte Biosciences Inc, Reisterstown, MD, USA
| | - Chi-Hun Park
- Animal and Avian Science, University of Maryland, Bhanu Telugu, 2121 ANSC Building, College Park, MD, 20742, USA.,Animal Bioscience and Biotechnology Laboratory, ARS, USDA, Beltsville, MD, USA
| |
Collapse
|
120
|
Green L, Ofstein RH, Rapp B, Saadatzadeh MR, Bhavsar JR, Fajardo A, Dalsing MC, Ingram DA, Murphy MP. Adult venous endothelium is a niche for highly proliferative and vasculogenic endothelial colony-forming cells. J Vasc Surg 2017; 66:1854-1863. [PMID: 28655551 DOI: 10.1016/j.jvs.2016.11.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/30/2016] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Postnatal resident endothelium of blood vessels has been proposed to represent terminally differentiated tissue that does not replicate. We previously isolated endothelial colony-forming cells (ECFCs) from human umbilical cord blood (CB) and term placenta by using colony-forming assays and immunocytochemistry. We showed that ECFCs are highly proliferative and form functioning vessels in vivo, the defining characteristics of a true endothelial progenitor cell. This exploratory investigation was conducted to determine whether the endothelium of healthy adult blood vessels contained resident ECFCs. METHODS The endothelium of great saphenous vein (GSV) obtained from vein stripping procedures was collected with mechanical scraping, and ECFCs were isolated according to established protocols. RESULTS GSV ECFCs incorporated acetylated low-density lipoprotein, formed tubules in Matrigel (BD Biosciences, San Jose, Calif) at 24 hours, and expressed endothelial antigens cluster of differentiation (CD) 144, CD31, CD105, and kinase insert domain receptor but not hematopoietic antigen CD45. Using cumulative population doublings and single-cell assays, we demonstrated that GSV ECFCs exhibited comparable proliferative capacities compared with CB ECFCs, including similar numbers of highly proliferative cells. When injected in collagen/fibronectin gels implanted in nonobese diabetic/severe combined immune deficiency mice, GSV ECFCs formed blood vessels with circulating murine red blood cells, demonstrating their vasculogenic potential. CONCLUSIONS The ECFCs of the GSV contain a hierarchy of progenitor cells with a comparable number of highly proliferative clones as ECFCs of CB. The results of this investigation demonstrate that the adult endothelium contains resident progenitor cells that may have a critical role in vascular homeostasis and repair and could potentially be used as a source of autologous cells for cell therapies focusing on vasculogenesis.
Collapse
Affiliation(s)
- Linden Green
- Health Center for Aortic Disease, Indiana University Health Center for Aortic Disease, Indianapolis, Ind; Department of Cellular and Integrative Physiology, Indiana University Health Center for Aortic Disease, Indianapolis, Ind.
| | - Richard H Ofstein
- Department of Surgery, Indiana University Health Center for Aortic Disease, Indianapolis, Ind
| | - Brian Rapp
- Department of Surgery, Indiana University Health Center for Aortic Disease, Indianapolis, Ind
| | - M Reza Saadatzadeh
- Department of Surgery, Indiana University Health Center for Aortic Disease, Indianapolis, Ind; Indiana Center for Vascular Biology and Medicine, Indiana University Health Center for Aortic Disease, Indianapolis, Ind
| | - Janak R Bhavsar
- Department of Surgery, Indiana University Health Center for Aortic Disease, Indianapolis, Ind; Indiana Center for Vascular Biology and Medicine, Indiana University Health Center for Aortic Disease, Indianapolis, Ind
| | - Andres Fajardo
- Department of Surgery, Indiana University Health Center for Aortic Disease, Indianapolis, Ind
| | - Michael C Dalsing
- Department of Surgery, Indiana University Health Center for Aortic Disease, Indianapolis, Ind
| | - David A Ingram
- Indiana Center for Vascular Biology and Medicine, Indiana University Health Center for Aortic Disease, Indianapolis, Ind; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University Health Center for Aortic Disease, Indianapolis, Ind; Department of Biochemistry and Molecular Biology, Indiana University Health Center for Aortic Disease, Indianapolis, Ind
| | - Michael P Murphy
- Health Center for Aortic Disease, Indiana University Health Center for Aortic Disease, Indianapolis, Ind; Department of Cellular and Integrative Physiology, Indiana University Health Center for Aortic Disease, Indianapolis, Ind; Department of Surgery, Indiana University Health Center for Aortic Disease, Indianapolis, Ind; Indiana Center for Vascular Biology and Medicine, Indiana University Health Center for Aortic Disease, Indianapolis, Ind
| |
Collapse
|
121
|
Sun YC, Wang YY, Ge W, Cheng SF, Dyce PW, Shen W. Epigenetic regulation during the differentiation of stem cells to germ cells. Oncotarget 2017; 8:57836-57844. [PMID: 28915715 PMCID: PMC5593687 DOI: 10.18632/oncotarget.18444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/08/2017] [Indexed: 01/08/2023] Open
Abstract
Gametogenesis is an essential process to ensure the transfer of genetic information from one generation to the next. It also provides a mechanism by which genetic evolution can take place. Although the genome of primordial germ cells (PGCs) is exactly the same with somatic cells within an organism, there are significant differences between their developments. For example, PGCs eventually undergo meiosis to become functional haploid gametes, and prior to that they undergo epigenetic imprinting which greatly alter their genetic regulation. Epigenetic imprinting of PGCs involves the erasure of DNA methylation and the reestablishment of them during sperm and oocyte formation. These processes are necessary and important during gametogenesis. Also, histone modification and X-chromosome inactivation have important roles during germ cell development. Recently, several studies have reported that functional sperm or oocytes can be derived from stem cells in vivo or in vitro. To produce functional germ cells, induction of germ cells from stem cells must recapitulate these processes similar to endogenous germ cells, such as epigenetic modifications. This review focuses on the epigenetic regulation during the process of germ cell development and discusses their importance during the differentiation from stem cells to germ cells.
Collapse
Affiliation(s)
- Yuan-Chao Sun
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yong-Yong Wang
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Ge
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shun-Feng Cheng
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA
| | - Wei Shen
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
122
|
In vitro differentiation of human embryonic stem cells into ovarian follicle-like cells. Nat Commun 2017; 8:15680. [PMID: 28604658 PMCID: PMC5472783 DOI: 10.1038/ncomms15680] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 04/19/2017] [Indexed: 12/20/2022] Open
Abstract
Understanding the unique mechanisms of human oogenesis necessitates the development of an in vitro system of stem cell differentiation into oocytes. Specialized cell types and organoids have been derived from human pluripotent stem cells in vitro, but generating a human ovarian follicle remains a challenge. Here we report that human embryonic stem cells can be induced to differentiate into ovarian follicle-like cells (FLCs) in vitro. First, we find that two RNA-binding proteins specifically expressed in germ cells, DAZL and BOULE, regulate the exit from pluripotency and entry into meiosis. By expressing DAZL and BOULE with recombinant human GDF9 and BMP15, these meiotic germ cells are further induced to form ovarian FLCs, including oocytes and granulosa cells. This robust in vitro differentiation system will allow the study of the unique molecular mechanisms underlying human pluripotent stem cell differentiation into late primordial germ cells, meiotic germ cells and ovarian follicles.
Collapse
|
123
|
Retinoic acid induces differentiation of buffalo (Bubalus bubalis) embryonic stem cells into germ cells. Gene 2017; 626:358-366. [PMID: 28526652 DOI: 10.1016/j.gene.2017.05.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/27/2017] [Accepted: 05/15/2017] [Indexed: 01/12/2023]
Abstract
Development of precise and reproducible culture system for in vitro differentiation of embryonic stem (ES) cells into germ cells counts as a major leap forward for understanding not only the remarkable process of gametogenesis, otherwise obscured by limited availability of precursor primordial germ cells (PGCs), but in finally treating the catastrophic infertility. Taking into account the significant role of retinoic acid (RA) during in vivo gametogenesis, we designed the present study to investigate the effects of its stimulation on directing the differentiation of ES cells into germ cells. The effects of RA were analyzed across dose-and-time upon various stages of gametogenesis like PGC induction, meiosis initiation and completion, haploid cell formation and development of the final gamete (oocyte and spermatozoa). Out of the series of RA doses (2, 4, 8, 16, 20 and 30μM), 16μM RA for 8day culture interval was found to induce highest expression of PGC- and meiosis-associated genes like DAZL, VASA, SYCP3, MLH1, TNP1/2 and PRM2, while mature germ cell genes like BOULE and TEKT1 (Spermatocyte markers), GDF9 and ZP2 (Oocyte markers) showed higher expression at 2μM RA dose, suggesting functional concentration-gradient of RA activity. Immunocytochemistry revealed expression of germ lineage-specific markers like: c-KIT, DAZL and VASA (PGC-markers); SYCP3, MLH1 and PROTAMINE1 (Meiotic-markers); ACROSIN and HAPRIN (Spermatocyte-markers); and GDF9 and ZP4 (Oocyte-markers) in optimally differentiated embryoid bodies (EBs) and adherent cultures. We observed significantly reduced (p<0.05) concentration of 5-methyl-2-deoxycytidine in RA-differentiated EBs which is suggestive of the occurrence of methylation erasure. FACS analysis of optimally differentiated cultures detected 3.07% haploid cell population, indicating completion of meiosis. Oocyte-like structures (OLS) were obtained in adherent differentiated cultures. They had a big nucleus and a zona pellucida (ZP4) coat. They showed progression through 2-cell, 4-cell, 8-cell, morula and blastocyst-like structures upon extended culture beyond 14days.
Collapse
|
124
|
Ogawa R, Fujita K, Ito K. Mouse embryonic dorsal root ganglia contain pluripotent stem cells that show features similar to embryonic stem cells and induced pluripotent stem cells. Biol Open 2017; 6:602-618. [PMID: 28373172 PMCID: PMC5450311 DOI: 10.1242/bio.021758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In the present study, we showed that the dorsal root ganglion (DRG) in the mouse embryo contains pluripotent stem cells (PSCs) that have developmental capacities equivalent to those of embryonic stem (ES) cells and induced pluripotent stem cells. Mouse embryonic DRG cells expressed pluripotency-related transcription factors [octamer-binding transcription factor 4, SRY (sex determining region Y)-box containing gene (Sox) 2, and Nanog] that play essential roles in maintaining the pluripotency of ES cells. Furthermore, the DRG cells differentiated into ectoderm-, mesoderm- and endoderm-derived cells. In addition, these cells produced primordial germ cell-like cells and embryoid body-like spheres. We also showed that the combination of leukemia inhibitor factor/bone morphogenetic protein 2/fibroblast growth factor 2 effectively promoted maintenance of the pluripotency of the PSCs present in DRGs, as well as that of neural crest-derived stem cells (NCSCs) in DRGs, which were previously shown to be present there. Furthermore, the expression of pluripotency-related transcription factors in the DRG cells was regulated by chromodomain helicase DNA-binding protein 7 and Sox10, which are indispensable for the formation of NCSCs, and vice versa. These findings support the possibility that PSCs in mouse embryonic DRGs are NCSCs.
Collapse
Affiliation(s)
- Ryuhei Ogawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kyohei Fujita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kazuo Ito
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
125
|
Mansouri V, Salehi M, Omrani MD, Niknam Z, Ardeshirylajimi A. Collagen-alginate microspheres as a 3D culture system for mouse embryonic stem cells differentiation to primordial germ cells. Biologicals 2017; 48:114-120. [PMID: 28483511 DOI: 10.1016/j.biologicals.2017.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 12/27/2022] Open
Abstract
Germ cells differentiation of stem cells will aid treatment of adults with infertility. Biopolymers utilization provided synthetic extracellular matrix (ECM) and desired attributes in in vitro to improve conditions for stem cells attachment, proliferation and differentiation. Mixture of alginate as a biocompatible hydrogel, with collagen IV, could establish an in vitro 3 dimensional (3D) culture model. The objective of this study was investigation of the mouse ESCs differentiation capacity to putative primordial germ cells (PGCs) in the alginate and alginate-collagen IV microspheres (CAM). ESCs aggregated together to form embryoid bodies (EB) in CAM under basal medium supplemented with bone morphogenetic protein-4 (BMP4) as a differentiation factor. Viability and PGC differentiation of the stem cells in microspheres was evaluated by apoptosis and PGC related gene markers. Flow cytometry analysis was also used to detect of Mvh endogenous protein as a specific PGC marker. PGC gene and protein expression revealed that differentiation potential of ESCs to putative PGCs in CAM is significantly higher than control groups. Taking together, it was concluded that CAM demonstrated a great potential to use in PGCs differentiation and treatment of adults with infertility and may be a reliable means of producing mature germ cells.
Collapse
Affiliation(s)
- Vahid Mansouri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Salehi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mir Davood Omrani
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Niknam
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Ardeshirylajimi
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
126
|
Truman AM, Tilly JL, Woods DC. Ovarian regeneration: The potential for stem cell contribution in the postnatal ovary to sustained endocrine function. Mol Cell Endocrinol 2017; 445:74-84. [PMID: 27743990 PMCID: PMC5604433 DOI: 10.1016/j.mce.2016.10.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/26/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023]
Abstract
The endocrine function of the ovary is dependent upon the ovarian follicle, which on a cellular basis consists of an oocyte surrounded by adjacent somatic cells responsible for generating sex steroid hormones and maintenance of hormonal stasis with the hypothalamic-pituitary axis. As females age, both fertility and the endocrine function of the ovary decline due to waning follicle numbers as well as aging-related cellular dysfunction. Although there is currently no cure for ovarian failure and endocrine disruption, recent advances in ovarian biology centered on ovarian stem cell and progenitor cell populations have brought the prospects of cell- or tissue-based therapeutic strategies closer to fruition. Herein, we review the relative contributions of ovarian stem cells to ovarian function during the reproductive lifespan, and postulate steps toward the development of ovarian stem cell-based approaches to advance fertility treatments, and also importantly to provide a physiological long-term means of endocrine support.
Collapse
Affiliation(s)
- Alisha M Truman
- Department of Biology, Laboratory of Aging and Infertility Research, Northeastern University, Boston, MA, USA
| | - Jonathan L Tilly
- Department of Biology, Laboratory of Aging and Infertility Research, Northeastern University, Boston, MA, USA
| | - Dori C Woods
- Department of Biology, Laboratory of Aging and Infertility Research, Northeastern University, Boston, MA, USA.
| |
Collapse
|
127
|
Kumar DL, DeFalco T. Of Mice and Men: In Vivo and In Vitro Studies of Primordial Germ Cell Specification. Semin Reprod Med 2017; 35:139-146. [PMID: 28278531 DOI: 10.1055/s-0037-1599085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Specification of mouse primordial germ cells (PGCs), the precursors of sperm and eggs, involves three major molecular events: repression of the somatic program, reacquisition of pluripotency, and reprogramming to a unique epigenetic ground state. Gene knockout studies in mouse models, along with global transcriptome analyses, have revealed the key signaling pathways and transcription factors essential for PGC specification. Knowledge obtained from these studies has been utilized extensively to develop robust in vitro PGC induction models not only in mice but also in humans. These models have, in turn, formed the basis for a detailed understanding of the signaling pathways and epigenetic dynamics during in vivo PGC specification and development. Recapitulation of human PGC specification in culture is of tremendous significance for understanding the mechanisms of human germ cell development in normal and disease states and has implications for addressing germ-cell-based causes of infertility.
Collapse
Affiliation(s)
- Deepti Lava Kumar
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
128
|
Wen Y, He W, Jiang M, Zeng M, Cai L. Deriving cells expressing markers of female germ cells from premature ovarian failure patient-specific induced pluripotent stem cells. Regen Med 2017; 12:143-152. [PMID: 28244827 DOI: 10.2217/rme-2016-0074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aim: We proposed a two-step protocol for deriving cells expressing markers of female germ cells (FGCs) from premature ovarian failure patient-specific induced pluripotent stem cells (POF-iPSCs). Material & methods: We cultured POF-iPSCs in suspension and pretreated them with TGFβ-1 (1 ng/ml) for 2 days and continued with both TGFβ-1 and BMP4 (50 ng/ml) for 5 more days. Then changed to media containing retinoic acid (1 μM) and 5% follicular fluid for another 7 days. Expression of markers of different stages of FGCs were detected. Results: c-KIT, STELLA/DPPA3, VASA/DDX4, SCP3, GDF9 and ZP3 were positively detected and statistically significant different when compared with control groups. Conclusion: Our in vitro system was beneficial for POF-iPSCs differentiated cells to express STELLA, VASA and SCP3, which were the markers of meiosis initiation of FGCs.
Collapse
Affiliation(s)
- Yanfei Wen
- Center for Reproductive Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 6 East Longkou Road, Guangzhou, China
- Center for Reproductive Medicine, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Wen He
- Center for Reproductive Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 6 East Longkou Road, Guangzhou, China
| | - Manbo Jiang
- Center for Reproductive Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 6 East Longkou Road, Guangzhou, China
- Department of Reproductive Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Minhui Zeng
- Center for Reproductive Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 6 East Longkou Road, Guangzhou, China
- Memorial hospital of Sun Yat-sen University, Guangzhou, China
| | - Liuhong Cai
- Center for Reproductive Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 6 East Longkou Road, Guangzhou, China
| |
Collapse
|
129
|
Boiani M. Call for papers: in vitro-generated germ cells-facts and possibilities. Mol Hum Reprod 2017; 23:1-3. [PMID: 28069932 DOI: 10.1093/molehr/gaw080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2016] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michele Boiani
- Max Planck Institute for Molecular Biomedicine, Rontgenstraße 20, 48149 Munster, Germany
| |
Collapse
|
130
|
Shah SM, Saini N, Ashraf S, Singh MK, Manik RS, Singla SK, Palta P, Chauhan MS. Cumulus cell-conditioned medium supports embryonic stem cell differentiation to germ cell-like cells. Reprod Fertil Dev 2017; 29:679-693. [DOI: 10.1071/rd15159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/17/2015] [Indexed: 12/12/2022] Open
Abstract
Cumulus cells provide cellular interactions and growth factors required for oogenesis. In vitro studies of oogenesis are limited primarily because of the paucity of their source, first trimester fetal gonads, and the small number of germ lineage precursor cells present within these tissues. In order to understand this obscure but vitally important process, the present study was designed to direct differentiation of embryonic stem (ES) cells into germ lineage cells. For this purpose, buffalo ES cells were differentiated, as embryoid bodies (EBs) and monolayer adherent cultures, in the presence of different concentrations of cumulus-conditioned medium (CCM; 10%, 20% and 40%) for different periods of culture (4, 8 and 14 days) to identify the optimum differentiation-inducing concentration and time. Quantitative polymerase chain reaction analysis revealed that 20%–40% CCM induced the highest expression of primordial germ cell-specific (deleted in Azoospermia- like (Dazl), dead (Asp-Glu-Ala-Asp) box polypeptide 4 (Vasa also known as DDX4) and promyelocytic leukemia zinc finger protein (Plzf)); meiotic (synaptonemal complex protein 3 (Sycp3), mutl homolog I (Mlh1), transition protein 1/2 (Tnp1/2) and protamine 2 (Prm2); spermatocyte-specific boule-like RNA binding protein (Boule) and tektin 1 (Tekt1)) and oocyte-specific growth differentiation factor 9 (Gdf9) and zona pellucida 2 /3 (Zp2/3)) genes over 8–14 days in culture. Immunocytochemical analysis revealed expression of primordial germ cell (c-KIT, DAZL and VASA), meiotic (SYCP3, MLH1 and PROTAMINE 1), spermatocyte (ACROSIN and HAPRIN) and oocyte (GDF9 and ZP4) markers in both EBs and monolayer differentiation cultures. Western blotting revealed germ lineage-specific protein expression in Day 14 EBs. The significantly lower (P < 0.05) concentration of 5-methyl-2-deoxycytidine in differentiated EBs compared to undifferentiated EBs suggests that methylation erasure may have occurred. Oocyte-like structures obtained in monolayer differentiation stained positive for ZONA PELLUCIDA protein 4 and progressed through various embryo-like developmental stages in extended cultures.
Collapse
|
131
|
Eslami-Arshaghi T, Vakilian S, Seyedjafari E, Ardeshirylajimi A, Soleimani M, Salehi M. Primordial germ cell differentiation of nuclear transfer embryonic stem cells using surface modified electroconductive scaffolds. In Vitro Cell Dev Biol Anim 2017; 53:371-380. [PMID: 28039620 DOI: 10.1007/s11626-016-0113-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/01/2016] [Indexed: 01/26/2023]
Abstract
A combination of nanotopographical cues and surface modification of collagen and fibronectin is a potential platform in primordial germ cells (PGCs) differentiation. In the present study, the synergistic effect of nanotopography and surface modification on differentiation of nuclear transfer embryonic stem cells (nt-ESCs) toward PGC lineage was investigated. In order to achieve this goal, poly-anyline (PANi) was mix within poly-L-lactic acid (PLLA). Afterward, the random composite mats were fabricated using PLLA and PANi mix solution. The nanofiber topography notably upregulated the expressions of prdm14, mvh and c-kit compared with tissue culture polystyrene (TCP). Moreover, the combination of nanofiber topography and surface modification resulted in more enhancement of PGCs differentiation compared with non-modified nanofibrous scaffold. Additionally, gene expression results showed that mvh and c-kit were expressed at higher intensity in cells exposed to collagen and fibronectin rather than collagen or fibronectin solitary. These results demonstrated the importance of combined effect of collagen and fibronectin in order to develop a functional extracellular matrix (ECM) mimic in directing stem cell fate and the potential of such biofunctional scaffolds for treatment of infertility.
Collapse
Affiliation(s)
| | | | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Abdolreza Ardeshirylajimi
- Stem Cells Technology Research Center, Tehran, Iran.,Department of Tissue Engeneering and Regenerative Medicine, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Salehi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
132
|
Shirazi R, Zarnani AH, Soleimani M, Nayernia K, Ragerdi Kashani I. Differentiation of bone marrow-derived stage-specific embryonic antigen 1 positive pluripotent stem cells into male germ cells. Microsc Res Tech 2016; 80:430-440. [PMID: 27990704 DOI: 10.1002/jemt.22812] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/08/2016] [Accepted: 11/16/2016] [Indexed: 11/10/2022]
Abstract
Studies published in recent years have changed the outlook on sterility and germ cell development by producing gametes from stem cells. In present study, a novel approach on differentiation of bone marrow-derived stage-specific embryonic antigen 1 positive (SSEA-1+ ) pluripotent stem cells into male germ cells has been addressed. SSEA-1+ stem cells were separated from murine bone marrow using magnetic-activated cell sorting (MACS) system and propagated on a feeder layer cells. To evaluate the pluripotency characteristic of the purified cells, they were differentiated toward cells of three germ layers. Later the SSEA-1+ stem cells were induced to differentiate along male germ cell lineage with retinoic acid. Flowcytometric analysis of SSEA-1+ stem cells revealed purity of about 62% which increased to 91% after cultivation over feeder cells. Expression of specific transcripts of Oct4, SSEA-1, Nanog, Dppa3, fragilis, Rex-1, SOX-2, and alkaline-phosphatase and immunofluorescence evaluation of Oct4 and SSEA-1 expression showed the differentiation of purified stem cells toward the cells of three germ layers. Differentiation potential of purified cells was positively evidenced by expression markers specific for primordial germ cells, spermatogonial stem cells and spermatogonia including Mvh, fragilis, Dppa3, Stra8, DAZL, Piwil2, β1, and α6-integrins as well as meiotic-specific marker SYCP3. Our results showed that SSEA-1+ pluripotent stem cells are able to differentiate into male germ cells. The results of the present study are encouraging enough to merit further investigation, provide a new hope for those suffering from infertility and introduce a novel platform for research on germ cell development.
Collapse
Affiliation(s)
- Reza Shirazi
- Cellular and Molecular Research Center Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomical Sciences School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Hassan Zarnani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.,Immunology Research Center Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Faculty of Medical Sciences, Department of Hematology, Tarbiat Modares University, Tehran, Iran
| | - Karim Nayernia
- GENEOCELL, Institute of advanced bimolecular and cellular technologies, Montreal, Canada
| | - Iraj Ragerdi Kashani
- Department of Anatomical Sciences School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
133
|
Mouka A, Tachdjian G, Dupont J, Drévillon L, Tosca L. In Vitro Gamete Differentiation from Pluripotent Stem Cells as a Promising Therapy for Infertility. Stem Cells Dev 2016; 25:509-21. [PMID: 26873432 DOI: 10.1089/scd.2015.0230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Generation of gametes derived in vitro from pluripotent stem cells holds promising prospects for future reproductive applications. Indeed, it provides information on molecular and cellular mechanisms underlying germ cell (GC) development and could offer a new potential treatment for infertility. Great progress has been made in derivation of gametes from embryonic stem cells, despite ethical issues. Induced pluripotent stem cells (iPSCs) technology allows the reprogramming of a differentiated somatic cell, possibly emanating from the patient, into a pluripotent state. With the emergence of iPSCs, several studies created primordial GC stage to mature gamete-like cells in vitro in mice and humans. Recent findings in GC derivation suggest that in mice, functional gametes can be generated in vitro. This strengthens the idea that it might be possible in the future to generate functional human sperm and oocytes from pluripotent stem cells in culture.
Collapse
Affiliation(s)
- Aurélie Mouka
- 1 AP-HP, Service d'Histologie, Embryologie et Cytogénétique, Hôpitaux Universitaires Paris-Sud , Clamart, France .,2 Université Paris-Sud , Le Kremlin-Bicêtre Cedex, France
| | - Gérard Tachdjian
- 1 AP-HP, Service d'Histologie, Embryologie et Cytogénétique, Hôpitaux Universitaires Paris-Sud , Clamart, France .,2 Université Paris-Sud , Le Kremlin-Bicêtre Cedex, France
| | - Joëlle Dupont
- 3 Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique , Nouzilly, France
| | - Loïc Drévillon
- 1 AP-HP, Service d'Histologie, Embryologie et Cytogénétique, Hôpitaux Universitaires Paris-Sud , Clamart, France
| | - Lucie Tosca
- 1 AP-HP, Service d'Histologie, Embryologie et Cytogénétique, Hôpitaux Universitaires Paris-Sud , Clamart, France .,2 Université Paris-Sud , Le Kremlin-Bicêtre Cedex, France
| |
Collapse
|
134
|
Yao X, Yin N, Faiola F. Stem cell toxicology: a powerful tool to assess pollution effects on human health. Natl Sci Rev 2016. [DOI: 10.1093/nsr/nww089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AbstractEnvironmental pollution is a global problem; the lack of comprehensive toxicological assessments may lead to increased health risks. To fully understand the health effects of pollution, it is paramount to implement fast, efficient and specific toxicity screening that relies on human models rather than on time-consuming, expensive and often inaccurate tests involving live animals. Human stem cell toxicology represents a valid alternative to traditional toxicity assays because it takes advantage of the ability of stem cells to differentiate into multiple cell types and tissues of the human body. Thus, this branch of toxicology provides a possibility to assess cellular, embryonic, developmental, reproductive and functional toxicity in vitro within a single system highly relevant to human physiology. In this review, we describe the development, performance and future perspectives of stem cell toxicology, with an emphasis on how it can meet the increasing challenges posed by environmental pollution in the modern world.
Collapse
Affiliation(s)
- Xinglei Yao
- Stake Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- Stake Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- Stake Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
135
|
de Souza GB, Costa JJN, da Cunha EV, Passos JRS, Ribeiro RP, Saraiva MVA, van den Hurk R, Silva JRV. Bovine ovarian stem cells differentiate into germ cells and oocyte-like structures after culture in vitro. Reprod Domest Anim 2016; 52:243-250. [DOI: 10.1111/rda.12886] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/03/2016] [Indexed: 02/01/2023]
Affiliation(s)
- GB de Souza
- Biotechnology Nucleus of Sobral - NUBIS; Federal University of Ceara; Sobral CE Brazil
| | - JJN Costa
- Biotechnology Nucleus of Sobral - NUBIS; Federal University of Ceara; Sobral CE Brazil
| | - EV da Cunha
- Biotechnology Nucleus of Sobral - NUBIS; Federal University of Ceara; Sobral CE Brazil
| | - JRS Passos
- Biotechnology Nucleus of Sobral - NUBIS; Federal University of Ceara; Sobral CE Brazil
| | - RP Ribeiro
- Biotechnology Nucleus of Sobral - NUBIS; Federal University of Ceara; Sobral CE Brazil
| | - MVA Saraiva
- Biotechnology Nucleus of Sobral - NUBIS; Federal University of Ceara; Sobral CE Brazil
| | - R van den Hurk
- Department of Pathobiology; Faculty of Veterinary Medicine; Utrecht University; Utrecht The Netherlands
| | - JRV Silva
- Biotechnology Nucleus of Sobral - NUBIS; Federal University of Ceara; Sobral CE Brazil
| |
Collapse
|
136
|
Aucamp J, Bronkhorst AJ, Badenhorst CPS, Pretorius PJ. A historical and evolutionary perspective on the biological significance of circulating DNA and extracellular vesicles. Cell Mol Life Sci 2016; 73:4355-4381. [PMID: 27652382 PMCID: PMC11108302 DOI: 10.1007/s00018-016-2370-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/20/2016] [Accepted: 09/15/2016] [Indexed: 01/08/2023]
Abstract
The discovery of quantitative and qualitative differences of the circulating DNA (cirDNA) between healthy and diseased individuals inclined researchers to investigate these molecules as potential biomarkers for non-invasive diagnosis and prognosis of various pathologies. However, except for some prenatal tests, cirDNA analyses have not been readily translated to clinical practice due to a lack of knowledge regarding its composition, function, and biological and evolutionary origins. We believe that, to fully grasp the nature of cirDNA and the extracellular vesicles (EVs) and protein complexes with which it is associated, it is necessary to probe the early and badly neglected work that contributed to the discovery and development of these concepts. Accordingly, this review consists of a schematic summary of the major events that developed and integrated the concepts of heredity, genetic information, cirDNA, EVs, and protein complexes. CirDNA enters target cells and provokes a myriad of gene regulatory effects associated with the messaging functions of various natures, disease progression, somatic genome variation, and transgenerational inheritance. This challenges the traditional views on each of the former topics. All of these discoveries can be traced directly back to the iconic works of Darwin, Lamarck, and their followers. The history of cirDNA that has been revisited here is rich in information that should be considered in clinical practice, when designing new experiments, and should be very useful for generating an empirically up-to-date view of cirDNA and EVs. Furthermore, we hope that it will invite many flights of speculation and stimulate further inquiry into its biological and evolutionary origins.
Collapse
Affiliation(s)
- Janine Aucamp
- Centre for Human Metabolomics, Biochemistry Division, North-West University, Potchefstroom, 2520, South Africa.
| | - Abel J Bronkhorst
- Centre for Human Metabolomics, Biochemistry Division, North-West University, Potchefstroom, 2520, South Africa
| | - Christoffel P S Badenhorst
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Piet J Pretorius
- Centre for Human Metabolomics, Biochemistry Division, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
137
|
Chen H, Zuo Q, Wang Y, Ahmed MF, Jin K, Song J, Zhang Y, Li B. Regulation of Hedgehog Signaling in Chicken Embryonic Stem Cells Differentiation Into Male Germ Cells (
Gallus
). J Cell Biochem 2016; 118:1379-1386. [DOI: 10.1002/jcb.25796] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 11/14/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Hao Chen
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215006China
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu ProvinceCollege of Animal Science and Technology,Yangzhou UniversityYangzhou225009China
| | - Yinjie Wang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu ProvinceCollege of Animal Science and Technology,Yangzhou UniversityYangzhou225009China
| | - Mahmoud F. Ahmed
- College of Veterinary MedicineSuez Canal UniversityIsmailia41522Egypt
| | - Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu ProvinceCollege of Animal Science and Technology,Yangzhou UniversityYangzhou225009China
| | - Jiuzhou Song
- Animal and Avian SciencesUniversity of MarylandCollege ParkMaryland20741
| | - Yani Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu ProvinceCollege of Animal Science and Technology,Yangzhou UniversityYangzhou225009China
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu ProvinceCollege of Animal Science and Technology,Yangzhou UniversityYangzhou225009China
| |
Collapse
|
138
|
Niu Z, Mu H, Zhu H, Wu J, Hua J. p38 MAPK pathway is essential for self-renewal of mouse male germline stem cells (mGSCs). Cell Prolif 2016; 50. [PMID: 27868268 DOI: 10.1111/cpr.12314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/07/2016] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES Male germline stem cells (mGSCs), also called spermatogonial stem cells (SSCs), constantly generate spermatozoa in male animals. A number of preliminary studies on mechanisms of mGSC self-renewal have previously been conducted, revealing that several factors are involved in this regulated process. The p38 MAPK pathway is widely conserved in multiple cell types in vivo, and plays an important role in cell proliferation, differentiation, inflammation and apoptosis. However, its role in self-renewal of mGSCs has not hitherto been determined. MATERIALS AND METHODS Here, the mouse mGSCs were cultured and their identity was verified by semi-RT-PCR, alkaline phosphatase (AP) staining and immunofluorescence staining. Then, the p38 MAPK pathway was blocked by p38 MAPK-specific inhibitor SB202190. mGSC self-renewal ability was then analysed by observation of morphology, cell number, cell growth analysis, TUNEL incorporation assay and cell cycle analysis. RESULTS Results showed that mouse mGSC self-renewal ability was significantly inhibited by SB202190. CONCLUSIONS This study showed for the first time that the p38 MAPK pathway plays a key role in maintaining self-renewal capacity of mouse mGSCs, which offers a new self-renewal pathway for these cells and contributes to overall knowledge of the mechanisms of mGSC self-renewal.
Collapse
Affiliation(s)
- Zhiwei Niu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Hailong Mu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Yangling, Shaanxi, China
| | - Haijing Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Yangling, Shaanxi, China
| | - Jiang Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Yangling, Shaanxi, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Yangling, Shaanxi, China
| |
Collapse
|
139
|
Li D, Ji Y, Wang F, Wang Y, Wang M, Zhang C, Zhang W, Lu Z, Sun C, Ahmed MF, He N, Jin K, Cheng S, Wang Y, He Y, Song J, Zhang Y, Li B. Regulation of crucial lncRNAs in differentiation of chicken embryonic stem cells to spermatogonia stem cells. Anim Genet 2016; 48:191-204. [PMID: 27862128 DOI: 10.1111/age.12510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2016] [Indexed: 12/15/2022]
Abstract
Regulation of crucial lncRNAs involved in differentiation of chicken embryonic stem cells (ESCs) to spermatogonia stem cells (SSCs) was explored by sequencing the transcriptome of ESCs, primordial germ cells (PGCs) and SSCs with RNA-Seq; analytical bioinformatic methods were used to excavate candidate lncRNAs. We detected expression of candidate lncRNAs in ESCs, PGCs and SSCs and forecasted related target genes. Utilizing wego, david and string, function and protein-protein interactions of target genes were analyzed. Finally, based on string analysis, interaction diagrams and relevant signaling pathways were established. Our results indicate a total of 9657 lncRNAs in ESCs, PGCs and SSCs, with 3549 defined as significantly different. We screened 20 candidate lncRNAs, each demonstrating a greater than eight-fold difference in |logFC| value between groups (ESCs vs. PGCs, ESCs vs. SSCs and PGCs vs. SSCs) or specifically expressed in an individual cell type. qRT-PCR results indicated that expression tendencies of candidate lncRNAs were consistent with RNA-Seq. Fifteen cis and four trans target genes were forecasted. Based on wego and string analyses, we found lnc-SSC1, lnc-SSC5, lnc-SSC2 and lnc-ESC2 negatively regulated target genes SUFU, EPHA3, KLF3, ARL3 and TRIM8, whereas SHH, NOTCH, TGF-β, cAMP/cGMP and JAK/STAT signaling pathways were promoted, causing differentiation of ESCs into SSCs. Our findings represent a preliminary unveiling of lncRNA-associated regulatory mechanisms during differentiation of chicken ESCs into SSCs, filling a research void in male germ cell differentiation related to lncRNA. Our results also provide basic information for improving in vitro induction systems for differentiation of chicken ESCs into SSCs.
Collapse
Affiliation(s)
- D Li
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Y Ji
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - F Wang
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Y Wang
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - M Wang
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - C Zhang
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - W Zhang
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Z Lu
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - C Sun
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - M F Ahmed
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - N He
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - K Jin
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - S Cheng
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Y Wang
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Y He
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - J Song
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Y Zhang
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - B Li
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
140
|
Ge W, Cheng SF, Dyce PW, De Felici M, Shen W. Skin-derived stem cells as a source of primordial germ cell- and oocyte-like cells. Cell Death Dis 2016; 7:e2471. [PMID: 27831564 PMCID: PMC5260893 DOI: 10.1038/cddis.2016.366] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/19/2022]
Abstract
The skin is a unique organ that contains a variety of stem cells for the maintenance of skin homeostasis and the repair of skin tissues following injury and disease. Skin-derived stem cells (SDSCs) constitute a heterogeneous population of stem cells generated in vitro from dermis, which can be cultured as spherical aggregates of cells in suspension culture. Under certain in vitro or in vivo conditions, SDSCs show multipotency and can generate a variety of neural, mesodermal, and endodermal cell types such as neurons, glia, fibroblasts, adipocytes, muscle cells, chondroblasts, osteoblats, and islet β-cell-like cells. SDSCs are likely derived from multipotent stem cells located in the hair follicles that are, in turn, derived from embryonic migratory neural crest or mesoderm cells. During the past decade, a wave of reports have shown that germ cells can be generated from various types of stem cells. It has been shown that SDSCs are able to produce primordial germ cell-like cells in vitro, and even oocyte-like cells (OLCs). Whether these germ cell-like cells (GCLCs) can give rise to viable progeny remains, however, unknown. In this review, we will discuss the origin and characteristics of SDSCs from which the GCLC are derived, the possible mechanisms of this differentiation process, and finally the prospective biomedical applications of the SDSC-derived GCLCs.
Collapse
Affiliation(s)
- Wei Ge
- Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Shun-Feng Cheng
- Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Wei Shen
- Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
141
|
In vitro germ cell differentiation from embryonic stem cells of mice: induction control by BMP4 signalling. Biosci Rep 2016; 36:BSR20160348. [PMID: 27694305 PMCID: PMC5100000 DOI: 10.1042/bsr20160348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/25/2016] [Accepted: 09/30/2016] [Indexed: 11/18/2022] Open
Abstract
The present study aims to confirm and analyse germ cell-related patterns and specific gene expressions at a very early stage of cell commitment. Following the XY cytogenetic confirmation of the CCE mouse embryonic stem cells (mESCs) line, cells were cultured to form embryoid bodies (EBs). Expression pattern assessment of the mouse vasa homologue (Mvh), Stra8, α6 and β1 integrin genes in ESC and 1–3-day-old EB showed that all genes except α6 integrin were expressed in the ESC. The mean calibration of Mvh, Stra8 and α6 integrin expression significantly increased upon EB formation compared with the ESCs. During mouse embryogenesis, the signalling of bone morphogenetic protein (BMP) is essential for germ-line formation. To investigate its role in germ-line induction in vitro, mESCs were cultured as 1-day-old EB aggregates with BMP4 for 4 days in STO co-culture systems, in the presence and absence of 5 ng/ml BMP4. At the end of the culture period, colony assay (number and diameter) was performed and the viability percentage and proliferation rate was determined. There were no significant statistical differences in the abovementioned criteria between these two groups. Moreover, the expression of Mvh, α6 and β1 integrins, Stra8 and Piwil2 genes was evaluated in co-culture groups. The molecular results of co-culture groups showed higher–but insignificant–Piwil2 and significant α6 integrin expressions in BMP4 treated co-culture systems. These results confirmed that the EB system and the presence of BMP4 in a STO co-culture system improve the differentiation of ESCs to germ cell.
Collapse
|
142
|
Lai D, Guo Y, Zhang Q, Chen Y, Xiang C. Differentiation of human menstrual blood-derived endometrial mesenchymal stem cells into oocyte-like cells. Acta Biochim Biophys Sin (Shanghai) 2016; 48:998-1005. [PMID: 27590065 DOI: 10.1093/abbs/gmw090] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/07/2016] [Indexed: 12/23/2022] Open
Abstract
Human endometrial mesenchymal stem cells (EnSCs) derived from menstrual blood are a unique stem cell source. Evidence suggests that EnSCs exhibit a multi-lineage potential and have attracted extensive attention in regenerative medicine. However, the potential of EnSCs to differentiate into germline cells in vitro remains unclear. In this study, EnSCs were induced to differentiate into germ cells in a differentiation medium supplemented with 20% human follicular fluid. Our results demonstrated that EnSCs derived from human menstrual blood form oocyte-like cells and express germ cell markers. The induced cell aggregates contained not only oocyte-like structures but also cells expressing follicle stimulating hormone receptor and luteotropic hormone receptor, and produced estrogen and progesterone regulated by gonodatropin, suggesting that granulosa-like and theca-like cells were also induced. We further found that granulosa cells promote the development of oocyte-like cells and activate the induction of blastocyst-like structures derived from EnSCs. In conclusion, EnSCs may potentially represent an in vitro system for the investigation of human folliculogenesis.
Collapse
Affiliation(s)
- Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| | - Ying Guo
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| | - Qiuwan Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| | - Yifei Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
143
|
Hikabe O, Hamazaki N, Nagamatsu G, Obata Y, Hirao Y, Hamada N, Shimamoto S, Imamura T, Nakashima K, Saitou M, Hayashi K. Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature 2016; 539:299-303. [PMID: 27750280 DOI: 10.1038/nature20104] [Citation(s) in RCA: 362] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 09/22/2016] [Indexed: 01/12/2023]
Abstract
The female germ line undergoes a unique sequence of differentiation processes that confers totipotency to the egg. The reconstitution of these events in vitro using pluripotent stem cells is a key achievement in reproductive biology and regenerative medicine. Here we report successful reconstitution in vitro of the entire process of oogenesis from mouse pluripotent stem cells. Fully potent mature oocytes were generated in culture from embryonic stem cells and from induced pluripotent stem cells derived from both embryonic fibroblasts and adult tail tip fibroblasts. Moreover, pluripotent stem cell lines were re-derived from the eggs that were generated in vitro, thereby reconstituting the full female germline cycle in a dish. This culture system will provide a platform for elucidating the molecular mechanisms underlying totipotency and the production of oocytes of other mammalian species in culture.
Collapse
Affiliation(s)
- Orie Hikabe
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Nobuhiko Hamazaki
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Go Nagamatsu
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yayoi Obata
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1, Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yuji Hirao
- NARO Institute of Livestock and Grassland Science, Ikenodai 2, Tsukuba 305-0901, Japan
| | - Norio Hamada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - So Shimamoto
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takuya Imamura
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan.,JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.,JST, PRESTO, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
144
|
Irie N, Kim S, Surani MA. Human Germline Development from Pluripotent Stem Cellsin vitro. ACTA ACUST UNITED AC 2016. [DOI: 10.1274/jmor.33.79] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
145
|
Guo Y, Yu T, Lei L, Duan A, Ma X, Wang H. Conversion of Goat Fibroblasts into Lineage-Specific Cells Using a Direct Reprogramming Strategy. Anim Sci J 2016; 88:745-754. [PMID: 27629151 DOI: 10.1111/asj.12700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/29/2016] [Accepted: 08/04/2016] [Indexed: 01/12/2023]
Abstract
Direct reprogramming is an efficient strategy to convert one cell type to another. In this study, due to the failure of maintaining the undifferentiated state of goat embryotic stem- and induced pluripotent stem-like cells in vitro, we explored an alternative way to directly convert goat fibroblasts to lineage-specific cells. The 'Yamanaka factors' was ectopically expressed in fibroblasts for a short term to situate cells in a metastable state. By culturing with lineage-specific media for 1-2 weeks, the cardiomyocyte-like cells and neurocyte-like cells were generated and confirmed by the quantitative RT-PCR and immunocytochemical staining. The metastable-state cells could also be converted into oocyte-like cells (OLCs) after culturing in media with retinoic acid (RA) and bovine follicular fluid (bFF) for 2-3 weeks. The generated OLCs were surrounded by cumulus granulosa cell-like cells and formed a structure resembling goat cumulus-oocyte complex from ovaries. This primary follicular structure could be developed further in oocyte mature medium and expressed germ cell-specific markers. In addition, we found that the induction efficiency was higher and OLC cell size was bigger in bFF than in RA treatment. Altogether, the direct reprogramming of goat fibroblasts into lineage-specific cells can facilitate stem cell research in domestic animals.
Collapse
Affiliation(s)
- Yanjie Guo
- Life Science College, Luoyang Normal University, Luoyang, Henan, China.,Department of Animal Biotechnology; Shaanxi Centre for Stem Cell Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong Yu
- Department of Animal Biotechnology; Shaanxi Centre for Stem Cell Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Lei
- Department of Animal Biotechnology; Shaanxi Centre for Stem Cell Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Anqin Duan
- Department of Animal Biotechnology; Shaanxi Centre for Stem Cell Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoling Ma
- Department of Animal Biotechnology; Shaanxi Centre for Stem Cell Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Huayan Wang
- Department of Animal Biotechnology; Shaanxi Centre for Stem Cell Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
146
|
Abstract
The derivation of human embryonic stem (hES) cells heralds a new era in stem cell research, generating excitement for their therapeutic potential in regenerative medicine. Pioneering work of embryologists, developmental biologists, and reproductive medicine practitioners in in vitro fertilization clinics has facilitated hES cell research. This review summarizes current research focused on optimizing hES cell culture conditions for good manufacturing practice, directing hES cell differentiation toward trophectoderm and germ cells, and approaches used to reprogram cells for pluripotent cell derivation. The identification of germ stem cells in the testis and the recent controversy over their existence in the ovary raise the possibility of harnessing them for treating young cancer survivors. There is also the potential to harvest fetal stem cells with pluripotent cell-like properties from discarded placental tissues. The recent identification of adult stem/progenitor cell activity in the human endometrium offers a new understanding of common gynecological diseases. Discoveries resulting from research into embryonic, germ, fetal, and adult stem cells are highly relevant to human reproduction.
Collapse
Affiliation(s)
- Caroline E Gargett
- Centre for Women's Health Research, Monash Institute of Medical Research, and Monash University Department of Obstetrics and Gynaecology, Monash Medical Centre, Clayton, Victoria, Australia.
| |
Collapse
|
147
|
Sun R, Sun YC, Ge W, Tan H, Cheng SF, Yin S, Sun XF, Li L, Dyce P, Li J, Yang X, Shi QH, Shen W. The crucial role of Activin A on the formation of primordial germ cell-like cells from skin-derived stem cells in vitro. Cell Cycle 2016; 14:3016-29. [PMID: 26406115 DOI: 10.1080/15384101.2015.1078031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Primordial germ cells (PGCs) are founder cells of the germ cell lineage, and can be differentiated from stem cells in an induced system in vitro. However, the induction conditions need to be optimized in order to improve the differentiation efficiency. Activin A (ActA) is a member of the TGF-β super family and plays an important role in oogenesis and folliculogenesis. In the present study, we found that ActA promoted PGC-like cells (PGCLCs) formation from mouse skin-derived stem cells (SDSCs) in both embryoid body-like structure (EBLS) differentiation and the co-culture stage in a dose dependent manner. ActA treatment (100 ng/ml) during EBLS differentiation stage and further co-cultured for 6 days without ActA significantly increased PGCLCs from 53.2% to 82.8%, and as well as EBLS differentiation without ActA followed by co-cultured with 100 ng/ml ActA for 4 to 12 days with the percentage of PGCLCs increasing markedly in vitro. Moreover, mice treated with ActA at 100 ng/kg body weight from embryonic day (E) 5.5-12.5 led to more PGCs formation. However, the stimulating effects of ActA were interrupted by Smad3 RNAi, and in an in vitro cultured Smad3(-/-) mouse skin cells scenario. SMAD3 is thus likely a key effecter molecule in the ActA signaling pathway. In addition, we found that the expression of some epiblast cell markers, Fgf5, Dnmt3a, Dnmt3b and Wnt3, was increased in EBLSs cultured for 4 days or PGCLCs co-cultured for 12 days with ActA treatment. Interestingly, at 16 days of differentiation, the percentage of PGCLCs was decreased in the presence of ActA, but the expression of meiosis-relative genes, such as Stra8, Dmc1, Sycp3 and Sycp1, was increased. In conclusion, our data here demonstrated that ActA can promote PGCLC formation from SDSCs in vitro, at early stages of differentiation, and affect meiotic initiation of PGCLCs in later stages.
Collapse
Affiliation(s)
- Rui Sun
- a Molecular and Cell Genetics Laboratory; The CAS Key Laboratory of Innate Immunity and Chronic Disease; Hefei National Laboratory for Physical Sciences at Microscale; School of Life Sciences; University of Science and Technology of China ; Hefei , Anhui , China
| | - Yuan-Chao Sun
- b Institute of Reproductive Sciences; Qingdao Agricultural University , Qingdao ; Shandong , China.,c Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong; College of Animal Science and Technology; Qingdao Agricultural University , Qingdao ; Shandong , China
| | - Wei Ge
- b Institute of Reproductive Sciences; Qingdao Agricultural University , Qingdao ; Shandong , China.,c Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong; College of Animal Science and Technology; Qingdao Agricultural University , Qingdao ; Shandong , China
| | - Hui Tan
- b Institute of Reproductive Sciences; Qingdao Agricultural University , Qingdao ; Shandong , China.,c Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong; College of Animal Science and Technology; Qingdao Agricultural University , Qingdao ; Shandong , China
| | - Shun-Feng Cheng
- b Institute of Reproductive Sciences; Qingdao Agricultural University , Qingdao ; Shandong , China.,c Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong; College of Animal Science and Technology; Qingdao Agricultural University , Qingdao ; Shandong , China
| | - Shen Yin
- b Institute of Reproductive Sciences; Qingdao Agricultural University , Qingdao ; Shandong , China.,c Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong; College of Animal Science and Technology; Qingdao Agricultural University , Qingdao ; Shandong , China
| | - Xiao-Feng Sun
- b Institute of Reproductive Sciences; Qingdao Agricultural University , Qingdao ; Shandong , China.,c Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong; College of Animal Science and Technology; Qingdao Agricultural University , Qingdao ; Shandong , China
| | - Lan Li
- b Institute of Reproductive Sciences; Qingdao Agricultural University , Qingdao ; Shandong , China.,c Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong; College of Animal Science and Technology; Qingdao Agricultural University , Qingdao ; Shandong , China
| | - Paul Dyce
- d Department of Animal and Poultry Science ; University of Guelph ; Guelph ; Ontario , Canada
| | - Julang Li
- d Department of Animal and Poultry Science ; University of Guelph ; Guelph ; Ontario , Canada
| | - Xiao Yang
- e Genetic Laboratory of Development and Diseases; Beijing Institute of Biotechnology ; Beijing , China
| | - Qing-Hua Shi
- a Molecular and Cell Genetics Laboratory; The CAS Key Laboratory of Innate Immunity and Chronic Disease; Hefei National Laboratory for Physical Sciences at Microscale; School of Life Sciences; University of Science and Technology of China ; Hefei , Anhui , China.,f Collaborative Innovation Center of Genetics and Development; Fudan University ; Shanghai , China
| | - Wei Shen
- b Institute of Reproductive Sciences; Qingdao Agricultural University , Qingdao ; Shandong , China.,c Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong; College of Animal Science and Technology; Qingdao Agricultural University , Qingdao ; Shandong , China
| |
Collapse
|
148
|
Tang WWC, Kobayashi T, Irie N, Dietmann S, Surani MA. Specification and epigenetic programming of the human germ line. Nat Rev Genet 2016; 17:585-600. [DOI: 10.1038/nrg.2016.88] [Citation(s) in RCA: 274] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
149
|
Afsartala Z, Rezvanfar MA, Hodjat M, Tanha S, Assadollahi V, Bijangi K, Abdollahi M, Ghasemzadeh-Hasankolaei M. Amniotic membrane mesenchymal stem cells can differentiate into germ cells in vitro. In Vitro Cell Dev Biol Anim 2016; 52:1060-1071. [PMID: 27503516 DOI: 10.1007/s11626-016-0073-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/14/2016] [Indexed: 11/28/2022]
Abstract
This is the first report on differentiation of mouse amniotic membrane mesenchymal stem cells (AM-MSCs) into male germ cells (GCs). AM-MSCs have the multipotent differentiation capacity and can be differentiated into various cell types. In the present study, AM-MSCs were induced for differentiation into GCs. AM-MSCs were isolated from mouse embryonic membrane by enzymatic digestion. AM-MSCs were characterized with osteogenic and adipogenic differentiation test and flow cytometric analysis of some CD-markers. AM-MSCs were induced to differentiate into GCs using a creative two-step method. Passage-3 AM-MSCs were firstly treated with 25 ng/ml bone morphogenetic protein 4 (BMP4) for 5 d and in continuing with 1 μM retinoic acid (RA) for 12 d (total treatment time was 17 d). At the end of the treatment period, real-time reverse transcription (RT)-PCR was performed to evaluate the expression of GC-specific markers-Itgb1, Dazl, Stra8, Piwil2, Mvh, Oct4, and c-Kit- in the cells. Moreover, flow cytometry and immunofluorescence staining were performed to evaluate the expression of Mvh and Dazl at protein level. Real-time RT-PCR showed that most of the tested markers were upregulated in the treated AM-MSCs. Furthermore, flow cytometric and immunofluorescence analyses both revealed that a considerable part of the treated cells expressed GC-specific markers. The percentage of positive cells for Mvh and Dazl was about 23 and 46%, respectively. Our results indicated that a number of AM-MSCs successfully differentiated into the GCs. Finally, it seems that AM-MSCs would be a potential source of adult pluripotent stem cells for in vitro generation of GCs and cell-based therapies for treatment of infertility.
Collapse
Affiliation(s)
- Zohreh Afsartala
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Amin Rezvanfar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahshid Hodjat
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Tanha
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahideh Assadollahi
- Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - Mohammad Abdollahi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Ghasemzadeh-Hasankolaei
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Sciences, P.O. Box: 47318-38711, Amirkola, Babol, Iran.
| |
Collapse
|
150
|
Shah SM, Saini N, Singh MK, Manik R, Singla SK, Palta P, Chauhan MS. Testicular cell–conditioned medium supports embryonic stem cell differentiation toward germ lineage and to spermatocyte- and oocyte-like cells. Theriogenology 2016; 86:715-29. [DOI: 10.1016/j.theriogenology.2016.02.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 01/31/2016] [Accepted: 02/27/2016] [Indexed: 11/15/2022]
|