101
|
Marchand E, Wade S, Sullivan J, Barner D. Language-specific numerical estimation in bilingual children. J Exp Child Psychol 2020; 197:104860. [PMID: 32445950 DOI: 10.1016/j.jecp.2020.104860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 03/05/2020] [Accepted: 03/24/2020] [Indexed: 01/29/2023]
Abstract
We tested 5- to 7-year-old bilingual learners of French and English (N = 91) to investigate how language-specific knowledge of verbal numerals affects numerical estimation. Participants made verbal estimates for rapidly presented random dot arrays in each of their two languages. Estimation accuracy differed across children's two languages, an effect that remained when controlling for children's familiarity with number words across their two languages. In addition, children's estimates were equivalently well ordered in their two languages, suggesting that differences in accuracy were due to how children represented the relative distance between number words in each language. Overall, these results suggest that bilingual children have different mappings between their verbal and nonverbal counting systems across their two languages and that those differences in mappings are likely driven by an asymmetry in their knowledge of the structure of the count list across their languages. Implications for bilingual math education are discussed.
Collapse
Affiliation(s)
- Elisabeth Marchand
- Department of Psychology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Shirlene Wade
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA; Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jessica Sullivan
- Department of Psychology, Skidmore College, Saratoga Springs, NY 12866, USA
| | - David Barner
- Department of Psychology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
102
|
Ratio effect slope can sometimes be an appropriate metric of the approximate number system sensitivity. Atten Percept Psychophys 2020; 82:2165-2176. [PMID: 31933171 PMCID: PMC7297849 DOI: 10.3758/s13414-019-01939-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The approximate number system (ANS) is believed to be an essential component of numerical understanding. The sensitivity of the ANS has been found to be correlating with various mathematical abilities. Recently, Chesney (2018, Attention, Perception, & Psychophysics, 80[5], 1057-1063) demonstrated that if the ANS sensitivity is measured with the ratio effect slope, the slope may measure the sensitivity imprecisely. The present work extends her findings by demonstrating that mathematically the usability of the ratio effect slope depends on the Weber fraction range of the sample and the ratios of the numbers in the used test. Various indexes presented here can specify whether the use of the ratio effect slope as a replacement for the sigmoid fit is recommended or not. Detailed recommendations and a publicly available script help the researchers to plan or evaluate the use of the ratio effect slope as an ANS sensitivity index.
Collapse
|
103
|
Streubel B, Gunzenhauser C, Grosse G, Saalbach H. Emotion-specific vocabulary and its contribution to emotion understanding in 4- to 9-year-old children. J Exp Child Psychol 2020; 193:104790. [DOI: 10.1016/j.jecp.2019.104790] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/18/2019] [Accepted: 12/10/2019] [Indexed: 01/29/2023]
|
104
|
Santacà M, Agrillo C, Miletto Petrazzini ME, Bisazza A. The ontogeny of continuous quantity discrimination in zebrafish larvae (Danio rerio). Anim Cogn 2020; 23:731-739. [PMID: 32297031 DOI: 10.1007/s10071-020-01384-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 01/29/2023]
Abstract
Several studies have investigated the ontogeny of the capacity to discriminate between discrete numerical information in human and non-human animals. Contrarily, less attention has been devoted to the development of the capacity to discriminate continuous quantities. Recently, we set up a fast procedure for screening continuous quantity abilities in adult individuals of an animal model in neurodevelopmental research, the zebrafish. Two different sized holes are presented in a wall that divides the home tank in two halves and the spontaneous preference of fish for passing through the larger hole is exploited to measure their discrimination ability. We tested zebrafish larvae in the first, second and third week of life varying the relative size of the smaller circle (0.60, 0.75, 0.86, 0.91 area ratio). We found that the number of passages increased across the age. The capacity to discriminate the larger hole decreased as the ratio between the areas increased. No difference in accuracy was found as a function of age. The accuracy of larval zebrafish almost overlaps that found in adults in a previous study, suggesting a limited role of maturation and experience on the ability to estimate areas in this species.
Collapse
Affiliation(s)
- Maria Santacà
- Department of General Psychology, University of Padova, Via Venezia 8, 35131, Padua, Italy.
| | - Christian Agrillo
- Department of General Psychology, University of Padova, Via Venezia 8, 35131, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
| | | | - Angelo Bisazza
- Department of General Psychology, University of Padova, Via Venezia 8, 35131, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
| |
Collapse
|
105
|
Miletto Petrazzini ME, Mantese F, Prato-Previde E. Food quantity discrimination in puppies (Canis lupus familiaris). Anim Cogn 2020; 23:703-710. [PMID: 32253517 DOI: 10.1007/s10071-020-01378-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 01/29/2023]
Abstract
There is considerable evidence that animals are able to discriminate between quantities. Despite the fact that quantitative skills have been extensively studied in adult individuals, research on their development in early life is restricted to a limited number of species. We, therefore, investigated whether 2-month-old puppies could spontaneously discriminate between different quantities of food items. We used a simultaneous two-choice task in which puppies were presented with three numerical combinations of pieces of food (1 vs. 8, 1 vs. 6 and 1 vs. 4), and they were allowed to select only one option. The subjects chose the larger of the two quantities in the 1 vs. 8 and the 1 vs. 6 combinations but not in the 1 vs. 4 combination. Furthermore, the last quantity the puppies looked at before making their choice and the time spent looking at the larger/smaller amounts of food were predictive of the choices they made. Since adult dogs are capable of discriminating between more difficult numerical contrasts when tested with similar tasks, our findings suggest that the capacity to discriminate between quantities is already present at an early age, but that it is limited to very easy discriminations.
Collapse
Affiliation(s)
| | - Fabio Mantese
- Department of Animal and Human Biology, University of Turin, Turin, Italy
| | | |
Collapse
|
106
|
Pecunioso A, Miletto Petrazzini ME, Agrillo C. Anisotropy of perceived numerosity: Evidence for a horizontal-vertical numerosity illusion. Acta Psychol (Amst) 2020; 205:103053. [PMID: 32151792 DOI: 10.1016/j.actpsy.2020.103053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 01/20/2020] [Accepted: 02/27/2020] [Indexed: 01/29/2023] Open
Abstract
Many studies have investigated whether numerical and spatial abilities share similar cognitive systems. A novel approach to this issue consists of investigating whether the same perceptual biases underlying size illusions can be identified in numerical estimation tasks. In this study, we required adult participants to estimate the number of white dots in arrays made of white and black dots displayed in such a way as to generate horizontal-vertical illusions with inverted T and L configurations. In agreement with previous literature, we found that participants tended to underestimate the target numbers. However, in the presence of the illusory patterns, participants were less inclined to underestimate the number of vertically aligned white dots. This reflects the perceptual biases underlying horizontal-vertical illusions. In addition, we identified an enhanced illusory effect when participants observed vertically aligned white dots in the T shape compared to the L shape, a result that resembles the length bisection bias reported in the spatial domain. Overall, we found the first evidence that numerical estimation differs as a function of the vertical or horizontal displacement of the stimuli. In addition, the involvement of the same perceptual biases observed in spatial tasks supports the idea that spatial and numerical abilities share similar cognitive processes.
Collapse
Affiliation(s)
| | | | - Christian Agrillo
- Department of General Psychology, University of Padova, Italy; Padua Neuroscience Center, University of Padova, Italy.
| |
Collapse
|
107
|
Roquet A, Poletti C, Lemaire P. Sequential modulations of executive control processes throughout lifespan in numerosity comparison. COGNITIVE DEVELOPMENT 2020. [DOI: 10.1016/j.cogdev.2020.100884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
108
|
Zhang T, Chen C, Chen C, Wei W. Gender differences in the development of semantic and spatial processing of numbers. BRITISH JOURNAL OF DEVELOPMENTAL PSYCHOLOGY 2020; 38:391-414. [PMID: 32212402 DOI: 10.1111/bjdp.12329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/19/2020] [Indexed: 01/29/2023]
Abstract
This study recruited kindergarteners and first graders to investigate gender and grade differences in semantic and spatial processing of number magnitude. Results based on the Bayesian statistics showed that (1) there was extreme evidence in favour of grade differences in both semantic processing and spatial processing; (2) there were no gender differences in semantic processing; and (3) boys developed earlier than girls in spatial processing of numbers, especially for the more difficult task. These results are discussed in terms of gender differences in cognitive mechanisms underlying semantic and spatial processing of number magnitude.
Collapse
Affiliation(s)
- Tingyan Zhang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hang Zhou, China
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California, Irvine, California
| | - Chen Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hang Zhou, China
| | - Wei Wei
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hang Zhou, China
| |
Collapse
|
109
|
Baldassi G, Murgia M, Prpic V, Rigutti S, Domijan D, Agostini T, Fantoni C. Large as being on top of the world and small as hitting the roof: a common magnitude representation for the comparison of emotions and numbers. PSYCHOLOGICAL RESEARCH 2020; 85:1272-1291. [PMID: 32166368 DOI: 10.1007/s00426-020-01306-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/12/2020] [Indexed: 01/29/2023]
Abstract
Previous work on the direct speed-intensity association (SIA) on comparative judgement tasks involved spatially distributed responses over spatially distributed stimuli with high motivational significance like facial expressions of emotions. This raises the possibility that the inferred stimulus-driven regulation of lateralized motor reactivity described by SIA, which was against the one expected on the basis of a valence-specific lateral bias, was entirely due to attentional capture from motivational significance (beyond numerical cognition). In order to establish the relevance of numerical cognition on the regulation of attentional capture we ran two complementary experiments. These involved the same direct comparison task on stimulus pairs that were fully comparable in terms of their analog representation of intensity but with different representational domain and motivational significance: symbolic magnitudes with low motivational significance in experiment 1 vs. emotions with rather high motivational significance in experiment 2. The results reveal a general SIA and point to a general mechanism regulating comparative judgements. This is based on the way spatial attention is captured toward locations that contain the stimulus which is closest in term of relative intensity to the extremal values of the series, regardless from its representational domain being it symbolic or emotional.
Collapse
Affiliation(s)
- Giulio Baldassi
- Department of Life Sciences, Psychology Unit "Gaetano Kanizsa", University of Trieste, Via E. Weiss 21, 34128, Trieste, Italy
| | - Mauro Murgia
- Department of Life Sciences, Psychology Unit "Gaetano Kanizsa", University of Trieste, Via E. Weiss 21, 34128, Trieste, Italy
| | - Valter Prpic
- Faculty of Health and Life Sciences, Institute for Psychological Science, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Sara Rigutti
- Department of Life Sciences, Psychology Unit "Gaetano Kanizsa", University of Trieste, Via E. Weiss 21, 34128, Trieste, Italy
| | - Dražen Domijan
- Department of Psychology, Faculty of Humanities and Social Sciences, University of Rijeka, Sveucilisna avenija 4, 51000, Rijeka, Croatia
| | - Tiziano Agostini
- Department of Life Sciences, Psychology Unit "Gaetano Kanizsa", University of Trieste, Via E. Weiss 21, 34128, Trieste, Italy
| | - Carlo Fantoni
- Department of Life Sciences, Psychology Unit "Gaetano Kanizsa", University of Trieste, Via E. Weiss 21, 34128, Trieste, Italy.
| |
Collapse
|
110
|
Developmental alterations of the numerical processing networks in the brain. Brain Cogn 2020; 141:105551. [PMID: 32088489 DOI: 10.1016/j.bandc.2020.105551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/30/2020] [Accepted: 02/14/2020] [Indexed: 02/02/2023]
Abstract
Neuroimaging studies revealed that number perception is mainly located in parietal cortex. Although controversial, it was suggested that number is processed in the frontal lobe in childhood and in the parietal cortex in adulthood. The purpose of this study is to investigate developmental differences in the neural correlates of number representation with fMRI. Sixteen healthy young adults (age:21.69 ± 0.79) and 15 healthy children (age:11.87 ± 0.52) performed a numerosity comparison paradigm which consists of two numerical conditions with two difficulty levels. Adults showed broad parietal cortex activation, as well as activation in the inferior parietal lobes, dorsolateral and medial prefrontal cortex, anterior and posterior cingulate cortex, and peristriate cortex (PC) during number processing. Children showed activations in the intraparietal sulcus and PC. Group differences were observed in the posterior insula, fusiform gyrus, and PC whose coordinates correspond to the number form area (NFA). Region of interest analysis was performed for these clusters to get the time series of hemodynamic responses which were estimated with a finite impulse response function. In contrast to the prominent frontoparietal shift theory, no age-related differences were observed in the frontoparietal regions. Overall, the presented study suggests developmental changes in the brain's number processing revolving around the NFA.
Collapse
|
111
|
Miletto Petrazzini ME, Pecunioso A, Dadda M, Agrillo C. Searching for the Critical p of Macphail's Null Hypothesis: The Contribution of Numerical Abilities of Fish. Front Psychol 2020; 11:55. [PMID: 32116895 PMCID: PMC7025564 DOI: 10.3389/fpsyg.2020.00055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/09/2020] [Indexed: 01/29/2023] Open
Abstract
In 1985, Macphail argued that there are no differences among the intellects of non-human vertebrates and that humans display unique cognitive skills because of language. Mathematical abilities represent one of the most sophisticated cognitive skills. While it is unquestionable that humans exhibit impressive mathematical skills associated with language, a large body of experimental evidence suggests that Macphail hypothesis must be refined in this field. In particular, the evidence that also small-brained organisms, such as fish, are capable of processing numerical information challenges the idea that humans display unique cognitive skills. Like humans, fish may take advantage of using continuous quantities (such as the area occupied by the objects) as proxy of number to select the larger/smaller group. Fish and humans also showed interesting similarities in the strategy adopted to learn a numerical rule. Collective intelligence in numerical estimation has been also observed in humans and guppies. However, numerical acuity in humans is considerably higher than that reported in any fish species investigated, suggesting that quantitative but not qualitative differences do exist between humans and fish. Lastly, while it is clear that contextual factors play an important role in the performance of numerical tasks, inter-species variability can be found also when different fish species were tested in comparable conditions, a fact that does not align with the null hypothesis of vertebrate intelligence. Taken together, we believe that the recent evidence of numerical abilities in fish call for a deeper reflection of Macphail's hypothesis.
Collapse
Affiliation(s)
| | | | - Marco Dadda
- Department of General Psychology, University of Padova, Padua, Italy
| | - Christian Agrillo
- Department of General Psychology, University of Padova, Padua, Italy.,Padua Neuroscience Center, University of Padova, Padua, Italy
| |
Collapse
|
112
|
Gouet C, Carvajal S, Halberda J, Peña M. Training nonsymbolic proportional reasoning in children and its effects on their symbolic math abilities. Cognition 2020; 197:104154. [PMID: 31945678 DOI: 10.1016/j.cognition.2019.104154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 01/29/2023]
Abstract
Our understanding of proportions can be both symbolic, as when doing calculations in school mathematics, or intuitive, as when folding a bed sheet in half. While an understanding of symbolic proportions is crucial for school mathematics, the cognitive foundations of this ability remain unclear. Here we implemented a computerized training game to test a causal link from intuitive (nonsymbolic) to symbolic proportional reasoning and other math abilities in 4th grade children. An experimental group was trained in nonsymbolic proportional reasoning (PR) with continuous extents, and an active control group was trained on a remarkably similar nonsymbolic magnitude comparison. We found that the experimental group improved at nonsymbolic PR across training sessions, showed near transfer to a paper-and-pencil nonsymbolic PR test, transfer to symbolic proportions, and far transfer to geometry. The active control group showed only a predicted far transfer to geometry. In a second experiment, these results were replicated with an independent cohort of children. Overall this study extends previous correlational evidence, suggesting a functional link between nonsymbolic PR on one hand and symbolic PR and geometry on the other.
Collapse
Affiliation(s)
- Camilo Gouet
- Laboratorio de Neurociencias Cognitivas, Escuela de Psicología, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile.
| | - Salvador Carvajal
- Laboratorio de Neurociencias Cognitivas, Escuela de Psicología, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Justin Halberda
- Department of Psychological and Brain Sciences, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Marcela Peña
- Laboratorio de Neurociencias Cognitivas, Escuela de Psicología, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile.
| |
Collapse
|
113
|
When one-two-three beats two-one-three: Tracking the acquisition of the verbal number sequence. Psychon Bull Rev 2020; 27:122-129. [PMID: 31900801 DOI: 10.3758/s13423-019-01704-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Learning how to count is a crucial step in cognitive development, which progressively allows for more elaborate numerical processing. The existing body of research consistently reports how children associate the verbal code with exact quantity. However, the early acquisition of this code, when the verbal numbers are encoded in long-term memory as a sequence of words, has rarely been examined. Using an incidental assessment method based on serial recall of number words presented in ordered versus non-ordered sequences (e.g., one-two-three vs. two-one-three), we tracked the progressive acquisition of the verbal number sequence in children aged 3-6 years. Results revealed evidence for verbal number sequence knowledge in the youngest children even before counting is fully mastered. Verbal numerical knowledge thus starts to be organized as a sequence in long-term memory already at the age of 3 years, and this numerical sequence knowledge is assessed in a sensitive manner by incidental rather than explicit measures of number knowledge.
Collapse
|
114
|
Faye A, Jacquin-Courtois S, Reynaud E, Lesourd M, Besnard J, Osiurak F. Numerical cognition: A meta-analysis of neuroimaging, transcranial magnetic stimulation and brain-damaged patients studies. NEUROIMAGE-CLINICAL 2019; 24:102053. [PMID: 31795045 PMCID: PMC6978218 DOI: 10.1016/j.nicl.2019.102053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/01/2019] [Accepted: 10/21/2019] [Indexed: 01/29/2023]
Abstract
We review neuroimaging, TMS, and patients studies on numerical cognition. We focused on the predictions derived from the Triple Code Model (TCM). Our findings generally agree with TCM predictions. Our results open avenues for the study of the neural bases of numerical cognition.
This article offers the first comprehensive review examining the neurocognitive bases of numerical cognition from neuroimaging, Transcranial Magnetic Stimulation (TMS) and brain-damaged patients studies. We focused on the predictions derived from the Triple Code Model (TCM), particularly the assumption that the representation of numerical quantities rests on a single format-independent representation (i.e., the analogical code) involving both intraparietal sulci (IPS). To do so, we conducted a meta-analysis based on 28 neuroimaging, 12 TMS and 12 brain-damaged patients studies, including arithmetic and magnitude tasks in symbolic and non-symbolic formats. Our findings generally agree with the TCM predictions indicating that both IPS are engaged in all tasks. Nonetheless, the results of brain-damaged patients studies conflicted with neuroimaging and TMS studies, suggesting a right hemisphere lateralization for non-symbolic formats. Our findings also led us to discuss the involvement of brain regions other than IPS in the processing of the analogical code as well as the neural substrate of other codes underlying numerical cognition (i.e., the auditory-verbal code).
Collapse
Affiliation(s)
- Alexandrine Faye
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), Université de Lyon, France.
| | - Sophie Jacquin-Courtois
- Integrative, Multisensory, Perception, Action, & Cognition Team (INSERM-CNRS-UMR 5292), Université de Lyon, France; Mouvement et Handicap, Hospices Civils de Lyon et Centre de Recherche en Neurosciences de Lyon, Hôpital Henry Gabrielle, St Genis Laval, France
| | - Emanuelle Reynaud
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), Université de Lyon, France
| | - Mathieu Lesourd
- Aix Marseille Université, CNRS, LNC, Laboratoire de Neurosciences Cognitives, Marseille, France; Aix Marseille Université, CNRS, Fédération 3C, Marseille, France
| | - Jérémy Besnard
- Laboratoire de Psychologie des Pays de la Loire (EA 4638), Université de Nantes et d'Angers, France
| | - François Osiurak
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), Université de Lyon, France; Institut Universitaire de France, Paris, France
| |
Collapse
|
115
|
Nieder A. Neural constraints on human number concepts. Curr Opin Neurobiol 2019; 60:28-36. [PMID: 31810008 DOI: 10.1016/j.conb.2019.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 01/29/2023]
Abstract
True counting and arithmetic abilities are unique to humans and are inextricably linked to symbolic competence. However, our unprecedented numerical skills are deeply rooted in our neuronal heritage as primates and vertebrates. In this article, I argue that numerical competence in humans is the result of three neural constraints. First, I propose that the neuronal mechanisms of quantity estimation are part of our evolutionary heritage and can be witnessed across primate and vertebrate phylogeny. Second, I suggest that a basic understanding of number, what numerical quantity means, is innately wired into the brain and gives rise to an intuitive number sense, or number instinct. Third and finally, I argue that symbolic counting and arithmetic in humans is rooted in an evolutionarily and ontogenetically primeval neural system for non-symbolic number representations. These three neural constraints jointly determine the basic processing of number concepts in the human mind.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
116
|
Cheng X, Lin C, Lou C, Zhang W, Han Y, Ding X, Fan Z. Small numerosity advantage for sequential enumeration on RSVP stimuli: an object individuation-based account. PSYCHOLOGICAL RESEARCH 2019; 85:734-763. [PMID: 31696296 DOI: 10.1007/s00426-019-01264-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/28/2019] [Indexed: 01/29/2023]
Abstract
Although there is a large literature demonstrating rapid and accurate enumeration of small sets of simultaneously presented items (i.e., subitizing), it is unclear whether this small numerosity advantage (SNA) can also manifest in sequential enumeration. The present study thus has two aims: to establish a robust processing advantage for small numerosities during sequential enumeration using a rapid serial visual presentation (RSVP) paradigm, and to examine the underlying mechanism for a SNA in sequential enumeration. The results indicate that a small set of items presented in fast sequences can be enumerated accurately with a high precision and a SOA (stimulus onset asynchrony)-sensitive capacity limit, essentially generalizing the large literature on small numerosity advantage from spatial domain to temporal domain. A resource competition hypothesis was proposed and confirmed in further experiments. Specifically, sequential enumeration and other cognitive process, such as visual working memory (VWM), compete for a shared resource of object individuation by which items are segregated as individual entities. These results implied that the limited resource of object individuation can be allocated within time windows of flexible temporal scales during simultaneous and sequential enumerations. Taken together, the present study calls for attention to the dynamic aspect of the enumeration process and highlights the pivotal role of object individuation in underlying a wide range of mental operations, such as enumeration and VWM.
Collapse
Affiliation(s)
- Xiaorong Cheng
- Central China Normal University, School of Psychology, 430079, Wuhan, China
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, 430079, Wuhan, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, 430079, Wuhan, China
| | - Chunyan Lin
- Central China Normal University, School of Psychology, 430079, Wuhan, China
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, 430079, Wuhan, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, 430079, Wuhan, China
| | - Chunmiao Lou
- Central China Normal University, School of Psychology, 430079, Wuhan, China
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, 430079, Wuhan, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, 430079, Wuhan, China
| | - Weiwei Zhang
- Department of Psychology, University of California at Riverside, Riverside, CA, 92521, USA
| | - Yaqian Han
- Central China Normal University, School of Psychology, 430079, Wuhan, China
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, 430079, Wuhan, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, 430079, Wuhan, China
| | - Xianfeng Ding
- Central China Normal University, School of Psychology, 430079, Wuhan, China.
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, 430079, Wuhan, China.
- Key Laboratory of Human Development and Mental Health of Hubei Province, 430079, Wuhan, China.
| | - Zhao Fan
- Central China Normal University, School of Psychology, 430079, Wuhan, China.
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, 430079, Wuhan, China.
- Key Laboratory of Human Development and Mental Health of Hubei Province, 430079, Wuhan, China.
| |
Collapse
|
117
|
Affiliation(s)
- Michael Vlerick
- Tilburg University, Tilburg, The Netherlands
- University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
118
|
Wilkey ED, Ansari D. Challenging the neurobiological link between number sense and symbolic numerical abilities. Ann N Y Acad Sci 2019; 1464:76-98. [PMID: 31549430 DOI: 10.1111/nyas.14225] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/25/2019] [Accepted: 08/06/2019] [Indexed: 01/29/2023]
Abstract
A significant body of research links individual differences in symbolic numerical abilities, such as arithmetic, to number sense, the neurobiological system used to approximate and manipulate quantities without language or symbols. However, recent findings from cognitive neuroscience challenge this influential theory. Our current review presents an overview of evidence for the number sense account of symbolic numerical abilities and then reviews recent studies that challenge this account, organized around the following four assertions. (1) There is no number sense as traditionally conceived. (2) Neural substrates of number sense are more widely distributed than common consensus asserts, complicating the neurobiological evidence linking number sense to numerical abilities. (3) The most common measures of number sense are confounded by other cognitive demands, which drive key correlations. (4) Number sense and symbolic number systems (Arabic digits, number words, and so on) rely on distinct neural mechanisms and follow independent developmental trajectories. The review follows each assertion with comments on future directions that may bring resolution to these issues.
Collapse
Affiliation(s)
- Eric D Wilkey
- Brain and Mind Institute, Western University, London, Ontario, Canada
| | - Daniel Ansari
- Brain and Mind Institute, Western University, London, Ontario, Canada
| |
Collapse
|
119
|
Everett C. Is native quantitative thought concretized in linguistically privileged ways? A look at the global picture. Cogn Neuropsychol 2019; 37:340-354. [PMID: 31539296 DOI: 10.1080/02643294.2019.1668368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This work investigates whether reference in speech to certain quantities, namely 1, 2, and 3, is privileged linguistically due to our brain's native quantitative capacities. It is suggested that these small quantities are not privileged in specific ways suggested in the literature. The case that morphology privileges these quantities, apart from 1, is difficult to maintain in light of the cross-linguistic data surveyed. The grammatical expression of 2 is explained without appealing to innate quantitative reasoning and the grammatical expression of 3 is not truly characteristic of speech once language relatedness is considered. The case that 1, 2, and 3 are each privileged lexically is also difficult to maintain in the face of the global linguistic data. While native neurobiological architecture biases humans towards recognizing small quantities in precise ways, these biases do not yield clear patterns in numerical language worldwide.
Collapse
Affiliation(s)
- Caleb Everett
- Department of Anthropology, University of Miami, Coral Gables, FL, USA.,Department of Psychology, University of Miami, Coral Gables, FL, USA
| |
Collapse
|
120
|
Abstract
The role of language in numerical processing has traditionally been restricted to counting and exact arithmetic. Nevertheless, the impact that each of a bilinguals’ languages may have in core numerical representations has not been questioned until recently. What if the language in which math has been first acquired (LLmath) had a bigger impact in our math processing? Based on previous studies on language switching we hypothesize that balanced bilinguals would behave like unbalanced bilinguals when switching between the two codes for math. In order to address this question, we measured the brain activity with magneto encephalography (MEG) and source estimation analyses of 12 balanced Basque-Spanish speakers performing a task in which participants were unconscious of the switches between the two codes. The results show an asymmetric switch cost between the two codes for math, and that the brain areas responsible for these switches are similar to those thought to belong to a general task switching mechanism. This implies that the dominances for math and language could run separately from the general language dominance.
Collapse
|
121
|
Pantsar M. The Enculturated Move From Proto-Arithmetic to Arithmetic. Front Psychol 2019; 10:1454. [PMID: 31354559 PMCID: PMC6630192 DOI: 10.3389/fpsyg.2019.01454] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/06/2019] [Indexed: 01/29/2023] Open
Abstract
The basic human ability to treat quantitative information can be divided into two parts. With proto-arithmetical ability, based on the core cognitive abilities for subitizing and estimation, numerosities can be treated in a limited and/or approximate manner. With arithmetical ability, numerosities are processed (counted, operated on) systematically in a discrete, linear, and unbounded manner. In this paper, I study the theory of enculturation as presented by Menary (2015) as a possible explanation of how we make the move from the proto-arithmetical ability to arithmetic proper. I argue that enculturation based on neural reuse provides a theoretically sound and fruitful framework for explaining this development. However, I show that a comprehensive explanation must be based on valid theoretical distinctions and involve several stages in the development of arithmetical knowledge. I provide an account that meets these challenges and thus leads to a better understanding of the subject of enculturation.
Collapse
Affiliation(s)
- Markus Pantsar
- Department of Philosophy, History and Art University of Helsinki, Helsinki, Finland
| |
Collapse
|
122
|
Gibson DJ, Gunderson EA, Spaepen E, Levine SC, Goldin-Meadow S. Number gestures predict learning of number words. Dev Sci 2019; 22:e12791. [PMID: 30566755 PMCID: PMC6470030 DOI: 10.1111/desc.12791] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 01/29/2023]
Abstract
When asked to explain their solutions to a problem, children often gesture and, at times, these gestures convey information that is different from the information conveyed in speech. Children who produce these gesture-speech "mismatches" on a particular task have been found to profit from instruction on that task. We have recently found that some children produce gesture-speech mismatches when identifying numbers at the cusp of their knowledge, for example, a child incorrectly labels a set of two objects with the word "three" and simultaneously holds up two fingers. These mismatches differ from previously studied mismatches (where the information conveyed in gesture has the potential to be integrated with the information conveyed in speech) in that the gestured response contradicts the spoken response. Here, we ask whether these contradictory number mismatches predict which learners will profit from number-word instruction. We used the Give-a-Number task to measure number knowledge in 47 children (Mage = 4.1 years, SD = 0.58), and used the What's on this Card task to assess whether children produced gesture-speech mismatches above their knower level. Children who were early in their number learning trajectories ("one-knowers" and "two-knowers") were then randomly assigned, within knower level, to one of two training conditions: a Counting condition in which children practiced counting objects; or an Enriched Number Talk condition containing counting, labeling set sizes, spatial alignment of neighboring sets, and comparison of these sets. Controlling for counting ability, we found that children were more likely to learn the meaning of new number words in the Enriched Number Talk condition than in the Counting condition, but only if they had produced gesture-speech mismatches at pretest. The findings suggest that numerical gesture-speech mismatches are a reliable signal that a child is ready to profit from rich number instruction and provide evidence, for the first time, that cardinal number gestures have a role to play in number-learning.
Collapse
Affiliation(s)
- Dominic J Gibson
- Department of Psychology, University of Chicago, Chicago, Illinois
| | | | - Elizabet Spaepen
- Department of Psychology, University of Chicago, Chicago, Illinois
| | - Susan C Levine
- Department of Psychology, University of Chicago, Chicago, Illinois
| | | |
Collapse
|
123
|
Lin JFL, Imada T, Kuhl PK. Neuroplasticity, bilingualism, and mental mathematics: A behavior-MEG study. Brain Cogn 2019; 134:122-134. [PMID: 30975509 DOI: 10.1016/j.bandc.2019.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/22/2018] [Accepted: 03/28/2019] [Indexed: 01/29/2023]
Abstract
Bilingual experience alters brain structure and enhances certain cognitive functions. Bilingualism can also affect mathematical processing. Reduced accuracy is commonly reported when arithmetic problems are presented in bilinguals' second (L2) vs. first (L1) language. We used MEG brain imaging during mental addition to characterize spatiotemporal dynamics during mental addition in bilingual adults. Numbers were presented auditorally and sequentially in bilinguals' L1 and L2, and brain and behavioral data were collected simultaneously. Behaviorally, bilinguals showed lower accuracy for two-digit addition in L2 compared to L1. Brain data showed stronger response magnitude in L2 versus L1 prior to calculation, especially when two-digit numbers were involved. Brain and behavioral data were significantly correlated. Taken together, our results suggest that differences between languages emerge prior to mathematical calculation, with implications for the role of language in mathematics.
Collapse
Affiliation(s)
- Jo-Fu Lotus Lin
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, USA; Department of Speech & Hearing Sciences, University of Washington, Seattle, WA, USA; Institute of Linguistics, National Tsing Hua University, Taiwan
| | - Toshiaki Imada
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, USA; Department of Speech & Hearing Sciences, University of Washington, Seattle, WA, USA
| | - Patricia K Kuhl
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, USA; Department of Speech & Hearing Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
124
|
Buijsman S, Tirado C. Spatial-numerical associations: Shared symbolic and non-symbolic numerical representations. Q J Exp Psychol (Hove) 2019; 72:2423-2436. [PMID: 30931820 DOI: 10.1177/1747021819844503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During the last decades, there have been a large number of studies into the number-related abilities of humans. As a result, we know that humans and non-human animals have a system known as the approximate number system that allows them to distinguish between collections based on their number of items, separately from any counting procedures. Dehaene and others have argued for a model on which this system uses representations for numbers that are spatial in nature and are shared by our symbolic and non-symbolic processing of numbers. However, there is a conflicting theoretical perspective in which there are no representations of numbers underlying the approximate number system, but only quantity-related representations. This perspective would then suggest that there are no shared representations between symbolic and non-symbolic processing. We review the evidence on spatial biases resulting from the activation of numerical representations, for both non-symbolic and symbolic tests. These biases may help decide between the theoretical differences; shared representations are expected to lead to similar biases regardless of the format, whereas different representations more naturally explain differences in biases, and thus behaviour. The evidence is not yet decisive, as the behavioural evidence is split: we expect bisection tasks to eventually favour shared representations, whereas studies on the spatial-numerical association of response codes (SNARC) effect currently favour different representations. We discuss how this impasse may be resolved, in particular, by combining these behavioural studies with relevant neuroimaging data. If this approach is carried forward, then it may help decide which of these two theoretical perspectives on number representations is correct.
Collapse
Affiliation(s)
| | - Carlos Tirado
- 2 Gösta Ekman Laboratory, Department of Psychology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
125
|
Zhang Y, Liu T, Chen C, Zhou X. Visual form perception supports approximate number system acuity and arithmetic fluency. LEARNING AND INDIVIDUAL DIFFERENCES 2019. [DOI: 10.1016/j.lindif.2019.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
126
|
A distinct cortical network for mathematical knowledge in the human brain. Neuroimage 2019; 189:19-31. [DOI: 10.1016/j.neuroimage.2019.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/12/2018] [Accepted: 01/02/2019] [Indexed: 01/29/2023] Open
|
127
|
Lee K, Cho S. Visuo-spatial (but not verbal) executive working memory capacity modulates susceptibility to non-numerical visual magnitudes during numerosity comparison. PLoS One 2019; 14:e0214270. [PMID: 30917158 PMCID: PMC6436736 DOI: 10.1371/journal.pone.0214270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/11/2019] [Indexed: 01/29/2023] Open
Abstract
The present study tested whether visuo-spatial vs. verbal executive working memory capacity (hereafter EWM) modulates the degree to which non-numerical visual magnitudes influence numerosity comparison using pairs of dot arrays. We hypothesized that visuo-spatial (rather than verbal) EWM capacity would influence one’s ability to selectively focus on numerical as opposed to non-numerical visual properties (such as dot size, cumulative area, density) of the dot arrays during numerosity comparison. Participants’ performance was better on trials in which non-numerical visual magnitudes were negatively (vs. positively) correlated with numerosity (i.e., reverse congruency effect). The Low visuo-spatial EWM group manifested greater reverse congruency effect compared to the High visuo-spatial EWM group. A trial-based hierarchical regression on the accuracy of each trial using the ratio of (numerical and non-numerical) visual magnitudes as predictors revealed that the ratio of numerical vs. non-numerical visual magnitudes explained the greatest variance in the performance of the High vs. Low visuo-spatial EWM groups, respectively. In contrast, there was no difference between the High vs. Low verbal EWM groups from the same analysis. These results reveal differential susceptibility to numerical vs. non-numerical visual information depending on the capacity of visuo-spatial (but not verbal) EWM. Taken together, numerosity comparison performance measured with the dot comparison paradigm seems to reflect not only one’s acuity for numerosity discrimination but also visuo-spatial EWM capacity likely required during integration of visual magnitudes during numerosity comparison.
Collapse
Affiliation(s)
- Kyungmin Lee
- Department of Psychology, Chung-Ang University, Seoul, South Korea
| | - Soohyun Cho
- Department of Psychology, Chung-Ang University, Seoul, South Korea
- * E-mail:
| |
Collapse
|
128
|
Yousif SR, Keil FC. The Additive-Area Heuristic: An Efficient but Illusory Means of Visual Area Approximation. Psychol Sci 2019; 30:495-503. [DOI: 10.1177/0956797619831617] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
How do we determine how much of something is present? A large body of research has investigated the mechanisms and consequences of number estimation, yet surprisingly little work has investigated area estimation. Indeed, area is often treated as a pesky confound in the study of number. Here, we describe the additive-area heuristic, a means of rapidly estimating visual area that results in substantial distortions of perceived area in many contexts, visible even in simple demonstrations. We show that when we controlled for additive area, observers were unable to discriminate on the basis of true area, per se, and that these results could not be explained by other spatial dimensions. These findings reflect a powerful perceptual illusion in their own right but also have implications for other work, namely, that which relies on area controls to support claims about number estimation. We discuss several areas of research potentially affected by these findings.
Collapse
|
129
|
O'Grady S, Xu F. The Development of Nonsymbolic Probability Judgments in Children. Child Dev 2019; 91:784-798. [PMID: 30737769 DOI: 10.1111/cdev.13222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Two experiments were designed to investigate the developmental trajectory of children's probability approximation abilities. In Experiment 1, results revealed 6- and 7-year-old children's (N = 48) probability judgments improve with age and become more accurate as the distance between two ratios increases. Experiment 2 replicated these findings with 7- to 12-year-old children (N = 130) while also accounting for the effect of the size and the perceived numerosity of target objects. Older children's performance suggested the correct use of proportions for estimating probability; but in some cases, children relied on heuristic shortcuts. These results suggest that children's nonsymbolic probability judgments show a clear distance effect and that the acuity of probability estimations increases with age.
Collapse
Affiliation(s)
| | - Fei Xu
- University of California, Berkeley
| |
Collapse
|
130
|
Amici F, Sánchez-Amaro A, Sebastián-Enesco C, Cacchione T, Allritz M, Salazar-Bonet J, Rossano F. The word order of languages predicts native speakers' working memory. Sci Rep 2019; 9:1124. [PMID: 30718704 PMCID: PMC6362290 DOI: 10.1038/s41598-018-37654-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 12/12/2018] [Indexed: 01/29/2023] Open
Abstract
The relationship between language and thought is controversial. One hypothesis is that language fosters habits of processing information that are retained even in non-linguistic domains. In left-branching (LB) languages, modifiers usually precede the head, and real-time sentence comprehension may more heavily rely on retaining initial information in working memory. Here we presented a battery of working memory and short-term memory tasks to adult native speakers of four LB and four right-branching (RB) languages from Africa, Asia and Europe. In working memory tasks, LB speakers were better than RB speakers at recalling initial stimuli, but worse at recalling final stimuli. Our results show that the practice of parsing sentences in specific directions due to the syntax and word order of our native language not only predicts the way we remember words, but also other non-linguistic stimuli.
Collapse
Affiliation(s)
- Federica Amici
- Junior Research Group "Primate Kin Selection", Max Planck Institute for Evolutionary Anthropology, Department of Primatology, Deutscher Platz 6, 04103, Leipzig, Germany.
- University of Leipzig Faculty of Life Science, Institute of Biology, Behavioral Ecology Research Group, Talstrasse 33, 04103, Leipzig, Germany.
| | - Alex Sánchez-Amaro
- Department of Comparative and Developmental Psychology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
- Department of Cognitive Science, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0515, USA
| | - Carla Sebastián-Enesco
- William James Center for Research, ISPA-Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041, Lisboa, Portugal
| | - Trix Cacchione
- Department of Developmental and Comparative Psychology, Institute of Psychology, University of Bern, Hochschulstrasse 6, 3012, Bern, Switzerland
- Pedagogische Hochschule, University of Applied Sciences Northwestern Switzerland, Bahnhofstrasse 6, 5210, Windisch, Switzerland
| | - Matthias Allritz
- Department of Comparative and Developmental Psychology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Juan Salazar-Bonet
- Department of International Programs, Florida State University, C/ Blanquerías 2, 46003, Valencia, Spain
| | - Federico Rossano
- Department of Cognitive Science, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0515, USA
| |
Collapse
|
131
|
Precise relative-quantity judgement in the striped field mouse Apodemus agrarius Pallas. Anim Cogn 2019; 22:277-289. [PMID: 30707366 DOI: 10.1007/s10071-019-01244-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/14/2019] [Accepted: 01/23/2019] [Indexed: 02/03/2023]
Abstract
Applying the classical experimental scheme of training animals with food rewards to discriminate between quantities of visual stimuli, we demonstrated that not only can striped field mice Apodemus agrarius discriminate between clearly distinctive quantities such as 5 and 10, but some of these mice also exhibit high accuracy in discriminating between quantities that differ only by one. The latter include both small (such as 2 versus 3) and relatively large (such as 5 versus 6, and 8 versus 9) quantities of elements. This is the first evidence of precise relative-quantity judgement in wild rodents. We found striking individual variation in cognitive performance among striped field mice, which possibly reflects individual cognitive variation in natural populations. We speculate that high accuracy in differentiating large quantities is based on the adaptive ability of wild rodents to capture subtle changes in their environment. We suggest that the striped field mouse may be a powerful model species to develop advanced cognitive tests for comparative studies of numerical competence in animals and for understanding evolutionary roots of quantity processing.
Collapse
|
132
|
Howard SR, Avarguès-Weber A, Garcia JE, Greentree AD, Dyer AG. Numerical cognition in honeybees enables addition and subtraction. SCIENCE ADVANCES 2019; 5:eaav0961. [PMID: 30775440 PMCID: PMC6365119 DOI: 10.1126/sciadv.aav0961] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/20/2018] [Indexed: 05/31/2023]
Abstract
Many animals understand numbers at a basic level for use in essential tasks such as foraging, shoaling, and resource management. However, complex arithmetic operations, such as addition and subtraction, using symbols and/or labeling have only been demonstrated in a limited number of nonhuman vertebrates. We show that honeybees, with a miniature brain, can learn to use blue and yellow as symbolic representations for addition or subtraction. In a free-flying environment, individual bees used this information to solve unfamiliar problems involving adding or subtracting one element from a group of elements. This display of numerosity requires bees to acquire long-term rules and use short-term working memory. Given that honeybees and humans are separated by over 400 million years of evolution, our findings suggest that advanced numerical cognition may be more accessible to nonhuman animals than previously suspected.
Collapse
Affiliation(s)
- Scarlett R. Howard
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC, Australia
| | - Aurore Avarguès-Weber
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jair E. Garcia
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC, Australia
| | - Andrew D. Greentree
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Adrian G. Dyer
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
133
|
Geary DC, vanMarle K, Chu FW, Hoard MK, Nugent L. Predicting Age of Becoming a Cardinal Principle Knower. JOURNAL OF EDUCATIONAL PSYCHOLOGY 2019; 111:256-267. [PMID: 37275456 PMCID: PMC10237038 DOI: 10.1037/edu0000277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Children's first mathematics concept is their understanding of the quantities represented by number words (cardinal value), and the age at which they achieve this insight predicts their readiness for mathematics learning in school. We provide the first exploration of the factors that influence the age of becoming a cardinal principle knower (CPK), with a longitudinal study of 197 (94 boys) children from the beginning to the end of two years of preschool. Core symbolic and non-symbolic quantitative competencies at the beginning of preschool, as well as measures of intelligence, executive function, preliteracy skills, and parental education were used to predict timing of CPK status. Children who achieved early CPK status had higher IQ scores, knew more count words and numerals, and had a better intuitive understanding of relative quantity than their peers. Children who were delayed CPKs, in contrast, had deficits in executive function and poor preliteracy skills. The results add to our understanding of children's conceptual development in mathematics and have implications for the identification of at-risk children and design of interventions for them.
Collapse
Affiliation(s)
- David C. Geary
- Department of Psychological Sciences, University of Missouri
- Interdisciplinary Neuroscience Program, University of Missouri
| | - Kristy vanMarle
- Department of Psychological Sciences, University of Missouri
| | - Felicia W. Chu
- Department of Psychological Sciences, University of Missouri
| | - Mary K. Hoard
- Department of Psychological Sciences, University of Missouri
| | - Lara Nugent
- Department of Psychological Sciences, University of Missouri
| |
Collapse
|
134
|
Stahl AE, Feigenson L. Violations of Core Knowledge Shape Early Learning. Top Cogn Sci 2019; 11:136-153. [PMID: 30369059 PMCID: PMC6360129 DOI: 10.1111/tops.12389] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 01/29/2023]
Abstract
Research on cognitive development has revealed that even the youngest minds detect and respond to events that adults find surprising. These surprise responses suggest that infants have a basic set of "core" expectations about the world that are shared with adults and other species. However, little work has asked what purpose these surprise responses serve. Here we discuss recent evidence that violations of core knowledge offer special opportunities for learning. Infants and young children make predictions about the world on the basis of their core knowledge of objects, quantities, and social entities. We argue that when these predictions fail to match the observed data, infants and children experience an enhanced drive to seek and retain new information. This impact of surprise on learning is not equipotent. Instead, it is directed to entities that are relevant to the surprise itself; this drive propels children-even infants-to form and test new hypotheses about surprising aspects of the world. We briefly consider similarities and differences between these recent findings with infants and children, on the one hand, and findings on prediction errors in humans and non-human animals, on the other. These comparisons raise open questions that require continued inquiry, but suggest that considering phenomena across species, ages, kinds of surprise, and types of learning will ultimately help to clarify how surprise shapes thought.
Collapse
Affiliation(s)
| | - Lisa Feigenson
- Department of Psychological & Brain Sciences, Johns Hopkins University
| |
Collapse
|
135
|
Tosto MG, Garon-Carrier G, Gross S, Petrill SA, Malykh S, Malki K, Hart SA, Thompson L, Karadaghi RL, Yakovlev N, Tikhomirova T, Opfer JE, Mazzocco MMM, Dionne G, Brendgen M, Vitaro F, Tremblay RE, Boivin M, Kovas Y. The nature of the association between number line and mathematical performance: An international twin study. BRITISH JOURNAL OF EDUCATIONAL PSYCHOLOGY 2018; 89:787-803. [PMID: 30548254 DOI: 10.1111/bjep.12259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 10/29/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND The number line task assesses the ability to estimate numerical magnitudes. People vary greatly in this ability, and this variability has been previously associated with mathematical skills. However, the sources of individual differences in number line estimation and its association with mathematics are not fully understood. AIMS This large-scale genetically sensitive study uses a twin design to estimate the magnitude of the effects of genes and environments on: (1) individual variation in number line estimation and (2) the covariation of number line estimation with mathematics. SAMPLES We used over 3,000 8- to 16-year-old twins from the United States, Canada, the United Kingdom, and Russia, and a sample of 1,456 8- to 18-year-old singleton Russian students. METHODS Twins were assessed on: (1) estimation of numerical magnitudes using a number line task and (2) two mathematics components: fluency and problem-solving. RESULTS Results suggest that environments largely drive individual differences in number line estimation. Both genes and environments contribute to different extents to the number line estimation and mathematics correlation, depending on the sample and mathematics component. CONCLUSIONS Taken together, the results suggest that in more heterogeneous school settings, environments may be more important in driving variation in number line estimation and its association with mathematics, whereas in more homogeneous school settings, genetic effects drive the covariation between number line estimation and mathematics. These results are discussed in the light of development and educational settings.
Collapse
Affiliation(s)
- Maria Grazia Tosto
- Laboratory for Cognitive Investigations and Behavioral Genetics, Department of Psychology, Institute of Genetic, Neurobiological, and Social Foundations of Child Development, Tomsk State University, Tomsk, Oblast, Russia
| | | | - Susan Gross
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Stephen A Petrill
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Sergey Malykh
- Laboratory for Cognitive Investigations and Behavioral Genetics, Department of Psychology, Institute of Genetic, Neurobiological, and Social Foundations of Child Development, Tomsk State University, Tomsk, Oblast, Russia.,Psychological Institute, Russian Academy of Education, Moscow, Russia
| | - Karim Malki
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology& Neuroscience, King's College London, UK
| | - Sara A Hart
- Department of Psychology, Florida Center for Reading Research, The Florida State University, Tallahassee, Florida, USA
| | - Lee Thompson
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rezhaw L Karadaghi
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology& Neuroscience, King's College London, UK
| | - Nikita Yakovlev
- Laboratory for Cognitive Investigations and Behavioral Genetics, Department of Psychology, Institute of Genetic, Neurobiological, and Social Foundations of Child Development, Tomsk State University, Tomsk, Oblast, Russia
| | | | - John E Opfer
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Michèle M M Mazzocco
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ginette Dionne
- School of Psychology, Université Laval, Québec City, Québec, Canada
| | - Mara Brendgen
- Department of Psychology, School of Psychology, Université du Québec à Montréal, Québec, Canada
| | - Frank Vitaro
- Department of Psychoeducation, Department of Pediatrics and Psychology, Université de Montréal, Québec, Canada
| | - Richard E Tremblay
- Laboratory for Cognitive Investigations and Behavioral Genetics, Department of Psychology, Institute of Genetic, Neurobiological, and Social Foundations of Child Development, Tomsk State University, Tomsk, Oblast, Russia.,Department of Psychoeducation, Department of Pediatrics and Psychology, Université de Montréal, Québec, Canada.,School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michel Boivin
- Laboratory for Cognitive Investigations and Behavioral Genetics, Department of Psychology, Institute of Genetic, Neurobiological, and Social Foundations of Child Development, Tomsk State University, Tomsk, Oblast, Russia.,School of Psychology, Université Laval, Québec City, Québec, Canada
| | - Yulia Kovas
- Laboratory for Cognitive Investigations and Behavioral Genetics, Department of Psychology, Institute of Genetic, Neurobiological, and Social Foundations of Child Development, Tomsk State University, Tomsk, Oblast, Russia.,MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology& Neuroscience, King's College London, UK.,Department of Psychology, University of London, UK
| |
Collapse
|
136
|
Arcara G, Franzon F, Gastaldon S, Brotto S, Semenza C, Peressotti F, Zanini C. One can be some but some cannot be one: ERP correlates of numerosity incongruence are different for singular and plural. Cortex 2018; 116:104-121. [PMID: 30545602 DOI: 10.1016/j.cortex.2018.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/20/2018] [Accepted: 10/24/2018] [Indexed: 01/29/2023]
Abstract
Humans can communicate information on numerosity by means of number words (e.g., one hundred, a couple), but also through Number morphology (e.g., through the singular vs the plural forms of a noun). Agreement violations involving Number morphology (e.g., *one apples) are well known to elicit specific ERP components such as the Left Anterior Negativity (LAN); yet, the relationship between a morphological Number value (e.g., singular vs plural) and its referential numerosity has rarely been considered in the literature. Moreover, even if agreement violations have been proven to be very useful, they do not typically characterise everyday language usage, thus narrowing the scope of the results. In this study we investigated Number morphology from a different perspective, by focusing on the ERP correlates of congruence and incongruence between a depicted numerosity and noun phrases. To this aim we designed a picture-phrase matching paradigm in Italian. In each trial, a picture depicting one or four objects was followed by a grammatically well-formed phrase made up of a quantifier and a content noun inflected either in the singular or in the plural. When analysing ERP time-locked to the content noun, plural phrases after pictures presenting one object elicited a larger negativity, similar to a LAN effect. No significant congruence effect was found in the case of the phrases whose morphological Number value conveyed a numerosity of one. Our results suggest that: 1) incongruence elicits a LAN-like negativity independently from the grammaticality of the utterances and irrespectively of the P600 component; 2) the reference to a numerosity can be partially encoded in an incremental way when processing Number morphology; and, most importantly, 3) the processing of the morphological Number value of plural is different from that of singular as the former shows a narrower interpretability than the latter.
Collapse
Affiliation(s)
| | - Francesca Franzon
- Department of Neuroscience DNS, University of Padova, Padova, Italia; Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italia
| | - Simone Gastaldon
- Department of Devolopmental and Social Psychology, University of Padova, Padova, Italia
| | - Silvia Brotto
- Department of Neuroscience DNS, University of Padova, Padova, Italia
| | - Carlo Semenza
- Fondazione Ospedale San Camillo IRCCS, Venezia, Italia; Department of Neuroscience DNS, University of Padova, Padova, Italia; Padova Neuroscience Center, University of Padova, Padova, Italia
| | - Francesca Peressotti
- Department of Devolopmental and Social Psychology, University of Padova, Padova, Italia; Padova Neuroscience Center, University of Padova, Padova, Italia
| | - Chiara Zanini
- Department of Neuroscience DNS, University of Padova, Padova, Italia; Romanisches Seminar, University of Zürich, Zürich, Switzerland
| |
Collapse
|
137
|
|
138
|
Abstract
Our minds constantly evaluate the confidence in what we see, think, and remember. Previous work suggests that confidence is a domain-general currency in adulthood, unifying otherwise independent sensory and perceptual representations. Here, we test whether children also possess a domain-general sense of confidence over otherwise independent perceptual dimensions. Six- to 9-year-olds completed either three simple perceptual discrimination tasks—a number task (“Which group has more dots?”), an area task (“Which blob is bigger?”), and an emotions task (“Which face is happier?”)—or three relative confidence tasks, selecting which of two trials they are more confident on. We find that while children’s discrimination performance across the three tasks was independent and constituted three separate factors, children’s confidence in each of three dimensions was strongly correlated and constituted only a single factor. Our results suggest that confidence is a domain-general currency even in childhood, providing a mechanism by which disparate perceptual representations could be integrated.
Collapse
Affiliation(s)
- Carolyn Baer
- Department of Psychology, University of British Columbia
| | | | - Darko Odic
- Department of Psychology, University of British Columbia
| |
Collapse
|
139
|
|
140
|
Elliott L, Feigenson L, Halberda J, Libertus ME. Bidirectional, Longitudinal Associations Between Math Ability and Approximate Number System Precision in Childhood. JOURNAL OF COGNITION AND DEVELOPMENT 2018. [DOI: 10.1080/15248372.2018.1551218] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
141
|
Kutter EF, Bostroem J, Elger CE, Mormann F, Nieder A. Single Neurons in the Human Brain Encode Numbers. Neuron 2018; 100:753-761.e4. [DOI: 10.1016/j.neuron.2018.08.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/19/2018] [Accepted: 08/24/2018] [Indexed: 01/29/2023]
|
142
|
Kim N, Jang S, Cho S. Testing the Efficacy of Training Basic Numerical Cognition and Transfer Effects to Improvement in Children's Math Ability. Front Psychol 2018; 9:1775. [PMID: 30333768 PMCID: PMC6175973 DOI: 10.3389/fpsyg.2018.01775] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/03/2018] [Indexed: 01/29/2023] Open
Abstract
The goals of the present study were to test whether (and which) basic numerical abilities can be improved with training and whether training effects transfer to improvement in children's math achievement. The literature is mixed with evidence that does or does not substantiate the efficacy of training basic numerical ability. In the present study, we developed a child-friendly software named "123 Bakery" which includes four training modules; non-symbolic numerosity comparison, non-symbolic numerosity estimation, approximate arithmetic, and symbol-to-numerosity mapping. Fifty-six first graders were randomly assigned to either the training or control group. The training group participated in 6 weeks of training (5 times a week, 30 minutes per day). All participants underwent pre- and post-training assessment of their basic numerical processing ability (including numerosity discrimination acuity, symbolic/non-symbolic magnitude estimation, approximate arithmetic, and symbol-to-numerosity mapping), overall math achievement and intelligence, 6 weeks apart. The acuity for numerosity discrimination (approximate number sense acuity; hereafter ANS acuity) significantly improved after training, but this training effect did not transfer to improvement in symbolic, exact calculation, or any other math ability. We conclude that basic numerical cognition training leads to improvement in ANS acuity, but whether this effect transfers to symbolic math ability remains to be further tested.
Collapse
Affiliation(s)
- Narae Kim
- Department of Psychology, Chung-Ang University, Seoul, South Korea
| | - Selim Jang
- Department of Psychology, Chung-Ang University, Seoul, South Korea
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Soohyun Cho
- Department of Psychology, Chung-Ang University, Seoul, South Korea
| |
Collapse
|
143
|
Kanjlia S, Feigenson L, Bedny M. Numerical cognition is resilient to dramatic changes in early sensory experience. Cognition 2018; 179:111-120. [PMID: 29935427 PMCID: PMC6701182 DOI: 10.1016/j.cognition.2018.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 01/29/2023]
Abstract
Humans and non-human animals can approximate large visual quantities without counting. The approximate number representations underlying this ability are noisy, with the amount of noise proportional to the quantity being represented. Numerate humans also have access to a separate system for representing exact quantities using number symbols and words; it is this second, exact system that supports most of formal mathematics. Although numerical approximation abilities and symbolic number abilities are distinct in representational format and in their phylogenetic and ontogenetic histories, they appear to be linked throughout development--individuals who can more precisely discriminate quantities without counting are better at math. The origins of this relationship are debated. On the one hand, symbolic number abilities may be directly linked to, perhaps even rooted in, numerical approximation abilities. On the other hand, the relationship between the two systems may simply reflect their independent relationships with visual abilities. To test this possibility, we asked whether approximate number and symbolic math abilities are linked in congenitally blind individuals who have never experienced visual sets or used visual strategies to learn math. Congenitally blind and blind-folded sighted participants completed an auditory numerical approximation task, as well as a symbolic arithmetic task and non-math control tasks. We found that the precision of approximate number representations was identical across congenitally blind and sighted groups, suggesting that the development of the Approximate Number System (ANS) does not depend on visual experience. Crucially, the relationship between numerical approximation and symbolic math abilities is preserved in congenitally blind individuals. These data support the idea that the Approximate Number System and symbolic number abilities are intrinsically linked, rather than indirectly linked through visual abilities.
Collapse
Affiliation(s)
- Shipra Kanjlia
- Department of Psychological and Brain Sciences, Johns Hopkins University, United States.
| | - Lisa Feigenson
- Department of Psychological and Brain Sciences, Johns Hopkins University, United States
| | - Marina Bedny
- Department of Psychological and Brain Sciences, Johns Hopkins University, United States
| |
Collapse
|
144
|
Van ’t Noordende JE, Volman MJM, Leseman PPM, Moeller K, Dackermann T, Kroesbergen EH. The Use of Local and Global Ordering Strategies in Number Line Estimation in Early Childhood. Front Psychol 2018; 9:1562. [PMID: 30279668 PMCID: PMC6153329 DOI: 10.3389/fpsyg.2018.01562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 08/06/2018] [Indexed: 01/29/2023] Open
Abstract
A lot of research has been devoted to number line estimation in primary school. However, less is known about the early onset of number line estimation before children enter formal education. We propose that ordering strategies are building blocks of number line estimation in early childhood. In a longitudinal study, children completed a non-symbolic number line estimation task at age 3.5 and 5 years. Two ordering strategies were identified based on the children's estimation patterns: local and global ordering. Local ordering refers to the correct ordering of successive quantities, whereas global ordering refers to the correct ordering of all quantities across the number line. Results indicated a developmental trend for both strategies. The percentage of children applying local and global ordering strategies increased steeply from 3.5 to 5 years of age. Moreover, children used more advanced local and global ordering strategies at 5 years of age. Importantly, level of strategy use was related to more traditional number line estimation outcome measures, such as estimation accuracy and regression fit scores. These results provide evidence that children use dynamic ordering strategies when solving the number line estimation task in early stages of numerical development.
Collapse
Affiliation(s)
- Jaccoline E. Van ’t Noordende
- Department of Child Development and Education, University of Amsterdam, Amsterdam, Netherlands
- Department of Special Education: Cognitive and Motor Disabilities, Utrecht University, Utrecht, Netherlands
| | - M. J. M. Volman
- Department of Special Education: Cognitive and Motor Disabilities, Utrecht University, Utrecht, Netherlands
| | - Paul P. M. Leseman
- Department of Special Education: Cognitive and Motor Disabilities, Utrecht University, Utrecht, Netherlands
| | - Korbinian Moeller
- Leibniz-Institut für Wissensmedien, Tübingen, Germany
- Department of Psychology, Universität Tübingen, Tübingen, Germany
| | | | | |
Collapse
|
145
|
Guillaume M, Van Rinsveld A. Comparing Numerical Comparison Tasks: A Meta-Analysis of the Variability of the Weber Fraction Relative to the Generation Algorithm. Front Psychol 2018; 9:1694. [PMID: 30271363 PMCID: PMC6142874 DOI: 10.3389/fpsyg.2018.01694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 08/22/2018] [Indexed: 01/29/2023] Open
Abstract
Since more than 15 years, researchers have been expressing their interest in evaluating the Approximate Number System (ANS) and its potential influence on cognitive skills involving number processing, such as arithmetic. Although many studies reported significant and predictive relations between ANS and arithmetic abilities, there has recently been an increasing amount of published data that failed to replicate such relationship. Inconsistencies lead many researchers to question the validity of the assessment of the ANS itself. In the current meta-analysis of over 68 experimental studies published between 2004 and 2017, we show that the mean value of the Weber fraction (w), the minimal amount of change in magnitude to detect a difference, is very heterogeneous across the literature. Within young adults, w might range from < 10 to more than 60, which is critical for its validity for research and diagnostic purposes. We illustrate here the concern that different methods controlling for non-numerical dimensions lead to substantially variable performance. Nevertheless, studies that referred to the exact same method (e.g., Panamath) showed high consistency among them, which is reassuring. We are thus encouraging researchers only to compare what is comparable and to avoid considering the Weber fraction as an abstract parameter independent from the context. Eventually, we observed that all reported correlation coefficients between the value of w and general accuracy were very high. Such result calls into question the relevance of computing and reporting at all the Weber fraction. We are thus in disfavor of the systematic use of the Weber fraction, to discourage any temptation to compare given data to some values of w reported from different tasks and generation algorithms.
Collapse
Affiliation(s)
- Mathieu Guillaume
- Cognitive Science and Assessment Institute (COSA), University of Luxembourg, Luxembourg, Luxembourg
| | - Amandine Van Rinsveld
- Centre for Research in Cognitive Neuroscience (CRCN), Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
146
|
Ganor-Stern D. Do Exact Calculation and Computation Estimation Reflect the Same Skills? Developmental and Individual Differences Perspectives. Front Psychol 2018; 9:1316. [PMID: 30100893 PMCID: PMC6073251 DOI: 10.3389/fpsyg.2018.01316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 07/09/2018] [Indexed: 01/29/2023] Open
Abstract
Groups of children in 4th, 5th, and 6th grades and college students performed exact calculation and computation estimation tasks with two-digit multiplication problems. In the former they calculated the exact answer for each problem, and in the latter they estimated whether the result of each problem was larger or smaller than a given reference number. The analyses of speed and accuracy both showed different developmental patterns of the two tasks. While the accuracy of exact calculation increased with age in childhood, the accuracy of the estimation task reached its maximum level already in 4th grade and did not change with age. The reaction time of the exact calculation task was longer than that of the estimation task. The reaction time for both tasks remained constant in childhood and decreased in adulthood, with the improvement in speed larger for the exact calculation task. Similarly, within group variability in accuracy was larger in the exact calculation task than in the computation estimation task. Finally, low correlation was found between the accuracy of the two tasks. Together, these findings suggest that exact calculation and computation estimation reflect at least in part different skills.
Collapse
|
147
|
Fischer MH, Shaki S. Number concepts: abstract and embodied. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170125. [PMID: 29914993 PMCID: PMC6015824 DOI: 10.1098/rstb.2017.0125] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2018] [Indexed: 01/29/2023] Open
Abstract
Numerical knowledge, including number concepts and arithmetic procedures, seems to be a clear-cut case for abstract symbol manipulation. Yet, evidence from perceptual and motor behaviour reveals that natural number knowledge and simple arithmetic also remain closely associated with modal experiences. Following a review of behavioural, animal and neuroscience studies of number processing, we propose a revised understanding of psychological number concepts as grounded in physical constraints, embodied in experience and situated through task-specific intentions. The idea that number concepts occupy a range of positions on the continuum between abstract and modal conceptual knowledge also accounts for systematic heuristics and biases in mental arithmetic, thus inviting psycho-logical approaches to the study of the mathematical mind.This article is part of the theme issue 'Varieties of abstract concepts: development, use and representation in the brain'.
Collapse
Affiliation(s)
- Martin H Fischer
- Division of Cognitive Sciences, Department of Psychology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, House 14, 14476 Potsdam OT Golm, Germany
- Department of Behavioral Sciences, Ariel University, Ariel 40700, Israel
| | - Samuel Shaki
- Department of Behavioral Sciences, Ariel University, Ariel 40700, Israel
| |
Collapse
|
148
|
Mueller SM, Brand M. Approximate Number Processing Skills Contribute to Decision Making Under Objective Risk: Interactions With Executive Functions and Objective Numeracy. Front Psychol 2018; 9:1202. [PMID: 30057562 PMCID: PMC6053537 DOI: 10.3389/fpsyg.2018.01202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/22/2018] [Indexed: 01/29/2023] Open
Abstract
Research on the cognitive abilities involved in decision making has shown that, under objective risk conditions (i.e., when explicit information about possible outcomes and risks is available), superior decisions are especially predicted by executive functions and exact number processing skills, also referred to as objective numeracy. So far, decision-making research has mainly focused on exact number processing skills, such as performing calculations or transformations of symbolic numbers. There is evidence that such exact numeric skills are based on approximate number processing (ANP) skills, which enable quick and accurate processing of non-symbolic numbers (e.g., Chen and Li, 2014). Very few studies, however, have investigated ANP skills in the context of risky decision making and have analyzed direct associations among the aforementioned sub functions. Possible interactions between the closely related skills have not been considered. The current study (N = 128) examines interactions of ANP skills with executive functions and objective numeracy, in predicting risky choice behavior. ANP skills are represented by the accuracy in a dot-comparison task. Decision making is measured by two versions of the Game of Dice Task (GDT), which place different emphases on the reflection of potential risks. The results show two-way as well as three-way interactions between the measures of ANP skills, executive functions, and objective numeracy in predicting risky decisions in both GDT versions. The riskiest decisions were most frequently made in case of low scores in all of the three competencies, while good performance in any one of them resulted in significant reductions of disadvantageous decisions. The findings indicate that high ANP skills can positively affect choice behavior in individuals who have weaknesses in reflectively attributed skills, namely executive functions and objective numeracy. Potential compensatory effects and mechanisms of ANP in decision making are discussed.
Collapse
Affiliation(s)
- Silke M Mueller
- General Psychology: Cognition and Center for Behavioral Addiction Research, University of Duisburg-Essen, Duisburg, Germany
| | - Matthias Brand
- General Psychology: Cognition and Center for Behavioral Addiction Research, University of Duisburg-Essen, Duisburg, Germany.,Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen, Germany
| |
Collapse
|
149
|
Suárez-Pellicioni M, Booth JR. Fluency in symbolic arithmetic refines the approximate number system in parietal cortex. Hum Brain Mapp 2018; 39:3956-3971. [PMID: 30024084 DOI: 10.1002/hbm.24223] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 01/29/2023] Open
Abstract
The objective of this study was to investigate, using a brain measure of approximate number system (ANS) acuity, whether the precision of the ANS is crucial for the development of symbolic numerical abilities (i.e., scaffolding hypothesis) and/or whether the experience with symbolic number processing refines the ANS (i.e., refinement hypothesis). To this aim, 38 children solved a dot comparison task inside the scanner when they were approximately 10-years old (Time 1) and once again approximately 2 years later (Time 2). To study the scaffolding hypothesis, a regression analysis was carried out by entering ANS acuity at T1 as the predictor and symbolic math performance at T2 as the dependent measure. Symbolic math performance, visuospatial WM and full IQ (all at T1) were entered as covariates of no interest. In order to study the refinement hypothesis, the regression analysis included symbolic math performance at T1 as the predictor and ANS acuity at T2 as the dependent measure, while ANS acuity, visuospatial WM and full IQ (all at T1) were entered as covariates of no interest. Our results supported the refinement hypothesis, by finding that the higher the initial level of symbolic math performance, the greater the intraparietal sulcus activation was at T2 (i.e., more precise representation of quantity). To the best of our knowledge, our finding constitutes the first evidence showing that expertise in the manipulation of symbols, which is a cultural invention, has the power to refine the neural representation of quantity in the evolutionarily ancient, approximate system of quantity representation.
Collapse
Affiliation(s)
| | - James R Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tennessee, 37203-5721
| |
Collapse
|
150
|
Amalric M, Dehaene S. Cortical circuits for mathematical knowledge: evidence for a major subdivision within the brain's semantic networks. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0515. [PMID: 29292362 DOI: 10.1098/rstb.2016.0515] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2017] [Indexed: 01/29/2023] Open
Abstract
Is mathematical language similar to natural language? Are language areas used by mathematicians when they do mathematics? And does the brain comprise a generic semantic system that stores mathematical knowledge alongside knowledge of history, geography or famous people? Here, we refute those views by reviewing three functional MRI studies of the representation and manipulation of high-level mathematical knowledge in professional mathematicians. The results reveal that brain activity during professional mathematical reflection spares perisylvian language-related brain regions as well as temporal lobe areas classically involved in general semantic knowledge. Instead, mathematical reflection recycles bilateral intraparietal and ventral temporal regions involved in elementary number sense. Even simple fact retrieval, such as remembering that 'the sine function is periodical' or that 'London buses are red', activates dissociated areas for math versus non-math knowledge. Together with other fMRI and recent intracranial studies, our results indicated a major separation between two brain networks for mathematical and non-mathematical semantics, which goes a long way to explain a variety of facts in neuroimaging, neuropsychology and developmental disorders.This article is part of a discussion meeting issue 'The origins of numerical abilities'.
Collapse
Affiliation(s)
- Marie Amalric
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France .,Collège de France, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, IFD, 4 place Jussieu, Paris, France
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France .,Collège de France, Paris, France
| |
Collapse
|