101
|
Kim I, Pan W, Jones SA, Zhang Y, Zhuang X, Wu D. Clathrin and AP2 are required for PtdIns(4,5)P2-mediated formation of LRP6 signalosomes. ACTA ACUST UNITED AC 2013; 200:419-28. [PMID: 23400998 PMCID: PMC3575536 DOI: 10.1083/jcb.201206096] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PtdIns(4,5)P2 promotes the assembly of LRP6 signalosomes at the cell surface via the recruitment of AP2 and clathrin. Canonical Wnt signaling is initiated by the binding of Wnt proteins to their receptors, low-density lipoprotein-related protein 5 and 6 (LRP5/6) and frizzled proteins, leading to phosphatidylinositol (4,5)bisphosphate (PtdIns(4,5)P2) production, signalosome formation, and LRP phosphorylation. However, the mechanism by which PtdIns(4,5)P2 regulates the signalosome formation remains unclear. Here we show that clathrin and adaptor protein 2 (AP2) were part of the LRP6 signalosomes. The presence of clathrin and AP2 in the LRP6 signalosomes depended on PtdIns(4,5)P2, and both clathrin and AP2 were required for the formation of LRP6 signalosomes. In addition, WNT3A-induced LRP6 signalosomes were primarily localized at cell surfaces, and WNT3A did not induce marked LRP6 internalization. However, rapid PtdIns(4,5)P2 hydrolysis induced artificially after WNT3A stimulation could lead to marked LRP6 internalization. Moreover, we observed WNT3A-induced LRP6 and clathrin clustering at cell surfaces using super-resolution fluorescence microscopy. Therefore, we conclude that PtdIns(4,5)P2 promotes the assembly of LRP6 signalosomes via the recruitment of AP2 and clathrin and that LRP6 internalization may not be a prerequisite for Wnt signaling to β-catenin stabilization.
Collapse
Affiliation(s)
- Ingyu Kim
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|
102
|
Abstract
The canonical Wnt/β-catenin pathway is an ancient and evolutionarily conserved signaling pathway that is required for the proper development of all metazoans, from the basal demosponge Amphimedon queenslandica to humans. Misregulation of Wnt signaling is implicated in many human diseases, making this pathway an intense area of research in industry as well as academia. In this review, we explore our current understanding of the molecular steps involved in the transduction of a Wnt signal. We will focus on how the critical Wnt pathway component, β-catenin, is in a "futile cycle" of constant synthesis and degradation and how this cycle is disrupted upon pathway activation. We describe the role of the Wnt pathway in major human cancers and in the control of stem cell self-renewal in the developing organism and in adults. Finally, we describe well-accepted criteria that have been proposed as evidence for the involvement of a molecule in regulating the canonical Wnt pathway.
Collapse
Affiliation(s)
- Kenyi Saito-Diaz
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-8240, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Voronkov A, Krauss S. Wnt/beta-catenin signaling and small molecule inhibitors. Curr Pharm Des 2013; 19:634-64. [PMID: 23016862 PMCID: PMC3529405 DOI: 10.2174/138161213804581837] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/23/2012] [Indexed: 12/27/2022]
Abstract
Wnt/β-catenin signaling is a branch of a functional network that dates back to the first metazoans and it is involved in a broad range of biological systems including stem cells, embryonic development and adult organs. Deregulation of components involved in Wnt/β-catenin signaling has been implicated in a wide spectrum of diseases including a number of cancers and degenerative diseases. The key mediator of Wnt signaling, β-catenin, serves several cellular functions. It functions in a dynamic mode at multiple cellular locations, including the plasma membrane, where β-catenin contributes to the stabilization of intercellular adhesive complexes, the cytoplasm where β-catenin levels are regulated and the nucleus where β-catenin is involved in transcriptional regulation and chromatin interactions. Central effectors of β-catenin levels are a family of cysteine-rich secreted glycoproteins, known as Wnt morphogens. Through the LRP5/6-Frizzled receptor complex, Wnts regulate the location and activity of the destruction complex and consequently intracellular β- catenin levels. However, β-catenin levels and their effects on transcriptional programs are also influenced by multiple other factors including hypoxia, inflammation, hepatocyte growth factor-mediated signaling, and the cell adhesion molecule E-cadherin. The broad implications of Wnt/β-catenin signaling in development, in the adult body and in disease render the pathway a prime target for pharmacological research and development. The intricate regulation of β-catenin at its various locations provides alternative points for therapeutic interventions.
Collapse
Affiliation(s)
- Andrey Voronkov
- SFI-CAST Biomedical Innovation Center, Unit for Cell Signaling, Oslo University Hospital, Forskningsparken, Gaustadalleén 21, 0349, Oslo, Norway
| | - Stefan Krauss
- SFI-CAST Biomedical Innovation Center, Unit for Cell Signaling, Oslo University Hospital, Forskningsparken, Gaustadalleén 21, 0349, Oslo, Norway
| |
Collapse
|
104
|
Joiner DM, Ke J, Zhong Z, Xu HE, Williams BO. LRP5 and LRP6 in development and disease. Trends Endocrinol Metab 2013; 24:31-9. [PMID: 23245947 PMCID: PMC3592934 DOI: 10.1016/j.tem.2012.10.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/09/2012] [Accepted: 10/15/2012] [Indexed: 11/21/2022]
Abstract
Low-density lipoprotein-related receptors 5 and 6 (LRP5/6) are highly homologous proteins with key functions in canonical Wnt signaling. Alterations in the genes encoding these receptors or their interacting proteins are linked to human diseases, and as such they have been a major focus of drug development efforts to treat several human conditions including osteoporosis, cancer, and metabolic disease. Here, we discuss the links between alterations in LRP5/6 and disease, proteins that interact with them, and insights gained into their function from mouse models. We also highlight current drug development related to LRP5/6 as well as how the recent elucidation of their crystal structures may allow further refinement of our ability to target them for therapeutic benefit.
Collapse
Affiliation(s)
- Danese M. Joiner
- Center for Skeletal Disease Research, Laboratory of Cell Signaling and Carcinogenesis, Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Jiyuan Ke
- Center for Structural Biology and Drug Discovery, Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Zhendong Zhong
- Center for Skeletal Disease Research, Laboratory of Cell Signaling and Carcinogenesis, Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - H. Eric Xu
- Center for Structural Biology and Drug Discovery, Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Bart O. Williams
- Center for Skeletal Disease Research, Laboratory of Cell Signaling and Carcinogenesis, Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503, USA
| |
Collapse
|
105
|
MacDonald BT, He X. Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling. Cold Spring Harb Perspect Biol 2012; 4:4/12/a007880. [PMID: 23209147 DOI: 10.1101/cshperspect.a007880] [Citation(s) in RCA: 421] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Frizzled and LRP5/6 are Wnt receptors that upon activation lead to stabilization of cytoplasmic β-catenin. In this study, we review the current knowledge of these two families of receptors, including their structures and interactions with Wnt proteins, and signaling mechanisms from receptor activation to the engagement of intracellular partners Dishevelled and Axin, and finally to the inhibition of β-catenin phosphorylation and ensuing β-catenin stabilization.
Collapse
Affiliation(s)
- Bryan T MacDonald
- The F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
106
|
Abstract
30 years after the identification of WNTs, their signal transduction has become increasingly complex, with the discovery of more than 15 receptors and co-receptors in seven protein families. The recent discovery of three receptor classes for the R-spondin family of WNT agonists further adds to this complexity. What emerges is an intricate network of receptors that form higher-order ligand-receptor complexes routing downstream signalling. These are regulated both extracellularly by agonists such as R-spondin and intracellularly by post-translational modifications such as phosphorylation, proteolytic processing and endocytosis.
Collapse
Affiliation(s)
- Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
107
|
Phosphatidylinositol 4-kinase IIα function at endosomes is regulated by the ubiquitin ligase Itch. EMBO Rep 2012; 13:1087-94. [PMID: 23146885 DOI: 10.1038/embor.2012.164] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 09/10/2012] [Accepted: 09/28/2012] [Indexed: 01/31/2023] Open
Abstract
Phosphatidylinositol (PI) 4-phosphate (PI(4)P) and its metabolizing enzymes serve important functions in cell signalling and membrane traffic. PI 4-kinase type IIα (PI4KIIα) regulates Wnt signalling, endosomal sorting of signalling receptors, and promotes adaptor protein recruitment to endosomes and the trans-Golgi network. Here we identify the E3 ubiquitin ligase Itch as binding partner and regulator of PI4KIIα function. Itch directly associates with and ubiquitinates PI4KIIα, and both proteins colocalize on endosomes containing Wnt-activated frizzled 4 (Fz4) receptor. Depletion of PI4KIIα or Itch regulates Wnt signalling with corresponding changes in Fz4 internalization and degradative sorting. These findings unravel a new molecular link between phosphoinositide-regulated endosomal membrane traffic, ubiquitin and the modulation of Wnt signalling.
Collapse
|
108
|
Zimmerman ZF, Moon RT, Chien AJ. Targeting Wnt pathways in disease. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a008086. [PMID: 23001988 DOI: 10.1101/cshperspect.a008086] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Wnt-mediated signal transduction pathways have long been recognized for their roles in regulating embryonic development, and have more recently been linked to cancer, neurologic diseases, inflammatory diseases, and disorders of endocrine function and bone metabolism in adults. Although therapies targeting Wnt signaling are attractive in theory, in practice it has been difficult to obtain specific therapeutics because many components of Wnt signaling pathways are also involved in other cellular processes, thereby reducing the specificity of candidate therapeutics. New technologies, and advances in understanding the mechanisms of Wnt signaling, have improved our understanding of the nuances of Wnt signaling and are leading to promising new strategies to target Wnt signaling pathways.
Collapse
Affiliation(s)
- Zachary F Zimmerman
- Department of Medicine, Division of Oncology, University of Washington, Seattle, 98195, USA
| | | | | |
Collapse
|
109
|
Kim W, Kim SY, Kim T, Kim M, Bae DJ, Choi HI, Kim IS, Jho E. ADP-ribosylation factors 1 and 6 regulate Wnt/β-catenin signaling via control of LRP6 phosphorylation. Oncogene 2012; 32:3390-6. [PMID: 22907437 DOI: 10.1038/onc.2012.373] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 06/26/2012] [Accepted: 07/13/2012] [Indexed: 12/25/2022]
Abstract
It has been shown that inhibition of GTPase-activating protein of ADP-ribosylation factor (Arf), ArfGAP, with a small molecule (QS11) results in synergistic activation of Wnt/β-catenin signaling. However, the role of Arf in Wnt/β-catenin signaling has not yet been elucidated. Here, we show that activation of Arf is essential for Wnt/β-catenin signaling. The level of the active form of Arf (Arf-GTP) transiently increased in the presence of Wnt, and this induction event was abrogated by blocking the interaction between Wnt and Frizzled (Fzd). In addition, knockdown of Fzds, Dvls or LRP6 blocked the Wnt-mediated activation of Arf. Consistently, depletion of Arf led to inhibition of Wnt-mediated membrane PtdIns (4,5)P2 (phosphatidylinositol 4, 5-bisphosphate) synthesis and LRP6 phosphorylation. Overall, our data suggest that transient activation of Arf modulates LRP6 phosphorylation for the transduction of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- W Kim
- Department of Life Science, The University of Seoul, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
110
|
On the role of Wnt/β-catenin signaling in stem cells. Biochim Biophys Acta Gen Subj 2012; 1830:2297-306. [PMID: 22986148 DOI: 10.1016/j.bbagen.2012.08.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/11/2012] [Accepted: 08/07/2012] [Indexed: 12/15/2022]
Abstract
BACKGROUND Stem cells are mainly characterized by two properties: self-renewal and the potency to differentiate into diverse cell types. These processes are regulated by different growth factors including members of the Wnt protein family. Wnt proteins are secreted glycoproteins that can activate different intracellular signaling pathways. SCOPE OF REVIEW Here we summarize our current knowledge on the role of Wnt/β-catenin signaling with respect to these two main features of stem cells. MAJOR CONCLUSIONS A particular focus is given on the function of Wnt signaling in embryonic stem cells. Wnt signaling can also improve reprogramming of somatic cells towards iPS cells highlighting the importance of this pathway for self-renewal and pluripotency. As an example for the role of Wnt signaling in adult stem cell behavior, we furthermore focus on intestinal stem cells located in the crypts of the small intestine. GENERAL SIGNIFICANCE A broad knowledge about stem cell properties and the influence of intrinsic and extrinsic factors on these processes is a requirement for the use of these cells in regenerative medicine in the future or to understand cancer development in the adult. This article is part of a Special Issue entitled Biochemistry of Stem Cells.
Collapse
|
111
|
Berwick DC, Harvey K. LRRK2 functions as a Wnt signaling scaffold, bridging cytosolic proteins and membrane-localized LRP6. Hum Mol Genet 2012; 21:4966-79. [PMID: 22899650 PMCID: PMC3709196 DOI: 10.1093/hmg/dds342] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mutations in PARK8, encoding leucine-rich repeat kinase 2 (LRRK2), are a frequent cause of Parkinson's disease (PD). Nonetheless, the physiological role of LRRK2 remains unclear. Here, we demonstrate that LRRK2 participates in canonical Wnt signaling as a scaffold. LRRK2 interacts with key Wnt signaling proteins of the β-catenin destruction complex and dishevelled proteins in vivo and is recruited to membranes following Wnt stimulation, where it binds to the Wnt co-receptor low-density lipoprotein receptor-related protein 6 (LRP6) in cellular models. LRRK2, therefore, bridges membrane and cytosolic components of Wnt signaling. Changes in LRRK2 expression affects pathway activity, while pathogenic LRRK2 mutants reduce both signal strength and the LRRK2–LRP6 interaction. Thus, decreased LRRK2-mediated Wnt signaling caused by reduced binding to LRP6 may underlie the neurodegeneration observed in PD. Finally, a newly developed LRRK2 kinase inhibitor disrupted Wnt signaling to a similar extent as pathogenic LRRK2 mutations. The use of LRRK2 kinase inhibition to treat PD may therefore need reconsideration.
Collapse
Affiliation(s)
- Daniel C Berwick
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, UK
| | | |
Collapse
|
112
|
The E3 ubiquitin ligase ITCH negatively regulates canonical Wnt signaling by targeting dishevelled protein. Mol Cell Biol 2012; 32:3903-12. [PMID: 22826439 DOI: 10.1128/mcb.00251-12] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dishevelled (Dvl) is a key component in the canonical Wnt signaling pathway and becomes hyperphosphorylated upon Wnt stimulation. Dvl is required for LRP6 phosphorylation, which is essential for subsequent steps of signal transduction, such as Axin recruitment and cytosolic β-catenin stabilization. Here, we identify the HECT-containing Nedd4-like ubiquitin E3 ligase ITCH as a new Dvl-binding protein. ITCH ubiquitinates the phosphorylated form of Dvl and promotes its degradation via the proteasome pathway, thereby inhibiting canonical Wnt signaling. Knockdown of ITCH by RNA interference increased the stability of phosphorylated Dvl and upregulated Wnt reporter gene activity as well as endogenous Wnt target gene expression induced by Wnt stimulation. In addition, we found that both the PPXY motif and the DEP domain of Dvl are critical for its interaction with ITCH, as mutation in the PPXY motif (Dvl2-Y568F) or deletion of the DEP domain led to reduced affinity for ITCH. Consistently, overexpression of ITCH inhibited wild-type Dvl2-induced, but not Dvl2-Y568F mutant-induced, Wnt reporter activity. Moreover, the Y568F mutant, but not wild-type Dvl2, can reverse the ITCH-mediated inhibition of Wnt-induced reporter activity. Collectively, these results indicate that ITCH plays a negative regulatory role in modulating canonical Wnt signaling by targeting the phosphorylated form of Dvl.
Collapse
|
113
|
Waugh MG. Phosphatidylinositol 4-kinases, phosphatidylinositol 4-phosphate and cancer. Cancer Lett 2012; 325:125-31. [PMID: 22750097 DOI: 10.1016/j.canlet.2012.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/20/2012] [Accepted: 06/24/2012] [Indexed: 12/19/2022]
Abstract
This article focuses on the emerging roles for phosphatidylinositol 4-phosphate and the phosphatidylinositol 4-kinases in cancer. Phosphatidylinositol 4-phosphate is a common substrate for both the phosphatidylinositol 3-kinase and phospholipase C pathways, and has been implicated in the membrane targeting of proteins such as Girdin/GIV and OSBP. Alterations to phosphatidylinositol 4-kinase expression levels can modulate MAP kinase and Akt signalling, and are important for chemoresistance, tumour angiogenesis and the suppression of apoptosis and metastases. Recent improvements in high-throughput screening assays, and the discoveries that some anti-viral molecules are isoform selective phosphatidylinositol 4-kinase inhibitors have advanced the drugability of these enzymes.
Collapse
Affiliation(s)
- Mark G Waugh
- UCL Institute of Liver and Digestive Health, Royal Free Campus, London, United Kingdom.
| |
Collapse
|
114
|
CDP-diacylglycerol synthetase-controlled phosphoinositide availability limits VEGFA signaling and vascular morphogenesis. Blood 2012; 120:489-98. [PMID: 22649102 DOI: 10.1182/blood-2012-02-408328] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Understanding the mechanisms that regulate angiogenesis and translating these into effective therapies are of enormous scientific and clinical interests. In this report, we demonstrate the central role of CDP-diacylglycerol synthetase (CDS) in the regulation of VEGFA signaling and angiogenesis. CDS activity maintains phosphoinositide 4,5 bisphosphate (PIP2) availability through resynthesis of phosphoinositides, whereas VEGFA, mainly through phospholipase Cγ1, consumes PIP2 for signal transduction. Loss of CDS2, 1 of 2 vertebrate CDS enzymes, results in vascular-specific defects in zebrafish in vivo and failure of VEGFA-induced angiogenesis in endothelial cells in vitro. Absence of CDS2 also results in reduced arterial differentiation and reduced angiogenic signaling. CDS2 deficit-caused phenotypes can be successfully rescued by artificial elevation of PIP2 levels, and excess PIP2 or increased CDS2 activity can promote excess angiogenesis. These results suggest that availability of CDS-controlled resynthesis of phosphoinositides is essential for angiogenesis.
Collapse
|
115
|
Phosphatidylinositol 4-kinases: hostages harnessed to build panviral replication platforms. Trends Biochem Sci 2012; 37:293-302. [PMID: 22633842 PMCID: PMC3389303 DOI: 10.1016/j.tibs.2012.03.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/27/2012] [Accepted: 03/30/2012] [Indexed: 12/20/2022]
Abstract
Several RNA viruses have recently been shown to hijack members of the host phosphatidylinositol (PtdIns) 4-kinase (PI4K) family of enzymes. They use PI4K to generate membranes enriched in phosphatidylinositide 4-phosphate (PtdIns4P or PI4P) lipids, which can be used as replication platforms. Viral replication machinery is assembled on these platforms as a supramolecular complex and PtdIns4P lipids regulate viral RNA synthesis. This article highlights these recent studies on the regulation of viral RNA synthesis by PtdIns4P lipids. It explores the potential mechanisms by which PtdIns4P lipids can contribute to viral replication and discusses the therapeutic potential of developing antiviral molecules that target host PI4Ks as a form of panviral therapy.
Collapse
|
116
|
Shi T, Bao J, Wang NX, Zheng J, Wu D. Identification Of Small Molecule TRABID Deubiquitinase Inhibitors By Computation-Based Virtual Screen. BMC CHEMICAL BIOLOGY 2012; 12:4. [PMID: 22584113 PMCID: PMC3475094 DOI: 10.1186/1472-6769-12-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 04/19/2012] [Indexed: 11/10/2022]
Abstract
Background Wnt/β-catenin-mediated gene transcription plays important roles in a wide range of biological and pathophysiological processes including tumorigenesis where β-catenin-mediated transcription activity frequently elevates. TRABID, a deubiquitinase, was shown to have a positive Wnt/β-catenin-mediated gene transcription and hence holds a promise as a putative anti-cancer target. Results In this study, we used a combination of structure based virtual screening and an in vitro deubiquitinase (DUB) assay to identify several small molecules that inhibit TRABID DUB activity. However, these inhibitors failed to show inhibitory effects on β-catenin-mediated gene transcription. In addition, expression of TRABID shRNAs, wildtype TRABID, or the DUB activity-deficient mutant showed little effects on β-catenin-mediated gene transcription. Conclusions TRABID may not be a critical component in canonical Wnt/β-catenin signal transduction or that a minute amount of this protein is sufficient for its role in regulating Wnt activity.
Collapse
Affiliation(s)
- Tong Shi
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ju Bao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nick X Wang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jie Zheng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dianqing Wu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
117
|
Jiang Y, He X, Howe PH. Disabled-2 (Dab2) inhibits Wnt/β-catenin signalling by binding LRP6 and promoting its internalization through clathrin. EMBO J 2012; 31:2336-49. [PMID: 22491013 PMCID: PMC3364753 DOI: 10.1038/emboj.2012.83] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 03/14/2012] [Indexed: 01/23/2023] Open
Abstract
Wnt signalling requires caveolin-dependent endocytic uptake of the Fz/LRP6 receptor complex. The tumour suppressor Disabled-2 inhibits Wnt signalling by sequestering CK2-phosphorylated LRP6 into an alternative clathrin-dependent endocytic pathway. Canonical Wnt signalling requires caveolin-dependent internalization of low-density lipoprotein receptor-related protein 6 (LRP6). Here we report that the tumour suppressor and endocytic adaptor disabled-2 (Dab2), previously described as an inhibitor of Wnt/β-catenin signalling, selectively recruits LRP6 to the clathrin-dependent endocytic route, thereby sequestering it from caveolin-mediated endocytosis. Wnt stimulation induces the casein kinase 2 (CK2)-dependent phosphorylation of LRP6 at S1579, promoting its binding to Dab2 and internalization with clathrin. LRP6 receptor mutant (S1579A), deficient in CK2-mediated phosphorylation and Dab2 binding, fails to associate with clathrin, and thus escapes the inhibitory effects of Dab2 on Wnt/β-catenin signalling. Our data suggest that the S1579 site of LRP6 is a negative regulatory point during LRP6-mediated dorsoventral patterning in zebrafish and in allograft mouse tumour models. We conclude that the tumour suppressor functions of Dab2 involve modulation of canonical Wnt signalling by regulating the endocytic fate of the LRP6 receptor.
Collapse
Affiliation(s)
- Yong Jiang
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
118
|
Metcalfe C, Bienz M. Inhibition of GSK3 by Wnt signalling--two contrasting models. J Cell Sci 2012; 124:3537-44. [PMID: 22083140 DOI: 10.1242/jcs.091991] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The key read-out of Wnt signalling is a change in the transcriptional profile of the cell, which is driven by β-catenin. β-catenin levels are normally kept low by a phosphorylation event that is mediated by glycogen synthase kinase 3 (GSK3, α- and β-isoforms), which targets β-catenin for ubiquitylation and proteasomal degradation. Wnt blocks this phosphorylation event, thereby allowing β-catenin to accumulate and to co-activate transcription in the nucleus. Exactly how Wnt inhibits GSK3 activity towards β-catenin is unclear and has been the focus of intensive research. Recent studies on the role of conserved PPPSPxS motifs in the cytoplasmic tail of low-density lipoprotein receptor-related protein (LRP, isoforms 5 and 6) culminated in a biochemical model: Wnt induces the phosphorylation of LRP6 PPPSPxS motifs, which consequently access the catalytic pocket of GSK3 as pseudo-substrates, thus directly blocking its activity against β-catenin. A distinct cell-biological model was proposed more recently: Wnt proteins induce the uptake of GSK3 into multivesicular bodies (MVBs), an event that sequesters the enzyme away from newly synthesised β-catenin substrate in the cytoplasm, thus blocking its phosphorylation. This new model is based on intriguing observations but also challenges a body of existing evidence, so will require further experimental consolidation. We shall consider whether the two models apply to different modes of Wnt signaling: acute versus chronic.
Collapse
Affiliation(s)
- Ciara Metcalfe
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | |
Collapse
|
119
|
Kikuchi A, Yamamoto H, Sato A, Matsumoto S. New insights into the mechanism of Wnt signaling pathway activation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 291:21-71. [PMID: 22017973 DOI: 10.1016/b978-0-12-386035-4.00002-1] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Wnts compromise a large family of secreted, hydrophobic glycoproteins that control a variety of developmental and adult processes in all metazoan organisms. Recent advances in the Wnt-signal studies have revealed that distinct Wnts activate multiple intracellular cascades that regulate cellular proliferation, differentiation, migration, and polarity. Although the mechanism by which Wnts regulate different pathways selectively remains to be clarified, evidence has accumulated that in addition to the formation of ligand-receptor pairs, phosphorylation of receptors, receptor-mediated endocytosis, acidification, and the presence of cofactors, such as heparan sulfate proteoglycans, are also involved in the activation of specific Wnt pathways. Here, we review the mechanism of activation in Wnt signaling initiated on the cell-surface membrane. In addition, the mechanisms for fine-tuning by cross talk between Wnt and other signaling are also discussed.
Collapse
Affiliation(s)
- Akira Kikuchi
- Department of Biochemistry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | |
Collapse
|
120
|
Bikkavilli RK, Malbon CC. Wnt3a-stimulated LRP6 phosphorylation is dependent upon arginine methylation of G3BP2. J Cell Sci 2012; 125:2446-56. [PMID: 22357953 PMCID: PMC3383259 DOI: 10.1242/jcs.100933] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Wnt signaling is initiated upon binding of Wnt proteins to Frizzled proteins and their co-receptors LRP5 and 6. The signal is then propagated to several downstream effectors, mediated by the phosphoprotein scaffold, dishevelled. We report a novel role for arginine methylation in regulating Wnt3a-stimulated LRP6 phosphorylation. G3BP2, a dishevelled-associated protein, is methylated in response to Wnt3a. The Wnt3a-induced LRP6 phosphorylation is attenuated by G3BP2 knockdown, chemical inhibition of methyl transferase activity or expression of methylation-deficient mutants of G3BP2. Arginine methylation of G3BP2 appears to be a Wnt3a-sensitive ‘switch’ regulating LRP6 phosphorylation and canonical Wnt–β-catenin signaling.
Collapse
Affiliation(s)
- Rama Kamesh Bikkavilli
- Department of Pharmacology, School of Medicine, Health Sciences Center, State University of New York at Stony Brook, Stony Brook, NY 11794-8651, USA.
| | | |
Collapse
|
121
|
Abstract
Phosphatidylinositol 4-phosphate (PtdIns4P) is a quantitatively minor membrane phospholipid which is the precursor of PtdIns(4,5)P (2) in the classical agonist-regulated phospholipase C signalling pathway. However, PtdIns4P also governs the recruitment and function of numerous trafficking molecules, principally in the Golgi complex. The majority of phosphoinositides (PIs) phosphorylated at the D4 position of the inositol headgroup are derived from PtdIns4P and play roles in a diverse array of fundamental cellular processes including secretion, cell migration, apoptosis and mitogenesis; therefore, PtdIns4P biosynthesis can be regarded as key point of regulation in many PI-dependent processes.Two structurally distinct sequence families, the type II and type III PtdIns 4-kinases, are responsible for PtdIns4P synthesis in eukaryotic organisms. These important proteins are differentially expressed, localised and regulated by distinct mechanisms, indicating that the enzymes perform non-redundant roles in trafficking and signalling. In recent years, major advances have been made in our understanding of PtdIns4K biology and here we summarise current knowledge of PtdIns4K structure, function and regulation.
Collapse
Affiliation(s)
- Shane Minogue
- Centre for Molecular Cell Biology, Department of Inflammation, Division of Medicine, University College London, Rowland Hill Street, Hampstead, NW3 2PF, London, United Kingdom,
| | | |
Collapse
|
122
|
Zhang L, Mao YS, Janmey PA, Yin HL. Phosphatidylinositol 4, 5 bisphosphate and the actin cytoskeleton. Subcell Biochem 2012; 59:177-215. [PMID: 22374091 DOI: 10.1007/978-94-007-3015-1_6] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Dynamic changes in PM PIP(2) have been implicated in the regulation of many processes that are dependent on actin polymerization and remodeling. PIP(2) is synthesized primarily by the type I phosphatidylinositol 4 phosphate 5 kinases (PIP5Ks), and there are three major isoforms, called a, b and g. There is emerging evidence that these PIP5Ks have unique as well as overlapping functions. This review will focus on the isoform-specific roles of individual PIP5K as they relate to the regulation of the actin cytoskeleton. We will review recent advances that establish PIP(2) as a critical regulator of actin polymerization and cytoskeleton/membrane linkages, and show how binding of cytoskeletal proteins to membrane PIP(2) might alter lateral or transverse movement of lipids to affect raft formation or lipid asymmetry. The mechanisms for specifying localized increase in PIP(2) to regulate dynamic actin remodeling will also be discussed.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, 75390-9040, Dallas, TX, USA
| | | | | | | |
Collapse
|
123
|
Kikuchi A, Yamamoto H, Sato A, Matsumoto S. Wnt5a: its signalling, functions and implication in diseases. Acta Physiol (Oxf) 2012; 204:17-33. [PMID: 21518267 DOI: 10.1111/j.1748-1716.2011.02294.x] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Wnt5a is a representative ligand that activates the β-catenin-independent pathways. Because the β-catenin-independent pathway includes multiple signalling cascades in addition to the planar cell polarity and Ca(2+) pathway, Wnt5a regulates a variety of cellular functions, such as proliferation, differentiation, migration, adhesion and polarity. Consistent with the multiple functions of Wnt5a signalling, Wnt5a knockout mice show various phenotypes, including an inability to extend the embryonic anterior-posterior and proximal-distal axes in outgrowth tissues. Thus, many important roles of Wnt5a in developmental processes have been demonstrated. Moreover, recent reports suggest that the postnatal abnormalities in the Wnt5a signalling are involved in various diseases, such as cancer, inflammatory diseases and metabolic disorders. Therefore, Wnt5a and its signalling pathways could be important targets for the diagnosis and therapy for human diseases.
Collapse
Affiliation(s)
- A Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan.
| | | | | | | |
Collapse
|
124
|
Sinha RK, Patel RY, Bojjireddy N, Datta A, Subrahmanyam G. Epigallocatechin gallate (EGCG) inhibits type II phosphatidylinositol 4-kinases: a key component in pathways of phosphoinositide turnover. Arch Biochem Biophys 2011; 516:45-51. [PMID: 21964243 DOI: 10.1016/j.abb.2011.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/11/2011] [Accepted: 09/14/2011] [Indexed: 11/28/2022]
Abstract
Type II phosphatidylinositol (PtdIns) 4-kinases produce PtdIns 4-phosphate, an early key signaling molecule in phosphatidylinositol cycle, which is indispensable for T cell activation. Type II PtdIns 4-kinase alpha and beta have similar biochemical properties. To distinguish these isoforms Epigallocatechin gallate (EGCG) has been evaluated as a specific inhibitor. EGCG is the major active catechin in green tea having anti-inflammatory, antiatherogenic and cancer chemopreventive properties. The precise mechanism of actions and molecular targets of EGCG in early signaling cascades are not well understood. In the present study, we have shown that EGCG inhibits type II PtdIns 4-kinases (α and β isoforms) and PtdIns 3-kinase activity in vitro. EGCG directly bind to both alpha and beta isoforms of type II PtdIns 4-kinases with a Kd of 2.62 μM and 1.02 μM, respectively. Type II PtdIns 4-kinase-EGCG complex have different binding pattern at its excited state. Both isoforms showed significant change in helicity upon binding with EGCG. EGCG modulates its effect by interacting with ATP binding pocket; the residues likely to be involved in EGCG binding were predicted by Autodock. Our findings suggest that EGCG inhibits two isoforms and could be a key to regulate T cell activation.
Collapse
Affiliation(s)
- Ranjeet K Sinha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
| | | | | | | | | |
Collapse
|
125
|
Affiliation(s)
- Yannik Regimbald-Dumas
- The FM Kirby Neurobiology Center, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
126
|
Differential effects of the phosphatidylinositol 4-kinases, PI4KIIα and PI4KIIIβ, on Akt activation and apoptosis. Cell Death Dis 2011; 1:e106. [PMID: 21218173 PMCID: PMC3015391 DOI: 10.1038/cddis.2010.84] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, we investigated the role of PI4P synthesis by the phosphatidylinositol 4-kinases, PI4KIIα and PI4KIIIβ, in epidermal growth factor (EGF)-stimulated phosphoinositide signaling and cell survival. In COS-7 cells, knockdown of either isozyme by RNA interference reduced basal levels of PI4P and PI(4,5)P2, without affecting receptor activation. Only knockdown of PI4KIIα inhibited EGF-stimulated Akt phosphorylation, indicating that decreased PI(4,5)P2 synthesis observed by loss of either isoform could not account for this PI4KIIα-specific effect. Phospholipase Cγ activation was also differentially affected by knockdown of either PI4K isozyme. Overexpression of kinase-inactive PI4KIIα, which induces defective endosomal trafficking without reducing PI(4,5)P2 levels, also reduced Akt activation. Furthermore, PI4KIIα knockdown profoundly inhibited cell proliferation and induced apoptosis as evidenced by the cleavage of caspase-3 and its substrate poly(ADP-ribose) polymerase. However, in MDA-MB-231 breast cancer cells, apoptosis was observed subsequent to knockdown of either PI4KIIα or PI4KIIIβ and this correlated with enhanced proapoptotic Akt phosphorylation. The differential effects of phosphatidylinositol 4-kinase knockdown in the two cell lines lead to the conclusion that phosphoinositide turnover is inhibited through PI4P substrate depletion, whereas impaired antiapoptotic Akt signaling is an indirect consequence of dysfunctional endosomal trafficking.
Collapse
|
127
|
Transmembrane protein 198 promotes LRP6 phosphorylation and Wnt signaling activation. Mol Cell Biol 2011; 31:2577-90. [PMID: 21536646 DOI: 10.1128/mcb.05103-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Wnt/β-catenin signaling is fundamental in embryogenesis and tissue homeostasis in metazoans. Upon Wnt stimulation, cognate coreceptors LRP5 and LRP6 ([LRP5/6] low-density lipoprotein receptor-related proteins 5 and 6) are activated via phosphorylation at key residues. Although several kinases have been implicated, the LRP5/6 activation mechanism remains unclear. Here, we report that transmembrane protein 198 (TMEM198), a previously uncharacterized seven-transmembrane protein, is able to specifically activate LRP6 in transducing Wnt signaling. TMEM198 associates with LRP6 and recruits casein kinase family proteins, via the cytoplasmic domain, to phosphorylate key residues important for LRP6 activation. In mammalian cells, TMEM198 is required for Wnt signaling and casein kinase 1-induced LRP6 phosphorylation. During Xenopus embryogenesis, maternal and zygotic tmem198 mRNAs are widely distributed in the ectoderm and mesoderm. TMEM198 is required for Wnt-mediated neural crest formation, antero-posterior patterning, and particularly engrailed-2 expression in Xenopus embryos. Thus, our results identified TMEM198 as a membrane scaffold protein that promotes LRP6 phosphorylation and Wnt signaling activation.
Collapse
|
128
|
Schulte G. International Union of Basic and Clinical Pharmacology. LXXX. The class Frizzled receptors. Pharmacol Rev 2011; 62:632-67. [PMID: 21079039 DOI: 10.1124/pr.110.002931] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The receptor class Frizzled, which has recently been categorized as a separate group of G protein-coupled receptors by the International Union of Basic and Clinical Pharmacology, consists of 10 Frizzleds (FZD(1-10)) and Smoothened (SMO). The FZDs are activated by secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family, whereas SMO is indirectly activated by the Hedgehog (HH) family of proteins acting on the transmembrane protein Patched (PTCH). Recent years have seen major advances in our knowledge about these seven-transmembrane-spanning proteins, including: receptor function, molecular mechanisms of signal transduction, and the receptor's role in embryonic patterning, physiology, cancer, and other diseases. Despite intense efforts, many question marks and challenges remain in mapping receptor-ligand interaction, signaling routes, mechanisms of specificity and how these molecular details underlie disease and also the receptor's important role in physiology. This review therefore focuses on the molecular aspects of WNT/FZD and HH/SMO signaling discussing receptor structure, mechanisms of signal transduction, accessory proteins, receptor dynamics, and the possibility of targeting these signaling pathways pharmacologically.
Collapse
Affiliation(s)
- Gunnar Schulte
- Section of Receptor Biology & Signaling, Dept. of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
129
|
Wan M, Li J, Herbst K, Zhang J, Yu B, Wu X, Qiu T, Lei W, Lindvall C, Williams BO, Ma H, Zhang F, Cao X. LRP6 mediates cAMP generation by G protein-coupled receptors through regulating the membrane targeting of Gα(s). Sci Signal 2011; 4:ra15. [PMID: 21406690 DOI: 10.1126/scisignal.2001464] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ligand binding to certain heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) stimulates the rapid synthesis of cyclic adenosine monophosphate (cAMP) through the G protein α(s) subunit, which activates adenylyl cyclase (AC). We found that the transmembrane receptor low-density lipoprotein receptor-related protein 6 (LRP6), a co-receptor for Wnt proteins, bound to the Gα(s)βγ heterotrimer and that knockdown of LRP6 attenuated cAMP production by various GPCRs, including parathyroid hormone receptor 1 (PTH1R). Knockdown of LRP6 disrupted the localization of Gα(s) to the plasma membrane, which led to a decrease in the extent of coupling of Gα(s) to PTH1R and inhibited the production of cAMP and the activation of cAMP-dependent protein kinase (PKA) in response to PTH. PKA phosphorylated LRP6, which enhanced the binding of Gα(s) to LRP6, its localization to the plasma membrane, and the production of cAMP in response to PTH. Decreased PTH-dependent cAMP production was observed in single cells in which LRP6 was knocked down or mutated at the PKA site by monitoring the cAMP kinetics. Thus, we suggest that the binding of Gα(s) to LRP6 is required to establish a functional GPCR-Gα(s)-AC signaling pathway for the production of cAMP, providing an additional regulatory component to the current GPCR-cAMP paradigm.
Collapse
Affiliation(s)
- Mei Wan
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Liu YT, Dan QJ, Wang J, Feng Y, Chen L, Liang J, Li Q, Lin SC, Wang ZX, Wu JW. Molecular basis of Wnt activation via the DIX domain protein Ccd1. J Biol Chem 2011; 286:8597-8608. [PMID: 21189423 PMCID: PMC3048742 DOI: 10.1074/jbc.m110.186742] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/06/2010] [Indexed: 01/22/2023] Open
Abstract
The Wnt signaling plays pivotal roles in embryogenesis and cancer, and the three DIX domain-containing proteins, Dvl, Axin, and Ccd1, play distinct roles in the initiation and regulation of canonical Wnt signaling. Overexpressed Dvl has a tendency to form large polymers in a cytoplasmic punctate pattern, whereas the biologically active Dvl in fact forms low molecular weight oligomers. The molecular basis for how the polymeric sizes of Dvl proteins are controlled upon Wnt signaling remains unclear. Here we show that Ccd1 up-regulates canonical Wnt signaling via acting synergistically with Dvl. We determined the crystal structures of wild type Ccd1-DIX and mutant Dvl1-DIX(Y17D), which pack into "head-to-tail" helical filaments. Structural analyses reveal two sites crucial for intra-filament homo- and hetero-interaction and a third site for inter-filament homo-assembly. Systematic mutagenesis studies identified critical residues from all three sites required for Dvl homo-oligomerization, puncta formation, and stimulation of Wnt signaling. Remarkably, Ccd1 forms a hetero-complex with Dvl through the "head" of Dvl-DIX and the "tail" of Ccd1-DIX, depolymerizes Dvl homo-assembly, and thereby controls the size of Dvl polymer. These data together suggest a molecular mechanism for Ccd1-mediated Wnt activation in that Ccd1 converts latent polymeric Dvl to a biologically active oligomer(s).
Collapse
Affiliation(s)
- Yi-Tong Liu
- From the MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiong-Jie Dan
- the Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and
| | - Jiawei Wang
- From the MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yingang Feng
- the Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and
| | - Lei Chen
- From the MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Juan Liang
- From the MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qinxi Li
- the MOE Key Laboratory of Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Sheng-Cai Lin
- the MOE Key Laboratory of Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhi-Xin Wang
- From the MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China,; the Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and
| | - Jia-Wei Wu
- From the MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China,.
| |
Collapse
|
131
|
Funakoshi Y, Hasegawa H, Kanaho Y. Regulation of PIP5K activity by Arf6 and its physiological significance. J Cell Physiol 2011; 226:888-95. [PMID: 20945365 DOI: 10.1002/jcp.22482] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The phospholipid kinase phosphatidylinositol 4-phosphate 5-kinase (PIP5K) catalyzes the phosphorylation of the membrane phospholipid phosphatidylinositol 4-phosphate to generate the pleiotropic phospholipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2) ]. To date, three mammalian PIP5K isozymes, α, β, and γ, and several splicing variants of the γ isozyme have been identified. These PIP5K isozymes and PIP5Kγ variants play critical roles in various cellular functions through their product PI(4,5)P(2) . The small GTPase Arf6 is one of the key activators of PIP5K. Increasing evidence suggests that PIP5K functions as a downstream effector of Arf6 to regulate a wide variety of cellular functions, such as exocytosis, endocytosis, endosomal recycling, membrane ruffle formation, immune response, and bacterial invasion. In this review, we place our focus on the recent advances in Arf6/PIP5K signaling and its linkage to cellular functions.
Collapse
Affiliation(s)
- Yuji Funakoshi
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | | | | |
Collapse
|
132
|
Amer1/WTX couples Wnt-induced formation of PtdIns(4,5)P2 to LRP6 phosphorylation. EMBO J 2011; 30:1433-43. [PMID: 21304492 DOI: 10.1038/emboj.2011.28] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 01/18/2011] [Indexed: 11/09/2022] Open
Abstract
Phosphorylation of the Wnt receptor low-density lipoprotein receptor-related protein 6 (LRP6) by glycogen synthase kinase 3β (GSK3β) and casein kinase 1γ (CK1γ) is a key step in Wnt/β-catenin signalling, which requires Wnt-induced formation of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)). Here, we show that adenomatous polyposis coli membrane recruitment 1 (Amer1) (also called WTX), a membrane associated PtdIns(4,5)P(2)-binding protein, is essential for the activation of Wnt signalling at the LRP6 receptor level. Knockdown of Amer1 reduces Wnt-induced LRP6 phosphorylation, Axin translocation to the plasma membrane and formation of LRP6 signalosomes. Overexpression of Amer1 promotes LRP6 phosphorylation, which requires interaction of Amer1 with PtdIns(4,5)P(2). Amer1 translocates to the plasma membrane in a PtdIns(4,5)P(2)-dependent manner after Wnt treatment and is required for LRP6 phosphorylation stimulated by application of PtdIns(4,5)P(2). Amer1 binds CK1γ, recruits Axin and GSK3β to the plasma membrane and promotes complex formation between Axin and LRP6. Fusion of Amer1 to the cytoplasmic domain of LRP6 induces LRP6 phosphorylation and stimulates robust Wnt/β-catenin signalling. We propose a mechanism for Wnt receptor activation by which generation of PtdIns(4,5)P(2) leads to recruitment of Amer1 to the plasma membrane, which acts as a scaffold protein to stimulate phosphorylation of LRP6.
Collapse
|
133
|
Schramp M, Thapa N, Heck J, Anderson R. PIPKIγ regulates β-catenin transcriptional activity downstream of growth factor receptor signaling. Cancer Res 2011; 71:1282-91. [PMID: 21303971 DOI: 10.1158/0008-5472.can-10-2480] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increased β-catenin transcriptional activity downstream of the Wnt/Wingless signaling pathway has been observed in many human tumors, most notably colorectal carcinomas. However, β-catenin activation is also observed in many human malignancies with no observable Wnt activity. Wnt-independent pathways that activate β-catenin remain undefined, yet have the potential to play a significant role during tumorigenesis. Here, we report that phosphotidylinositol phosphate kinase Iγ (PIPKIγ), an enzyme that generates phosphoinositide messengers in vivo, directly associates with β-catenin and increases β-catenin activity downstream of growth factor stimulation. PIPKIγ expression and kinase activity enhance β-catenin phosphorylation on residues that promote nuclear importation and transcriptional activity. Lastly, we show that β-catenin is required for PIPKIγ-dependent increased cell proliferation. These results reveal a novel mechanism in which PIPKIγ expression and catalytic activity enhance β-catenin nuclear translocation and expression of its target genes to promote tumorigenic phenotypes.
Collapse
Affiliation(s)
- Mark Schramp
- Department of Pharmacology, School of Medicine and Public Health, and Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
134
|
Zhou T, Zhou KK, Lee K, Gao G, Lyons TJ, Kowluru R, Ma JX. The role of lipid peroxidation products and oxidative stress in activation of the canonical wingless-type MMTV integration site (WNT) pathway in a rat model of diabetic retinopathy. Diabetologia 2011; 54:459-68. [PMID: 20978740 PMCID: PMC3017315 DOI: 10.1007/s00125-010-1943-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 09/13/2010] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Our recent studies suggest that activation of the wingless-type MMTV integration site (WNT) pathway plays pathogenic roles in diabetic retinopathy and age-related macular degeneration. Here we investigated the causative role of oxidative stress in retinal WNT pathway activation in an experimental model of diabetes. METHODS Cultured retinal pigment epithelial cells and retinal capillary endothelial cells were treated with a lipid peroxidation product, 4-hydroxynonenal (HNE), and an antioxidant, N-acetyl-cysteine (NAC). In vivo, rats with streptozotocin-induced diabetes were treated by NAC for 8 weeks. Activation of the canonical WNT pathway was measured by TOPFLASH assay and by western blot analysis of WNT pathway components and a WNT target gene, Ctgf. Oxidative stress in the retina was evaluated by immunostaining of HNE and 3-nitrotyrosine. RESULTS Levels of phosphorylated and total LDL receptor-related protein (LRP)6, and cytosolic β-catenin, as well as transcriptional activity of T cell factor (TCF)/β-catenin were significantly increased by HNE. The production of connective tissue growth factor (CTGF) was also upregulated by HNE. NAC blocked the WNT pathway activation induced by HNE. Furthermore, LRP6 stability was increased by HNE and decreased by NAC. Retinal levels of HNE and 3-nitrotyrosine were significantly increased in diabetic rats, compared with those in non-diabetic rats. In the same diabetic rat retinas, levels of LRP6, cytosolic β-catenin and CTGF were significantly increased. NAC treatment reduced HNE and 3-nitrotyrosine levels and attenuated the upregulation of LRP6, β-catenin and CTGF in diabetic rat retina. CONCLUSIONS/INTERPRETATION Lipid peroxidation products activate the canonical WNT pathway through oxidative stress, which plays an important role in the development of retinal diseases.
Collapse
Affiliation(s)
- T. Zhou
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou, China
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK 73104 USA
| | - K. K. Zhou
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK 73104 USA
| | - K. Lee
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK 73104 USA
| | - G. Gao
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou, China
| | - T. J. Lyons
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK 73104 USA
- Harold Hamm Oklahoma Diabetes Center and Section of Endocrinology and Diabetes, Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - R. Kowluru
- Department of Ophthalmology, Wayne State University, Detroit, MI USA
| | - J-x. Ma
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK 73104 USA
- Harold Hamm Oklahoma Diabetes Center and Section of Endocrinology and Diabetes, Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| |
Collapse
|
135
|
Verkaar F, Zaman GJ. New avenues to target Wnt/β-catenin signaling. Drug Discov Today 2011; 16:35-41. [DOI: 10.1016/j.drudis.2010.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 10/22/2010] [Accepted: 11/18/2010] [Indexed: 01/10/2023]
|
136
|
Lee HJ, Finkelstein D, Li X, Wu D, Shi DL, Zheng JJ. Identification of transmembrane protein 88 (TMEM88) as a dishevelled-binding protein. J Biol Chem 2010; 285:41549-56. [PMID: 21044957 PMCID: PMC3009882 DOI: 10.1074/jbc.m110.193383] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Indexed: 11/06/2022] Open
Abstract
Wnt signaling pathways are involved in embryonic development and adult tissue maintenance and have been implicated in tumorigenesis. Dishevelled (Dvl/Dsh) protein is one of key components in Wnt signaling and plays essential roles in regulating these pathways through protein-protein interactions. Identifying and characterizing Dvl-binding proteins are key steps toward understanding biological functions. Given that the tripeptide VWV (Val-Trp-Val) binds to the PDZ domain of Dvl, we searched publically available databases to identify proteins containing the VWV motif at the C terminus that could be novel Dvl-binding partners. On the basis of the cellular localization and expression patterns of the candidates, we selected for further study the TMEM88 (target protein transmembrane 88), a two-transmembrane-type protein. The interaction between the PDZ domain of Dvl and the C-terminal tail of TMEM88 was confirmed by using NMR and fluorescence spectroscopy. Furthermore, in HEK293 cells, TMEM88 attenuated the Wnt/β-catenin signaling induced by Wnt-1 ligand in a dose-dependent manner, and TMEM88 knockdown by RNAi increased Wnt activity. In Xenopus, TMEM88 protein is sublocalized at the cell membrane and inhibits Wnt signaling induced by Xdsh but not β-catenin. In addition, TMEM88 protein inhibits the formation of a secondary axis normally induced by Xdsh. The findings suggest that TMEM88 plays a role in regulating Wnt signaling. Indeed, analysis of microarray data revealed that the expression of the Tmem88 gene was strongly correlated with that of Wnt signaling-related genes in embryonic mouse intestines. Together, we propose that TMEM88 associates with Dvl proteins and regulates Wnt signaling in a context-dependent manner.
Collapse
Affiliation(s)
- Ho-Jin Lee
- From the Department of Structural Biology and
| | - David Finkelstein
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Xiaofeng Li
- the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510
- ENZO Biochem, Inc., Farmingdale, New York 11735, and
| | - Dianqing Wu
- the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510
| | - De-Li Shi
- the Laboratoire de Biologie du Development, CNRS UMR7622, 9 quai Saint-Bemard, 75005 Paris, France
| | | |
Collapse
|
137
|
Grumolato L, Liu G, Mong P, Mudbhary R, Biswas R, Arroyave R, Vijayakumar S, Economides AN, Aaronson SA. Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors. Genes Dev 2010; 24:2517-30. [PMID: 21078818 DOI: 10.1101/gad.1957710] [Citation(s) in RCA: 373] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wnt ligands signal through β-catenin and are critically involved in cell fate determination and stem/progenitor self-renewal. Wnts also signal through β-catenin-independent or noncanonical pathways that regulate crucial events during embryonic development. The mechanism of noncanonical receptor activation and how Wnts trigger canonical as opposed to noncanonical signaling have yet to be elucidated. We demonstrate here that prototype canonical Wnt3a and noncanonical Wnt5a ligands specifically trigger completely unrelated endogenous coreceptors-LRP5/6 and Ror1/2, respectively-through a common mechanism that involves their Wnt-dependent coupling to the Frizzled (Fzd) coreceptor and recruitment of shared components, including dishevelled (Dvl), axin, and glycogen synthase kinase 3 (GSK3). We identify Ror2 Ser 864 as a critical residue phosphorylated by GSK3 and required for noncanonical receptor activation by Wnt5a, analogous to the priming phosphorylation of low-density receptor-related protein 6 (LRP6) in response to Wnt3a. Furthermore, this mechanism is independent of Ror2 receptor Tyr kinase functions. Consistent with this model of Wnt receptor activation, we provide evidence that canonical and noncanonical Wnts exert reciprocal pathway inhibition at the cell surface by competition for Fzd binding. Thus, different Wnts, through their specific coupling and phosphorylation of unrelated coreceptors, activate completely distinct signaling pathways.
Collapse
Affiliation(s)
- Luca Grumolato
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Hong JY, Park JI, Cho K, Gu D, Ji H, Artandi SE, McCrea PD. Shared molecular mechanisms regulate multiple catenin proteins: canonical Wnt signals and components modulate p120-catenin isoform-1 and additional p120 subfamily members. J Cell Sci 2010; 123:4351-65. [PMID: 21098636 DOI: 10.1242/jcs.067199] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wnt signaling pathways have fundamental roles in animal development and tumor progression. Here, employing Xenopus embryos and mammalian cell lines, we report that the degradation machinery of the canonical Wnt pathway modulates p120-catenin protein stability through mechanisms shared with those regulating β-catenin. For example, in common with β-catenin, exogenous expression of destruction complex components, such as GSK3β and axin, promotes degradation of p120-catenin. Again in parallel with β-catenin, reduction of canonical Wnt signals upon depletion of LRP5 and LRP6 results in p120-catenin degradation. At the primary sequence level, we resolved conserved GSK3β phosphorylation sites in the amino-terminal region of p120-catenin present exclusively in isoform-1. Point-mutagenesis of these residues inhibited the association of destruction complex components, such as those involved in ubiquitylation, resulting in stabilization of p120-catenin. Functionally, in line with predictions, p120 stabilization increased its signaling activity in the context of the p120-Kaiso pathway. Importantly, we found that two additional p120-catenin family members, ARVCF-catenin and δ-catenin, associate with axin and are degraded in its presence. Thus, as supported using gain- and loss-of-function approaches in embryo and cell line systems, canonical Wnt signals appear poised to have an impact upon a breadth of catenin biology in vertebrate development and, possibly, human cancers.
Collapse
Affiliation(s)
- Ji Yeon Hong
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
139
|
Yao T, Yang L, Li PQ, Wu H, Xie HB, Shen X, Xie XD. Association of Wnt3A gene variants with non-syndromic cleft lip with or without cleft palate in Chinese population. Arch Oral Biol 2010; 56:73-8. [PMID: 20932509 DOI: 10.1016/j.archoralbio.2010.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 09/05/2010] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE non-syndromic cleft lip with or without cleft palate (NSCLP) is one of the most common birth defects all over the world. Both genetic and environmental factors may contribute to NSCLP. Recent studies have demonstrated that Wnt/β-catenin signalling pathway is required for lip and palate formation. WNT family may play an important role in the development of NSCLP. This study aimed to evaluate the association between Wnt3A gene polymorphisms and NSCLP in Chinese population from Northwest China. DESIGN 216 patients with NSCLP and 233 normal controls were genotyped for two SNPs of Wnt3A by PCR-RFLP. Both SNPs genotype frequencies were analysed between cases group and controls group. RESULTS the frequencies of rs752107 TT and rs3121310 AA were significantly higher in NSCLP cases group (7.4%, 15.3%) than that in controls group (2.1%, 9.5%) with p-value=0.013, 0.014, corrected p value (p-corr) <0.05 and with odds ratio (OR)=3.49, 95% confidence interval [CI]: 1.244-9.79, OR=2.27, 95% CI: 1.17-4.38, respectively; the frequency of rs3121310 GA was also higher in NSCLP cases group (57.4%) than in controls group (52.0%) with p-value=0.042 and OR=1.56 (95% CI: 1.02-2.39). And the frequency of rs752107 TT of Wnt3A showed higher risk in female patients, while the frequency of A allele of rs3121310 showed stronger association in male patients. CONCLUSIONS this is the first report that two SNPs of Wnt3A (rs752107 and rs3121310) are significantly associated with NSCLP in Chinese population. These findings provide a context for understanding the genetic aetiology of NSCLP.
Collapse
Affiliation(s)
- Ting Yao
- School of Basic Medical Sciences, Lanzhou University, No. 199 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | | | | | | | | | | | | |
Collapse
|
140
|
Cadigan KM, Peifer M. Wnt signaling from development to disease: insights from model systems. Cold Spring Harb Perspect Biol 2010; 1:a002881. [PMID: 20066091 DOI: 10.1101/cshperspect.a002881] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One of the early surprises in the study of cell adhesion was the discovery that beta-catenin plays dual roles, serving as an essential component of cadherin-based cell-cell adherens junctions and also serving as the key regulated effector of the Wnt signaling pathway. Here, we review our current model of Wnt signaling and discuss how recent work using model organisms has advanced our understanding of the roles Wnt signaling plays in both normal development and in disease. These data help flesh out the mechanisms of signaling from the membrane to the nucleus, revealing new protein players and providing novel information about known components of the pathway.
Collapse
Affiliation(s)
- Ken M Cadigan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | |
Collapse
|
141
|
Tauriello DVF, Maurice MM. The various roles of ubiquitin in Wnt pathway regulation. Cell Cycle 2010; 9:3700-9. [PMID: 20930545 DOI: 10.4161/cc.9.18.13204] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Wnt signaling mediates key developmental and homeostatic processes including stem cell maintenance, growth and cell fate specification, cell polarity and migration. Inappropriate activation of Wnt signaling is linked to a range of human disorders, most notably cancer and neurodegenerative diseases. In the Wnt/β-catenin cascade, signaling events converge on the regulation of ubiquitin-mediated degradation of the crucial transcriptional regulator β-catenin. The emerging mechanisms by which ubiquitin modification of proteins controls cellular pathways comprise both proteolytic and nonproteolytic functions. In nonproteolytic functions, ubiquitin acts as a signaling device in the control of protein activity, subcellular localization and complex formation. Here, we review and discuss recent developments that implicate ubiquitin-mediated mechanisms at multiple steps of Wnt pathway activation.
Collapse
Affiliation(s)
- Daniele V F Tauriello
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
142
|
Niehrs C, Shen J. Regulation of Lrp6 phosphorylation. Cell Mol Life Sci 2010; 67:2551-62. [PMID: 20229235 PMCID: PMC11115861 DOI: 10.1007/s00018-010-0329-3] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/08/2010] [Accepted: 02/19/2010] [Indexed: 12/14/2022]
Abstract
The Wnt/beta-catenin signaling pathway plays important roles in embryonic development and tissue homeostasis, and is implicated in human disease. Wnts transduce signals via transmembrane receptors of the Frizzled (Fzd/Fz) family and the low density lipoprotein receptor-related protein 5/6 (Lrp5/6). A key mechanism in their signal transduction is that Wnts induce Lrp6 signalosomes, which become phosphorylated at multiple conserved sites, notably at PPSPXS motifs. Lrp6 phosphorylation is crucial to beta-catenin stabilization and pathway activation by promoting Axin and Gsk3 recruitment to phosphorylated sites. Here, we summarize how proline-directed kinases (Gsk3, PKA, Pftk1, Grk5/6) and non-proline-directed kinases (CK1 family) act upon Lrp6, how the phosphorylation is regulated by ligand binding and mitosis, and how Lrp6 phosphorylation leads to beta-catenin stabilization.
Collapse
Affiliation(s)
- Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 581, Heidelberg, Germany.
| | | |
Collapse
|
143
|
Abstract
Growth factor signaling is required for cellular differentiation, tissue morphogenesis, and tissue homeostasis. Misregulation of intracellular signal transduction can lead to developmental defects during embryogenesis or particular diseases in the adult. One family of growth factors important for these aspects is given by the Wnt proteins. In particular, Wnts have important functions in stem cell biology, cardiac development and differentiation, angiogenesis, cardiac hypertrophy, cardiac failure, and aging. Knowledge of growth factor signaling during differentiation will allow for improvement of targeted differentiation of embryonic or adult stem cells toward functional cardiomyocytes or for understanding the basis of diseases. Our major aim here is to provide a state of the art review summarizing our present knowledge of the intracellular Wnt-mediated signaling network. In particular, we provide evidence that the subdivision into canonical and noncanonical Wnt signaling pathways solely based on the identity of Wnt ligands or Frizzled receptors is not appropriate anymore. We thereby deliver a solid base for further upcoming articles of a review series focusing on the role of Wnt proteins on different aspects of cardiovascular development and dysfunction.
Collapse
Affiliation(s)
- Tata Purushothama Rao
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | |
Collapse
|
144
|
Volpicelli-Daley LA, Lucast L, Gong LW, Liu L, Sasaki J, Sasaki T, Abrams CS, Kanaho Y, De Camilli P. Phosphatidylinositol-4-phosphate 5-kinases and phosphatidylinositol 4,5-bisphosphate synthesis in the brain. J Biol Chem 2010; 285:28708-14. [PMID: 20622009 PMCID: PMC2937898 DOI: 10.1074/jbc.m110.132191] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The predominant pathway for phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P(2)) synthesis is thought to be phosphorylation of phosphatidylinositol 4-phosphate at the 5 position of the inositol ring by type I phosphatidylinositol phosphate kinases (PIPK): PIPKIalpha, PIPKIbeta, and PIPKIgamma. PIPKIgamma has been shown to play a role in PI(4,5)P(2) synthesis in brain, and the absence of PIPKIgamma is incompatible with postnatal life. Conversely, mice lacking PIPKIalpha or PIPKIbeta (isoforms are referred to according to the nomenclature of human PIPKIs) live to adulthood, although functional effects in specific cell types are observed. To determine the contribution of PIPKIalpha and PIPKIbeta to PI(4,5)P(2) synthesis in brain, we investigated the impact of disrupting multiple PIPKI genes. Our results show that a single allele of PIPKIgamma, in the absence of both PIPKIalpha and PIPKIbeta, can support life to adulthood. In addition, PIPKIalpha alone, but not PIPKIbeta alone, can support prenatal development, indicating an essential and partially overlapping function of PIPKIalpha and PIPKIgamma during embryogenesis. This is consistent with early embryonic expression of PIPKIalpha and PIPKIgamma but not of PIPKIbeta. PIPKIbeta expression in brain correlates with neuronal differentiation. The absence of PIPKIbeta does not impact embryonic development in the PIPKIgamma knock-out (KO) background but worsens the early postnatal phenotype of the PIPKIgamma KO (death occurs within minutes rather than hours). Analysis of PIP(2) in brain reveals that only the absence of PIPKIgamma significantly impacts its levels. Collectively, our results provide new evidence for the dominant importance of PIPKIgamma in mammals and imply that PIPKIalpha and PIPKIbeta function in the generation of specific PI(4,5)P(2) pools that, at least in brain, do not have a major impact on overall PI(4,5)P(2) levels.
Collapse
Affiliation(s)
- Laura A Volpicelli-Daley
- Department of Cell Biology, Program in Cellular Neuroscience, Neurodegeneration and Repair, the Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Davidson G, Niehrs C. Emerging links between CDK cell cycle regulators and Wnt signaling. Trends Cell Biol 2010; 20:453-60. [PMID: 20627573 DOI: 10.1016/j.tcb.2010.05.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/03/2010] [Accepted: 05/04/2010] [Indexed: 01/09/2023]
Abstract
Wnt/beta-catenin signaling controls many aspects of cell behavior throughout development and in adults. One of its best-known and cancer-relevant functions is to stimulate cell proliferation. Recent work has implicated Wnt components in regulating mitotic events, suggesting that the cell cycle and Wnt signaling are directly linked. This concept has now been substantially strengthened with the finding that the mitotic CDK14/cyclin Y complex promotes Wnt signaling through phosphorylation of the LRP6 co-receptor, a key regulatory nexus in the Wnt/beta-catenin pathway. Thus, an unexpectedly tight collaboration between the mitotic cell cycle machinery and Wnt signaling is emerging, suggesting that this pathway might orchestrate mitotic processes.
Collapse
Affiliation(s)
- Gary Davidson
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics, H. v. Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany.
| | | |
Collapse
|
146
|
Ohshima K, Igarashi K. Inference for the initial stage of domain shuffling: tracing the evolutionary fate of the PIPSL retrogene in hominoids. Mol Biol Evol 2010; 27:2522-33. [PMID: 20525901 DOI: 10.1093/molbev/msq138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Domain shuffling has provided extraordinarily diverse functions to proteins. Nevertheless, how newly combined domains are coordinated to create novel functions remains a fundamental question of genetic and phenotypic evolution. Previously, we reported a unique mechanism of gene creation, whereby new combinations of functional domains are assembled from distinct genes at the RNA level, reverse transcribed, and integrated into the genome by the L1 retrotransposon. The novel gene PIPSL, created by the fusion of phosphatidylinositol-4-phosphate 5-kinase (PIP5K1A) and 26S proteasome subunit (S5a/PSMD4) genes, is specifically transcribed in human and chimpanzee testes. We present the first evidence for the translation of PIPSL in humans. The human PIPSL locus showed a low nucleotide diversity within 11 populations (125 individuals) compared with other genomic regions such as introns and overall chromosomes. It was equivalent to the average for coding sequences or exons from other genes, suggesting that human PIPSL has some function and is conserved among modern populations. Two linked amino acid-altering single-nucleotide polymorphisms were found in the PIPSL kinase domain of non-African populations. They are positioned in the vicinity of the substrate-binding cavity of the parental PIP5K1A protein and change the charge of both residues. The relatively rapid expansion of this haplotype might indicate a selective advantage for it in modern humans. We determined the evolutionary fate of PIPSL domains created by domain shuffling. During hominoid diversification, the S5a-derived domain was retained in all lineages, whereas the ubiquitin-interacting motif (UIM) 1 in the domain experienced critical amino acid replacements at an early stage, being conserved under subsequent high levels of nonsynonymous substitutions to UIM2 and other domains, suggesting that adaptive evolution diversified these functional compartments. Conversely, the PIP5K1A-derived domain is degenerated in gibbons and gorillas. These observations provide a possible scheme of domain shuffling in which the combined parental domains are not tightly linked in the novel chimeric protein, allowing for changes in their functional roles, leading to their fine-tuning. Selective pressure toward a novel function initially acted on one domain, whereas the other experienced a nearly neutral state. Over time, the latter also gained a new function or was degenerated.
Collapse
Affiliation(s)
- Kazuhiko Ohshima
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan.
| | | |
Collapse
|
147
|
Mañes S, Fuentes G, Peregil RM, Rojas AM, Lacalle RA. An isoform-specific PDZ-binding motif targets type I PIP5 kinase beta to the uropod and controls polarization of neutrophil-like HL60 cells. FASEB J 2010; 24:3381-92. [PMID: 20442317 DOI: 10.1096/fj.09-153106] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Type I phosphatidylinositol 4-phosphate 5-kinase (PIP5KI)-beta participates in establishing polarity during leukocyte chemotaxis. Its final 83 amino acids localize PIP5KIbeta to the uropod of chemotaxing neutrophils and T cells, and interact with ezrin-radixin-moesin (ERM) proteins and EBP50 (4.1-ERM-binding phosphoprotein 50), a scaffold protein with 2 PDZ (PSD-95, disc large, ZO-1) domains. The structural motifs at the PIP5KIbeta C terminus that confer signaling specificity are, nonetheless, unknown. We show that the last 4 residues of PIP5KIbeta constitute an atypical PDZ-binding motif, which steers PIP5KIbeta to the uropod by binding to both EBP50 PDZ domains. Molecular modeling and mutagenesis indicated that PDZ-binding motif is necessary for PIP5KIbeta localization and for chemoattractant-induced neutrophil polarization. Polarity in cells that express PIP5KIbeta mutants lacking the PDZ-binding motif was restored by overexpression of PIP5KIbeta, but not of PIP5KIgamma_i2, another isoform that localizes to the neutrophil uropod. Our results identify an isoform-specific PDZ-binding motif in PIP5KIbeta, which confers specificity for PIP5KIbeta signaling at the uropod during leukocyte chemotaxis.
Collapse
Affiliation(s)
- Santos Mañes
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, Madrid E-28049, Spain
| | | | | | | | | |
Collapse
|
148
|
Verheyen EM, Gottardi CJ. Regulation of Wnt/beta-catenin signaling by protein kinases. Dev Dyn 2010; 239:34-44. [PMID: 19623618 DOI: 10.1002/dvdy.22019] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Wnt/beta-catenin signaling pathway plays essential roles during development and adult tissue homeostasis. Inappropriate activation of the pathway can result in a variety of malignancies. Protein kinases have emerged as key regulators at multiple steps of the Wnt pathway. In this review, we present a synthesis covering the latest information on how Wnt signaling is regulated by diverse protein kinases.
Collapse
Affiliation(s)
- Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
| | | |
Collapse
|
149
|
Li J, Lu Y, Zhang J, Kang H, Qin Z, Chen C. PI4KIIα is a novel regulator of tumor growth by its action on angiogenesis and HIF-1α regulation. Oncogene 2010; 29:2550-9. [DOI: 10.1038/onc.2010.14] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
150
|
Dishevelled: The hub of Wnt signaling. Cell Signal 2009; 22:717-27. [PMID: 20006983 DOI: 10.1016/j.cellsig.2009.11.021] [Citation(s) in RCA: 561] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 11/28/2009] [Indexed: 12/24/2022]
Abstract
Wnt signaling controls a variety of developmental and homeostatic events. As a key component of Wnt signaling, Dishevelled (Dvl/Dsh) protein relays Wnt signals from receptors to downstream effectors. In the canonical Wnt pathway that depends on the nuclear translocation of beta-catenin, Dvl is recruited by the receptor Frizzled and prevents the constitutive destruction of cytosolic beta-catenin. In the non-canonical Wnt pathways such as Wnt-Frizzled/PCP (planar cell polarity) signaling, Dvl signals via the Daam1-RhoA axis and the Rac1 axis. In addition, Dvl plays important roles in Wnt-GSK3beta-microtubule signaling, Wnt-calcium signaling, Wnt-RYK signaling, Wnt-atypical PKC signaling, etc. Dvl also functions to mediate receptor endocytosis. To fulfill its multifaceted functions, it is not surprising that Dvl associates with various kinds of proteins. Its activity is also modulated dynamically by phosphorylation, ubiquitination and degradation. In this review, we summarize the current understanding of Dvl functions in Wnt signal transduction and its biological functions in mouse development, and also discuss the molecular mechanisms of its actions.
Collapse
|