101
|
Satgé C, Moreau S, Sallet E, Lefort G, Auriac MC, Remblière C, Cottret L, Gallardo K, Noirot C, Jardinaud MF, Gamas P. Reprogramming of DNA methylation is critical for nodule development in Medicago truncatula. NATURE PLANTS 2016; 2:16166. [PMID: 27797357 DOI: 10.1038/nplants.2016.166] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/28/2016] [Indexed: 05/25/2023]
Abstract
The legume-Rhizobium symbiosis leads to the formation of a new organ, the root nodule, involving coordinated and massive induction of specific genes. Several genes controlling DNA methylation are spatially regulated within the Medicago truncatula nodule, notably the demethylase gene, DEMETER (DME), which is mostly expressed in the differentiation zone. Here, we show that MtDME is essential for nodule development and regulates the expression of 1,425 genes, some of which are critical for plant and bacterial cell differentiation. Bisulphite sequencing coupled to genomic capture enabled the identification of 474 regions that are differentially methylated during nodule development, including nodule-specific cysteine-rich peptide genes. Decreasing DME expression by RNA interference led to hypermethylation and concomitant downregulation of 400 genes, most of them associated with nodule differentiation. Massive reprogramming of gene expression through DNA demethylation is a new epigenetic mechanism controlling a key stage of indeterminate nodule organogenesis during symbiotic interactions.
Collapse
Affiliation(s)
- Carine Satgé
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Sandra Moreau
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Erika Sallet
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Gaëlle Lefort
- MIAT, Université de Toulouse, Plate-forme Bio-informatique Genotoul, INRA, Castanet-Tolosan, France
| | | | - Céline Remblière
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Ludovic Cottret
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Karine Gallardo
- INRA, UMR 1347 Agroécologie, BP 86510, Dijon F-21000, France
| | - Céline Noirot
- MIAT, Université de Toulouse, Plate-forme Bio-informatique Genotoul, INRA, Castanet-Tolosan, France
| | - Marie-Françoise Jardinaud
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
- INPT-Université de Toulouse, ENSAT, Avenue de l'Agrobiopole, Castanet-Tolosan, France
| | - Pascal Gamas
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| |
Collapse
|
102
|
Gemperline E, Keller C, Jayaraman D, Maeda J, Sussman MR, Ané JM, Li L. Examination of Endogenous Peptides in Medicago truncatula Using Mass Spectrometry Imaging. J Proteome Res 2016; 15:4403-4411. [PMID: 27726374 DOI: 10.1021/acs.jproteome.6b00471] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plant science is an important, rapidly developing area of study. Within plant science, one area of study that has grown tremendously with recent technological advances, such as mass spectrometry, is the field of plant-omics; however, plant peptidomics is relatively underdeveloped in comparison with proteomics and metabolomics. Endogenous plant peptides can act as signaling molecules and have been shown to affect cell division, development, nodulation, reproduction, symbiotic associations, and defense reactions. There is a growing need to uncover the role of endogenous peptides on a molecular level. Mass spectrometric imaging (MSI) is a valuable tool for biological analyses as it allows for the detection of thousands of analytes in a single experiment and also displays spatial information for the detected analytes. Despite the prediction of a large number of plant peptides, their detection and imaging with spatial localization and chemical specificity is currently lacking. Here we analyzed the endogenous peptides and proteins in Medicago truncatula using matrix-assisted laser desorption/ionization (MALDI)-MSI. Hundreds of endogenous peptides and protein fragments were imaged, with interesting peptide spatial distribution changes observed between plants in different developmental stages.
Collapse
Affiliation(s)
- Erin Gemperline
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Dhileepkumar Jayaraman
- Department of Agronomy, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Junko Maeda
- Department of Agronomy, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Michael R Sussman
- Department of Biochemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Bacteriology, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| |
Collapse
|
103
|
Wang C, Yu H, Luo L, Duan L, Cai L, He X, Wen J, Mysore KS, Li G, Xiao A, Duanmu D, Cao Y, Hong Z, Zhang Z. NODULES WITH ACTIVATED DEFENSE 1 is required for maintenance of rhizobial endosymbiosis in Medicago truncatula. THE NEW PHYTOLOGIST 2016; 212:176-91. [PMID: 27245091 DOI: 10.1111/nph.14017] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/13/2016] [Indexed: 05/27/2023]
Abstract
The symbiotic interaction between legume plants and rhizobia results in the formation of root nodules, in which symbiotic plant cells host and harbor thousands of nitrogen-fixing rhizobia. Here, a Medicago truncatula nodules with activated defense 1 (nad1) mutant was identified using reverse genetics methods. The mutant phenotype was characterized using cell and molecular biology approaches. An RNA-sequencing technique was used to analyze the transcriptomic reprogramming of nad1 mutant nodules. In the nad1 mutant plants, rhizobial infection and propagation in infection threads are normal, whereas rhizobia and their symbiotic plant cells become necrotic immediately after rhizobia are released from infection threads into symbiotic cells of nodules. Defense-associated responses were detected in nad1 nodules. NAD1 is specifically present in root nodule symbiosis plants with the exception of Morus notabilis, and the transcript is highly induced in nodules. NAD1 encodes a small uncharacterized protein with two predicted transmembrane helices and is localized at the endoplasmic reticulum. Our data demonstrate a positive role for NAD1 in the maintenance of rhizobial endosymbiosis during nodulation.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haixiang Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li Luo
- Shanghai Key Lab of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Liujian Duan
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liuyang Cai
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinxing He
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiangqi Wen
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aifang Xiao
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yangrong Cao
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zonglie Hong
- Department of Plant, Soil and Entomological Sciences and Program of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID, 83844, USA
| | - Zhongming Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
104
|
Disulfide cross-linking influences symbiotic activities of nodule peptide NCR247. Proc Natl Acad Sci U S A 2016; 113:10157-62. [PMID: 27551097 DOI: 10.1073/pnas.1610724113] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Interactions of rhizobia with legumes establish the chronic intracellular infection that underlies symbiosis. Within nodules of inverted repeat-lacking clade (IRLC) legumes, rhizobia differentiate into nitrogen-fixing bacteroids. This terminal differentiation is driven by host nodule-specific cysteine-rich (NCR) peptides that orchestrate the adaptation of free-living bacteria into intracellular residents. Medicago truncatula encodes a family of >700 NCR peptides that have conserved cysteine motifs. NCR247 is a cationic peptide with four cysteines that can form two intramolecular disulfide bonds in the oxidized forms. This peptide affects Sinorhizobium meliloti transcription, translation, and cell division at low concentrations and is antimicrobial at higher concentrations. By preparing the three possible disulfide-cross-linked NCR247 regioisomers, the reduced peptide, and a variant lacking cysteines, we performed a systematic study of the effects of intramolecular disulfide cross-linking and cysteines on the activities of an NCR peptide. The relative activities of the five NCR247 variants differed strikingly among the various bioassays, suggesting that the NCR peptide-based language used by plants to control the development of their bacterial partners during symbiosis is even greater than previously recognized. These patterns indicate that certain NCR bioactivities require cysteines whereas others do not. The results also suggest that NCR247 may exert some of its effects within the cell envelope whereas other activities occur in the cytoplasm. BacA, a membrane protein that is critical for symbiosis, provides protection against all bactericidal forms of NCR247. Oxidative folding protects NCR247 from degradation by the symbiotically relevant metalloprotease HrrP (host range restriction peptidase), suggesting that disulfide bond formation may additionally stabilize NCR peptides during symbiosis.
Collapse
|
105
|
Alunni B, Gourion B. Terminal bacteroid differentiation in the legume-rhizobium symbiosis: nodule-specific cysteine-rich peptides and beyond. THE NEW PHYTOLOGIST 2016; 211:411-7. [PMID: 27241115 DOI: 10.1111/nph.14025] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/14/2016] [Indexed: 05/06/2023]
Abstract
Contents 411 I. 411 II. 412 III. 412 IV. 413 V. 414 VI. 414 VII. 415 VIII. 415 416 References 416 SUMMARY: Terminal bacteroid differentiation (TBD) is a remarkable case of bacterial cell differentiation that occurs after rhizobia are released intracellularly within plant cells of symbiotic legume organs called nodules. The hallmarks of TBD are cell enlargement, genome amplification and membrane permeabilization. This plant-driven process is governed by a large family of bacteroid-targeted nodule-specific cysteine-rich (NCR) peptides that were until recently thought to be restricted to a specific lineage of the legume family, including the model plant Medicago truncatula. Recently, new plant and bacterial factors involved in TBD have been identified, challenging our view of this phenomenon at mechanistic and evolutionary levels. Here, we review the recent literature and discuss emerging questions about the mechanisms and the role(s) of TBD.
Collapse
Affiliation(s)
- Benoît Alunni
- Institute for Integrative Biology of the Cell, UMR 9198, CNRS/Université Paris-Sud/CEA, Gif-sur-Yvette, France
| | - Benjamin Gourion
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
106
|
Kitaeva AB, Demchenko KN, Tikhonovich IA, Timmers ACJ, Tsyganov VE. Comparative analysis of the tubulin cytoskeleton organization in nodules of Medicago truncatula and Pisum sativum: bacterial release and bacteroid positioning correlate with characteristic microtubule rearrangements. THE NEW PHYTOLOGIST 2016; 210:168-83. [PMID: 26682876 DOI: 10.1111/nph.13792] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/06/2015] [Indexed: 05/23/2023]
Abstract
In this study we analyzed and compared the organization of the tubulin cytoskeleton in nodules of Medicago truncatula and Pisum sativum. We combined antibody labeling and green fluorescent protein tagging with laser confocal microscopy to observe microtubules (MTs) in nodules of both wild-type (WT) plants and symbiotic plant mutants blocked at different steps of nodule development. The 3D MT organization of each histological nodule zone in both M. truncatula and P. sativum is correlated to specific developmental processes. Endoplasmic MTs appear to support infection thread growth, infection droplet formation and bacterial release into the host cytoplasm in nodules of both species. No differences in the organization of the MT cytoskeleton between WT and bacterial release mutants were apparent, suggesting both that the phenotype is not linked to a defect in MT organization and that the growth of hypertrophied infection threads is supported by MTs. Strikingly, bacterial release coincides with a change in the organization of cortical MTs from parallel arrays into an irregular, crisscross arrangement. After release, the organization of endoplasmic MTs is linked to the distribution of symbiosomes. The 3D MT organization of each nodule histological zone in M. truncatula and P. sativum was analyzed and linked to specific developmental processes.
Collapse
Affiliation(s)
- Anna B Kitaeva
- Laboratory of Molecular and Cellular Biology, All-Russia Research Institute for Agricultural Microbiology, Podbelsky chaussee 3, Pushkin 8, 196608, Saint-Petersburg, Russia
| | - Kirill N Demchenko
- Laboratory of Molecular and Cellular Biology, All-Russia Research Institute for Agricultural Microbiology, Podbelsky chaussee 3, Pushkin 8, 196608, Saint-Petersburg, Russia
- Laboratory of Anatomy and Morphology, Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popov street 2, 197376, Saint-Petersburg, Russia
| | - Igor A Tikhonovich
- Laboratory of Molecular and Cellular Biology, All-Russia Research Institute for Agricultural Microbiology, Podbelsky chaussee 3, Pushkin 8, 196608, Saint-Petersburg, Russia
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034, Saint-Petersburg, Russia
| | - Antonius C J Timmers
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), INRA, UMR441, F-31326, Castanet-Tolosan, France
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), CNRS, UMR2594, F-31326, Castanet-Tolosan, France
| | - Viktor E Tsyganov
- Laboratory of Molecular and Cellular Biology, All-Russia Research Institute for Agricultural Microbiology, Podbelsky chaussee 3, Pushkin 8, 196608, Saint-Petersburg, Russia
| |
Collapse
|
107
|
Dagdas YF, Belhaj K, Maqbool A, Chaparro-Garcia A, Pandey P, Petre B, Tabassum N, Cruz-Mireles N, Hughes RK, Sklenar J, Win J, Menke F, Findlay K, Banfield MJ, Kamoun S, Bozkurt TO. An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. eLife 2016; 5. [PMID: 26765567 PMCID: PMC4775223 DOI: 10.7554/elife.10856] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 01/13/2016] [Indexed: 12/11/2022] Open
Abstract
Plants use autophagy to safeguard against infectious diseases. However, how plant pathogens interfere with autophagy-related processes is unknown. Here, we show that PexRD54, an effector from the Irish potato famine pathogen Phytophthora infestans, binds host autophagy protein ATG8CL to stimulate autophagosome formation. PexRD54 depletes the autophagy cargo receptor Joka2 out of ATG8CL complexes and interferes with Joka2's positive effect on pathogen defense. Thus, a plant pathogen effector has evolved to antagonize a host autophagy cargo receptor to counteract host defenses. DOI:http://dx.doi.org/10.7554/eLife.10856.001 Plants and other living organisms can survive stress and starvation by digesting and recycling parts of their own cells. This process is known as autophagy and it involves engulfing cellular material inside spherical structures called autophagosomes, before delivering it to sites in the cell where digestive enzymes can break the material down. A form of autophagy, known as selective autophagy, can specifically degrade toxic substances such as disease-causing microbes. Selective autophagy works through proteins called autophagy cargo receptors that define which molecules are targeted for degradation. However, it was not clear whether autophagy protects plants from infections, or how much disease-causing microbes interfere with this process for their own benefit. The microbe that causes late blight of potatoes (called Phytophthora infestans) is infamous for triggering widespread famines in Ireland in the 19th century. This disease-causing microbe continues to pose a serious threat to food security today, and parasitizes plant tissues by releasing proteins called effectors that enter the plant’s cells to subvert the plant’s physiology and counteract its defenses. Dagdas, Belhaj et al. now report that an effector from P. infestans, called PexRD54, can bind to autophagy-related protein from potato, called ATG8CL, and stimulate the formation of autophagosomes. Further experiments revealed that the PexRD54 effector could outcompete a plant autophagy cargo receptor that would otherwise bind to ATG8CL. This plant cargo receptor contributes to the plant’s defences, and by preventing it from interacting with ATG8CL, PexRD54 makes the plant more susceptible to infection by P. infestans. These findings show that the PexRD54 effector has evolved to interact with an autophagy-related protein to counteract the plant’s defences. Dagdas, Belhaj et al. suggest that PexRD54 might do this by activating autophagy to selectively eliminate some of the molecules that the plant use to defend itself. Furthermore, P. infestans might also benefit from the nutrients that are released when cellular material is broken down via autophagy. Future work could test these two hypotheses and explore whether other effectors from disease-causing microbes work in a similar way. DOI:http://dx.doi.org/10.7554/eLife.10856.002
Collapse
Affiliation(s)
| | | | - Abbas Maqbool
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | | | - Pooja Pandey
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Nadra Tabassum
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Richard K Hughes
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Jan Sklenar
- The Sainsbury Laboratory, Norwich, United Kingdom
| | - Joe Win
- The Sainsbury Laboratory, Norwich, United Kingdom
| | - Frank Menke
- The Sainsbury Laboratory, Norwich, United Kingdom
| | - Kim Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | | | - Tolga O Bozkurt
- The Sainsbury Laboratory, Norwich, United Kingdom.,Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
108
|
Pan H, Oztas O, Zhang X, Wu X, Stonoha C, Wang E, Wang B, Wang D. A symbiotic SNARE protein generated by alternative termination of transcription. NATURE PLANTS 2016; 2:15197. [PMID: 27249189 DOI: 10.1038/nplants.2015.197] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 11/13/2015] [Indexed: 05/08/2023]
Abstract
Many microbes interact with their hosts across a membrane interface, which is often distinct from existing membranes. Understanding how this interface acquires its identity has significant implications. In the symbiosis between legumes and rhizobia, the symbiosome encases the intracellular bacteria and receives host secretory proteins important for bacterial development. We show that the Medicago truncatula SYNTAXIN 132 (SYP132) gene undergoes alternative cleavage and polyadenylation during transcription, giving rise to two target-membrane soluble NSF attachment protein receptor (t-SNARE) isoforms. One of these isoforms, SYP132A, is induced during the symbiosis, is able to localize to the peribacteroid membrane, and is required for the maturation of symbiosomes into functional forms. The second isoform, SYP132C, has important functions unrelated to symbiosis. The SYP132A sequence is broadly found in flowering plants that form arbuscular mycorrhizal symbiosis, an ancestral mutualism between soil fungi and most land plants. SYP132A silencing severely inhibited arbuscule colonization, indicating that SYP132A is an ancient factor specifying plant-microbe interfaces.
Collapse
Affiliation(s)
- Huairong Pan
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Massachusetts 01003, USA
| | - Onur Oztas
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Massachusetts 01003, USA
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoyi Wu
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Christina Stonoha
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Massachusetts 01003, USA
- Plant Biology Graduate Program, University of Massachusetts Amherst, Massachusetts 01003, USA
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Bin Wang
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Dong Wang
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Massachusetts 01003, USA
| |
Collapse
|
109
|
Geddes BA, Oresnik IJ. The Mechanism of Symbiotic Nitrogen Fixation. ADVANCES IN ENVIRONMENTAL MICROBIOLOGY 2016. [DOI: 10.1007/978-3-319-28068-4_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
110
|
Kang Y, Li M, Sinharoy S, Verdier J. A Snapshot of Functional Genetic Studies in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2016; 7:1175. [PMID: 27555857 PMCID: PMC4977297 DOI: 10.3389/fpls.2016.01175] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/21/2016] [Indexed: 05/21/2023]
Abstract
In the current context of food security, increase of plant protein production in a sustainable manner represents one of the major challenges of agronomic research, which could be partially resolved by increased cultivation of legume crops. Medicago truncatula is now a well-established model for legume genomic and genetic studies. With the establishment of genomics tools and mutant populations in M. truncatula, it has become an important resource to answer some of the basic biological questions related to plant development and stress tolerance. This review has an objective to overview a decade of genetic studies in this model plant from generation of mutant populations to nowadays. To date, the three biological fields, which have been extensively studied in M. truncatula, are the symbiotic nitrogen fixation, the seed development, and the abiotic stress tolerance, due to their significant agronomic impacts. In this review, we summarize functional genetic studies related to these three major biological fields. We integrated analyses of a nearly exhaustive list of genes into their biological contexts in order to provide an overview of the forefront research advances in this important legume model plant.
Collapse
Affiliation(s)
- Yun Kang
- Plant Biology Division, The Samuel Roberts Noble FoundationArdmore, OK, USA
| | - Minguye Li
- University of Chinese Academy of SciencesBeijing, China
- Shanghai Plant Stress Center, Shanghai Institutes of Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Senjuti Sinharoy
- Department of Biotechnology, University of CalcuttaCalcutta, India
| | - Jerome Verdier
- Shanghai Plant Stress Center, Shanghai Institutes of Biological Sciences, Chinese Academy of SciencesShanghai, China
- *Correspondence: Jerome Verdier
| |
Collapse
|
111
|
Guinel FC. Ethylene, a Hormone at the Center-Stage of Nodulation. FRONTIERS IN PLANT SCIENCE 2015; 6:1121. [PMID: 26834752 PMCID: PMC4714629 DOI: 10.3389/fpls.2015.01121] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/26/2015] [Indexed: 05/19/2023]
Abstract
Nodulation is the result of a beneficial interaction between legumes and rhizobia. It is a sophisticated process leading to nutrient exchange between the two types of symbionts. In this association, within a nodule, the rhizobia, using energy provided as photosynthates, fix atmospheric nitrogen and convert it to ammonium which is available to the plant. Nodulation is recognized as an essential process in nitrogen cycling and legume crops are known to enrich agricultural soils in nitrogenous compounds. Furthermore, as they are rich in nitrogen, legumes are considered important as staple foods for humans and fodder for animals. To tightly control this association and keep it mutualistic, the plant uses several means, including hormones. The hormone ethylene has been known as a negative regulator of nodulation for almost four decades. Since then, much progress has been made in the understanding of both the ethylene signaling pathway and the nodulation process. Here I have taken a large view, using recently obtained knowledge, to describe in some detail the major stages of the process. I have not only reviewed the steps most commonly covered (the common signaling transduction pathway, and the epidermal and cortical programs), but I have also looked into steps less understood (the pre-infection step with the plant defense response, the bacterial release and the formation of the symbiosome, and nodule functioning and senescence). After a succinct review of the ethylene signaling pathway, I have used the knowledge obtained from nodulation- and ethylene-related mutants to paint a more complete picture of the role played by the hormone in nodule organogenesis, functioning, and senescence. It transpires that ethylene is at the center of this effective symbiosis. It has not only been involved in most of the steps leading to a mature nodule, but it has also been implicated in host immunity and nodule senescence. It is likely responsible for the activation of other hormonal signaling pathways. I have completed the review by citing three studies which makes one wonder whether knowledge gained on nodulation in the last decades is ready to be transferred to agricultural fields.
Collapse
|
112
|
An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis. Proc Natl Acad Sci U S A 2015; 112:15238-43. [PMID: 26598690 DOI: 10.1073/pnas.1500123112] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the nitrogen-fixing symbiosis between legume hosts and rhizobia, the bacteria are engulfed by a plant cell membrane to become intracellular organelles. In the model legume Medicago truncatula, internalization and differentiation of Sinorhizobium (also known as Ensifer) meliloti is a prerequisite for nitrogen fixation. The host mechanisms that ensure the long-term survival of differentiating intracellular bacteria (bacteroids) in this unusual association are unclear. The M. truncatula defective nitrogen fixation4 (dnf4) mutant is unable to form a productive symbiosis, even though late symbiotic marker genes are expressed in mutant nodules. We discovered that in the dnf4 mutant, bacteroids can apparently differentiate, but they fail to persist within host cells in the process. We found that the DNF4 gene encodes NCR211, a member of the family of nodule-specific cysteine-rich (NCR) peptides. The phenotype of dnf4 suggests that NCR211 acts to promote the intracellular survival of differentiating bacteroids. The greatest expression of DNF4 was observed in the nodule interzone II-III, where bacteroids undergo differentiation. A translational fusion of DNF4 with GFP localizes to the peribacteroid space, and synthetic NCR211 prevents free-living S. meliloti from forming colonies, in contrast to mock controls, suggesting that DNF4 may interact with bacteroids directly or indirectly for its function. Our findings indicate that a successful symbiosis requires host effectors that not only induce bacterial differentiation, but also that maintain intracellular bacteroids during the host-symbiont interaction. The discovery of NCR211 peptides that maintain bacterial survival inside host cells has important implications for improving legume crops.
Collapse
|
113
|
Czernic P, Gully D, Cartieaux F, Moulin L, Guefrachi I, Patrel D, Pierre O, Fardoux J, Chaintreuil C, Nguyen P, Gressent F, Da Silva C, Poulain J, Wincker P, Rofidal V, Hem S, Barrière Q, Arrighi JF, Mergaert P, Giraud E. Convergent Evolution of Endosymbiont Differentiation in Dalbergioid and Inverted Repeat-Lacking Clade Legumes Mediated by Nodule-Specific Cysteine-Rich Peptides. PLANT PHYSIOLOGY 2015; 169:1254-65. [PMID: 26286718 PMCID: PMC4587450 DOI: 10.1104/pp.15.00584] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/17/2015] [Indexed: 05/21/2023]
Abstract
Nutritional symbiotic interactions require the housing of large numbers of microbial symbionts, which produce essential compounds for the growth of the host. In the legume-rhizobium nitrogen-fixing symbiosis, thousands of rhizobium microsymbionts, called bacteroids, are confined intracellularly within highly specialized symbiotic host cells. In Inverted Repeat-Lacking Clade (IRLC) legumes such as Medicago spp., the bacteroids are kept under control by an arsenal of nodule-specific cysteine-rich (NCR) peptides, which induce the bacteria in an irreversible, strongly elongated, and polyploid state. Here, we show that in Aeschynomene spp. legumes belonging to the more ancient Dalbergioid lineage, bacteroids are elongated or spherical depending on the Aeschynomene spp. and that these bacteroids are terminally differentiated and polyploid, similar to bacteroids in IRLC legumes. Transcriptome, in situ hybridization, and proteome analyses demonstrated that the symbiotic cells in the Aeschynomene spp. nodules produce a large diversity of NCR-like peptides, which are transported to the bacteroids. Blocking NCR transport by RNA interference-mediated inactivation of the secretory pathway inhibits bacteroid differentiation. Together, our results support the view that bacteroid differentiation in the Dalbergioid clade, which likely evolved independently from the bacteroid differentiation in the IRLC clade, is based on very similar mechanisms used by IRLC legumes.
Collapse
Affiliation(s)
- Pierre Czernic
- Université de Montpellier, F-34095 Montpellier cedex 5, France (P.C.);Institut de Recherche pour le Développement, Laboratoire des Symbioses Tropicales et Méditerranéennes, Unité Mixte de Recherche Institut de Recherche pour le Développement/SupAgro/Institut National de la Recherche Agronomique/Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, 34398 Montpellier cedex 5, France (D.G., F.C., L.M., D.P., J.F., C.C., P.N., F.G., J.-F.A., E.G.);Institute for Integrative Biology of the Cell, Unité Mixte de Recherche 9198, Centre National de la Recherche Scientifique/Université Paris-Sud/Commissariat à l'Energie Atomique, 91198 Gif-sur-Yvette, France (I.G., O.P., Q.B., P.M.);Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Génomique, Génoscope, 91000 Evry, France (C.D.S., J.P., P.W.); andLaboratoire de Protéomique Fonctionnelle, Institut National de la Recherche Agronomique, Unité de Recherche 1199, 34060 Montpellier, France (V.R., S.H.)
| | - Djamel Gully
- Université de Montpellier, F-34095 Montpellier cedex 5, France (P.C.);Institut de Recherche pour le Développement, Laboratoire des Symbioses Tropicales et Méditerranéennes, Unité Mixte de Recherche Institut de Recherche pour le Développement/SupAgro/Institut National de la Recherche Agronomique/Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, 34398 Montpellier cedex 5, France (D.G., F.C., L.M., D.P., J.F., C.C., P.N., F.G., J.-F.A., E.G.);Institute for Integrative Biology of the Cell, Unité Mixte de Recherche 9198, Centre National de la Recherche Scientifique/Université Paris-Sud/Commissariat à l'Energie Atomique, 91198 Gif-sur-Yvette, France (I.G., O.P., Q.B., P.M.);Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Génomique, Génoscope, 91000 Evry, France (C.D.S., J.P., P.W.); andLaboratoire de Protéomique Fonctionnelle, Institut National de la Recherche Agronomique, Unité de Recherche 1199, 34060 Montpellier, France (V.R., S.H.)
| | - Fabienne Cartieaux
- Université de Montpellier, F-34095 Montpellier cedex 5, France (P.C.);Institut de Recherche pour le Développement, Laboratoire des Symbioses Tropicales et Méditerranéennes, Unité Mixte de Recherche Institut de Recherche pour le Développement/SupAgro/Institut National de la Recherche Agronomique/Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, 34398 Montpellier cedex 5, France (D.G., F.C., L.M., D.P., J.F., C.C., P.N., F.G., J.-F.A., E.G.);Institute for Integrative Biology of the Cell, Unité Mixte de Recherche 9198, Centre National de la Recherche Scientifique/Université Paris-Sud/Commissariat à l'Energie Atomique, 91198 Gif-sur-Yvette, France (I.G., O.P., Q.B., P.M.);Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Génomique, Génoscope, 91000 Evry, France (C.D.S., J.P., P.W.); andLaboratoire de Protéomique Fonctionnelle, Institut National de la Recherche Agronomique, Unité de Recherche 1199, 34060 Montpellier, France (V.R., S.H.)
| | - Lionel Moulin
- Université de Montpellier, F-34095 Montpellier cedex 5, France (P.C.);Institut de Recherche pour le Développement, Laboratoire des Symbioses Tropicales et Méditerranéennes, Unité Mixte de Recherche Institut de Recherche pour le Développement/SupAgro/Institut National de la Recherche Agronomique/Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, 34398 Montpellier cedex 5, France (D.G., F.C., L.M., D.P., J.F., C.C., P.N., F.G., J.-F.A., E.G.);Institute for Integrative Biology of the Cell, Unité Mixte de Recherche 9198, Centre National de la Recherche Scientifique/Université Paris-Sud/Commissariat à l'Energie Atomique, 91198 Gif-sur-Yvette, France (I.G., O.P., Q.B., P.M.);Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Génomique, Génoscope, 91000 Evry, France (C.D.S., J.P., P.W.); andLaboratoire de Protéomique Fonctionnelle, Institut National de la Recherche Agronomique, Unité de Recherche 1199, 34060 Montpellier, France (V.R., S.H.)
| | - Ibtissem Guefrachi
- Université de Montpellier, F-34095 Montpellier cedex 5, France (P.C.);Institut de Recherche pour le Développement, Laboratoire des Symbioses Tropicales et Méditerranéennes, Unité Mixte de Recherche Institut de Recherche pour le Développement/SupAgro/Institut National de la Recherche Agronomique/Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, 34398 Montpellier cedex 5, France (D.G., F.C., L.M., D.P., J.F., C.C., P.N., F.G., J.-F.A., E.G.);Institute for Integrative Biology of the Cell, Unité Mixte de Recherche 9198, Centre National de la Recherche Scientifique/Université Paris-Sud/Commissariat à l'Energie Atomique, 91198 Gif-sur-Yvette, France (I.G., O.P., Q.B., P.M.);Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Génomique, Génoscope, 91000 Evry, France (C.D.S., J.P., P.W.); andLaboratoire de Protéomique Fonctionnelle, Institut National de la Recherche Agronomique, Unité de Recherche 1199, 34060 Montpellier, France (V.R., S.H.)
| | - Delphine Patrel
- Université de Montpellier, F-34095 Montpellier cedex 5, France (P.C.);Institut de Recherche pour le Développement, Laboratoire des Symbioses Tropicales et Méditerranéennes, Unité Mixte de Recherche Institut de Recherche pour le Développement/SupAgro/Institut National de la Recherche Agronomique/Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, 34398 Montpellier cedex 5, France (D.G., F.C., L.M., D.P., J.F., C.C., P.N., F.G., J.-F.A., E.G.);Institute for Integrative Biology of the Cell, Unité Mixte de Recherche 9198, Centre National de la Recherche Scientifique/Université Paris-Sud/Commissariat à l'Energie Atomique, 91198 Gif-sur-Yvette, France (I.G., O.P., Q.B., P.M.);Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Génomique, Génoscope, 91000 Evry, France (C.D.S., J.P., P.W.); andLaboratoire de Protéomique Fonctionnelle, Institut National de la Recherche Agronomique, Unité de Recherche 1199, 34060 Montpellier, France (V.R., S.H.)
| | - Olivier Pierre
- Université de Montpellier, F-34095 Montpellier cedex 5, France (P.C.);Institut de Recherche pour le Développement, Laboratoire des Symbioses Tropicales et Méditerranéennes, Unité Mixte de Recherche Institut de Recherche pour le Développement/SupAgro/Institut National de la Recherche Agronomique/Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, 34398 Montpellier cedex 5, France (D.G., F.C., L.M., D.P., J.F., C.C., P.N., F.G., J.-F.A., E.G.);Institute for Integrative Biology of the Cell, Unité Mixte de Recherche 9198, Centre National de la Recherche Scientifique/Université Paris-Sud/Commissariat à l'Energie Atomique, 91198 Gif-sur-Yvette, France (I.G., O.P., Q.B., P.M.);Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Génomique, Génoscope, 91000 Evry, France (C.D.S., J.P., P.W.); andLaboratoire de Protéomique Fonctionnelle, Institut National de la Recherche Agronomique, Unité de Recherche 1199, 34060 Montpellier, France (V.R., S.H.)
| | - Joël Fardoux
- Université de Montpellier, F-34095 Montpellier cedex 5, France (P.C.);Institut de Recherche pour le Développement, Laboratoire des Symbioses Tropicales et Méditerranéennes, Unité Mixte de Recherche Institut de Recherche pour le Développement/SupAgro/Institut National de la Recherche Agronomique/Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, 34398 Montpellier cedex 5, France (D.G., F.C., L.M., D.P., J.F., C.C., P.N., F.G., J.-F.A., E.G.);Institute for Integrative Biology of the Cell, Unité Mixte de Recherche 9198, Centre National de la Recherche Scientifique/Université Paris-Sud/Commissariat à l'Energie Atomique, 91198 Gif-sur-Yvette, France (I.G., O.P., Q.B., P.M.);Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Génomique, Génoscope, 91000 Evry, France (C.D.S., J.P., P.W.); andLaboratoire de Protéomique Fonctionnelle, Institut National de la Recherche Agronomique, Unité de Recherche 1199, 34060 Montpellier, France (V.R., S.H.)
| | - Clémence Chaintreuil
- Université de Montpellier, F-34095 Montpellier cedex 5, France (P.C.);Institut de Recherche pour le Développement, Laboratoire des Symbioses Tropicales et Méditerranéennes, Unité Mixte de Recherche Institut de Recherche pour le Développement/SupAgro/Institut National de la Recherche Agronomique/Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, 34398 Montpellier cedex 5, France (D.G., F.C., L.M., D.P., J.F., C.C., P.N., F.G., J.-F.A., E.G.);Institute for Integrative Biology of the Cell, Unité Mixte de Recherche 9198, Centre National de la Recherche Scientifique/Université Paris-Sud/Commissariat à l'Energie Atomique, 91198 Gif-sur-Yvette, France (I.G., O.P., Q.B., P.M.);Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Génomique, Génoscope, 91000 Evry, France (C.D.S., J.P., P.W.); andLaboratoire de Protéomique Fonctionnelle, Institut National de la Recherche Agronomique, Unité de Recherche 1199, 34060 Montpellier, France (V.R., S.H.)
| | - Phuong Nguyen
- Université de Montpellier, F-34095 Montpellier cedex 5, France (P.C.);Institut de Recherche pour le Développement, Laboratoire des Symbioses Tropicales et Méditerranéennes, Unité Mixte de Recherche Institut de Recherche pour le Développement/SupAgro/Institut National de la Recherche Agronomique/Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, 34398 Montpellier cedex 5, France (D.G., F.C., L.M., D.P., J.F., C.C., P.N., F.G., J.-F.A., E.G.);Institute for Integrative Biology of the Cell, Unité Mixte de Recherche 9198, Centre National de la Recherche Scientifique/Université Paris-Sud/Commissariat à l'Energie Atomique, 91198 Gif-sur-Yvette, France (I.G., O.P., Q.B., P.M.);Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Génomique, Génoscope, 91000 Evry, France (C.D.S., J.P., P.W.); andLaboratoire de Protéomique Fonctionnelle, Institut National de la Recherche Agronomique, Unité de Recherche 1199, 34060 Montpellier, France (V.R., S.H.)
| | - Frédéric Gressent
- Université de Montpellier, F-34095 Montpellier cedex 5, France (P.C.);Institut de Recherche pour le Développement, Laboratoire des Symbioses Tropicales et Méditerranéennes, Unité Mixte de Recherche Institut de Recherche pour le Développement/SupAgro/Institut National de la Recherche Agronomique/Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, 34398 Montpellier cedex 5, France (D.G., F.C., L.M., D.P., J.F., C.C., P.N., F.G., J.-F.A., E.G.);Institute for Integrative Biology of the Cell, Unité Mixte de Recherche 9198, Centre National de la Recherche Scientifique/Université Paris-Sud/Commissariat à l'Energie Atomique, 91198 Gif-sur-Yvette, France (I.G., O.P., Q.B., P.M.);Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Génomique, Génoscope, 91000 Evry, France (C.D.S., J.P., P.W.); andLaboratoire de Protéomique Fonctionnelle, Institut National de la Recherche Agronomique, Unité de Recherche 1199, 34060 Montpellier, France (V.R., S.H.)
| | - Corinne Da Silva
- Université de Montpellier, F-34095 Montpellier cedex 5, France (P.C.);Institut de Recherche pour le Développement, Laboratoire des Symbioses Tropicales et Méditerranéennes, Unité Mixte de Recherche Institut de Recherche pour le Développement/SupAgro/Institut National de la Recherche Agronomique/Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, 34398 Montpellier cedex 5, France (D.G., F.C., L.M., D.P., J.F., C.C., P.N., F.G., J.-F.A., E.G.);Institute for Integrative Biology of the Cell, Unité Mixte de Recherche 9198, Centre National de la Recherche Scientifique/Université Paris-Sud/Commissariat à l'Energie Atomique, 91198 Gif-sur-Yvette, France (I.G., O.P., Q.B., P.M.);Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Génomique, Génoscope, 91000 Evry, France (C.D.S., J.P., P.W.); andLaboratoire de Protéomique Fonctionnelle, Institut National de la Recherche Agronomique, Unité de Recherche 1199, 34060 Montpellier, France (V.R., S.H.)
| | - Julie Poulain
- Université de Montpellier, F-34095 Montpellier cedex 5, France (P.C.);Institut de Recherche pour le Développement, Laboratoire des Symbioses Tropicales et Méditerranéennes, Unité Mixte de Recherche Institut de Recherche pour le Développement/SupAgro/Institut National de la Recherche Agronomique/Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, 34398 Montpellier cedex 5, France (D.G., F.C., L.M., D.P., J.F., C.C., P.N., F.G., J.-F.A., E.G.);Institute for Integrative Biology of the Cell, Unité Mixte de Recherche 9198, Centre National de la Recherche Scientifique/Université Paris-Sud/Commissariat à l'Energie Atomique, 91198 Gif-sur-Yvette, France (I.G., O.P., Q.B., P.M.);Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Génomique, Génoscope, 91000 Evry, France (C.D.S., J.P., P.W.); andLaboratoire de Protéomique Fonctionnelle, Institut National de la Recherche Agronomique, Unité de Recherche 1199, 34060 Montpellier, France (V.R., S.H.)
| | - Patrick Wincker
- Université de Montpellier, F-34095 Montpellier cedex 5, France (P.C.);Institut de Recherche pour le Développement, Laboratoire des Symbioses Tropicales et Méditerranéennes, Unité Mixte de Recherche Institut de Recherche pour le Développement/SupAgro/Institut National de la Recherche Agronomique/Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, 34398 Montpellier cedex 5, France (D.G., F.C., L.M., D.P., J.F., C.C., P.N., F.G., J.-F.A., E.G.);Institute for Integrative Biology of the Cell, Unité Mixte de Recherche 9198, Centre National de la Recherche Scientifique/Université Paris-Sud/Commissariat à l'Energie Atomique, 91198 Gif-sur-Yvette, France (I.G., O.P., Q.B., P.M.);Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Génomique, Génoscope, 91000 Evry, France (C.D.S., J.P., P.W.); andLaboratoire de Protéomique Fonctionnelle, Institut National de la Recherche Agronomique, Unité de Recherche 1199, 34060 Montpellier, France (V.R., S.H.)
| | - Valérie Rofidal
- Université de Montpellier, F-34095 Montpellier cedex 5, France (P.C.);Institut de Recherche pour le Développement, Laboratoire des Symbioses Tropicales et Méditerranéennes, Unité Mixte de Recherche Institut de Recherche pour le Développement/SupAgro/Institut National de la Recherche Agronomique/Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, 34398 Montpellier cedex 5, France (D.G., F.C., L.M., D.P., J.F., C.C., P.N., F.G., J.-F.A., E.G.);Institute for Integrative Biology of the Cell, Unité Mixte de Recherche 9198, Centre National de la Recherche Scientifique/Université Paris-Sud/Commissariat à l'Energie Atomique, 91198 Gif-sur-Yvette, France (I.G., O.P., Q.B., P.M.);Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Génomique, Génoscope, 91000 Evry, France (C.D.S., J.P., P.W.); andLaboratoire de Protéomique Fonctionnelle, Institut National de la Recherche Agronomique, Unité de Recherche 1199, 34060 Montpellier, France (V.R., S.H.)
| | - Sonia Hem
- Université de Montpellier, F-34095 Montpellier cedex 5, France (P.C.);Institut de Recherche pour le Développement, Laboratoire des Symbioses Tropicales et Méditerranéennes, Unité Mixte de Recherche Institut de Recherche pour le Développement/SupAgro/Institut National de la Recherche Agronomique/Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, 34398 Montpellier cedex 5, France (D.G., F.C., L.M., D.P., J.F., C.C., P.N., F.G., J.-F.A., E.G.);Institute for Integrative Biology of the Cell, Unité Mixte de Recherche 9198, Centre National de la Recherche Scientifique/Université Paris-Sud/Commissariat à l'Energie Atomique, 91198 Gif-sur-Yvette, France (I.G., O.P., Q.B., P.M.);Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Génomique, Génoscope, 91000 Evry, France (C.D.S., J.P., P.W.); andLaboratoire de Protéomique Fonctionnelle, Institut National de la Recherche Agronomique, Unité de Recherche 1199, 34060 Montpellier, France (V.R., S.H.)
| | - Quentin Barrière
- Université de Montpellier, F-34095 Montpellier cedex 5, France (P.C.);Institut de Recherche pour le Développement, Laboratoire des Symbioses Tropicales et Méditerranéennes, Unité Mixte de Recherche Institut de Recherche pour le Développement/SupAgro/Institut National de la Recherche Agronomique/Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, 34398 Montpellier cedex 5, France (D.G., F.C., L.M., D.P., J.F., C.C., P.N., F.G., J.-F.A., E.G.);Institute for Integrative Biology of the Cell, Unité Mixte de Recherche 9198, Centre National de la Recherche Scientifique/Université Paris-Sud/Commissariat à l'Energie Atomique, 91198 Gif-sur-Yvette, France (I.G., O.P., Q.B., P.M.);Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Génomique, Génoscope, 91000 Evry, France (C.D.S., J.P., P.W.); andLaboratoire de Protéomique Fonctionnelle, Institut National de la Recherche Agronomique, Unité de Recherche 1199, 34060 Montpellier, France (V.R., S.H.)
| | - Jean-François Arrighi
- Université de Montpellier, F-34095 Montpellier cedex 5, France (P.C.);Institut de Recherche pour le Développement, Laboratoire des Symbioses Tropicales et Méditerranéennes, Unité Mixte de Recherche Institut de Recherche pour le Développement/SupAgro/Institut National de la Recherche Agronomique/Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, 34398 Montpellier cedex 5, France (D.G., F.C., L.M., D.P., J.F., C.C., P.N., F.G., J.-F.A., E.G.);Institute for Integrative Biology of the Cell, Unité Mixte de Recherche 9198, Centre National de la Recherche Scientifique/Université Paris-Sud/Commissariat à l'Energie Atomique, 91198 Gif-sur-Yvette, France (I.G., O.P., Q.B., P.M.);Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Génomique, Génoscope, 91000 Evry, France (C.D.S., J.P., P.W.); andLaboratoire de Protéomique Fonctionnelle, Institut National de la Recherche Agronomique, Unité de Recherche 1199, 34060 Montpellier, France (V.R., S.H.)
| | - Peter Mergaert
- Université de Montpellier, F-34095 Montpellier cedex 5, France (P.C.);Institut de Recherche pour le Développement, Laboratoire des Symbioses Tropicales et Méditerranéennes, Unité Mixte de Recherche Institut de Recherche pour le Développement/SupAgro/Institut National de la Recherche Agronomique/Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, 34398 Montpellier cedex 5, France (D.G., F.C., L.M., D.P., J.F., C.C., P.N., F.G., J.-F.A., E.G.);Institute for Integrative Biology of the Cell, Unité Mixte de Recherche 9198, Centre National de la Recherche Scientifique/Université Paris-Sud/Commissariat à l'Energie Atomique, 91198 Gif-sur-Yvette, France (I.G., O.P., Q.B., P.M.);Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Génomique, Génoscope, 91000 Evry, France (C.D.S., J.P., P.W.); andLaboratoire de Protéomique Fonctionnelle, Institut National de la Recherche Agronomique, Unité de Recherche 1199, 34060 Montpellier, France (V.R., S.H.)
| | - Eric Giraud
- Université de Montpellier, F-34095 Montpellier cedex 5, France (P.C.);Institut de Recherche pour le Développement, Laboratoire des Symbioses Tropicales et Méditerranéennes, Unité Mixte de Recherche Institut de Recherche pour le Développement/SupAgro/Institut National de la Recherche Agronomique/Université de Montpellier/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International de Baillarguet, 34398 Montpellier cedex 5, France (D.G., F.C., L.M., D.P., J.F., C.C., P.N., F.G., J.-F.A., E.G.);Institute for Integrative Biology of the Cell, Unité Mixte de Recherche 9198, Centre National de la Recherche Scientifique/Université Paris-Sud/Commissariat à l'Energie Atomique, 91198 Gif-sur-Yvette, France (I.G., O.P., Q.B., P.M.);Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Génomique, Génoscope, 91000 Evry, France (C.D.S., J.P., P.W.); andLaboratoire de Protéomique Fonctionnelle, Institut National de la Recherche Agronomique, Unité de Recherche 1199, 34060 Montpellier, France (V.R., S.H.)
| |
Collapse
|
114
|
Rhizobial peptidase HrrP cleaves host-encoded signaling peptides and mediates symbiotic compatibility. Proc Natl Acad Sci U S A 2015; 112:15244-9. [PMID: 26401024 DOI: 10.1073/pnas.1417797112] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Legume-rhizobium pairs are often observed that produce symbiotic root nodules but fail to fix nitrogen. Using the Sinorhizobium meliloti and Medicago truncatula symbiotic system, we previously described several naturally occurring accessory plasmids capable of disrupting the late stages of nodule development while enhancing bacterial proliferation within the nodule. We report here that host range restriction peptidase (hrrP), a gene found on one of these plasmids, is capable of conferring both these properties. hrrP encodes an M16A family metallopeptidase whose catalytic activity is required for these symbiotic effects. The ability of hrrP to suppress nitrogen fixation is conditioned upon the genotypes of both the host plant and the hrrP-expressing rhizobial strain, suggesting its involvement in symbiotic communication. Purified HrrP protein is capable of degrading a range of nodule-specific cysteine-rich (NCR) peptides encoded by M. truncatula. NCR peptides are crucial signals used by M. truncatula for inducing and maintaining rhizobial differentiation within nodules, as demonstrated in the accompanying article [Horváth B, et al. (2015) Proc Natl Acad Sci USA, 10.1073/pnas.1500777112]. The expression pattern of hrrP and its effects on rhizobial morphology are consistent with the NCR peptide cleavage model. This work points to a symbiotic dialogue involving a complex ensemble of host-derived signaling peptides and bacterial modifier enzymes capable of adjusting signal strength, sometimes with exploitative outcomes.
Collapse
|
115
|
Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf7 mutant. Proc Natl Acad Sci U S A 2015; 112:15232-7. [PMID: 26401023 DOI: 10.1073/pnas.1500777112] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Host compatible rhizobia induce the formation of legume root nodules, symbiotic organs within which intracellular bacteria are present in plant-derived membrane compartments termed symbiosomes. In Medicago truncatula nodules, the Sinorhizobium microsymbionts undergo an irreversible differentiation process leading to the development of elongated polyploid noncultivable nitrogen fixing bacteroids that convert atmospheric dinitrogen into ammonia. This terminal differentiation is directed by the host plant and involves hundreds of nodule specific cysteine-rich peptides (NCRs). Except for certain in vitro activities of cationic peptides, the functional roles of individual NCR peptides in planta are not known. In this study, we demonstrate that the inability of M. truncatula dnf7 mutants to fix nitrogen is due to inactivation of a single NCR peptide, NCR169. In the absence of NCR169, bacterial differentiation was impaired and was associated with early senescence of the symbiotic cells. Introduction of the NCR169 gene into the dnf7-2/NCR169 deletion mutant restored symbiotic nitrogen fixation. Replacement of any of the cysteine residues in the NCR169 peptide with serine rendered it incapable of complementation, demonstrating an absolute requirement for all cysteines in planta. NCR169 was induced in the cell layers in which bacteroid elongation was most pronounced, and high expression persisted throughout the nitrogen-fixing nodule zone. Our results provide evidence for an essential role of NCR169 in the differentiation and persistence of nitrogen fixing bacteroids in M. truncatula.
Collapse
|
116
|
Maróti G, Downie JA, Kondorosi É. Plant cysteine-rich peptides that inhibit pathogen growth and control rhizobial differentiation in legume nodules. CURRENT OPINION IN PLANT BIOLOGY 2015; 26:57-63. [PMID: 26116977 DOI: 10.1016/j.pbi.2015.05.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/13/2015] [Accepted: 05/31/2015] [Indexed: 05/25/2023]
Abstract
Plants must co-exist with both pathogenic and beneficial microbes. Antimicrobial peptides with broad antimicrobial activities represent one of the first lines of defense against pathogens. Many plant cysteine-rich peptides with potential antimicrobial properties have been predicted. Amongst them, defensins and defensin-like peptides are the most abundant and plants can express several hundreds of them. In some rhizobial-legume symbioses special defensin-like peptides, the nodule-specific cysteine-rich (NCR) peptides have evolved in those legumes whose symbiotic partner terminally differentiates. In Medicago truncatula, >700 NCRs exist and collectively act as plant effectors inducing irreversible differentiation of rhizobia to nitrogen-fixing bacteroids. Cationic NCR peptides have a broad range of potent antimicrobial activities but do not kill the endosymbionts.
Collapse
Affiliation(s)
- Gergely Maróti
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62., Szeged 6726, Hungary
| | - J Allan Downie
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Éva Kondorosi
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62., Szeged 6726, Hungary.
| |
Collapse
|
117
|
Lang C, Long SR. Transcriptomic Analysis of Sinorhizobium meliloti and Medicago truncatula Symbiosis Using Nitrogen Fixation-Deficient Nodules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:856-868. [PMID: 25844838 DOI: 10.1094/mpmi-12-14-0407-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The bacterium Sinorhizobium meliloti interacts symbiotically with legume plant hosts such as Medicago truncatula to form nitrogen-fixing root nodules. During symbiosis, plant and bacterial cells differentiate in a coordinated manner, resulting in specialized plant cells that contain nitrogen-fixing bacteroids. Both plant and bacterial genes are required at each developmental stage of symbiosis. We analyzed gene expression in nodules formed by wild-type bacteria on six plant mutants with defects in nitrogen fixation. We observed differential expression of 482 S. meliloti genes with functions in cell envelope homeostasis, cell division, stress response, energy metabolism, and nitrogen fixation. We simultaneously analyzed gene expression in M. truncatula and observed differential regulation of host processes that may trigger bacteroid differentiation and control bacterial infection. Our analyses of developmentally arrested plant mutants indicate that plants use distinct means to control bacterial infection during early and late symbiotic stages.
Collapse
Affiliation(s)
- Claus Lang
- Department of Biology, Stanford University, Stanford, CA 94305-5020, U.S.A
| | - Sharon R Long
- Department of Biology, Stanford University, Stanford, CA 94305-5020, U.S.A
| |
Collapse
|
118
|
Gavrin A, Jansen V, Ivanov S, Bisseling T, Fedorova E. ARP2/3-Mediated Actin Nucleation Associated With Symbiosome Membrane Is Essential for the Development of Symbiosomes in Infected Cells of Medicago truncatula Root Nodules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:605-14. [PMID: 25608180 DOI: 10.1094/mpmi-12-14-0402-r] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The nitrogen-fixing rhizobia in the symbiotic infected cells of root nodules are kept in membrane compartments derived from the host cell plasma membrane, forming what are known as symbiosomes. These are maintained as individual units, with mature symbiosomes having a specific radial position in the host cell cytoplasm. The mechanisms that adapt the host cell architecture to accommodate intracellular bacteria are not clear. The intracellular organization of any cell depends heavily on the actin cytoskeleton. Dynamic rearrangement of the actin cytoskeleton is crucial for cytoplasm organization and intracellular trafficking of vesicles and organelles. A key component of the actin cytoskeleton rearrangement is the ARP2/3 complex, which nucleates new actin filaments and forms branched actin networks. To clarify the role of the ARP2/3 complex in the development of infected cells and symbiosomes, we analyzed the pattern of actin microfilaments and the functional role of ARP3 in Medicago truncatula root nodules. In infected cells, ARP3 protein and actin were spatially associated with maturing symbiosomes. Partial ARP3 silencing causes defects in symbiosome development; in particular, ARP3 silencing disrupts the final differentiation steps in functional maturation into nitrogen-fixing units.
Collapse
Affiliation(s)
- Aleksandr Gavrin
- Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Veerle Jansen
- Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Sergey Ivanov
- Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Ton Bisseling
- Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Elena Fedorova
- Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| |
Collapse
|
119
|
Berrabah F, Ratet P, Gourion B. Multiple steps control immunity during the intracellular accommodation of rhizobia. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1977-85. [PMID: 25682610 PMCID: PMC4378630 DOI: 10.1093/jxb/eru545] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 05/20/2023]
Abstract
Medicago truncatula belongs to the legume family and forms symbiotic associations with nitrogen fixing bacteria, the rhizobia. During these interactions, the plants develop root nodules in which bacteria invade the plant cells and fix nitrogen for the benefit of the plant. Despite massive infection, legume nodules do not develop visible defence reactions, suggesting a special immune status of these organs. Some factors influencing rhizobium maintenance within the plant cells have been previously identified, such as the M. truncatula NCR peptides whose toxic effects are reduced by the bacterial protein BacA. In addition, DNF2, SymCRK, and RSD are M. truncatula genes required to avoid rhizobial death within the symbiotic cells. DNF2 and SymCRK are essential to prevent defence-like reactions in nodules after bacteria internalization into the symbiotic cells. Herein, we used a combination of genetics, histology and molecular biology approaches to investigate the relationship between the factors preventing bacterial death in the nodule cells. We show that the RSD gene is also required to repress plant defences in nodules. Upon inoculation with the bacA mutant, defence responses are observed only in the dnf2 mutant and not in the symCRK and rsd mutants. In addition, our data suggest that lack of nitrogen fixation by the bacterial partner triggers bacterial death in nodule cells after bacteroid differentiation. Together our data indicate that, after internalization, at least four independent mechanisms prevent bacterial death in the plant cell. These mechanisms involve successively: DNF2, BacA, SymCRK/RSD and bacterial ability to fix nitrogen.
Collapse
Affiliation(s)
- Fathi Berrabah
- Institut des Sciences du Végétal, CNRS, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Pascal Ratet
- Institut des Sciences du Végétal, CNRS, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Benjamin Gourion
- Institut des Sciences du Végétal, CNRS, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif sur Yvette, France
| |
Collapse
|
120
|
The Sinorhizobium meliloti SyrM regulon: effects on global gene expression are mediated by syrA and nodD3. J Bacteriol 2015; 197:1792-806. [PMID: 25777671 DOI: 10.1128/jb.02626-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/06/2015] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED In Sinorhizobium meliloti, three NodD transcriptional regulators activate bacterial nodulation (nod) gene expression. NodD1 and NodD2 require plant compounds to activate nod genes. The NodD3 protein does not require exogenous compounds to activate nod gene expression; instead, another transcriptional regulator, SyrM, activates nodD3 expression. In addition, NodD3 can activate syrM expression. SyrM also activates expression of another gene, syrA, which when overexpressed causes a dramatic increase in exopolysaccharide production. In a previous study, we identified more than 200 genes with altered expression in a strain overexpressing nodD3. In this work, we define the transcriptomes of strains overexpressing syrM or syrA. The syrM, nodD3, and syrA overexpression transcriptomes share similar gene expression changes; analyses imply that nodD3 and syrA are the only targets directly activated by SyrM. We propose that most of the gene expression changes observed when nodD3 is overexpressed are due to NodD3 activation of syrM expression, which in turn stimulates SyrM activation of syrA expression. The subsequent increase in SyrA abundance results in broad changes in gene expression, most likely mediated by the ChvI-ExoS-ExoR regulatory circuit. IMPORTANCE Symbioses with bacteria are prevalent across the animal and plant kingdoms. Our system of study, the rhizobium-legume symbiosis (Sinorhizobium meliloti and Medicago spp.), involves specific host-microbe signaling, differentiation in both partners, and metabolic exchange of bacterial fixed nitrogen for host photosynthate. During this complex developmental process, both bacteria and plants undergo profound changes in gene expression. The S. meliloti SyrM-NodD3-SyrA and ChvI-ExoS-ExoR regulatory circuits affect gene expression and are important for optimal symbiosis. In this study, we defined the transcriptomes of S. meliloti overexpressing SyrM or SyrA. In addition to identifying new targets of the SyrM-NodD3-SyrA regulatory circuit, our work further suggests how it is linked to the ChvI-ExoS-ExoR regulatory circuit.
Collapse
|
121
|
Suzaki T, Yoro E, Kawaguchi M. Leguminous plants: inventors of root nodules to accommodate symbiotic bacteria. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:111-58. [PMID: 25805123 DOI: 10.1016/bs.ircmb.2015.01.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Legumes and a few other plant species can establish a symbiotic relationship with nitrogen-fixing rhizobia, which enables them to survive in a nitrogen-deficient environment. During the course of nodulation, infection with rhizobia induces the dedifferentiation of host cells to form primordia of a symbiotic organ, the nodule, which prepares plants to accommodate rhizobia in host cells. While these nodulation processes are known to be genetically controlled by both plants and rhizobia, recent advances in studies on two model legumes, Lotus japonicus and Medicago truncatula, have provided great insight into the underlying plant-side molecular mechanism. In this chapter, we review such knowledge, with particular emphasis on two key processes of nodulation, nodule development and rhizobial invasion.
Collapse
Affiliation(s)
- Takuya Suzaki
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| | - Emiko Yoro
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| | - Masayoshi Kawaguchi
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| |
Collapse
|
122
|
Gemperline E, Jayaraman D, Maeda J, Ané JM, Li L. Multifaceted investigation of metabolites during nitrogen fixation in Medicago via high resolution MALDI-MS imaging and ESI-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:149-58. [PMID: 25323862 PMCID: PMC4286419 DOI: 10.1007/s13361-014-1010-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/08/2014] [Accepted: 09/14/2014] [Indexed: 05/08/2023]
Abstract
Legumes have developed the unique ability to establish a symbiotic relationship with soil bacteria known as rhizobia. This interaction results in the formation of root nodules in which rhizobia thrive and reduce atmospheric dinitrogen into plant-usable ammonium through biological nitrogen fixation (BNF). Owing to the availability of genetic information for both of the symbiotic partners, the Medicago truncatula-Sinorhizobium meliloti association is an excellent model for examining the BNF process. Although metabolites are important in this symbiotic association, few studies have investigated the array of metabolites that influence this process. Of these studies, most target only a few specific metabolites, the roles of which are either well known or are part of a well-characterized metabolic pathway. Here, we used a multifaceted mass spectrometric (MS) approach to detect and identify the key metabolites that are present during BNF using the Medicago truncatula-Sinorhizobium meliloti association as the model system. High mass accuracy and high resolution matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) Orbitrap instruments were used in this study and provide complementary results for more in-depth characterization of the nitrogen-fixation process. We used well-characterized plant and bacterial mutants to highlight differences between the metabolites that are present in functional versus nonfunctional nodules. Our study highlights the benefits of using a combination of mass spectrometric techniques to detect differences in metabolite composition and the distributions of these metabolites in plant biology.
Collapse
Affiliation(s)
- Erin Gemperline
- Department of Chemistry, University of Wisconsin - Madison, Madison, WI 53706, USA
| | | | - Junko Maeda
- Department of Agronomy, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin - Madison, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin - Madison, Madison, WI 53705, USA
- Address reprint requests to: Lingjun Li, University of Wisconsin at Madison, School of Pharmacy, 5125 Rennebohm Hall, 777 Highland Avenue, Madison, Wisconsin 53705-2222 Phone: 608-265-8491 Fax: 608-262-5345
| |
Collapse
|
123
|
Avenhaus U, Cabeza RA, Liese R, Lingner A, Dittert K, Salinas-Riester G, Pommerenke C, Schulze J. Short-Term Molecular Acclimation Processes of Legume Nodules to Increased External Oxygen Concentration. FRONTIERS IN PLANT SCIENCE 2015; 6:1133. [PMID: 26779207 PMCID: PMC4702478 DOI: 10.3389/fpls.2015.01133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/30/2015] [Indexed: 05/19/2023]
Abstract
Nitrogenase is an oxygen labile enzyme. Microaerobic conditions within the infected zone of nodules are maintained primarily by an oxygen diffusion barrier (ODB) located in the nodule cortex. Flexibility of the ODB is important for the acclimation processes of nodules in response to changes in external oxygen concentration. The hypothesis of the present study was that there are additional molecular mechanisms involved. Nodule activity of Medicago truncatula plants were continuously monitored during a change from 21 to 25 or 30% oxygen around root nodules by measuring nodule H2 evolution. Within about 2 min of the increase in oxygen concentration, a steep decline in nitrogenase activity occurred. A quick recovery commenced about 8 min later. A qPCR-based analysis of the expression of genes for nitrogenase components showed a tendency toward upregulation during the recovery. The recovery resulted in a new constant activity after about 30 min, corresponding to approximately 90% of the pre-treatment level. An RNAseq-based comparative transcriptome profiling of nodules at that point in time revealed that genes for nodule-specific cysteine-rich (NCR) peptides, defensins, leghaemoglobin and chalcone and stilbene synthase were significantly upregulated when considered as a gene family. A gene for a nicotianamine synthase-like protein (Medtr1g084050) showed a strong increase in count number. The gene appears to be of importance for nodule functioning, as evidenced by its consistently high expression in nodules and a strong reaction to various environmental cues that influence nodule activity. A Tnt1-mutant that carries an insert in the coding sequence (cds) of that gene showed reduced nitrogen fixation and less efficient acclimation to an increased external oxygen concentration. It was concluded that sudden increases in oxygen concentration around nodules destroy nitrogenase, which is quickly counteracted by an increased neoformation of the enzyme. This reaction might be induced by increased formation of NCR peptides and necessitates an efficient iron supply to the bacteroid, which is probably mediated by nicotianamine. The paper is dedicated to the 85th birthday of Prof. Dr. Günther Schilling, University of Halle/Wittenberg, Germany, https://de.wikipedia.org/wiki/Günther_Schilling.
Collapse
Affiliation(s)
- Ulrike Avenhaus
- Department of Crop Science, Section for Plant Nutrition and Crop Physiology, Faculty of Agriculture, University of GoettingenGoettingen, Germany
| | - Ricardo A. Cabeza
- Department of Crop Science, Section for Plant Nutrition and Crop Physiology, Faculty of Agriculture, University of GoettingenGoettingen, Germany
- Departamento de Ingeniería y Suelos, Facultad de Ciencias Agronómicas, Universidad de ChileLa Pintana, Chile
| | - Rebecca Liese
- Department of Crop Science, Section for Plant Nutrition and Crop Physiology, Faculty of Agriculture, University of GoettingenGoettingen, Germany
| | - Annika Lingner
- Department of Crop Science, Section for Plant Nutrition and Crop Physiology, Faculty of Agriculture, University of GoettingenGoettingen, Germany
| | - Klaus Dittert
- Department of Crop Science, Section for Plant Nutrition and Crop Physiology, Faculty of Agriculture, University of GoettingenGoettingen, Germany
| | - Gabriela Salinas-Riester
- Department of Developmental Biochemistry, DNA Microarray and Deep-Sequencing Facility, Faculty of Medicine, University of GoettingenGoettingen, Germany
| | - Claudia Pommerenke
- Department of Developmental Biochemistry, DNA Microarray and Deep-Sequencing Facility, Faculty of Medicine, University of GoettingenGoettingen, Germany
| | - Joachim Schulze
- Department of Crop Science, Section for Plant Nutrition and Crop Physiology, Faculty of Agriculture, University of GoettingenGoettingen, Germany
- *Correspondence: Joachim Schulze,
| |
Collapse
|
124
|
Gavrin A, Kaiser BN, Geiger D, Tyerman SD, Wen Z, Bisseling T, Fedorova EE. Adjustment of host cells for accommodation of symbiotic bacteria: vacuole defunctionalization, HOPS suppression, and TIP1g retargeting in Medicago. THE PLANT CELL 2014; 26:3809-22. [PMID: 25217511 PMCID: PMC4213156 DOI: 10.1105/tpc.114.128736] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/11/2014] [Accepted: 08/21/2014] [Indexed: 05/19/2023]
Abstract
In legume-rhizobia symbioses, the bacteria in infected cells are enclosed in a plant membrane, forming organelle-like compartments called symbiosomes. Symbiosomes remain as individual units and avoid fusion with lytic vacuoles of host cells. We observed changes in the vacuole volume of infected cells and thus hypothesized that microsymbionts may cause modifications in vacuole formation or function. To examine this, we quantified the volumes and surface areas of plant cells, vacuoles, and symbiosomes in root nodules of Medicago truncatula and analyzed the expression and localization of VPS11 and VPS39, members of the HOPS vacuole-tethering complex. During the maturation of symbiosomes to become N2-fixing organelles, a developmental switch occurs and changes in vacuole features are induced. For example, we found that expression of VPS11 and VPS39 in infected cells is suppressed and host cell vacuoles contract, permitting the expansion of symbiosomes. Trafficking of tonoplast-targeted proteins in infected symbiotic cells is also altered, as shown by retargeting of the aquaporin TIP1g from the tonoplast membrane to the symbiosome membrane. This retargeting appears to be essential for the maturation of symbiosomes. We propose that these alterations in the function of the vacuole are key events in the adaptation of the plant cell to host intracellular symbiotic bacteria.
Collapse
Affiliation(s)
- Aleksandr Gavrin
- Laboratory of Molecular Biology, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Brent N Kaiser
- School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia 5064, Australia
| | - Dietmar Geiger
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082 Würzburg, Germany
| | - Stephen D Tyerman
- School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia 5064, Australia
| | - Zhengyu Wen
- School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia 5064, Australia
| | - Ton Bisseling
- Laboratory of Molecular Biology, Wageningen University, 6708PB Wageningen, The Netherlands College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Elena E Fedorova
- Laboratory of Molecular Biology, Wageningen University, 6708PB Wageningen, The Netherlands
| |
Collapse
|
125
|
Guo H, Sun Y, Li Y, Liu X, Wang P, Zhu-Salzman K, Ge F. Elevated CO2 alters the feeding behaviour of the pea aphid by modifying the physical and chemical resistance of Medicago truncatula. PLANT, CELL & ENVIRONMENT 2014; 37:2158-68. [PMID: 24697655 DOI: 10.1111/pce.12306] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 05/08/2023]
Abstract
Elevated CO(2) compromises the resistance of leguminous plants against chewing insects, but little is known about whether elevated CO(2) modifies the resistance against phloem-sucking insects or whether it has contrasting effects on the resistance of legumes that differ in biological nitrogen fixation. We tested the hypothesis that the physical and chemical resistance against aphids would be increased in Jemalong (a wild type of Medicago truncatula) but would be decreased in dnf1 (a mutant without biological nitrogen fixation) by elevated CO(2). The non-glandular and glandular trichome density of Jemalong plants increased under elevated CO(2), resulting in prolonged aphid probing. In contrast, dnf1 plants tended to decrease foliar trichome density under elevated CO(2), resulting in less surface and epidermal resistance to aphids. Elevated CO(2) enhanced the ineffective salicylic acid-dependent defence pathway but decreased the effective jasmonic acid/ethylene-dependent defence pathway in aphid-infested Jemalong plants. Therefore, aphid probing time decreased and the duration of phloem sap ingestion increased on Jemalong under elevated CO(2), which, in turn, increased aphid growth rate. Overall, our results suggest that elevated CO(2) decreases the chemical resistance of wild-type M. truncatula against aphids, and that the host's biological nitrogen fixation ability is central to this effect.
Collapse
Affiliation(s)
- Huijuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | | | | | | | | | | |
Collapse
|
126
|
Trujillo DI, Silverstein KAT, Young ND. Genomic characterization of the LEED..PEEDs, a gene family unique to the medicago lineage. G3 (BETHESDA, MD.) 2014; 4:2003-12. [PMID: 25155275 PMCID: PMC4199706 DOI: 10.1534/g3.114.011874] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/18/2014] [Indexed: 12/18/2022]
Abstract
The LEED..PEED (LP) gene family in Medicago truncatula (A17) is composed of 13 genes coding small putatively secreted peptides with one to two conserved domains of negatively charged residues. This family is not present in the genomes of Glycine max, Lotus japonicus, or the IRLC species Cicer arietinum. LP genes were also not detected in a Trifolium pratense draft genome or Pisum sativum nodule transcriptome, which were sequenced de novo in this study, suggesting that the LP gene family arose within the past 25 million years. M. truncatula accession HM056 has 13 LP genes with high similarity to those in A17, whereas M. truncatula ssp. tricycla (R108) and M. sativa have 11 and 10 LP gene copies, respectively. In M. truncatula A17, 12 LP genes are located on chromosome 7 within a 93-kb window, whereas one LP gene copy is located on chromosome 4. A phylogenetic analysis of the gene family is consistent with most gene duplications occurring prior to Medicago speciation events, mainly through local tandem duplications and one distant duplication across chromosomes. Synteny comparisons between R108 and A17 confirm that gene order is conserved between the two subspecies, although a further duplication occurred solely in A17. In M. truncatula A17, all 13 LPs are exclusively transcribed in nodules and absent from other plant tissues, including roots, leaves, flowers, seeds, seed shells, and pods. The recent expansion of LP genes in Medicago spp. and their timing and location of expression suggest a novel function in nodulation, possibly as an aftermath of the evolution of bacteroid terminal differentiation or potentially associated with rhizobial-host specificity.
Collapse
Affiliation(s)
- Diana I Trujillo
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | | | - Nevin D Young
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
127
|
Ferguson BJ, Mathesius U. Phytohormone regulation of legume-rhizobia interactions. J Chem Ecol 2014; 40:770-90. [PMID: 25052910 DOI: 10.1007/s10886-014-0472-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 12/16/2022]
Abstract
The symbiosis between legumes and nitrogen fixing bacteria called rhizobia leads to the formation of root nodules. Nodules are highly organized root organs that form in response to Nod factors produced by rhizobia, and they provide rhizobia with a specialized niche to optimize nutrient exchange and nitrogen fixation. Nodule development and invasion by rhizobia is locally controlled by feedback between rhizobia and the plant host. In addition, the total number of nodules on a root system is controlled by a systemic mechanism termed 'autoregulation of nodulation'. Both the local and the systemic control of nodulation are regulated by phytohormones. There are two mechanisms by which phytohormone signalling is altered during nodulation: through direct synthesis by rhizobia and through indirect manipulation of the phytohormone balance in the plant, triggered by bacterial Nod factors. Recent genetic and physiological evidence points to a crucial role of Nod factor-induced changes in the host phytohormone balance as a prerequisite for successful nodule formation. Phytohormones synthesized by rhizobia enhance symbiosis effectiveness but do not appear to be necessary for nodule formation. This review provides an overview of recent advances in our understanding of the roles and interactions of phytohormones and signalling peptides in the regulation of nodule infection, initiation, positioning, development, and autoregulation. Future challenges remain to unify hormone-related findings across different legumes and to test whether hormone perception, response, or transport differences among different legumes could explain the variety of nodules types and the predisposition for nodule formation in this plant family. In addition, the molecular studies carried out under controlled conditions will need to be extended into the field to test whether and how phytohormone contributions by host and rhizobial partners affect the long term fitness of the host and the survival and competition of rhizobia in the soil. It also will be interesting to explore the interaction of hormonal signalling pathways between rhizobia and plant pathogens.
Collapse
Affiliation(s)
- Brett J Ferguson
- Centre for Integrative Legume Research, School of Agricultural and Food Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | | |
Collapse
|
128
|
The carbon-nitrogen balance of the nodule and its regulation under elevated carbon dioxide concentration. BIOMED RESEARCH INTERNATIONAL 2014; 2014:507946. [PMID: 24987690 PMCID: PMC4058508 DOI: 10.1155/2014/507946] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/03/2014] [Indexed: 01/06/2023]
Abstract
Legumes have developed a unique way to interact with bacteria: in addition to preventing infection from pathogenic bacteria like any other plant, legumes also developed a mutualistic symbiotic relationship with one gender of soil bacteria: rhizobium. This interaction leads to the development of a new root organ, the nodule, where the differentiated bacteria fix for the plant the atmospheric dinitrogen (atmN2). In exchange, the symbiont will benefit from a permanent source of carbon compounds, products of the photosynthesis. The substantial amounts of fixed carbon dioxide dedicated to the symbiont imposed to the plant a tight regulation of the nodulation process to balance carbon and nitrogen incomes and outcomes. Climate change including the increase of the concentration of the atmospheric carbon dioxide is going to modify the rates of plant photosynthesis, the balance between nitrogen and carbon, and, as a consequence, the regulatory mechanisms of the nodulation process. This review focuses on the regulatory mechanisms controlling carbon/nitrogen balances in the context of legume nodulation and discusses how the change in atmospheric carbon dioxide concentration could affect nodulation efficiency.
Collapse
|
129
|
Sebastiana M, Vieira B, Lino-Neto T, Monteiro F, Figueiredo A, Sousa L, Pais MS, Tavares R, Paulo OS. Oak root response to ectomycorrhizal symbiosis establishment: RNA-Seq derived transcript identification and expression profiling. PLoS One 2014; 9:e98376. [PMID: 24859293 PMCID: PMC4032270 DOI: 10.1371/journal.pone.0098376] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/01/2014] [Indexed: 11/19/2022] Open
Abstract
Ectomycorrhizal symbiosis is essential for the life and health of trees in temperate and boreal forests where it plays a major role in nutrient cycling and in functioning of the forest ecosystem. Trees with ectomycorrhizal root tips are more tolerant to environmental stresses, such as drought, and biotic stresses such as root pathogens. Detailed information on these molecular processes is essential for the understanding of symbiotic tissue development in order to optimize the benefits of this natural phenomenon. Next generation sequencing tools allow the analysis of non model ectomycorrhizal plant-fungal interactions that can contribute to find the "symbiosis toolkits" and better define the role of each partner in the mutualistic interaction. By using 454 pyrosequencing we compared ectomycorrhizal cork oak roots with non-symbiotic roots. From the two cDNA libraries sequenced, over 2 million reads were obtained that generated 19,552 cork oak root unique transcripts. A total of 2238 transcripts were found to be differentially expressed when ECM roots were compared with non-symbiotic roots. Identification of up- and down-regulated gens in ectomycorrhizal roots lead to a number of insights into the molecular mechanisms governing this important symbiosis. In cork oak roots, ectomycorrhizal colonization resulted in extensive cell wall remodelling, activation of the secretory pathway, alterations in flavonoid biosynthesis, and expression of genes involved in the recognition of fungal effectors. In addition, we identified genes with putative roles in symbiotic processes such as nutrient exchange with the fungal partner, lateral root formation or root hair decay. These findings provide a global overview of the transcriptome of an ectomycorrhizal host root, and constitute a foundation for future studies on the molecular events controlling this important symbiosis.
Collapse
Affiliation(s)
- Mónica Sebastiana
- Plant Systems Biology Lab, Center for Biodiversity, Functional and Integrative Genomics, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Bruno Vieira
- Center for Environmental Biology, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Teresa Lino-Neto
- Plant Functional Biology Centre, Center for Biodiversity, Functional and Integrative Genomics, University of Minho, Braga, Portugal
| | - Filipa Monteiro
- Plant Systems Biology Lab, Center for Biodiversity, Functional and Integrative Genomics, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Andreia Figueiredo
- Plant Systems Biology Lab, Center for Biodiversity, Functional and Integrative Genomics, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Lisete Sousa
- Department of Statistics and Operational Research, Center of Statistics and Applications from Lisbon University, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Maria Salomé Pais
- Plant Systems Biology Lab, Center for Biodiversity, Functional and Integrative Genomics, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Rui Tavares
- Plant Functional Biology Centre, Center for Biodiversity, Functional and Integrative Genomics, University of Minho, Braga, Portugal
| | - Octávio S. Paulo
- Center for Environmental Biology, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
130
|
Pierre O, Hopkins J, Combier M, Baldacci F, Engler G, Brouquisse R, Hérouart D, Boncompagni E. Involvement of papain and legumain proteinase in the senescence process of Medicago truncatula nodules. THE NEW PHYTOLOGIST 2014; 202:849-863. [PMID: 24527680 DOI: 10.1111/nph.12717] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 12/27/2013] [Indexed: 06/03/2023]
Abstract
The symbiotic interaction between legumes and Rhizobiaceae leads to the formation of new root organs called nodules. Within the nodule, Rhizobiaceae differentiate into nitrogen-fixing bacteroids. However, this symbiotic interaction is time-limited as a result of the initiation of a senescence process, leading to a complete degradation of bacteroids and host plant cells. The increase in proteolytic activity is one of the key features of this process. In this study, we analysed the involvement of two different classes of cysteine proteinases, MtCP6 and MtVPE, in the senescence process of Medicago truncatula nodules. Spatiotemporal expression of MtCP6 and MtVPE was investigated using promoter- β-glucuronidase fusions. Corresponding gene inductions were observed during both developmental and stress-induced nodule senescence. Both MtCP6 and MtVPE proteolytic activities were increased during stress-induced senescence. Down-regulation of both proteinases mediated by RNAi in the senescence zone delayed nodule senescence and increased nitrogen fixation, while their early expression promoted nodule senescence. Using green fluorescent protein fusions, in vivo confocal imaging showed that both proteinases accumulated in the vacuole of uninfected cells or the symbiosomes of infected cells. These data enlighten the crucial role of MtCP6 and MtVPE in the onset of nodule senescence.
Collapse
Affiliation(s)
- Olivier Pierre
- UMR INRA 1355, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- CNRS 7254, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- Institut Sophia Agrobiotech (ISA), Université de Nice-Sophia Antipolis, 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
| | - Julie Hopkins
- UMR INRA 1355, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- CNRS 7254, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- Institut Sophia Agrobiotech (ISA), Université de Nice-Sophia Antipolis, 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
| | - Maud Combier
- UMR INRA 1355, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- CNRS 7254, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- Institut Sophia Agrobiotech (ISA), Université de Nice-Sophia Antipolis, 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
| | - Fabien Baldacci
- UMR INRA 1355, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- CNRS 7254, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- Institut Sophia Agrobiotech (ISA), Université de Nice-Sophia Antipolis, 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
| | - Gilbert Engler
- UMR INRA 1355, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- CNRS 7254, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- Institut Sophia Agrobiotech (ISA), Université de Nice-Sophia Antipolis, 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
| | - Renaud Brouquisse
- UMR INRA 1355, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- CNRS 7254, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- Institut Sophia Agrobiotech (ISA), Université de Nice-Sophia Antipolis, 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
| | - Didier Hérouart
- UMR INRA 1355, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- CNRS 7254, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- Institut Sophia Agrobiotech (ISA), Université de Nice-Sophia Antipolis, 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
| | - Eric Boncompagni
- UMR INRA 1355, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- CNRS 7254, Institut Sophia Agrobiotech (ISA), 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
- Institut Sophia Agrobiotech (ISA), Université de Nice-Sophia Antipolis, 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France
| |
Collapse
|
131
|
Nallu S, Silverstein KAT, Zhou P, Young ND, VandenBosch KA. Patterns of divergence of a large family of nodule cysteine-rich peptides in accessions of Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:697-705. [PMID: 24635121 PMCID: PMC4282536 DOI: 10.1111/tpj.12506] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 02/20/2014] [Accepted: 03/04/2014] [Indexed: 05/07/2023]
Abstract
The nodule cysteine-rich (NCR) groups of defensin-like (DEFL) genes are one of the largest gene families expressed in the nodules of some legume plants. They have only been observed in the inverted repeat loss clade (IRLC) of legumes, which includes the model legume Medicago truncatula. NCRs are reported to play an important role in plant-microbe interactions. To understand their diversity we analyzed their expression and sequence polymorphisms among four accessions of M. truncatula. A significant expression and nucleotide variation was observed among the genes. We then used 26 accessions to estimate the selection pressures shaping evolution among the accessions by calculating the nucleotide diversity at non-synonymous and synonymous sites in the coding region. The mature peptides of the orthologous NCRs had signatures of both purifying and diversifying selection pressures, unlike the seed DEFLs, which predominantly exhibited purifying selection. The expression, sequence variation and apparent diversifying selection in NCRs within the Medicago species indicates rapid and recent evolution, and suggests that this family of genes is actively evolving to adapt to different environments and is acquiring new functions.
Collapse
Affiliation(s)
- Sumitha Nallu
- Department of Plant Biology, University of Minnesota250 Biological Sciences, 1445 Gortner Avenue, Saint Paul, MN, 55108, USA
- * For correspondence (e-mail )
| | - Kevin A T Silverstein
- Department of Plant Biology, University of Minnesota250 Biological Sciences, 1445 Gortner Avenue, Saint Paul, MN, 55108, USA
- ‡ Present address: Supercomputing Institute for Advanced Computational Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - Peng Zhou
- Department of Plant Pathology, University of MinnesotaSt. Paul, MN, 55108, USA
| | - Nevin D Young
- Department of Plant Pathology, University of MinnesotaSt. Paul, MN, 55108, USA
| | - Kathryn A VandenBosch
- Department of Plant Biology, University of Minnesota250 Biological Sciences, 1445 Gortner Avenue, Saint Paul, MN, 55108, USA
- § Present address: College of Agricultural and Life Sciences, 1450 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
132
|
Tang H, Krishnakumar V, Bidwell S, Rosen B, Chan A, Zhou S, Gentzbittel L, Childs KL, Yandell M, Gundlach H, Mayer KFX, Schwartz DC, Town CD. An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genomics 2014. [PMID: 24767513 DOI: 10.1186/1471-216415-312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND Medicago truncatula, a close relative of alfalfa, is a preeminent model for studying nitrogen fixation, symbiosis, and legume genomics. The Medicago sequencing project began in 2003 with the goal to decipher sequences originated from the euchromatic portion of the genome. The initial sequencing approach was based on a BAC tiling path, culminating in a BAC-based assembly (Mt3.5) as well as an in-depth analysis of the genome published in 2011. RESULTS Here we describe a further improved and refined version of the M. truncatula genome (Mt4.0) based on de novo whole genome shotgun assembly of a majority of Illumina and 454 reads using ALLPATHS-LG. The ALLPATHS-LG scaffolds were anchored onto the pseudomolecules on the basis of alignments to both the optical map and the genotyping-by-sequencing (GBS) map. The Mt4.0 pseudomolecules encompass ~360 Mb of actual sequences spanning 390 Mb of which ~330 Mb align perfectly with the optical map, presenting a drastic improvement over the BAC-based Mt3.5 which only contained 70% sequences (~250 Mb) of the current version. Most of the sequences and genes that previously resided on the unanchored portion of Mt3.5 have now been incorporated into the Mt4.0 pseudomolecules, with the exception of ~28 Mb of unplaced sequences. With regard to gene annotation, the genome has been re-annotated through our gene prediction pipeline, which integrates EST, RNA-seq, protein and gene prediction evidences. A total of 50,894 genes (31,661 high confidence and 19,233 low confidence) are included in Mt4.0 which overlapped with ~82% of the gene loci annotated in Mt3.5. Of the remaining genes, 14% of the Mt3.5 genes have been deprecated to an "unsupported" status and 4% are absent from the Mt4.0 predictions. CONCLUSIONS Mt4.0 and its associated resources, such as genome browsers, BLAST-able datasets and gene information pages, can be found on the JCVI Medicago web site (http://www.jcvi.org/medicago). The assembly and annotation has been deposited in GenBank (BioProject: PRJNA10791). The heavily curated chromosomal sequences and associated gene models of Medicago will serve as a better reference for legume biology and comparative genomics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Christopher D Town
- J, Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, USA.
| |
Collapse
|
133
|
Tang H, Krishnakumar V, Bidwell S, Rosen B, Chan A, Zhou S, Gentzbittel L, Childs KL, Yandell M, Gundlach H, Mayer KFX, Schwartz DC, Town CD. An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genomics 2014; 15:312. [PMID: 24767513 PMCID: PMC4234490 DOI: 10.1186/1471-2164-15-312] [Citation(s) in RCA: 285] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/22/2014] [Indexed: 11/10/2022] Open
Abstract
Background Medicago truncatula, a close relative of alfalfa, is a preeminent model for studying nitrogen fixation, symbiosis, and legume genomics. The Medicago sequencing project began in 2003 with the goal to decipher sequences originated from the euchromatic portion of the genome. The initial sequencing approach was based on a BAC tiling path, culminating in a BAC-based assembly (Mt3.5) as well as an in-depth analysis of the genome published in 2011. Results Here we describe a further improved and refined version of the M. truncatula genome (Mt4.0) based on de novo whole genome shotgun assembly of a majority of Illumina and 454 reads using ALLPATHS-LG. The ALLPATHS-LG scaffolds were anchored onto the pseudomolecules on the basis of alignments to both the optical map and the genotyping-by-sequencing (GBS) map. The Mt4.0 pseudomolecules encompass ~360 Mb of actual sequences spanning 390 Mb of which ~330 Mb align perfectly with the optical map, presenting a drastic improvement over the BAC-based Mt3.5 which only contained 70% sequences (~250 Mb) of the current version. Most of the sequences and genes that previously resided on the unanchored portion of Mt3.5 have now been incorporated into the Mt4.0 pseudomolecules, with the exception of ~28 Mb of unplaced sequences. With regard to gene annotation, the genome has been re-annotated through our gene prediction pipeline, which integrates EST, RNA-seq, protein and gene prediction evidences. A total of 50,894 genes (31,661 high confidence and 19,233 low confidence) are included in Mt4.0 which overlapped with ~82% of the gene loci annotated in Mt3.5. Of the remaining genes, 14% of the Mt3.5 genes have been deprecated to an “unsupported” status and 4% are absent from the Mt4.0 predictions. Conclusions Mt4.0 and its associated resources, such as genome browsers, BLAST-able datasets and gene information pages, can be found on the JCVI Medicago web site (http://www.jcvi.org/medicago). The assembly and annotation has been deposited in GenBank (BioProject: PRJNA10791). The heavily curated chromosomal sequences and associated gene models of Medicago will serve as a better reference for legume biology and comparative genomics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Christopher D Town
- J, Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, USA.
| |
Collapse
|
134
|
Tang H, Krishnakumar V, Bidwell S, Rosen B, Chan A, Zhou S, Gentzbittel L, Childs KL, Yandell M, Gundlach H, Mayer KFX, Schwartz DC, Town CD. An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genomics 2014. [PMID: 24767513 DOI: 10.1186/1471‐2164‐15‐312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Medicago truncatula, a close relative of alfalfa, is a preeminent model for studying nitrogen fixation, symbiosis, and legume genomics. The Medicago sequencing project began in 2003 with the goal to decipher sequences originated from the euchromatic portion of the genome. The initial sequencing approach was based on a BAC tiling path, culminating in a BAC-based assembly (Mt3.5) as well as an in-depth analysis of the genome published in 2011. RESULTS Here we describe a further improved and refined version of the M. truncatula genome (Mt4.0) based on de novo whole genome shotgun assembly of a majority of Illumina and 454 reads using ALLPATHS-LG. The ALLPATHS-LG scaffolds were anchored onto the pseudomolecules on the basis of alignments to both the optical map and the genotyping-by-sequencing (GBS) map. The Mt4.0 pseudomolecules encompass ~360 Mb of actual sequences spanning 390 Mb of which ~330 Mb align perfectly with the optical map, presenting a drastic improvement over the BAC-based Mt3.5 which only contained 70% sequences (~250 Mb) of the current version. Most of the sequences and genes that previously resided on the unanchored portion of Mt3.5 have now been incorporated into the Mt4.0 pseudomolecules, with the exception of ~28 Mb of unplaced sequences. With regard to gene annotation, the genome has been re-annotated through our gene prediction pipeline, which integrates EST, RNA-seq, protein and gene prediction evidences. A total of 50,894 genes (31,661 high confidence and 19,233 low confidence) are included in Mt4.0 which overlapped with ~82% of the gene loci annotated in Mt3.5. Of the remaining genes, 14% of the Mt3.5 genes have been deprecated to an "unsupported" status and 4% are absent from the Mt4.0 predictions. CONCLUSIONS Mt4.0 and its associated resources, such as genome browsers, BLAST-able datasets and gene information pages, can be found on the JCVI Medicago web site (http://www.jcvi.org/medicago). The assembly and annotation has been deposited in GenBank (BioProject: PRJNA10791). The heavily curated chromosomal sequences and associated gene models of Medicago will serve as a better reference for legume biology and comparative genomics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Christopher D Town
- J, Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, USA.
| |
Collapse
|
135
|
Abstract
Symbiosomes are a unique structural entity that performs the role of biological nitrogen fixation, an energy-demanding process that is the primary entryway of fixed nitrogen into the biosphere. Symbiosomes result from the infection of specific rhizobial strains into the roots of an appropriate leguminous host plant forming an organ referred to as a nodule. Within the infected plant cells of the nodule, the rhizobia are encased within membrane-bounded structures that develop into symbiosomes. Mature symbiosomes create an environment that allows the rhizobia to differentiate into a nitrogen-fixing form called bacteroids. The bacteroids are surrounded by the symbiosome space, which is populated by proteins from both eukaryotic and prokaryotic symbionts, suggesting this space is the quintessential component of symbiosis: an inter-kingdom environment with the single purpose of symbiotic nitrogen fixation. Proteins associated with the symbiosome membrane are largely plant-derived proteins and are non-metabolic in nature. The proteins of the symbiosome space are mostly derived from the bacteroid with annotated functions of carbon metabolism, whereas relatively few are involved in nitrogen metabolism. An appreciable portion of both the eukaryotic and prokaryotic proteins in the symbiosome are also ‘moonlighting’ proteins, which are defined as proteins that perform roles unrelated to their annotated activities when found in an unexpected physiological environment. The essential functions of symbiotic nitrogen fixation of the symbiosome are performed by co-operative interactions of proteins from both symbionts some of which may be performing unexpected roles.
Collapse
|
136
|
Kondorosi E, Mergaert P, Kereszt A. A paradigm for endosymbiotic life: cell differentiation of Rhizobium bacteria provoked by host plant factors. Annu Rev Microbiol 2014; 67:611-28. [PMID: 24024639 DOI: 10.1146/annurev-micro-092412-155630] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Symbiosis between Rhizobium bacteria and legumes leads to the formation of the root nodule. The endosymbiotic bacteria reside in polyploid host cells as membrane-surrounded vesicles where they reduce atmospheric nitrogen to support plant growth by supplying ammonia in exchange for carbon sources and energy. The morphology and physiology of endosymbionts, despite their common function, are highly divergent in different hosts. In galegoid plants, the endosymbionts are terminally differentiated, uncultivable polyploid cells, with remarkably elongated and even branched Y-shaped cells. Bacteroid differentiation is controlled by host peptides, many of which have antibacterial activity and require the bacterial function of BacA. Although the precise and combined action of several hundred host peptides and BacA has yet to be discovered, similarities, especially to certain insect-bacterium symbioses involving likewise host peptides for manipulation of endosymbionts, suggest convergent evolution. Rhizobium-legume symbiosis provides a rich source of information for understanding host-controlled endosymbiotic life in eukaryotic cells.
Collapse
Affiliation(s)
- Eva Kondorosi
- Institut des Sciences du Végétal, CNRS UPR 2355, Gif sur Yvette 91198, France; ,
| | | | | |
Collapse
|
137
|
Roux B, Rodde N, Jardinaud MF, Timmers T, Sauviac L, Cottret L, Carrère S, Sallet E, Courcelle E, Moreau S, Debellé F, Capela D, de Carvalho-Niebel F, Gouzy J, Bruand C, Gamas P. An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:817-37. [PMID: 24483147 DOI: 10.1111/tpj.12442] [Citation(s) in RCA: 305] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/02/2014] [Indexed: 05/19/2023]
Abstract
Rhizobium-induced root nodules are specialized organs for symbiotic nitrogen fixation. Indeterminate-type nodules are formed from an apical meristem and exhibit a spatial zonation which corresponds to successive developmental stages. To get a dynamic and integrated view of plant and bacterial gene expression associated with nodule development, we used a sensitive and comprehensive approach based upon oriented high-depth RNA sequencing coupled to laser microdissection of nodule regions. This study, focused on the association between the model legume Medicago truncatula and its symbiont Sinorhizobium meliloti, led to the production of 942 million sequencing read pairs that were unambiguously mapped on plant and bacterial genomes. Bioinformatic and statistical analyses enabled in-depth comparison, at a whole-genome level, of gene expression in specific nodule zones. Previously characterized symbiotic genes displayed the expected spatial pattern of expression, thus validating the robustness of our approach. We illustrate the use of this resource by examining gene expression associated with three essential elements of nodule development, namely meristem activity, cell differentiation and selected signaling processes related to bacterial Nod factors and redox status. We found that transcription factor genes essential for the control of the root apical meristem were also expressed in the nodule meristem, while the plant mRNAs most enriched in nodules compared with roots were mostly associated with zones comprising both plant and bacterial partners. The data, accessible on a dedicated website, represent a rich resource for microbiologists and plant biologists to address a variety of questions of both fundamental and applied interest.
Collapse
Affiliation(s)
- Brice Roux
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, F-31326, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, F-31326, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Host plant peptides elicit a transcriptional response to control the Sinorhizobium meliloti cell cycle during symbiosis. Proc Natl Acad Sci U S A 2014; 111:3561-6. [PMID: 24501120 DOI: 10.1073/pnas.1400450111] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The α-proteobacterium Sinorhizobium meliloti establishes a chronic intracellular infection during the symbiosis with its legume hosts. Within specialized host cells, S. meliloti differentiates into highly polyploid, enlarged nitrogen-fixing bacteroids. This differentiation is driven by host cells through the production of defensin-like peptides called "nodule-specific cysteine-rich" (NCR) peptides. Recent research has shown that synthesized NCR peptides exhibit antimicrobial activity at high concentrations but cause bacterial endoreduplication at sublethal concentrations. We leveraged synchronized S. meliloti populations to determine how treatment with a sublethal NCR peptide affects the cell cycle and physiology of bacteria at the molecular level. We found that at sublethal levels a representative NCR peptide specifically blocks cell division and antagonizes Z-ring function. Gene-expression profiling revealed that the cell division block was produced, in part, through the substantial transcriptional response elicited by sublethal NCR treatment that affected ∼15% of the genome. Expression of critical cell-cycle regulators, including ctrA, and cell division genes, including genes required for Z-ring function, were greatly attenuated in NCR-treated cells. In addition, our experiments identified important symbiosis functions and stress responses that are induced by sublethal levels of NCR peptides and other antimicrobial peptides. Several of these stress-response pathways also are found in related α-proteobacterial pathogens and might be used by S. meliloti to sense host cues during infection. Our data suggest a model in which, in addition to provoking stress responses, NCR peptides target intracellular regulatory pathways to drive S. meliloti endoreduplication and differentiation during symbiosis.
Collapse
|
139
|
Global analysis of cell cycle gene expression of the legume symbiont Sinorhizobium meliloti. Proc Natl Acad Sci U S A 2014; 111:3217-24. [PMID: 24501121 DOI: 10.1073/pnas.1400421111] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In α-proteobacteria, strict regulation of cell cycle progression is necessary for the specific cellular differentiation required for adaptation to diverse environmental niches. The symbiotic lifestyle of Sinorhizobium meliloti requires a drastic cellular differentiation that includes genome amplification. To achieve polyploidy, the S. meliloti cell cycle program must be altered to uncouple DNA replication from cell division. In the α-proteobacterium Caulobacter crescentus, cell cycle-regulated transcription plays an important role in the control of cell cycle progression but this has not been demonstrated in other α-proteobacteria. Here we describe a robust method for synchronizing cell growth that enabled global analysis of S. meliloti cell cycle-regulated gene expression. This analysis identified 462 genes with cell cycle-regulated transcripts, including several key cell cycle regulators, and genes involved in motility, attachment, and cell division. Only 28% of the 462 S. meliloti cell cycle-regulated genes were also transcriptionally cell cycle-regulated in C. crescentus. Furthermore, CtrA- and DnaA-binding motif analysis revealed little overlap between the cell cycle-dependent regulons of CtrA and DnaA in S. meliloti and C. crescentus. The predicted S. meliloti cell cycle regulon of CtrA, but not that of DnaA, was strongly conserved in more closely related α-proteobacteria with similar ecological niches as S. meliloti, suggesting that the CtrA cell cycle regulatory network may control functions of central importance to the specific lifestyles of α-proteobacteria.
Collapse
|
140
|
Cabeza R, Koester B, Liese R, Lingner A, Baumgarten V, Dirks J, Salinas-Riester G, Pommerenke C, Dittert K, Schulze J. An RNA sequencing transcriptome analysis reveals novel insights into molecular aspects of the nitrate impact on the nodule activity of Medicago truncatula. PLANT PHYSIOLOGY 2014; 164:400-11. [PMID: 24285852 PMCID: PMC3875817 DOI: 10.1104/pp.113.228312] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/26/2013] [Indexed: 05/18/2023]
Abstract
The mechanism through which nitrate reduces the activity of legume nodules is controversial. The objective of the study was to follow Medicago truncatula nodule activity after nitrate provision continuously and to identify molecular mechanisms, which down-regulate the activity of the nodules. Nodule H2 evolution started to decline after about 4 h of nitrate application. At that point in time, a strong shift in nodule gene expression (RNA sequencing) had occurred (1,120 differentially expressed genes). The most pronounced effect was the down-regulation of 127 genes for nodule-specific cysteine-rich peptides. Various other nodulins were also strongly down-regulated, in particular all the genes for leghemoglobins. In addition, shifts in the expression of genes involved in cellular iron allocation and mitochondrial ATP synthesis were observed. Furthermore, the expression of numerous genes for the formation of proteins and glycoproteins with no obvious function in nodules (e.g. germins, patatin, and thaumatin) was strongly increased. This occurred in conjunction with an up-regulation of genes for proteinase inhibitors, in particular those containing the Kunitz domain. The additionally formed proteins might possibly be involved in reducing nodule oxygen permeability. Between 4 and 28 h of nitrate exposure, a further reduction in nodule activity occurred, and the number of differentially expressed genes almost tripled. In particular, there was a differential expression of genes connected with emerging senescence. It is concluded that nitrate exerts rapid and manifold effects on nitrogenase activity. A certain degree of nitrate tolerance might be achieved when the down-regulatory effect on late nodulins can be alleviated.
Collapse
|
141
|
Torres MF, Cuadros DF, Vaillancourt LJ. Evidence for a diffusible factor that induces susceptibility in the Colletotrichum-maize disease interaction. MOLECULAR PLANT PATHOLOGY 2014; 15:80-93. [PMID: 24003973 PMCID: PMC6638722 DOI: 10.1111/mpp.12069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Colletotrichum graminicola, the causal agent of maize anthracnose, is a hemibiotrophic fungus that initially infects living host cells via primary hyphae surrounded by a membrane. A nonpathogenic mutant disrupted in a gene encoding a component of the signal peptidase complex, and believed to be deficient in protein processing and secretion, regained pathogenicity when it was inoculated onto maize leaf sheaths close to the wild-type fungus. Evidence is presented suggesting that the wild-type produces a diffusible factor(s) that induces the localized susceptibility of host cells at the borders of expanding colonies, causing them to become receptive to biotrophic invasion. The induced susceptibility effect is limited to a distance of approximately eight cells from the edge of the wild-type colony, is dosage dependent and is specific to C. graminicola.
Collapse
Affiliation(s)
- Maria F Torres
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, Lexington, KY, 40546, USA
| | | | | |
Collapse
|
142
|
Guo H, Sun Y, Li Y, Liu X, Ren Q, Zhu-Salzman K, Ge F. Elevated CO(2) modifies N acquisition of Medicago truncatula by enhancing N fixation and reducing nitrate uptake from soil. PLoS One 2013; 8:e81373. [PMID: 24339920 PMCID: PMC3855279 DOI: 10.1371/journal.pone.0081373] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 10/11/2013] [Indexed: 11/21/2022] Open
Abstract
The effects of elevated CO2 (750 ppm vs. 390 ppm) were evaluated on nitrogen (N) acquisition and assimilation by three Medicago truncatula genotypes, including two N-fixing-deficient mutants (dnf1-1 and dnf1-2) and their wild-type (Jemalong). The proportion of N acquisition from atmosphere and soil were quantified by (15)N stable isotope, and N transportation and assimilation-related genes and enzymes were determined by qPCR and biochemical analysis. Elevated CO2 decreased nitrate uptake from soil in all three plant genotypes by down-regulating nitrate reductase (NR), nitrate transporter NRT1.1 and NR activity. Jemalong plant, however, produced more nodules, up-regulated N-fixation-related genes and enhanced percentage of N derived from fixation (%Ndf) to increase foliar N concentration and N content in whole plant (Ntotal Yield) to satisfy the requirement of larger biomass under elevated CO2. In contrast, both dnf1 mutants deficient in N fixation consequently decreased activity of glutamine synthetase/glutamate synthase (GS/GOGAT) and N concentration under elevated CO2. Our results suggest that elevated CO2 is likely to modify N acquisition of M. truncatula by simultaneously increasing N fixation and reducing nitrate uptake from soil. We propose that elevated CO2 causes legumes to rely more on N fixation than on N uptake from soil to satisfy N requirements.
Collapse
Affiliation(s)
- Huijuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yuefei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- Jining Normal College, Inner Mongolia Autonomous Region, Jining, People’s Republic of China
| | - Xianghui Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Qin Ren
- Jining Normal College, Inner Mongolia Autonomous Region, Jining, People’s Republic of China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
143
|
Zhou P, Silverstein KAT, Gao L, Walton JD, Nallu S, Guhlin J, Young ND. Detecting small plant peptides using SPADA (Small Peptide Alignment Discovery Application). BMC Bioinformatics 2013; 14:335. [PMID: 24256031 PMCID: PMC3924332 DOI: 10.1186/1471-2105-14-335] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/15/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Small peptides encoded as one- or two-exon genes in plants have recently been shown to affect multiple aspects of plant development, reproduction and defense responses. However, popular similarity search tools and gene prediction techniques generally fail to identify most members belonging to this class of genes. This is largely due to the high sequence divergence among family members and the limited availability of experimentally verified small peptides to use as training sets for homology search and ab initio prediction. Consequently, there is an urgent need for both experimental and computational studies in order to further advance the accurate prediction of small peptides. RESULTS We present here a homology-based gene prediction program to accurately predict small peptides at the genome level. Given a high-quality profile alignment, SPADA identifies and annotates nearly all family members in tested genomes with better performance than all general-purpose gene prediction programs surveyed. We find numerous mis-annotations in the current Arabidopsis thaliana and Medicago truncatula genome databases using SPADA, most of which have RNA-Seq expression support. We also show that SPADA works well on other classes of small secreted peptides in plants (e.g., self-incompatibility protein homologues) as well as non-secreted peptides outside the plant kingdom (e.g., the alpha-amanitin toxin gene family in the mushroom, Amanita bisporigera). CONCLUSIONS SPADA is a free software tool that accurately identifies and predicts the gene structure for short peptides with one or two exons. SPADA is able to incorporate information from profile alignments into the model prediction process and makes use of it to score different candidate models. SPADA achieves high sensitivity and specificity in predicting small plant peptides such as the cysteine-rich peptide families. A systematic application of SPADA to other classes of small peptides by research communities will greatly improve the genome annotation of different protein families in public genome databases.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Kevin AT Silverstein
- Supercomputing Institute for Advanced Computational Research, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Liangliang Gao
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Jonathan D Walton
- Department of Plant Biology and U.S. Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | - Sumitha Nallu
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
| | - Joseph Guhlin
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Nevin D Young
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108, USA
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108, USA
| |
Collapse
|
144
|
Domonkos A, Horvath B, Marsh JF, Halasz G, Ayaydin F, Oldroyd GED, Kalo P. The identification of novel loci required for appropriate nodule development in Medicago truncatula. BMC PLANT BIOLOGY 2013; 13:157. [PMID: 24119289 PMCID: PMC3852326 DOI: 10.1186/1471-2229-13-157] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/25/2013] [Indexed: 05/21/2023]
Abstract
BACKGROUND The formation of functional symbiotic nodules is the result of a coordinated developmental program between legumes and rhizobial bacteria. Genetic analyses in legumes have been used to dissect the signaling processes required for establishing the legume-rhizobial endosymbiotic association. Compared to the early events of the symbiotic interaction, less attention has been paid to plant loci required for rhizobial colonization and the functioning of the nodule. Here we describe the identification and characterization of a number of new genetic loci in Medicago truncatula that are required for the development of effective nitrogen fixing nodules. RESULTS Approximately 38,000 EMS and fast neutron mutagenized Medicago truncatula seedlings were screened for defects in symbiotic nitrogen fixation. Mutant plants impaired in nodule development and efficient nitrogen fixation were selected for further genetic and phenotypic analysis. Nine mutants completely lacking in nodule formation (Nod-) represented six complementation groups of which two novel loci have been identified. Eight mutants with ineffective nodules (Fix-) represented seven complementation groups, out of which five were new monogenic loci. The Fix- M. truncatula mutants showed symptoms of nitrogen deficiency and developed small white nodules. Microscopic analysis of Fix- nodules revealed that the mutants have defects in the release of rhizobia from infection threads, differentiation of rhizobia and maintenance of persistence of bacteria in nodule cells. Additionally, we monitored the transcriptional activity of symbiosis specific genes to define what transcriptional stage of the symbiotic process is blocked in each of the Fix- mutants. Based on the phenotypic and gene expression analysis a functional hierarchy of the FIX genes is proposed. CONCLUSIONS The new symbiotic loci of M. truncatula isolated in this study provide the foundation for further characterization of the mechanisms underpinning nodulation, in particular the later stages associated with bacterial release and nodule function.
Collapse
Affiliation(s)
- Agota Domonkos
- Agricultural Biotechnology Center, Gödöllő 2100, Hungary
| | | | | | - Gabor Halasz
- Agricultural Biotechnology Center, Gödöllő 2100, Hungary
| | - Ferhan Ayaydin
- Cellular Imaging Laboratory, Biological Research Center, Szeged 6726, Hungary
| | | | - Peter Kalo
- Agricultural Biotechnology Center, Gödöllő 2100, Hungary
| |
Collapse
|
145
|
Guo H, Sun Y, Li Y, Tong B, Harris M, Zhu-Salzman K, Ge F. Pea aphid promotes amino acid metabolism both in Medicago truncatula and bacteriocytes to favor aphid population growth under elevated CO2. GLOBAL CHANGE BIOLOGY 2013; 19:3210-23. [PMID: 23686968 DOI: 10.1111/gcb.12260] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/09/2013] [Indexed: 05/23/2023]
Abstract
Rising atmospheric CO(2) levels can dilute the nitrogen (N) resource in plant tissue, which is disadvantageous to many herbivorous insects. Aphids appear to be an exception that warrants further study. The effects of elevated CO(2) (750 ppm vs. 390 ppm) were evaluated on N assimilation and transamination by two Medicago truncatula genotypes, a N-fixing-deficient mutant (dnf1) and its wild-type control (Jemalong), with and without pea aphid (Acyrthosiphon pisum) infestation. Elevated CO(2) increased population abundance and feeding efficiency of aphids fed on Jemalong, but reduced those on dnf1. Without aphid infestation, elevated CO(2) increased photosynthetic rate, chlorophyll content, nodule number, biomass, and pod number for Jemalong, but only increased pod number and chlorophyll content for dnf1. Furthermore, aphid infested Jemalong plants had enhanced activities of N assimilation-related enzymes (glutamine synthetase, Glutamate synthase) and transamination-related enzymes (glutamate oxalate transaminase, glutamine phenylpyruvate transaminase), which presumably increased amino acid concentration in leaves and phloem sap under elevated CO(2). In contrast, aphid infested dnf1 plants had decreased activities of N assimilation-related enzymes and transmination-related enzymes and amino acid concentrations under elevated CO(2). Furthermore, elevated CO(2) up-regulated expression of genes relevant to amino acid metabolism in bacteriocytes of aphids associated with Jemalong, but down-regulated those associated with dnf1. Our results suggest that pea aphids actively elicit host responses that promote amino acid metabolism in both the host plant and in its bacteriocytes to favor the population growth of the aphid under elevated CO(2).
Collapse
Affiliation(s)
- Huijuan Guo
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Graduate School, Chinese Academy of Sciences, Beijing, 100039, China
| | | | | | | | | | | | | |
Collapse
|
146
|
Frendo P, Matamoros MA, Alloing G, Becana M. Thiol-based redox signaling in the nitrogen-fixing symbiosis. FRONTIERS IN PLANT SCIENCE 2013; 4:376. [PMID: 24133498 PMCID: PMC3783977 DOI: 10.3389/fpls.2013.00376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/03/2013] [Indexed: 05/04/2023]
Abstract
In nitrogen poor soils legumes establish a symbiotic interaction with rhizobia that results in the formation of root nodules. These are unique plant organs where bacteria differentiate into bacteroids, which express the nitrogenase enzyme complex that reduces atmospheric N 2 to ammonia. Nodule metabolism requires a tight control of the concentrations of reactive oxygen and nitrogen species (RONS) so that they can perform useful signaling roles while avoiding nitro-oxidative damage. In nodules a thiol-dependent regulatory network that senses, transmits and responds to redox changes is starting to be elucidated. A combination of enzymatic, immunological, pharmacological and molecular analyses has allowed us to conclude that glutathione and its legume-specific homolog, homoglutathione, are abundant in meristematic and infected cells, that their spatio-temporally distribution is correlated with the corresponding (homo)glutathione synthetase activities, and that they are crucial for nodule development and function. Glutathione is at high concentrations in the bacteroids and at moderate amounts in the mitochondria, cytosol and nuclei. Less information is available on other components of the network. The expression of multiple isoforms of glutathione peroxidases, peroxiredoxins, thioredoxins, glutaredoxins and NADPH-thioredoxin reductases has been detected in nodule cells using antibodies and proteomics. Peroxiredoxins and thioredoxins are essential to regulate and in some cases to detoxify RONS in nodules. Further research is necessary to clarify the regulation of the expression and activity of thiol redox-active proteins in response to abiotic, biotic and developmental cues, their interactions with downstream targets by disulfide-exchange reactions, and their participation in signaling cascades. The availability of mutants and transgenic lines will be crucial to facilitate systematic investigations into the function of the various proteins in the legume-rhizobial symbiosis.
Collapse
Affiliation(s)
- Pierre Frendo
- Institut Sophia Agrobiotech, Université de Nice-Sophia AntipolisNice, France
- Institut Sophia Agrobiotech, Institut National de la Recherche Agronomique, Unité Mixte de Recherches 1355Nice, France
- Institut Sophia Agrobiotech, Centre National de la Recherche Scientifique, Unité Mixte de Recherches 7254Nice, France
- Pierre Frendo and Manuel A. Matamoros have contributed equally to this review.
| | - Manuel A. Matamoros
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
- Pierre Frendo and Manuel A. Matamoros have contributed equally to this review.
| | - Geneviève Alloing
- Institut Sophia Agrobiotech, Université de Nice-Sophia AntipolisNice, France
- Institut Sophia Agrobiotech, Institut National de la Recherche Agronomique, Unité Mixte de Recherches 1355Nice, France
- Institut Sophia Agrobiotech, Centre National de la Recherche Scientifique, Unité Mixte de Recherches 7254Nice, France
| | - Manuel Becana
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
- *Correspondence: Manuel Becana, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain e-mail:
| |
Collapse
|
147
|
Sinharoy S, Torres-Jerez I, Bandyopadhyay K, Kereszt A, Pislariu CI, Nakashima J, Benedito VA, Kondorosi E, Udvardi MK. The C2H2 transcription factor regulator of symbiosome differentiation represses transcription of the secretory pathway gene VAMP721a and promotes symbiosome development in Medicago truncatula. THE PLANT CELL 2013; 25:3584-601. [PMID: 24082011 PMCID: PMC3809551 DOI: 10.1105/tpc.113.114017] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/26/2013] [Accepted: 09/11/2013] [Indexed: 05/07/2023]
Abstract
Transcription factors (TFs) are thought to regulate many aspects of nodule and symbiosis development in legumes, although few TFs have been characterized functionally. Here, we describe regulator of symbiosome differentiation (RSD) of Medicago truncatula, a member of the Cysteine-2/Histidine-2 (C2H2) family of plant TFs that is required for normal symbiosome differentiation during nodule development. RSD is expressed in a nodule-specific manner, with maximal transcript levels in the bacterial invasion zone. A tobacco (Nicotiana tabacum) retrotransposon (Tnt1) insertion rsd mutant produced nodules that were unable to fix nitrogen and that contained incompletely differentiated symbiosomes and bacteroids. RSD protein was localized to the nucleus, consistent with a role of the protein in transcriptional regulation. RSD acted as a transcriptional repressor in a heterologous yeast assay. Transcriptome analysis of an rsd mutant identified 11 genes as potential targets of RSD repression. RSD interacted physically with the promoter of one of these genes, VAMP721a, which encodes vesicle-associated membrane protein 721a. Thus, RSD may influence symbiosome development in part by repressing transcription of VAMP721a and modifying vesicle trafficking in nodule cells. This establishes RSD as a TF implicated directly in symbiosome and bacteroid differentiation and a transcriptional regulator of secretory pathway genes in plants.
Collapse
Affiliation(s)
| | | | | | - Attila Kereszt
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | | | - Jin Nakashima
- The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | | | - Eva Kondorosi
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Avenue de la Terrasse 91198 Gif sur Yvette, France
| | | |
Collapse
|
148
|
Abstract
Many social behaviors are triggered by social partners. For example, cells in a multicellular organism often become soma via extrinsically regulated differentiation, while individuals in a eusocial colony often become helpers via extrinsic caste determination. One explanation for social triggering is that it informs when it is beneficial to express the behavior. Alternatively, social triggering can represent manipulation where social partners partially or completely control the focal individual's behavior. For instance, caste determination in primitively eusocial taxa is typically accomplished via differential feeding or dominance hierarchies, suggesting some manipulation. However, selection would favor resistance if manipulation is detrimental to manipulated parties, and the outcome of the manipulation conflict remains intricate. We analyze the coevolution of manipulation and resistance in a simple but general setting. We show that, despite possible resistance, manipulated behavior can be established under less stringent conditions than spontaneous (i.e., nonmanipulated) behavior because of resistance costs. The existence of this advantage might explain why primitive eusocial behavior tends to be triggered socially and coercively. We provide a simple condition for the advantage of manipulated behavior that may help infer whether a socially triggered behavior is manipulated. We illustrate our analysis with a hypothetical example of maternal manipulation relevant to primitive eusociality.
Collapse
Affiliation(s)
- Mauricio González-Forero
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996
| | | |
Collapse
|
149
|
Pini F, Frage B, Ferri L, De Nisco NJ, Mohapatra SS, Taddei L, Fioravanti A, Dewitte F, Galardini M, Brilli M, Villeret V, Bazzicalupo M, Mengoni A, Walker GC, Becker A, Biondi EG. The DivJ, CbrA and PleC system controls DivK phosphorylation and symbiosis in Sinorhizobium meliloti. Mol Microbiol 2013; 90:54-71. [PMID: 23909720 DOI: 10.1111/mmi.12347] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2013] [Indexed: 01/09/2023]
Abstract
Sinorhizobium meliloti is a soil bacterium that invades the root nodules it induces on Medicago sativa, whereupon it undergoes an alteration of its cell cycle and differentiates into nitrogen-fixing, elongated and polyploid bacteroid with higher membrane permeability. In Caulobacter crescentus, a related alphaproteobacterium, the principal cell cycle regulator, CtrA, is inhibited by the phosphorylated response regulator DivK. The phosphorylation of DivK depends on the histidine kinase DivJ, while PleC is the principal phosphatase for DivK. Despite the importance of the DivJ in C. crescentus, the mechanistic role of this kinase has never been elucidated in other Alphaproteobacteria. We show here that the histidine kinases DivJ together with CbrA and PleC participate in a complex phosphorylation system of the essential response regulator DivK in S. meliloti. In particular, DivJ and CbrA are involved in DivK phosphorylation and in turn CtrA inactivation, thereby controlling correct cell cycle progression and the integrity of the cell envelope. In contrast, the essential PleC presumably acts as a phosphatase of DivK. Interestingly, we found that a DivJ mutant is able to elicit nodules and enter plant cells, but fails to establish an effective symbiosis suggesting that proper envelope and/or low CtrA levels are required for symbiosis.
Collapse
Affiliation(s)
- Francesco Pini
- Interdisciplinary Research Institute USR3078, CNRS-Université Lille Nord de France, 50 avenue de Halley, Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Xi J, Chen Y, Nakashima J, Wang SM, Chen R. Medicago truncatula esn1 defines a genetic locus involved in nodule senescence and symbiotic nitrogen fixation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:893-902. [PMID: 23634841 DOI: 10.1094/mpmi-02-13-0043-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Symbiotic interaction between Medicago truncatula and Sinorhizobium meliloti results in the formation on the host roots of new organs, nodules, in which biological nitrogen fixation takes place. In infected cells, rhizobia enclosed in a plant-derived membrane, the symbiosome membrane, differentiate to nitrogen-fixing bacteroids. The symbiosome membrane serves as an interface for metabolite and signal exchanges between the host cells and endosymbionts. At some point during symbiosis, symbiosomes and symbiotic cells are disintegrated, resulting in nodule senescence. The regulatory mechanisms that underlie nodule senescence are not fully understood. Using a forward genetics approach, we have uncovered the early senescent nodule 1 (esn1) mutant from an M. truncatula fast neutron-induced mutant collection. Nodules on esn1 roots are spherically shaped, ineffective in nitrogen fixation, and senesce early. Atypical among fixation defective mutants isolated thus far, bacteroid differentiation and expression of nifH, Leghemoglobin, and DNF1 genes are not affected in esn1 nodules, supporting the idea that a process downstream of bacteroid differentiation and nitrogenase gene expression is affected in the esn1 mutant. Expression analysis shows that marker genes involved in senescence, macronutrient degradation, and remobilization are greatly upregulated during nodule development in the esn1 mutant, consistent with a role of ESN1 in nodule senescence and symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Jiejun Xi
- Lanzhou University, Lanzhou, People's Republic of China
| | | | | | | | | |
Collapse
|