101
|
Data Platform for the Research and Prevention of Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 29058216 DOI: 10.1007/978-981-10-6041-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
With the rapid increase in global aging, Alzheimer's disease has become a major burden in both social and economic costs. Substantial resources have been devoted to researching this disease, and rich multimodal data resources have been generated. In this chapter, we discuss an ongoing effort to build a data platform to harness these data to help research and prevention of Alzheimer's disease. We will detail this data platform in terms of its architecture, its data integration strategy, and its data services. Then, we will consider how to leverage this data platform to accelerate risk factor identification and pathogenesis study with its data analytics capability. This chapter will provide a concrete pathway for developing a data platform for studying and preventing insidious onset chronic diseases in this data era.
Collapse
|
102
|
Tagami S, Yanagida K, Kodama TS, Takami M, Mizuta N, Oyama H, Nishitomi K, Chiu YW, Okamoto T, Ikeuchi T, Sakaguchi G, Kudo T, Matsuura Y, Fukumori A, Takeda M, Ihara Y, Okochi M. Semagacestat Is a Pseudo-Inhibitor of γ-Secretase. Cell Rep 2017; 21:259-273. [DOI: 10.1016/j.celrep.2017.09.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/30/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022] Open
|
103
|
Yang SH, Lee DK, Shin J, Lee S, Baek S, Kim J, Jung H, Hah JM, Kim Y. Nec-1 alleviates cognitive impairment with reduction of Aβ and tau abnormalities in APP/PS1 mice. EMBO Mol Med 2017; 9:61-77. [PMID: 27861127 PMCID: PMC5210088 DOI: 10.15252/emmm.201606566] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive symptoms of learning and memory deficits. Such cognitive impairments are attributed to brain atrophy resulting from progressive neuronal and synaptic loss; therefore, alleviation of neural cell death is as an important target of treatment as other classical hallmarks of AD, such as aggregation of amyloid‐β (Aβ) and hyperphosphorylation of tau. Here, we found that an anti‐necroptotic molecule necrostatin‐1 (Nec‐1) directly targets Aβ and tau proteins, alleviates brain cell death and ameliorates cognitive impairment in AD models. In the cortex and hippocampus of APP/PS1 double‐transgenic mice, Nec‐1 treatment reduced the levels of Aβ oligomers, plaques and hyperphosphorylated tau without affecting production of Aβ, while it altered the levels of apoptotic marker proteins. Our results showing multiple beneficial modes of action of Nec‐1 against AD provide evidence that Nec‐1 may serve an important role in the development of preventive approach for AD.
Collapse
Affiliation(s)
- Seung-Hoon Yang
- Convergence Research Center for Dementia and Center for Neuro-Medicine, Brain Science Institute Korea Institute of Science and Technology, Seoul, Korea
| | - Dongkeun Kenneth Lee
- Convergence Research Center for Dementia and Center for Neuro-Medicine, Brain Science Institute Korea Institute of Science and Technology, Seoul, Korea
| | - Jisu Shin
- Convergence Research Center for Dementia and Center for Neuro-Medicine, Brain Science Institute Korea Institute of Science and Technology, Seoul, Korea
| | - Sejin Lee
- Convergence Research Center for Dementia and Center for Neuro-Medicine, Brain Science Institute Korea Institute of Science and Technology, Seoul, Korea.,Biological Chemistry Program, Korea University of Science and Technology, Daejeon, Korea
| | - Seungyeop Baek
- Convergence Research Center for Dementia and Center for Neuro-Medicine, Brain Science Institute Korea Institute of Science and Technology, Seoul, Korea.,Department of Biotechnology, Yonsei University, Seoul, Korea
| | - Jiyoon Kim
- Convergence Research Center for Dementia and Center for Neuro-Medicine, Brain Science Institute Korea Institute of Science and Technology, Seoul, Korea.,Biological Chemistry Program, Korea University of Science and Technology, Daejeon, Korea
| | - Hoyong Jung
- Department of Pharmacy, College of Pharmacy & Institute of Pharmaceutical Science and Technology Hanyang University, Ansan, Kyeonggi-do, Korea
| | - Jung-Mi Hah
- Department of Pharmacy, College of Pharmacy & Institute of Pharmaceutical Science and Technology Hanyang University, Ansan, Kyeonggi-do, Korea
| | - YoungSoo Kim
- Convergence Research Center for Dementia and Center for Neuro-Medicine, Brain Science Institute Korea Institute of Science and Technology, Seoul, Korea .,Biological Chemistry Program, Korea University of Science and Technology, Daejeon, Korea
| |
Collapse
|
104
|
Kinetics and Molecular Docking Studies of 6-Formyl Umbelliferone Isolated from Angelica decursiva as an Inhibitor of Cholinesterase and BACE1. Molecules 2017; 22:molecules22101604. [PMID: 28946641 PMCID: PMC6151429 DOI: 10.3390/molecules22101604] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 11/17/2022] Open
Abstract
Coumarins, which have low toxicity, are present in some natural foods, and are used in various herbal remedies, have attracted interest in recent years because of their potential medicinal properties. In this study, we report the isolation of two natural coumarins, namely umbelliferone (1) and 6-formyl umbelliferone (2), from Angelica decursiva, and the synthesis of 8-formyl umbelliferone (3) from 1. We investigated the anti-Alzheimer disease (anti-AD) potential of these coumarins by assessing their ability to inhibit acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1). Among these coumarins, 2 exhibited poor inhibitory activity against AChE and BChE, and modest activity against BACE1. Structure–activity relationship analysis showed that 2 has an aldehyde group at the C-6 position, and exhibited strong anti-AD activity, whereas the presence or absence of an aldehyde group at the C-8 position reduced the anti-AD activity of 3 and 1, respectively. In addition, 2 exhibited concentration-dependent inhibition of peroxynitrite-mediated protein tyrosine nitration. A kinetic study revealed that 2 and 3 non-competitively inhibited BACE1. To confirm enzyme inhibition, we predicted the 3D structures of AChE and BACE1, and used AutoDock 4.2 to simulate binding of coumarins to these enzymes. The blind docking studies demonstrated that these molecules could interact with both the catalytic active sites and peripheral anionic sites of AChE and BACE1. Together, our results indicate that 2 has an interesting inhibitory activity in vitro, and can be used in further studies to develop therapeutic modalities for the treatment of AD.
Collapse
|
105
|
Emerson JA, Smith CY, Long KH, Ransom JE, Roberts RO, Hass SL, Duhig AM, Petersen RC, Leibson CL. Nursing Home Use Across The Spectrum of Cognitive Decline: Merging Mayo Clinic Study of Aging With CMS MDS Assessments. J Am Geriatr Soc 2017; 65:2235-2243. [PMID: 28892128 DOI: 10.1111/jgs.15022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND/OBJECTIVES Objective, complete estimates of nursing home (NH) use across the spectrum of cognitive decline are needed to help predict future care needs and inform economic models constructed to assess interventions to reduce care needs. DESIGN Retrospective longitudinal study. SETTING Olmsted County, MN. PARTICIPANTS Mayo Clinic Study of Aging participants assessed as cognitively normal (CN), mild cognitive impairment (MCI), previously unrecognized dementia, or prevalent dementia (age = 70-89 years; N = 3,545). MEASUREMENTS Participants were followed in Centers for Medicare and Medicaid Services (CMS) Minimum Data Set (MDS) NH records and in Rochester Epidemiology Project provider-linked medical records for 1-year after assessment of cognition for days of observation, NH use (yes/no), NH days, NH days/days of observation, and mortality. RESULTS In the year after cognition was assessed, for persons categorized as CN, MCI, previously unrecognized dementia, and prevalent dementia respectively, the percentages who died were 1.0%, 2.6%, 4.2%, 21%; the percentages with any NH use were 3.8%, 8.7%, 19%, 40%; for persons with any NH use, median NH days were 27, 38, 120, 305, and median percentages of NH days/days of observation were 7.8%, 12%, 33%, 100%. The year after assessment, among persons with prevalent dementia and any NH use, >50% were a NH resident all days of observation. Pairwise comparisons revealed that each increase in cognitive impairment category exhibited significantly higher proportions with any NH use. One-year mortality was especially high for persons with prevalent dementia and any NH use (30% vs 13% for those with no NH use); 58% of all deaths among persons with prevalent dementia occurred while a NH resident. CONCLUSIONS Findings suggest reductions in NH use could result from quality alternatives to NH admission, both among persons with MCI and persons with dementia, together with suitable options for end-of-life care among persons with prevalent dementia.
Collapse
Affiliation(s)
- Jane A Emerson
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Carin Y Smith
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Kirsten H Long
- K Long Health Economics Consulting LLC, St. Paul, Minnesota
| | - Jeanine E Ransom
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Rosebud O Roberts
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota.,Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Ronald C Petersen
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota.,Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Cynthia L Leibson
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
106
|
Liang S, Huang J, Liu W, Jin H, Li L, Zhang X, Nie B, Lin R, Tao J, Zhao S, Shan B, Chen L. Magnetic resonance spectroscopy analysis of neurochemical changes in the atrophic hippocampus of APP/PS1 transgenic mice. Behav Brain Res 2017; 335:26-31. [DOI: 10.1016/j.bbr.2017.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 07/26/2017] [Accepted: 08/05/2017] [Indexed: 02/09/2023]
|
107
|
Keohane K, Balfe M. The Nun Study and Alzheimer's disease: Quality of vocation as a potential protective factor? DEMENTIA 2017; 18:1651-1662. [PMID: 28840756 DOI: 10.1177/1471301217725186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Data from the Nun Study, the most famous longitudinal epidemiology of Alzheimer’s disease to date, are analyzed and reformulated in terms of Max Weber’s discussion of the centrality of beruf – “calling” – fulfilling a life task in pursuit of a vocation. Qualitative differences in the Nuns’ vocations are uncovered, which are correlated to their resilience to dementia. Extrapolating, we argue that Alzheimer’s disease and the dementia reputed to it should be understood as a social pathology of contemporary civilization related to the loss of moral foundations from which coherent, meaningful life-projects can be conducted.
Collapse
Affiliation(s)
- Kieran Keohane
- School of Sociology & Philosophy, University College Cork, Cork, Ireland
| | - Myles Balfe
- School of Sociology & Philosophy, University College Cork, Cork, Ireland
| |
Collapse
|
108
|
Stowe AM, Ireland SJ, Ortega SB, Chen D, Huebinger RM, Tarumi T, Harris TS, Cullum CM, Rosenberg R, Monson NL, Zhang R. Adaptive lymphocyte profiles correlate to brain Aβ burden in patients with mild cognitive impairment. J Neuroinflammation 2017; 14:149. [PMID: 28750671 PMCID: PMC5530920 DOI: 10.1186/s12974-017-0910-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND We previously found that subjects with amnestic mild cognitive impairment exhibit a pro-inflammatory immune profile in the cerebrospinal fluid similar to multiple sclerosis, a central nervous system autoimmune disease. We therefore hypothesized that early neuroinflammation would reflect increases in brain amyloid burden during amnestic mild cognitive impairment. METHODS Cerebrospinal fluid and blood samples were collected from 24 participants with amnestic mild cognitive impairment (12 men, 12 women; 66 ± 6 years; 0.5 Clinical Dementia Rating) enrolled in the AETMCI study. Analyses of cerebrospinal fluid and blood included immune profiling by multi-parameter flow cytometry, genotyping for apolipoprotein (APO)ε, and quantification of cytokine and immunoglobin levels. Amyloid (A)β deposition was determined by 18F-florbetapir positron emission tomography. Spearman rank order correlations were performed to assess simple linear correlation for parameters including amyloid imaging, central and peripheral immune cell populations, and protein cytokine levels. RESULTS Soluble Aβ42 in the cerebrospinal fluid declined as Aβ deposition increased overall and in the precuneous and posterior cingulate cortices. Lymphocyte profiling revealed a significant decline in T cell populations in the cerebrospinal fluid, specifically CD4+ T cells, as Aβ deposition in the posterior cingulate cortex increased. In contrast, increased Aβ burden correlated positively with increased memory B cells in the cerebrospinal fluid, which was exacerbated in APOε4 carriers. For peripheral circulating lymphocytes, only B cell populations decreased with Aβ deposition in the precuneous cortex, as peripheral T cell populations did not correlate with changes in brain amyloid burden. CONCLUSIONS Elevations in brain Aβ burden associate with a shift from T cells to memory B cells in the cerebrospinal fluid of subjects with amnestic mild cognitive impairment in this exploratory cohort. These data suggest the presence of cellular adaptive immune responses during Aβ accumulation, but further study needs to determine whether lymphocyte populations contribute to, or result from, Aβ dysregulation during memory decline on a larger cohort collected at multiple centers. TRIAL REGISTRATION AETMCI NCT01146717.
Collapse
Affiliation(s)
- Ann M Stowe
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, NL9.110E, 6000 Harry Hines Blvd, Dallas, 75390, TX, USA
| | - Sara J Ireland
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, NL9.110E, 6000 Harry Hines Blvd, Dallas, 75390, TX, USA
| | - Sterling B Ortega
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, NL9.110E, 6000 Harry Hines Blvd, Dallas, 75390, TX, USA
| | - Ding Chen
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, NL9.110E, 6000 Harry Hines Blvd, Dallas, 75390, TX, USA
| | - Ryan M Huebinger
- Department of Surgery, UT Southwestern Medical Center, 6000 Harry Hines, Dallas, 75390, TX, USA
| | - Takashi Tarumi
- Texas Health Presbyterian Hospital, Institute for Exercise and Environmental Medicine, 7232 Greenville Ave, Dallas, 75231, TX, USA
| | - Thomas S Harris
- Department of Radiology, UT Southwestern Medical Center, 6000 Harry Hines, Dallas, 75390, TX, USA
| | - C Munro Cullum
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, NL9.110E, 6000 Harry Hines Blvd, Dallas, 75390, TX, USA.,Department of Psychiatry, UT Southwestern Medical Center, 6000 Harry Hines, Dallas, 75390, TX, USA
| | - Roger Rosenberg
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, NL9.110E, 6000 Harry Hines Blvd, Dallas, 75390, TX, USA
| | - Nancy L Monson
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, NL9.110E, 6000 Harry Hines Blvd, Dallas, 75390, TX, USA. .,Department of Immunology, UT Southwestern Medical Center, 6000 Harry Hines, Dallas, 75390, TX, USA.
| | - Rong Zhang
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, NL9.110E, 6000 Harry Hines Blvd, Dallas, 75390, TX, USA.,Texas Health Presbyterian Hospital, Institute for Exercise and Environmental Medicine, 7232 Greenville Ave, Dallas, 75231, TX, USA
| |
Collapse
|
109
|
APOE-Sensitive Cholinergic Sprouting Compensates for Hippocampal Dysfunctions Due to Reduced Entorhinal Input. J Neurosci 2017; 36:10472-10486. [PMID: 27707979 DOI: 10.1523/jneurosci.1174-16.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/17/2016] [Indexed: 01/01/2023] Open
Abstract
Brain mechanisms compensating for cerebral lesions may mitigate the progression of chronic neurodegenerative disorders such as Alzheimer's disease (AD). Mild cognitive impairment (MCI), which often precedes AD, is characterized by neuronal loss in the entorhinal cortex (EC). This loss leads to a hippocampal disconnection syndrome that drives clinical progression. The concomitant sprouting of cholinergic terminals in the hippocampus has been proposed to compensate for reduced EC glutamatergic input. However, in absence of direct experimental evidence, the compensatory nature of the cholinergic sprouting and its putative mechanisms remain elusive. Transgenic mice expressing the human APOE4 allele, the main genetic risk factor for sporadic MCI/AD, display impaired cholinergic sprouting after EC lesion. Using these mice as a tool to manipulate cholinergic sprouting in a disease-relevant way, we showed that this sprouting was necessary and sufficient for the acute compensation of EC lesion-induced spatial memory deficit before a slower glutamatergic reinnervation took place. We also found that partial EC lesion generates abnormal hyperactivity in EC/dentate networks. Dentate hyperactivity was abolished by optogenetic stimulation of cholinergic fibers. Therefore, control of dentate hyperactivity by cholinergic sprouting may be involved in functional compensation after entorhinal lesion. Our results also suggest that dentate hyperactivity in MCI patients may be directly related to EC neuronal loss. Impaired sprouting during the MCI stage may contribute to the faster cognitive decline reported in APOE4 carriers. Beyond the amyloid contribution, the potential role of both cholinergic sprouting and dentate hyperactivity in AD symptomatogenesis should be considered in designing new therapeutic approaches. SIGNIFICANCE STATEMENT Currently, curative treatment trials for Alzheimer's disease (AD) have failed. The endogenous ability of the brain to cope with neuronal loss probably represents one of the most promising therapeutic targets, but the underlying mechanisms are still unclear. Here, we show that the mammalian brain is able to manage several deleterious consequences of the loss of entorhinal neurons on hippocampal activity and cognitive performance through a fast cholinergic sprouting followed by a slower glutamatergic reinnervation. The cholinergic sprouting is gender dependent and highly sensitive to the genetic risk factor APOE4 Our findings highlight the specific impact of early loss of entorhinal input on hippocampal hyperactivity and cognitive deficits characterizing early stages of AD, especially in APOE4 carriers.
Collapse
|
110
|
Hoshi K, Matsumoto Y, Ito H, Saito K, Honda T, Yamaguchi Y, Hashimoto Y. A unique glycan-isoform of transferrin in cerebrospinal fluid: A potential diagnostic marker for neurological diseases. Biochim Biophys Acta Gen Subj 2017; 1861:2473-2478. [PMID: 28711405 DOI: 10.1016/j.bbagen.2017.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/05/2017] [Accepted: 07/08/2017] [Indexed: 01/26/2023]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) is sequestered from blood by the blood-brain barrier and directly communicates with brain parenchymal interstitial fluid, leading to contain specific biomarkers of neurological diseases. SCOPE OF REVIEW CSF contains glycan isoforms of transferrin (Tf): one appears to be derived from the brain and the other from blood. MAJOR CONCLUSIONS CSF contains two glycan-isoforms; brain-type Tf and serum-type Tf. Glycan analysis and immunohistochemistry suggest that serum-type Tf having α2, 6sialylated glycans is derived from blood whereas brain-type Tf having GlcNAc-terminated glycans is derived from the choroid plexus, CSF producing tissue. The ratio of serum-type/brain-type Tf differentiates Alzheimer's disease from idiopathic normal pressure hydrocephalus, which is an elderly dementia caused by abnormal metabolism of CSF. The ratios in Parkinson's disease (PD) patients were higher than those of controls and did not appear to be normally distributed. Indeed, detrended normal Quantile-Quantile plot analysis reveals the presence of an independent subgroup showing higher ratios in PD patients. The subgroup of PD shows higher levels of CSF α-synuclein than the rest, indicating that PD includes two subgroups, which differ in levels of brain-type Tf and α-synuclein. GENERAL SIGNIFICANCE Glycosylation in central nervous system appears to be unique. The unique glycan may be a tag for glycoprotein, which is biosynthesized in the central nervous system. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.
Collapse
Affiliation(s)
- Kyoka Hoshi
- Department of Biochemistry, Fukushima Medical University, 1-Hikarigaoka, Fukushima-City, Fukushima 960-1295, Japan
| | - Yuka Matsumoto
- Department of Neurosurgery, Fukushima Medical University, 1-Hikarigaoka, Fukushima-City, Fukushima 960-1295, Japan
| | - Hiromi Ito
- Department of Biochemistry, Fukushima Medical University, 1-Hikarigaoka, Fukushima-City, Fukushima 960-1295, Japan
| | - Kiyoshi Saito
- Department of Neurosurgery, Fukushima Medical University, 1-Hikarigaoka, Fukushima-City, Fukushima 960-1295, Japan
| | - Takashi Honda
- Department of Life Science, Fukushima Medical University, 1-Hikarigaoka, Fukushima-City, Fukushima 960-1295, Japan
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Wako-shi, Saitama 351-0198, Japan
| | - Yasuhiro Hashimoto
- Department of Biochemistry, Fukushima Medical University, 1-Hikarigaoka, Fukushima-City, Fukushima 960-1295, Japan.
| |
Collapse
|
111
|
Mancini S, Balducci C, Micotti E, Tolomeo D, Forloni G, Masserini M, Re F. Multifunctional liposomes delay phenotype progression and prevent memory impairment in a presymptomatic stage mouse model of Alzheimer disease. J Control Release 2017; 258:121-129. [DOI: 10.1016/j.jconrel.2017.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 10/19/2022]
|
112
|
Marsh J, Bagol SH, Williams RSB, Dickson G, Alifragis P. Synapsin I phosphorylation is dysregulated by beta-amyloid oligomers and restored by valproic acid. Neurobiol Dis 2017. [PMID: 28647556 DOI: 10.1016/j.nbd.2017.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease is the most prevalent form of dementia in the elderly but the precise causal mechanisms are still not fully understood. Growing evidence supports a significant role for Aβ42 oligomers in the development and progression of Alzheimer's. For example, intracellular soluble Aβ oligomers are thought to contribute to the early synaptic dysfunction associated with Alzheimer's disease, but the molecular mechanisms underlying this effect are still unclear. Here, we identify a novel mechanism that contributes to our understanding of the reported synaptic dysfunction. Using primary rat hippocampal neurons exposed for a short period of time to Aβ42 oligomers, we show a disruption in the activity-dependent phosphorylation cycle of SynapsinI at Ser9. SynapsinI is a pre-synaptic protein that responds to neuronal activity and regulates the availability of synaptic vesicles to participate in neurotransmitter release. Phosphorylation of SynapsinI at Ser9, modulates its distribution and interaction with synaptic vesicles. Our results show that in neurons exposed to Aβ42 oligomers, the levels of phosphorylated Ser9 of SynapsinI remain elevated during the recovery period following neuronal activity. We then investigated if this effect could be targeted by a putative therapeutic regime using valproic acid (a short branch-chained fatty acid) that has been proposed as a treatment for Alzheimer's disease. Exposure of Aβ42 treated neurons to valproic acid, showed that it restores the physiological regulation of SynapsinI after depolarisation. Our data provide a new insight on Aβ42-mediated pathology in Alzheimer's disease and supports the use of Valproic acid as a possible pharmaceutical intervention for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jade Marsh
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Saifuddien Haji Bagol
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Robin S B Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - George Dickson
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Pavlos Alifragis
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK.
| |
Collapse
|
113
|
The value of whole-brain CT perfusion imaging and CT angiography using a 320-slice CT scanner in the diagnosis of MCI and AD patients. Eur Radiol 2017; 27:4756-4766. [PMID: 28577254 DOI: 10.1007/s00330-017-4865-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/31/2017] [Accepted: 04/20/2017] [Indexed: 02/01/2023]
Abstract
OBJECTIVES To validate the value of whole-brain computed tomography perfusion (CTP) and CT angiography (CTA) in the diagnosis of mild cognitive impairment (MCI) and Alzheimer's disease (AD). METHODS Whole-brain CTP and four-dimensional CT angiography (4D-CTA) images were acquired in 30 MCI, 35 mild AD patients, 35 moderate AD patients, 30 severe AD patients and 50 normal controls (NC). Cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), time to peak (TTP), and correlation between CTP and 4D-CTA were analysed. RESULTS Elevated CBF in the left frontal and temporal cortex was found in MCI compared with the NC group. However, TTP was increased in the left hippocampus in mild AD patients compared with NC. In moderate and severe AD patients, hypoperfusion was found in multiple brain areas compared with NC. Finally, we found that the extent of arterial stenosis was negatively correlated with CBF in partial cerebral cortex and hippocampus, and positively correlated with TTP in these areas of AD and MCI patients. CONCLUSIONS Our findings suggest that whole-brain CTP and 4D-CTA could serve as a diagnostic modality in distinguishing MCI and AD, and predicting conversion from MCI based on TTP of left hippocampus. KEY POINTS • Whole-brain perfusion using the full 160-mm width of 320 detector rows • Provide clinical experience of 320-row CT in cerebrovascular disorders of Alzheimer's disease • Initial combined 4D CTA-CTP data analysed perfusion and correlated with CT angiography • Whole-brain CTP and 4D-CTA have high value for monitoring MCI to AD progression • TTP in the left hippocampus may predict the transition from MCI to AD.
Collapse
|
114
|
Parsons CG, Rammes G. Preclinical to phase II amyloid beta (Aβ) peptide modulators under investigation for Alzheimer’s disease. Expert Opin Investig Drugs 2017; 26:579-592. [DOI: 10.1080/13543784.2017.1313832] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Chris G. Parsons
- Non-Clinical Science, Merz Pharmaceuticals GmbH, Frankfurt am Main, Germany
| | - Gerhard Rammes
- Klinikum rechts der Isar der Technischen Universitat Munchen – Department of Anesthesiology, Munchen, Germany
| |
Collapse
|
115
|
Li Y, Liu Y, Wang P, Wang J, Xu S, Qiu M. Dependency criterion based brain pathological age estimation of Alzheimer's disease patients with MR scans. Biomed Eng Online 2017; 16:50. [PMID: 28438167 PMCID: PMC5404315 DOI: 10.1186/s12938-017-0342-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/19/2017] [Indexed: 12/20/2022] Open
Abstract
Objectives Traditional brain age estimation methods are based on the idea that uses the real age as the training label. However, these methods ignore that there is a deviation between the real age and the brain age due to the accelerated brain aging. Methods This paper considers this deviation and obtains it by maximizing the correlation between the estimated brain age and the class label rather than by minimizing the difference between the estimated brain age and the real age. Firstly, set the search range of the deviation as the deviation candidates according to the prior knowledge. Secondly, use the support vector regression as the age estimation model to minimize the difference between the estimated age and the real age plus deviation rather than the real age itself. Thirdly, design the fitness function based on the correlation criterion. Fourthly, conduct age estimation on the validation dataset using the trained age estimation model, put the estimated age into the fitness function, and obtain the fitness value of the deviation candidate. Fifthly, repeat the iteration until all the deviation candidates are involved and get the optimal deviation with maximum fitness values. The real age plus the optimal deviation is taken as the brain pathological age. Results The experimental results showed that the separability of the samples was apparently improved. For normal control- Alzheimer’s disease (NC-AD), normal control- mild cognition impairment (NC-MCI), and mild cognition impairment—Alzheimer’s disease (MCI-AD), the average improvements were 0.164 (31.66%), 0.1284 (34.29%), and 0.0206 (7.1%), respectively. For NC-MCI-AD, the average improvement was 0.2002 (50.39%). The estimated brain pathological age could be not only more helpful for the classification of AD but also more precisely reflect the accelerated brain aging. Conclusion In conclusion, this paper proposes a new kind of brain age—brain pathological age and offers an estimation method for it that can distinguish different states of AD, thereby better reflecting accelerated brain aging. Besides, the brain pathological age is most helpful for feature reduction, thereby simplifying the relevant classification algorithm.
Collapse
Affiliation(s)
- Yongming Li
- College of Communication Engineering, Chongqing University, Shapingba District, Chongqing, 400044, China. .,Department of Medical Image, College of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, China. .,Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, 400044, China.
| | - Yuchuan Liu
- College of Communication Engineering, Chongqing University, Shapingba District, Chongqing, 400044, China
| | - Pin Wang
- College of Communication Engineering, Chongqing University, Shapingba District, Chongqing, 400044, China
| | - Jie Wang
- College of Communication Engineering, Chongqing University, Shapingba District, Chongqing, 400044, China
| | - Sha Xu
- College of Communication Engineering, Chongqing University, Shapingba District, Chongqing, 400044, China
| | - Mingguo Qiu
- Department of Medical Image, College of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, China
| | | |
Collapse
|
116
|
Pathological Role of Peptidyl-Prolyl Isomerase Pin1 in the Disruption of Synaptic Plasticity in Alzheimer's Disease. Neural Plast 2017; 2017:3270725. [PMID: 28458925 PMCID: PMC5385220 DOI: 10.1155/2017/3270725] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/12/2016] [Indexed: 01/18/2023] Open
Abstract
Synaptic loss is the structural basis for memory impairment in Alzheimer's disease (AD). While the underlying pathological mechanism remains elusive, it is known that misfolded proteins accumulate as β-amyloid (Aβ) plaques and hyperphosphorylated Tau tangles decades before the onset of clinical disease. The loss of Pin1 facilitates the formation of these misfolded proteins in AD. Pin1 protein controls cell-cycle progression and determines the fate of proteins by the ubiquitin proteasome system. The activity of the ubiquitin proteasome system directly affects the functional and structural plasticity of the synapse. We localized Pin1 to dendritic rafts and postsynaptic density (PSD) and found the pathological loss of Pin1 within the synapses of AD brain cortical tissues. The loss of Pin1 activity may alter the ubiquitin-regulated modification of PSD proteins and decrease levels of Shank protein, resulting in aberrant synaptic structure. The loss of Pin1 activity, induced by oxidative stress, may also render neurons more susceptible to the toxicity of oligomers of Aβ and to excitation, thereby inhibiting NMDA receptor-mediated synaptic plasticity and exacerbating NMDA receptor-mediated synaptic degeneration. These results suggest that loss of Pin1 activity could lead to the loss of synaptic plasticity in the development of AD.
Collapse
|
117
|
Karssemeijer EGA, Bossers WJR, Aaronson JA, Kessels RPC, Olde Rikkert MGM. The effect of an interactive cycling training on cognitive functioning in older adults with mild dementia: study protocol for a randomized controlled trial. BMC Geriatr 2017; 17:73. [PMID: 28327083 PMCID: PMC5361710 DOI: 10.1186/s12877-017-0464-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/14/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND To date there is no cure or an effective disease-modifying drug to treat dementia. Available acetylcholine-esterase inhibiting drugs or memantine only produce small benefits on cognitive and behavioural functioning and their clinical relevance remains controversial. Combined cognitive-aerobic interventions are an appealing alternative or add-on to current pharmacological treatments. The primary aim of this study is to investigate the efficacy of a combined cognitive-aerobic training and a single aerobic training compared to an active control group in older adults with mild dementia. We expect to find a beneficial effect on executive functioning in both training regimes, compared to the control intervention, with the largest effect in the combined cognitive-aerobic group. Secondary, intervention effects on cognitive functioning in other domains, physical functioning, physical activity levels, activities of daily living, frailty and quality of life are studied. METHODS The design is a single-blind, randomized controlled trial (RCT) with three groups: a combined cognitive-aerobic bicycle training (interactive cycling), a single aerobic bicycle training and a control intervention, which consists of stretching and toning exercises. Older adults with mild dementia follow a 12-week training program consisting of three training sessions of 30-40 min per week. The primary study outcome is objective executive functioning measured with a neuropsychological assessment. Secondary measures are objective cognitive functioning in other domains, physical functioning, physical activity levels, activities of daily living, frailty, mood and quality of life. The three groups are compared at baseline, after 6 and 12 weeks of training, and at 24-week follow-up. DISCUSSION This study will provide novel information on the effects of an interactive cycling training on executive function in older adults with mild dementia. Furthermore, since this study has both a combined cognitive-aerobic training and a single aerobic training group the effectiveness of the different components of the intervention can be identified. The results of this study may be used for physical and mental activity recommendations in older adults with dementia. TRIAL REGISTRATION The Netherlands National Trial Register NTR5581 . Registered 14 February 2016.
Collapse
Affiliation(s)
- E G A Karssemeijer
- Department of Geriatric Medicine, Donders Institute for Brain Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands. .,Radboud university medical center, Radboudumc Alzheimer Center, PO 9101 (hp 925), Nijmegen, 6500 HB, The Netherlands.
| | - W J R Bossers
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, The Netherlands
| | - J A Aaronson
- Department of Medical Psychology, Donders Institute for Brain Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - R P C Kessels
- Department of Medical Psychology, Donders Institute for Brain Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - M G M Olde Rikkert
- Department of Geriatric Medicine, Donders Institute for Brain Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands.,Radboud university medical center, Radboudumc Alzheimer Center, PO 9101 (hp 925), Nijmegen, 6500 HB, The Netherlands
| |
Collapse
|
118
|
Ware C, Damnee S, Djabelkhir L, Cristancho V, Wu YH, Benovici J, Pino M, Rigaud AS. Maintaining Cognitive Functioning in Healthy Seniors with a Technology-Based Foreign Language Program: A Pilot Feasibility Study. Front Aging Neurosci 2017; 9:42. [PMID: 28298892 PMCID: PMC5331045 DOI: 10.3389/fnagi.2017.00042] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/16/2017] [Indexed: 11/23/2022] Open
Abstract
Researchers have hypothesized that learning a foreign language could be beneficial for seniors, as language learning requires the use of extensive neural networks. We developed and qualitatively evaluated an English training program for older French adults; our principal objective was to determine whether a program integrating technology is feasible for this population. We conducted a 4-month pilot study (16, 2-h sessions) with 14 French participants, (nine women, five men, average age 75). Questionnaires were administered pre- and post-intervention to measure cognitive level and subjective feelings of loneliness or social isolation; however, these scores did not improve significantly. Post-intervention, semi-directive interviews were carried out with participants, and a content/theme analysis was performed. Five main themes were identified from the interviews: Associations with school, attitudes toward English, motivation for learning English, attitudes toward the program’s organization, and social ties. The program was found to be feasible for this age group, yet perceived as quite difficult for participants who lacked experience with English. Nonetheless, most participants found the program to be stimulating and enjoyable. We discuss different suggestions for future programs and future directions for foreign-language learning as a therapeutic and cognitive intervention.
Collapse
Affiliation(s)
- Caitlin Ware
- Department of Psychoanalytical Studies, University of Paris VII Diderot Paris, France
| | - Souad Damnee
- Department of Clinical Gerontology, Broca Hospital Paris, France
| | - Leila Djabelkhir
- Department of Clinical Gerontology, Broca HospitalParis, France; Faculty of Medicine, University of Paris DescartesParis, France
| | - Victoria Cristancho
- Department of Clinical Gerontology, Broca HospitalParis, France; Faculty of Medicine, University of Paris DescartesParis, France
| | - Ya-Huei Wu
- Department of Clinical Gerontology, Broca HospitalParis, France; Faculty of Medicine, University of Paris DescartesParis, France
| | - Judith Benovici
- Faculty of Medicine, University of Paris Descartes Paris, France
| | - Maribel Pino
- Department of Clinical Gerontology, Broca HospitalParis, France; Faculty of Medicine, University of Paris DescartesParis, France
| | - Anne-Sophie Rigaud
- Department of Clinical Gerontology, Broca HospitalParis, France; Faculty of Medicine, University of Paris DescartesParis, France
| |
Collapse
|
119
|
Maccarrone M, Maldonado R, Casas M, Henze T, Centonze D. Cannabinoids therapeutic use: what is our current understanding following the introduction of THC, THC:CBD oromucosal spray and others? Expert Rev Clin Pharmacol 2017; 10:443-455. [PMID: 28276775 DOI: 10.1080/17512433.2017.1292849] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION The complexity of the endocannabinoid (eCB) system is becoming better understood and new drivers of eCB signaling are emerging. Modulation of the activities of the eCB system can be therapeutic in a number of diseases. Research into the eCB system has been paralleled by the development of agents that interact with cannabinoid receptors. In this regard it should be remembered that herbal cannabis contains a myriad of active ingredients, and the individual cannabinoids have quite distinct biological activities requiring independent studies. Areas covered: This article reviews the most important current data involving the eCB system in relation to human diseases, to reflect the present (based mainly on the most used prescription cannabinoid medicine, THC/CBD oromucosal spray) and potential future uses of cannabinoid-based therapy. Expert commentary: From the different therapeutic possibilities, THC/CBD oromucosal spray has been in clinical use for approximately five years in numerous countries world-wide for the management of multiple sclerosis (MS)-related moderate to severe resistant spasticity. Clinical trials have confirmed its efficacy and tolerability. Other diseases in which different cannabinoids are currently being investigated include various pain states, Alzheimer's disease, Parkinson's disease, Huntington's disease and epilepsy. The continued characterization of individual cannabinoids in different diseases remains important.
Collapse
Affiliation(s)
- Mauro Maccarrone
- a Department of Medicine , Campus Bio-Medico University of Rome , Rome , Italy.,b Laboratory of Lipid Neurochemistry, European Center for Brain Research/IRCCS Santa Lucia Foundation , Rome , Italy
| | - Rafael Maldonado
- c Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut (CEXS), Facultat de Ciències de la Salut i de la Vida , Universitat Pompeu Fabra , Barcelona , Spain
| | - Miguel Casas
- d Servicio de Psiquiatría , Hospital Universitari Vall d'Hebron , Barcelona , Spain.,e Departamento de Psiquiatría y Medicina Legal , Universitat Autònoma de Barcelona , Barcelona , Spain.,f CIBERSAM , Barcelona , Spain
| | - Thomas Henze
- g Passauer Wolf Reha-Zentrum Nittenau , Nittenau , Germany
| | - Diego Centonze
- h Multiple Sclerosis Clinical and Research Center, Tor Vergata University, Rome & Unit of Neurology , IRCCS Istituto Neurologico Mediterraneo Neuromed , Pozzilli , Italy
| |
Collapse
|
120
|
Geifman N, Brinton RD, Kennedy RE, Schneider LS, Butte AJ. Evidence for benefit of statins to modify cognitive decline and risk in Alzheimer's disease. Alzheimers Res Ther 2017; 9:10. [PMID: 28212683 PMCID: PMC5316146 DOI: 10.1186/s13195-017-0237-y] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/23/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND Despite substantial research and development investment in Alzheimer's disease (AD), effective therapeutics remain elusive. Significant emerging evidence has linked cholesterol, β-amyloid and AD, and several studies have shown a reduced risk for AD and dementia in populations treated with statins. However, while some clinical trials evaluating statins in general AD populations have been conducted, these resulted in no significant therapeutic benefit. By focusing on subgroups of the AD population, it may be possible to detect endotypes responsive to statin therapy. METHODS Here we investigate the possible protective and therapeutic effect of statins in AD through the analysis of datasets of integrated clinical trials, and prospective observational studies. RESULTS Re-analysis of AD patient-level data from failed clinical trials suggested by trend that use of simvastatin may slow the progression of cognitive decline, and to a greater extent in ApoE4 homozygotes. Evaluation of continual long-term use of various statins, in participants from multiple studies at baseline, revealed better cognitive performance in statin users. These findings were supported in an additional, observational cohort where the incidence of AD was significantly lower in statin users, and ApoE4/ApoE4-genotyped AD patients treated with statins showed better cognitive function over the course of 10-year follow-up. CONCLUSIONS These results indicate that the use of statins may benefit all AD patients with potentially greater therapeutic efficacy in those homozygous for ApoE4.
Collapse
Affiliation(s)
- Nophar Geifman
- The Manchester Molecular Pathology Innovation Centre, University of Manchester, 3rd Floor Citylabs, Nelson St, Manchester, M13 9NQ UK
- Health eResearch Centre, Division of Informatics, Imaging & Data Sciences, University of Manchester, Manchester, UK
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, School of Medicine, Departments of Pharmacology and Neurology, University of Arizona, Tucson, AZ USA
| | - Richard E. Kennedy
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Lon S. Schneider
- Keck School of Medicine, University of Southern California, Los Angeles, CA USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA USA
| | - Atul J. Butte
- Institute for Computational Health Sciences, University of California San Francisco, San Francisco, CA USA
| |
Collapse
|
121
|
Sekiyama K, Takamatsu Y, Koike W, Waragai M, Takenouchi T, Sugama S, Hashimoto M. Insight into the Dissociation of Behavior from Histology in Synucleinopathies and in Related Neurodegenerative Diseases. J Alzheimers Dis 2017; 52:831-41. [PMID: 27031478 DOI: 10.3233/jad-151015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recent clinical trials using immunization approaches against Alzheimer's disease (AD) have failed to demonstrate improved cognitive functions in patients, despite potent suppression in the formation of both senile plaques and other amyloid-β deposits in postmortem brains. Similarly, we observed that treatment with ibuprofen, a non-steroidal anti-inflammatory drug, was effective in improving the histopathology, such as reducing both protein aggregation and glial activation, in the brains of transgenic mice expressing dementia with Lewy bodies-linked P123H β-synuclein. In contrast, only a small improvement in cognitive functions was observed in these mice. Collectively, it is predicted that histology does not correlate with behavior that is resilient and resistant to therapeutic stimuli. Notably, such a 'discrepancy between histology and behavior' is reminiscent of AD-like pathologies and incidental Lewy bodies, which are frequently encountered in postmortem brains of the elderly who had been asymptomatic for memory loss and Parkinsonism during their lives. We suggest that 'the discrepancy between histology and behavior' may be a universal feature that is associated with various aspects of neurodegenerative diseases. Furthermore, given that the cognitive reserve is specifically observed in human brains, human behavior may be evolutionally distinct from that in other animals, thus, contributing to the differential efficiency of therapy between human and lower animals, an important issue in the therapy of neurodegenerative diseases. Overall, it is important to better understand 'the discrepancy between histology and behavior' in the mechanism of neurodegeneration for the development of effective therapies against neurodegenerative diseases.
Collapse
Affiliation(s)
- Kazunari Sekiyama
- Tokyo Metropolitan Institute of Medical Sciences, Setagaya-ku, Tokyo, Japan
| | - Yoshiki Takamatsu
- Tokyo Metropolitan Institute of Medical Sciences, Setagaya-ku, Tokyo, Japan
| | - Wakako Koike
- Tokyo Metropolitan Institute of Medical Sciences, Setagaya-ku, Tokyo, Japan
| | - Masaaki Waragai
- Tokyo Metropolitan Institute of Medical Sciences, Setagaya-ku, Tokyo, Japan
| | - Takato Takenouchi
- Division of Animal Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Shuei Sugama
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Makoto Hashimoto
- Tokyo Metropolitan Institute of Medical Sciences, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
122
|
Iatrou A, Kenis G, Rutten BPF, Lunnon K, van den Hove DLA. Epigenetic dysregulation of brainstem nuclei in the pathogenesis of Alzheimer's disease: looking in the correct place at the right time? Cell Mol Life Sci 2017; 74:509-523. [PMID: 27628303 PMCID: PMC5241349 DOI: 10.1007/s00018-016-2361-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/15/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022]
Abstract
Even though the etiology of Alzheimer's disease (AD) remains unknown, it is suggested that an interplay among genetic, epigenetic and environmental factors is involved. An increasing body of evidence pinpoints that dysregulation in the epigenetic machinery plays a role in AD. Recent developments in genomic technologies have allowed for high throughput interrogation of the epigenome, and epigenome-wide association studies have already identified unique epigenetic signatures for AD in the cortex. Considerable evidence suggests that early dysregulation in the brainstem, more specifically in the raphe nuclei and the locus coeruleus, accounts for the most incipient, non-cognitive symptomatology, indicating a potential causal relationship with the pathogenesis of AD. Here we review the advancements in epigenomic technologies and their application to the AD research field, particularly with relevance to the brainstem. In this respect, we propose the assessment of epigenetic signatures in the brainstem as the cornerstone of interrogating causality in AD. Understanding how epigenetic dysregulation in the brainstem contributes to AD susceptibility could be of pivotal importance for understanding the etiology of the disease and for the development of novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- A Iatrou
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands
| | - G Kenis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands
| | - B P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands
| | - K Lunnon
- University of Exeter Medical School, RILD, University of Exeter, Barrack Road, Devon, UK
| | - D L A van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands.
- Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, 97080, Würzburg, Germany.
| |
Collapse
|
123
|
Cacciottolo M, Wang X, Driscoll I, Woodward N, Saffari A, Reyes J, Serre ML, Vizuete W, Sioutas C, Morgan TE, Gatz M, Chui HC, Shumaker SA, Resnick SM, Espeland MA, Finch CE, Chen JC. Particulate air pollutants, APOE alleles and their contributions to cognitive impairment in older women and to amyloidogenesis in experimental models. Transl Psychiatry 2017; 7:e1022. [PMID: 28140404 PMCID: PMC5299391 DOI: 10.1038/tp.2016.280] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 11/27/2016] [Indexed: 12/13/2022] Open
Abstract
Exposure to particulate matter (PM) in the ambient air and its interactions with APOE alleles may contribute to the acceleration of brain aging and the pathogenesis of Alzheimer's disease (AD). Neurodegenerative effects of particulate air pollutants were examined in a US-wide cohort of older women from the Women's Health Initiative Memory Study (WHIMS) and in experimental mouse models. Residing in places with fine PM exceeding EPA standards increased the risks for global cognitive decline and all-cause dementia respectively by 81 and 92%, with stronger adverse effects in APOE ɛ4/4 carriers. Female EFAD transgenic mice (5xFAD+/-/human APOE ɛ3 or ɛ4+/+) with 225 h exposure to urban nanosized PM (nPM) over 15 weeks showed increased cerebral β-amyloid by thioflavin S for fibrillary amyloid and by immunocytochemistry for Aβ deposits, both exacerbated by APOE ɛ4. Moreover, nPM exposure increased Aβ oligomers, caused selective atrophy of hippocampal CA1 neurites, and decreased the glutamate GluR1 subunit. Wildtype C57BL/6 female mice also showed nPM-induced CA1 atrophy and GluR1 decrease. In vitro nPM exposure of neuroblastoma cells (N2a-APP/swe) increased the pro-amyloidogenic processing of the amyloid precursor protein (APP). We suggest that airborne PM exposure promotes pathological brain aging in older women, with potentially a greater impact in ɛ4 carriers. The underlying mechanisms may involve increased cerebral Aβ production and selective changes in hippocampal CA1 neurons and glutamate receptor subunits.
Collapse
Affiliation(s)
- M Cacciottolo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - X Wang
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - I Driscoll
- Department of Psychology, University of Wisconsin, Milwaukee, WI, USA
| | - N Woodward
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - A Saffari
- USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - J Reyes
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M L Serre
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - W Vizuete
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - C Sioutas
- USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - T E Morgan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - M Gatz
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
- Memory and Aging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - H C Chui
- Memory and Aging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, University of Southern California,, Los Angeles, CA, USA
| | - S A Shumaker
- Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - S M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - M A Espeland
- Division of Public Health Services, Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - C E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Memory and Aging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - J C Chen
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Memory and Aging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
124
|
Takamatsu Y, Ho G, Koike W, Sugama S, Takenouchi T, Waragai M, Wei J, Sekiyama K, Hashimoto M. Combined immunotherapy with "anti-insulin resistance" therapy as a novel therapeutic strategy against neurodegenerative diseases. NPJ Parkinsons Dis 2017; 3:4. [PMID: 28649604 PMCID: PMC5445606 DOI: 10.1038/s41531-016-0001-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/07/2016] [Accepted: 10/30/2016] [Indexed: 12/22/2022] Open
Abstract
Protein aggregation is a pathological hallmark of and may play a central role in the neurotoxicity in age-associated neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. Accordingly, inhibiting aggregation of amyloidogenic proteins, including amyloid β and α-synuclein, has been a main therapeutic target for these disorders. Among various strategies, amyloid β immunotherapy has been extensively investigated in Alzheimer's disease, followed by similar studies of α-synuclein in Parkinson's disease. Notably, a recent study of solanezumab, an amyloid β monoclonal antibody, raises hope for the further therapeutic potential of immunotherapy, not only in Alzheimer's disease, but also for other neurodegenerative disorders, including Parkinson's disease. Thus, it is expected that further refinement of immunotherapy against neurodegenerative diseases may lead to increasing efficacy. Meanwhile, type II diabetes mellitus has been associated with an increased risk of neurodegenerative disease, such as Alzheimer's disease and Parkinson's disease, and studies have shown that metabolic dysfunction and abnormalities surrounding insulin signaling may underlie disease progression. Naturally, "anti-insulin resistance" therapy has emerged as a novel paradigm in the therapy of neurodegenerative diseases. Indeed, incretin agonists, which stimulate pancreatic insulin secretion, reduce dopaminergic neuronal loss and suppress Parkinson's disease disease progression in clinical trials. Similar studies are ongoing also in Alzheimer's disease. This paper focuses on critical issues in "immunotherapy" and "anti-insulin resistance" therapy in relation to therapeutic strategies against neurodegenerative disease, and more importantly, how they might merge mechanistically at the point of suppression of protein aggregation, raising the possibility that combined immunotherapy and "anti-insulin resistance" therapy may be superior to either monotherapy.
Collapse
Affiliation(s)
- Yoshiki Takamatsu
- Tokyo Metropolitan Institute of Medical Sciences, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-0057 Japan
| | - Gilbert Ho
- The PCND Neuroscience Research Institute, Poway, CA 92064 USA
| | - Wakako Koike
- Tokyo Metropolitan Institute of Medical Sciences, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-0057 Japan
| | - Shuei Sugama
- Department of Physiology, Nippon Medical School, Tokyo, 113-8602 Japan
| | - Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634 Japan
| | - Masaaki Waragai
- Tokyo Metropolitan Institute of Medical Sciences, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-0057 Japan
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Kazunari Sekiyama
- Tokyo Metropolitan Institute of Medical Sciences, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-0057 Japan
| | - Makoto Hashimoto
- Tokyo Metropolitan Institute of Medical Sciences, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-0057 Japan
| |
Collapse
|
125
|
IGF-1 protects against Aβ25-35-induced neuronal cell death via inhibition of PUMA expression and Bax activation. Neurosci Lett 2017; 637:188-194. [DOI: 10.1016/j.neulet.2016.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/30/2016] [Accepted: 11/04/2016] [Indexed: 01/25/2023]
|
126
|
Jiao J, Rebane AA, Ma L, Zhang Y. Single-Molecule Protein Folding Experiments Using High-Precision Optical Tweezers. Methods Mol Biol 2017; 1486:357-390. [PMID: 27844436 DOI: 10.1007/978-1-4939-6421-5_14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
How proteins fold from linear chains of amino acids to delicate three-dimensional structures remains a fundamental biological problem. Single-molecule manipulation based on high-resolution optical tweezers (OT) provides a powerful approach to study protein folding with unprecedented spatiotemporal resolution. In this method, a single protein or protein complex is tethered between two beads confined in optical traps and pulled. Protein unfolding induced by the mechanical force is counteracted by the spontaneous folding of the protein, reaching a dynamic equilibrium at a characteristic force and rate. The transition is monitored by the accompanying extension change of the protein and used to derive conformations and energies of folding intermediates and their associated transition kinetics. Here, we provide general strategies and detailed protocols to study folding of proteins and protein complexes using optical tweezers, including sample preparation, DNA-protein conjugation and methods of data analysis to extract folding energies and rates from the single-molecule measurements.
Collapse
Affiliation(s)
- Junyi Jiao
- Department of Cell Biology, School of Medicine and Integrated Graduate Program in Physical and Engineering Biology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Aleksander A Rebane
- Department of Cell Biology, School of Medicine and Integrated Graduate Program in Physical and Engineering Biology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Lu Ma
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Yongli Zhang
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
127
|
Remington R, Bechtel C, Larsen D, Samar A, Page R, Morrell C, Shea TB. Maintenance of Cognitive Performance and Mood for Individuals with Alzheimer's Disease Following Consumption of a Nutraceutical Formulation: A One-Year, Open-Label Study. J Alzheimers Dis 2016; 51:991-5. [PMID: 26967219 DOI: 10.3233/jad-151098] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nutritional interventions have shown varied efficacy on cognitive performance during Alzheimer's disease (AD). Twenty-four individuals diagnosed with AD received a nutraceutical formulation (NF: folate, alpha-tocopherol, B12, S-adenosyl methioinine, N-acetyl cysteine, acetyl-L-carnitine) under open-label conditions (ClinicalTrials.gov NCT01320527). Primary outcome was cognitive performance. Secondary outcomes were behavioral and psychological symptoms of dementia (BPSD) and activities of daily living. Participants maintained their baseline cognitive performance and BPSD over 12 months. These findings are consistent with improvement in cognitive performance and BPSD in prior placebo-controlled studies with NF, and contrast with the routine decline for participants receiving placebo.
Collapse
Affiliation(s)
| | | | | | | | - Robert Page
- Framingham State University, Framingham, MA, USA
| | | | | |
Collapse
|
128
|
Bystad M, Grønli O, Lilleeggen C, Aslaksen PM. Fear of diseases among people over 50 years of age: A survey. ACTA ACUST UNITED AC 2016. [DOI: 10.15714/scandpsychol.3.e19] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
129
|
Ba M, Kong M, Li X, Ng KP, Rosa-Neto P, Gauthier S. Is ApoE ɛ 4 a good biomarker for amyloid pathology in late onset Alzheimer's disease? Transl Neurodegener 2016; 5:20. [PMID: 27891223 PMCID: PMC5112745 DOI: 10.1186/s40035-016-0067-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/11/2016] [Indexed: 12/13/2022] Open
Abstract
Amyloid plaques are pathological hallmarks of Alzheimer’s Disease (AD) and biomarkers such as cerebrospinal fluid (CSF) β-amyloid 1–42 (Aβ1-42) and amyloid positron emission tomographic (PET) imaging are important in diagnosing amyloid pathology in vivo. ɛ4 allele of the Apolipoprotein E gene (ApoE ɛ 4), which is a major genetic risk factor for late onset AD, is an important genetic biomarker for AD pathophysiology. It has been shown that ApoE ɛ 4 is involved in Aβ deposition and formation of amyloid plaques. Studies have suggested the utility of peripheral blood ApoE ɛ 4 in AD diagnosis and risk assessment. However it is still a matter of debate whether ApoE ɛ 4 status would improve prediction of amyloid pathology and represent a cost-effective alternative to amyloid PET or CSF Aβ in resource-limited settings in late onset AD. Recent research suggest that the mean prevalence of PET amyloid-positivity is 95% in ApoE ɛ 4-positive AD patients. This short review aims to provide an updated information on the relationship between ApoE ɛ 4 and amyloid biomarkers.
Collapse
Affiliation(s)
- Maowen Ba
- Department of Neurology, Yuhuangding Hospital Affiliated to Qingdao Medical University, Qingdao, Shandong 264000 People's Republic of China.,McGill Centre for Studies in Aging, McGill University, Douglas Institute, 6825 Lasalle Boul, Montreal, QC H4H 1R3 Canada
| | - Min Kong
- Department of Neurology, Yantaishan Hospital, Yantai City, Shandong 264000 People's Republic of China
| | - Xiaofeng Li
- McGill Centre for Studies in Aging, McGill University, Douglas Institute, 6825 Lasalle Boul, Montreal, QC H4H 1R3 Canada.,Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 People's Republic of China
| | - Kok Pin Ng
- McGill Centre for Studies in Aging, McGill University, Douglas Institute, 6825 Lasalle Boul, Montreal, QC H4H 1R3 Canada.,Department of Neurology, National Neuroscience Institute Singapore, Singapore, Singapore
| | - Pedro Rosa-Neto
- McGill Centre for Studies in Aging, McGill University, Douglas Institute, 6825 Lasalle Boul, Montreal, QC H4H 1R3 Canada
| | - Serge Gauthier
- McGill Centre for Studies in Aging, McGill University, Douglas Institute, 6825 Lasalle Boul, Montreal, QC H4H 1R3 Canada
| |
Collapse
|
130
|
Li Y, Li F, Wang P, Zhu X, Liu S, Qiu M, Zhang J, Zeng X. Estimating the brain pathological age of Alzheimer's disease patients from MR image data based on the separability distance criterion. Phys Med Biol 2016; 61:7162-7186. [PMID: 27649031 DOI: 10.1088/0031-9155/61/19/7162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Traditional age estimation methods are based on the same idea that uses the real age as the training label. However, these methods ignore that there is a deviation between the real age and the brain age due to accelerated brain aging. This paper considers this deviation and searches for it by maximizing the separability distance value rather than by minimizing the difference between the estimated brain age and the real age. Firstly, set the search range of the deviation as the deviation candidates according to prior knowledge. Secondly, use the support vector regression (SVR) as the age estimation model to minimize the difference between the estimated age and the real age plus deviation rather than the real age itself. Thirdly, design the fitness function based on the separability distance criterion. Fourthly, conduct age estimation on the validation dataset using the trained age estimation model, put the estimated age into the fitness function, and obtain the fitness value of the deviation candidate. Fifthly, repeat the iteration until all the deviation candidates are involved and get the optimal deviation with maximum fitness values. The real age plus the optimal deviation is taken as the brain pathological age. The experimental results showed that the separability was apparently improved. For normal control-Alzheimer's disease (NC-AD), normal control-mild cognition impairment (NC-MCI), and MCI-AD, the average improvements were 0.178 (35.11%), 0.033 (14.47%), and 0.017 (39.53%), respectively. For NC-MCI-AD, the average improvement was 0.2287 (64.22%). The estimated brain pathological age could be not only more helpful to the classification of AD but also more precisely reflect accelerated brain aging. In conclusion, this paper offers a new method for brain age estimation that can distinguish different states of AD and can better reflect the extent of accelerated aging.
Collapse
Affiliation(s)
- Yongming Li
- College of Communication Engineering, Chongqing University, Chongqing 400044, People's Republic of China. Department of Medical Image, College of Biomedical Engineering, Third Military Medical University, Chongqing 400038, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Aso E, Andrés-Benito P, Ferrer I. Delineating the Efficacy of a Cannabis-Based Medicine at Advanced Stages of Dementia in a Murine Model. J Alzheimers Dis 2016; 54:903-912. [DOI: 10.3233/jad-160533] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Ester Aso
- Institut de Neuropatologia, Servei d’Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, L’Hospitalet de Llobregat, Spain
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto Carlos III, Spain
| | - Pol Andrés-Benito
- Institut de Neuropatologia, Servei d’Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, L’Hospitalet de Llobregat, Spain
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto Carlos III, Spain
| | - Isidro Ferrer
- Institut de Neuropatologia, Servei d’Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, L’Hospitalet de Llobregat, Spain
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto Carlos III, Spain
| |
Collapse
|
132
|
Cruz-González T, Cortez-Torres E, Perez-Severiano F, Espinosa B, Guevara J, Perez-Benitez A, Melendez FJ, Díaz A, Ramírez RE. Antioxidative stress effect of epicatechin and catechin induced by Aβ 25-35 in rats and use of the electrostatic potential and the Fukui function as a tool to elucidate specific sites of interaction. Neuropeptides 2016; 59:89-95. [PMID: 27118677 DOI: 10.1016/j.npep.2016.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 11/20/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder caused by the aggregation of the amyloid-beta peptide (Aβ) in senile plaques and cerebral vasculature. The Aβ25-35 fraction has shown the most toxicity; its neurotoxic mechanisms are associated with the generation of oxidative stress and reactive astrogliosis that induce neuronal death and memory impairment. Studies indicate that pharmacological treatment with flavonoids reduces the rate of AD, in particular, it has been shown that antioxidants are compounds that could interact with this peptide due to their antioxidant proprieties. In this study, experimental and computational tools were used to calculate the molecular electrostatic potential and the Fukui function with the Gaussian 09 computational program, to predict the most reactive parts of these molecules and make the complex between Aβ25-35 and two flavonoids (catechin and epicatechin) in the absolute gas-phase, where a possible interaction between them was observed. This is important for understanding the Aβ25-35-Flavonoid (A-F) interaction as a therapeutic strategy to inhibit the neurotoxic effects that this peptide causes in AD, which currently is still considered an ambiguous process.
Collapse
Affiliation(s)
- Trinidad Cruz-González
- Departamento de Fisicomatematicas, Facultad de Ciencias Químicas Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 14 Sur, Col. San Manuel, Puebla, Pue. 72570, Mexico
| | - Estephania Cortez-Torres
- Laboratorio Experimental de Enfermedades Neurodegenrativas, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, 14269 Mexico City, Mexico
| | - Francisca Perez-Severiano
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, 14269 Mexico City, Mexico
| | - Blanca Espinosa
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias, Mexico, D.F., Mexico
| | - Jorge Guevara
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aarón Perez-Benitez
- Departamento de Química Organica, Facultad de Ciencias Químicas, Benemérita, Universidad Autónoma de Puebla, Av. San Claudio y 14 Sur, Col. San Manuel, Puebla, Pue. 72570, Mexico
| | - Francisco J Melendez
- Lab. de Química Teórica, Centro de Investigación, Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edif. 105-I, San Claudio y 22 Sur, Ciudad Universitaria, Col. San Manuel, Puebla, Puebla 72570, Mexico
| | - Alfonso Díaz
- Departamento de Farmacia, Facultad de Ciencias Químicas Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 14 Sur, Col. San Manuel, Puebla, Pue. 72570, Mexico.
| | - Ramsés E Ramírez
- Departamento de Fisicomatematicas, Facultad de Ciencias Químicas Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 14 Sur, Col. San Manuel, Puebla, Pue. 72570, Mexico.
| |
Collapse
|
133
|
Peng X, Xing P, Li X, Qian Y, Song F, Bai Z, Han G, Lei H. Towards Personalized Intervention for Alzheimer's Disease. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:289-297. [PMID: 27693548 PMCID: PMC5093853 DOI: 10.1016/j.gpb.2016.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/14/2016] [Accepted: 01/31/2016] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) remains to be a grand challenge for the international community despite over a century of exploration. A key factor likely accounting for such a situation is the vast heterogeneity in the disease etiology, which involves very complex and divergent pathways. Therefore, intervention strategies shall be tailored for subgroups of AD patients. Both demographic and in-depth information is needed for patient stratification. The demographic information includes primarily APOE genotype, age, gender, education, environmental exposure, life style, and medical history, whereas in-depth information stems from genome sequencing, brain imaging, peripheral biomarkers, and even functional assays on neurons derived from patient-specific induced pluripotent cells (iPSCs). Comprehensive information collection, better understanding of the disease mechanisms, and diversified strategies of drug development would help with more effective intervention in the foreseeable future.
Collapse
Affiliation(s)
- Xing Peng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Cunji Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiqi Xing
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Cunji Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuhui Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Cunji Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Qian
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Cunji Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuhai Song
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Cunji Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhouxian Bai
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Cunji Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangchun Han
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongxing Lei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Cunji Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing 100053, China.
| |
Collapse
|
134
|
Jakowec MW, Wang Z, Holschneider D, Beeler J, Petzinger GM. Engaging cognitive circuits to promote motor recovery in degenerative disorders. exercise as a learning modality. J Hum Kinet 2016; 52:35-51. [PMID: 28149392 PMCID: PMC5260516 DOI: 10.1515/hukin-2015-0192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2016] [Indexed: 12/12/2022] Open
Abstract
Exercise and physical activity are fundamental components of a lifestyle essential in maintaining a healthy brain. This is primarily due to the fact that the adult brain maintains a high degree of plasticity and activity is essential for homeostasis throughout life. Plasticity is not lost even in the context of a neurodegenerative disorder, but could be maladaptive thus promoting disease onset and progression. A major breakthrough in treating brain disorders such as Parkinson's disease is to drive neuroplasticity in a direction to improve motor and cognitive dysfunction. The purpose of this short review is to present the evidence from our laboratories that supports neuroplasticity as a potential therapeutic target in treating brain disorders. We consider that the enhancement of motor recovery in both animal models of dopamine depletion and in patients with Parkinson's disease is optimized when cognitive circuits are engaged; in other words, the brain is engaged in a learning modality. Therefore, we propose that to be effective in treating Parkinson's disease, physical therapy must employ both skill-based exercise (to drive specific circuits) and aerobic exercise (to drive the expression of molecules required to strengthen synaptic connections) components to select those neuronal circuits, such as the corticostriatal pathway, necessary to restore proper motor and cognitive behaviors. In the wide spectrum of different forms of exercise, learning as the fundamental modality likely links interventions used to treat patients with Parkinson's disease and may be necessary to drive beneficial neuroplasticity resulting in symptomatic improvement and possible disease modification.
Collapse
Affiliation(s)
- Michael W. Jakowec
- Department of Neurology, University of Southern California, Los Angeles, California, United States of America
| | - Zhou Wang
- Department of Psychiatry, University of Southern California, Los Angeles, California, United States of America
| | - Daniel Holschneider
- Department of Psychiatry, University of Southern California, Los Angeles, California, United States of America
| | - Jeff Beeler
- Department of Psychology, Queens College, City University of New York, New York City, United States of America
| | - Giselle M. Petzinger
- Department of Neurology, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
135
|
Ankarcrona M, Winblad B, Monteiro C, Fearns C, Powers ET, Johansson J, Westermark GT, Presto J, Ericzon BG, Kelly JW. Current and future treatment of amyloid diseases. J Intern Med 2016; 280:177-202. [PMID: 27165517 PMCID: PMC4956553 DOI: 10.1111/joim.12506] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There are more than 30 human proteins whose aggregation appears to cause degenerative maladies referred to as amyloid diseases or amyloidoses. These disorders are named after the characteristic cross-β-sheet amyloid fibrils that accumulate systemically or are localized to specific organs. In most cases, current treatment is limited to symptomatic approaches and thus disease-modifying therapies are needed. Alzheimer's disease is a neurodegenerative disorder with extracellular amyloid β-peptide (Aβ) fibrils and intracellular tau neurofibrillary tangles as pathological hallmarks. Numerous clinical trials have been conducted with passive and active immunotherapy, and small molecules to inhibit Aβ formation and aggregation or to enhance Aβ clearance; so far such clinical trials have been unsuccessful. Novel strategies are therefore required and here we will discuss the possibility of utilizing the chaperone BRICHOS to prevent Aβ aggregation and toxicity. Type 2 diabetes mellitus is symptomatically treated with insulin. However, the underlying pathology is linked to the aggregation and progressive accumulation of islet amyloid polypeptide as fibrils and oligomers, which are cytotoxic. Several compounds have been shown to inhibit islet amyloid aggregation and cytotoxicity in vitro. Future animal studies and clinical trials have to be conducted to determine their efficacy in vivo. The transthyretin (TTR) amyloidoses are a group of systemic degenerative diseases compromising multiple organ systems, caused by TTR aggregation. Liver transplantation decreases the generation of misfolded TTR and improves the quality of life for a subgroup of this patient population. Compounds that stabilize the natively folded, nonamyloidogenic, tetrameric conformation of TTR have been developed and the drug tafamidis is available as a promising treatment.
Collapse
Affiliation(s)
- M Ankarcrona
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - B Winblad
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - C Monteiro
- Department of Chemistry, The Skaggs Institute for Chemical Biology, La Jolla, CA, USA.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - C Fearns
- Department of Chemistry, The Skaggs Institute for Chemical Biology, La Jolla, CA, USA.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - E T Powers
- Department of Chemistry, The Skaggs Institute for Chemical Biology, La Jolla, CA, USA
| | - J Johansson
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - G T Westermark
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - J Presto
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - B-G Ericzon
- Division of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - J W Kelly
- Department of Chemistry, The Skaggs Institute for Chemical Biology, La Jolla, CA, USA.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
136
|
Targeting copper(II)-induced oxidative stress and the acetylcholinesterase system in Alzheimer's disease using multifunctional tacrine-coumarin hybrid molecules. J Inorg Biochem 2016; 161:52-62. [DOI: 10.1016/j.jinorgbio.2016.05.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/17/2016] [Accepted: 05/04/2016] [Indexed: 12/12/2022]
|
137
|
Domínguez JL, Fernández-Nieto F, Brea JM, Catto M, Paleo MR, Porto S, Sardina FJ, Castro M, Pisani L, Carotti A, Soto-Otero R, Méndez-Alvarez E, Villaverde MC, Sussman F. 8-Aminomethyl-7-hydroxy-4-methylcoumarins as Multitarget Leads for Alzheimer's Disease. ChemistrySelect 2016. [DOI: 10.1002/slct.201600735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- José L. Domínguez
- Departamento de Química Orgánica; Facultad de Química; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Fernando Fernández-Nieto
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS); Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - José M. Brea
- Departamento de Farmacología; Instituto de Farmacia Industrial; Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS); Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Marco Catto
- Dipartimento di Farmacia-Scienze del Farmaco; Università degli Studi di Bari “Aldo Moro”; 70125 Bari Italy
| | - M. Rita Paleo
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS); Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Silvia Porto
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS); Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - F. Javier Sardina
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS); Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Marian Castro
- Departamento de Farmacología; Instituto de Farmacia Industrial; Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS); Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Leonardo Pisani
- Dipartimento di Farmacia-Scienze del Farmaco; Università degli Studi di Bari “Aldo Moro”; 70125 Bari Italy
| | - Angelo Carotti
- Dipartimento di Farmacia-Scienze del Farmaco; Università degli Studi di Bari “Aldo Moro”; 70125 Bari Italy
| | - Ramón Soto-Otero
- Grupo de Neuroquímica; Departamento de Bioquímica y Biología Molecular; Facultad de Medicina; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Estefanía Méndez-Alvarez
- Grupo de Neuroquímica; Departamento de Bioquímica y Biología Molecular; Facultad de Medicina; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - M. Carmen Villaverde
- Departamento de Química Orgánica; Facultad de Química; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Fredy Sussman
- Departamento de Química Orgánica; Facultad de Química; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| |
Collapse
|
138
|
Sheng Y, Zhang L, Su SC, Tsai LH, Julius Zhu J. Cdk5 is a New Rapid Synaptic Homeostasis Regulator Capable of Initiating the Early Alzheimer-Like Pathology. Cereb Cortex 2016; 26:2937-51. [PMID: 26088971 PMCID: PMC4898661 DOI: 10.1093/cercor/bhv032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase implicated in synaptic plasticity, behavior, and cognition, yet its synaptic function remains poorly understood. Here, we report that physiological Cdk5 signaling in rat hippocampal CA1 neurons regulates homeostatic synaptic transmission using an unexpectedly rapid mechanism that is different from all known slow homeostatic regulators, such as beta amyloid (Aβ) and activity-regulated cytoskeleton-associated protein (Arc, aka Arg3.1). Interestingly, overproduction of the potent Cdk5 activator p25 reduces synapse density, and dynamically regulates synaptic size by suppressing or enhancing Aβ/Arc production. Moreover, chronic overproduction of p25, seen in Alzheimer's patients, induces initially concurrent reduction in synapse density and increase in synaptic size characteristic of the early Alzheimer-like pathology, and later persistent synapse elimination in intact brains. These results identify Cdk5 as the regulator of a novel rapid form of homeostasis at central synapses and p25 as the first molecule capable of initiating the early Alzheimer's synaptic pathology.
Collapse
Affiliation(s)
- Yanghui Sheng
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Undergraduate Class of 2011, Yuanpei Honors College, Peking University, Beijing100871, China
- Current address: Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lei Zhang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Susan C. Su
- Picower Institute for Learning and Memory and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J. Julius Zhu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
139
|
Pan W, Han S, Kang L, Li S, Du J, Cui H. Effects of dihydrotestosterone on synaptic plasticity of the hippocampus in mild cognitive impairment male SAMP8 mice. Exp Ther Med 2016; 12:1455-1463. [PMID: 27588067 PMCID: PMC4997989 DOI: 10.3892/etm.2016.3470] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/21/2016] [Indexed: 01/03/2023] Open
Abstract
The current study focused on how dihydrotestosterone (DHT) regulates synaptic plasticity in the hippocampus of mild cognitive impairment male senescence-accelerated mouse prone 8 (SAMP8) mice. Five-month-old SAMP8 mice were divided into the control, castrated and castrated-DHT groups, in which the mice were castrated and treated with physiological doses of DHT for a period of 2 months. To determine the regulatory mechanisms of DHT in the cognitive capacity, the effects of DHT on the morphology of the synapse and the expression of synaptic marker proteins in the hippocampus were investigated using immunohistochemistry, qPCR and western blot analysis. The results showed that the expression of cAMP-response element binding protein (CREB), postsynaptic density protein 95 (PSD95), synaptophysin (SYN) and developmentally regulated brain protein (Drebrin) was reduced in the castrated group compared to the control group. However, DHT promoted the expression of CREB, PSD95, SYN and Drebrin in the hippocampus of the castrated-DHT group. Thus, androgen depletion impaired the synaptic plasticity in the hippocampus of SAMP8 and accelerated the development of Alzheimer's disease (AD)-like neuropathology, suggesting that a similar mechanism may underlie the increased risk for AD in men with low testosterone. In addition, DHT regulated synaptic plasticity in the hippocampus of mild cognitive impairment (MCI) SAMP8 mice and delayed the progression of disease to Alzheimer's dementia. In conclusion, androgen-based hormone therapy is a potentially useful strategy for preventing the progression of MCI in aging men. Androgens enhance synaptic markers (SYN, PSD95, and Drebrin), activate CREB, modulate the fundamental biology of synaptic structure, and lead to the structural changes of plasticity in the hippocampus, all of which result in improved cognitive function.
Collapse
Affiliation(s)
- Wensen Pan
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China; Department of Respiration Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Shuo Han
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Lin Kang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Sha Li
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Juan Du
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China; Hebei Key Laboratory for Brain Aging and Cognitive Neuroscience, Shijiazhuang, Hebei 050031, P.R. China
| |
Collapse
|
140
|
Biological and phytochemical evaluation: Pseudevernia furfuracea as an alternative multifunctional agent. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
141
|
Early detection of cryptic memory and glucose uptake deficits in pre-pathological APP mice. Nat Commun 2016; 7:11761. [PMID: 27249364 PMCID: PMC4895343 DOI: 10.1038/ncomms11761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/27/2016] [Indexed: 01/12/2023] Open
Abstract
Earlier diagnosis and treatment of Alzheimer's disease would greatly benefit from the identification of biomarkers at the prodromal stage. Using a prominent animal model of aspects of the disease, we here show using clinically relevant methodologies that very young, pre-pathological PDAPP mice, which overexpress mutant human amyloid precursor protein in the brain, exhibit two cryptic deficits that are normally undetected using standard methods of assessment. Despite learning a spatial memory task normally and displaying normal brain glucose uptake, they display faster forgetting after a long delay following performance to a criterion, together with a strong impairment of brain glucose uptake at the time of attempted memory retrieval. Preliminary observations suggest that these deficits, likely caused by an impairment in systems consolidation, could be rescued by immunotherapy with an anti-β-amyloid antibody. Our data suggest a biomarker strategy for the early detection of β-amyloid-related abnormalities. Identifying early signs of Alzheimer's disease is important when it comes to diagnosis and treatment. Here, the authors identify subtle memory retrieval deficits and associated brain glucose uptake impairments in very young mouse models of Alzheimer's, prior to plaque development.
Collapse
|
142
|
Chan ES, Shetty MS, Sajikumar S, Chen C, Soong TW, Wong BS. ApoE4 expression accelerates hippocampus-dependent cognitive deficits by enhancing Aβ impairment of insulin signaling in an Alzheimer's disease mouse model. Sci Rep 2016; 6:26119. [PMID: 27189808 PMCID: PMC4870502 DOI: 10.1038/srep26119] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/27/2016] [Indexed: 02/01/2023] Open
Abstract
The apolipoprotein E4 (ApoE4) is the strongest genetic risk factor for Alzheimer's disease (AD). The AD brain was shown to be insulin resistant at end stage, but the interplay between insulin signaling, ApoE4 and Aβ across time, and their involvement in memory decline is unclear. To investigate insulin response in the ageing mouse hippocampus, we crossed the human ApoE-targeted replacement mice with the mutant human amyloid precursor protein (APP) mice (ApoExAPP). While hippocampal Aβ levels were comparable between ApoE3xAPP and ApoE4xAPP mice at 26 weeks, insulin response was impaired in the ApoE4xAPP hippocampus. Insulin treatment was only able to stimulate insulin signaling and increased AMPA-GluR1 phosphorylation in forskolin pre-treated hippocampal slices from ApoE3xAPP mice. In ApoE4xAPP mice, insulin dysfunction was also associated with poorer spatial memory performance. Using dissociated hippocampal neuron in vitro, we showed that insulin response in ApoE3 and ApoE4 neurons increased AMPA receptor-mediated miniature excitatory postsynaptic current (mEPSC) amplitudes and GluR1-subunit insertion. Pre-treatment of ApoE3 neurons with Aβ42 did not affect insulin-mediated GluR1 subunit insertion. However, impaired insulin sensitivity observed only in the presence of ApoE4 and Aβ42, attenuated GluR1-subunit insertion. Taken together, our results suggest that ApoE4 enhances Aβ inhibition of insulin-stimulated AMPA receptor function, which accelerates memory impairment in ApoE4xAPP mice.
Collapse
Affiliation(s)
- Elizabeth S Chan
- Departments of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore
| | - Mahesh Shivarama Shetty
- Departments of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore.,Memory Networks Program, Neurobiology and Ageing Program, Life Sciences Institute, National University of Singapore 117456, Singapore
| | - Sreedharan Sajikumar
- Departments of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore.,Memory Networks Program, Neurobiology and Ageing Program, Life Sciences Institute, National University of Singapore 117456, Singapore
| | - Christopher Chen
- Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore 117597, Singapore.,Memory Ageing and Cognition Centre (MACC), National University Health System (NUHS) 117599, Singapore
| | - Tuck Wah Soong
- Departments of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore.,Memory Networks Program, Neurobiology and Ageing Program, Life Sciences Institute, National University of Singapore 117456, Singapore
| | - Boon-Seng Wong
- Departments of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore
| |
Collapse
|
143
|
Cognitive benefits of memantine in Alzheimer's 5XFAD model mice decline during advanced disease stages. Pharmacol Biochem Behav 2016; 144:60-6. [DOI: 10.1016/j.pbb.2016.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/11/2016] [Accepted: 03/02/2016] [Indexed: 01/05/2023]
|
144
|
Affiliation(s)
- Myrra Vernooij-Dassen
- Scientific Institute for Quality of Healthcare,Radboud University Medical Centre,Nijmegen,The Netherlands
| | - Yun-Hee Jeon
- Sydney Nursing School,University of Sydney,Camperdown,Australia
| |
Collapse
|
145
|
Aso E, Andrés-Benito P, Carmona M, Maldonado R, Ferrer I. Cannabinoid Receptor 2 Participates in Amyloid-β Processing in a Mouse Model of Alzheimer’s Disease but Plays a Minor Role in the Therapeutic Properties of a Cannabis-Based Medicine. J Alzheimers Dis 2016; 51:489-500. [DOI: 10.3233/jad-150913] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ester Aso
- Institut de Neuropatologia, Servei d’Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Spain
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto Carlos III, Spain
| | - Pol Andrés-Benito
- Institut de Neuropatologia, Servei d’Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Spain
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto Carlos III, Spain
| | - Margarita Carmona
- Institut de Neuropatologia, Servei d’Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Spain
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto Carlos III, Spain
| | - Rafael Maldonado
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Isidre Ferrer
- Institut de Neuropatologia, Servei d’Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Spain
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto Carlos III, Spain
| |
Collapse
|
146
|
Sun SW, Nishioka C, Labib W, Liang HF. Axonal Terminals Exposed to Amyloid-β May Not Lead to Pre-Synaptic Axonal Damage. J Alzheimers Dis 2016; 45:1139-48. [PMID: 25697704 DOI: 10.3233/jad-142154] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Synaptic deficits and neuronal loss are the major pathological manifestations of Alzheimer's disease. However, the link between the early synaptic loss and subsequent neurodegeneration is not entirely clear. Cell culture studies have shown that amyloid-β (Aβ) applied to axonal terminals can cause retrograde degeneration leading to the neuronal loss, but this process has not been demonstrated in live animals. OBJECTIVE To test if Aβ applied to retinal ganglion cell axonal terminals can induce axonal damage in the optic nerve and optic tract in mice. METHODS Aβ was injected into the terminal field of the optic tract, in the left lateral geniculate nucleus of wildtype C57BL/6 mice. Following the injection, monthly diffusion tensor imaging was performed. Three months after the injection, mice underwent visual evoked potential recordings, and then sacrificed for immunohistochemical examination. RESULTS There were no significant changes seen with diffusion tensor imaging in the optic nerve and optic tract 3 months after the Aβ injection. The myelin and axons in these regions remained intact according to immunohistochemistry. The only significant changes observed in this study were delayed transduction and reduced amplitude of visual evoked potentials, although both Aβ and its reversed form caused similar changes. CONCLUSION Despite the published in vitro studies, there was no significant axonal damage in the optic nerve and optic tract after injecting Aβ onto retinal ganglion cell axonal terminals of wildtype C57BL/6 mice.
Collapse
Affiliation(s)
- Shu-Wei Sun
- Basic Sciences, Schools of Medicine, Loma Linda University, Loma Linda, CA, USA Radiation Medicine, Schools of Medicine, Loma Linda University, Loma Linda, CA, USA Pharmaceutical Science, School of Pharmacy, Loma Linda University, Loma Linda, CA, USA Neuroscience, University of California in Riverside, Riverside, CA, USA Bioengineering, University of California in Riverside, Riverside, CA, USA
| | | | - Wessam Labib
- Family Medicine, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Hsiao-Fang Liang
- Basic Sciences, Schools of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
147
|
A novel Nogo-66 receptor antagonist peptide promotes neurite regeneration in vitro. Mol Cell Neurosci 2016; 71:80-91. [DOI: 10.1016/j.mcn.2015.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 12/10/2015] [Accepted: 12/16/2015] [Indexed: 12/26/2022] Open
|
148
|
Irwin MH, Moos WH, Faller DV, Steliou K, Pinkert CA. Epigenetic Treatment of Neurodegenerative Disorders: Alzheimer and Parkinson Diseases. Drug Dev Res 2016; 77:109-23. [PMID: 26899010 DOI: 10.1002/ddr.21294] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Preclinical Research In this review, we discuss epigenetic-driven methods for treating neurodegenerative disorders associated with mitochondrial dysfunction, focusing on carnitinoid antioxidant-histone deacetylase inhibitors that show an ability to reinvigorate synaptic plasticity and protect against neuromotor decline in vivo. Aging remains a major risk factor in patients who progress to dementia, a clinical syndrome typified by decreased mental capacity, including impairments in memory, language skills, and executive function. Energy metabolism and mitochondrial dysfunction are viewed as determinants in the aging process that may afford therapeutic targets for a host of disease conditions, the brain being primary in such thinking. Mitochondrial dysfunction is a core feature in the pathophysiology of both Alzheimer and Parkinson diseases and rare mitochondrial diseases. The potential of new therapies in this area extends to glaucoma and other ophthalmic disorders, migraine, Creutzfeldt-Jakob disease, post-traumatic stress disorder, systemic exertion intolerance disease, and chemotherapy-induced cognitive impairment. An emerging and hopefully more promising approach to addressing these hard-to-treat diseases leverages their sensitivity to activation of master regulators of antioxidant and cytoprotective genes, antioxidant response elements, and mitophagy. Drug Dev Res 77 : 109-123, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael H Irwin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.,SRI Biosciences, A Division of SRI International, Menlo Park, CA, USA
| | - Douglas V Faller
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA.,PhenoMatriX, Inc., Boston, MA, USA
| | - Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Department of Biological Sciences, College of Arts and Sciences, The University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
149
|
Abstract
BACKGROUND The aim of this study was to compare the performance and power of the best-established diagnostic biological markers as outcome measures for clinical trials in patients with mild cognitive impairment (MCI). METHODS Magnetic resonance imaging, F-18 fluorodeoxyglucose positron emission tomography markers, and Alzheimer's Disease Assessment Scale-cognitive subscale were compared in terms of effect size and statistical power over different follow-up periods in 2 MCI groups, selected from Alzheimer's Disease Neuroimaging Initiative data set based on cerebrospinal fluid (abnormal cerebrospinal fluid Aβ1-42 concentration-ABETA+) or magnetic resonance imaging evidence of Alzheimer disease (positivity to hippocampal atrophy-HIPPO+). Biomarkers progression was modeled through mixed effect models. Scaled slope was chosen as measure of effect size. Biomarkers power was estimated using simulation algorithms. RESULTS Seventy-four ABETA+ and 51 HIPPO+ MCI patients were included in the study. Imaging biomarkers of neurodegeneration, especially MR measurements, showed highest performance. For all biomarkers and both MCI groups, power increased with increasing follow-up time, irrespective of biomarker assessment frequency. CONCLUSION These findings provide information about biomarker enrichment and outcome measurements that could be employed to reduce MCI patient samples and treatment duration in future clinical trials.
Collapse
|
150
|
Anti-Alzheimer's disease potential of coumarins from Angelica decursiva and Artemisia capillaris and structure-activity analysis. ASIAN PAC J TROP MED 2016; 9:103-11. [DOI: 10.1016/j.apjtm.2016.01.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 12/20/2015] [Accepted: 12/30/2015] [Indexed: 11/21/2022] Open
|