101
|
Keeling KM. Nonsense Suppression as an Approach to Treat Lysosomal Storage Diseases. Diseases 2016; 4:32. [PMID: 28367323 PMCID: PMC5370586 DOI: 10.3390/diseases4040032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/14/2016] [Indexed: 02/08/2023] Open
Abstract
In-frame premature termination codons (PTCs) (also referred to as nonsense mutations) comprise ~10% of all disease-associated gene lesions. PTCs reduce gene expression in two ways. First, PTCs prematurely terminate translation of an mRNA, leading to the production of a truncated polypeptide that often lacks normal function and/or is unstable. Second, PTCs trigger degradation of an mRNA by activating nonsense-mediated mRNA decay (NMD), a cellular pathway that recognizes and degrades mRNAs containing a PTC. Thus, translation termination and NMD are putative therapeutic targets for the development of treatments for genetic diseases caused by PTCs. Over the past decade, significant progress has been made in the identification of compounds with the ability to suppress translation termination of PTCs (also referred to as readthrough). More recently, NMD inhibitors have also been explored as a way to enhance the efficiency of PTC suppression. Due to their relatively low threshold for correction, lysosomal storage diseases are a particularly relevant group of diseases to investigate the feasibility of nonsense suppression as a therapeutic approach. In this review, the current status of PTC suppression and NMD inhibition as potential treatments for lysosomal storage diseases will be discussed.
Collapse
Affiliation(s)
- Kim M Keeling
- Department of Biochemistry and Molecular Genetics, Gregory Fleming Cystic Fibrosis Research Center, Comprehensive Arthritis, Musculoskeletal, Bone, and Autoimmunity Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA; ; Tel.: +1-205-975-6585
| |
Collapse
|
102
|
Probing A-form DNA: A fluorescent aminosugar probe and dual recognition by anthraquinone-neomycin conjugates. Bioorg Med Chem 2016; 25:1309-1319. [PMID: 28129992 DOI: 10.1016/j.bmc.2016.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/30/2016] [Accepted: 11/01/2016] [Indexed: 12/19/2022]
Abstract
Nucleic acids adopt a broad array of hydrogen-bonded structures that enable their diverse roles in the cell; even the familiar DNA double helix displays subtle architectural nuances that are sequence dependent. While there have been many approaches for recognition of B-form nucleic acids, A-form DNA recognition has lagged behind. Here, using a tight binding fluorescein-neomycin (F-neo) conjugate that can probe the electrostatic environment of A-form DNA major groove, we developed a fluorescent displacement assay to be used as a screen for DNA duplex-binding compounds. As opposed to intercalating dyes that can significantly perturb DNA structure, the groove binding F-neo allows the probing of native DNA conformation. In combination with the assay development and probing of DNA grooves, we also report the synthesis and binding of a series of neomycin-anthraquinone conjugates, two units with a known preference for binding GC rich DNA. The assay can be used to identify duplex DNA-binding compounds, as well as probe structural features of a target DNA duplex, and can easily be scaled up for high throughput screening of compound libraries.
Collapse
|
103
|
Rapson AC, Gee ML, Clayton AHA, Smith TA. Interactions of a lytic peptide with supported lipid bilayers investigated by time-resolved evanescent wave-induced fluorescence spectroscopy. Methods Appl Fluoresc 2016; 4:044001. [DOI: 10.1088/2050-6120/4/4/044001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
104
|
Yamashita S, Bergmann D, Sato A, Nomoto M, Tada Y, Humpf HU, Itami K, Hagihara S. High-throughput Assay for Quantification of Aminoglycoside–Ribosome Interaction. CHEM LETT 2016. [DOI: 10.1246/cl.160508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
105
|
Green L, Goff SP. Translational readthrough-promoting drugs enhance pseudoknot-mediated suppression of the stop codon at the Moloney murine leukemia virus gag–pol junction. J Gen Virol 2016; 96:3411-3421. [PMID: 26382736 DOI: 10.1099/jgv.0.000284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Translational readthrough-promoting drugs enhance the incorporation of amino acids at stop codons and can thus bypass premature termination during protein synthesis. The polymerase (Pol) proteins of Moloney murine leukemia virus (MoMLV) are synthesized as a large Gag–Pol fusion protein, formed by the readthrough of a stop codon at the end of the gag ORF. The downstream pol ORF lacks its own start codon, and Pol protein synthesis is wholly dependent on translation of the upstream gag gene and the readthrough event for expression. Here, we explored the effects of readthrough-promoting drugs – aminoglycoside antibiotics and the small molecule ataluren – on the efficiency of readthrough of the stop codon in the context of the MoMLV genome. We showed that these compounds increased readthrough of the stop codon at the MoMLV gag–pol junction in vivo above the already high basal level and that the resulting elevated gag–pol readthrough had deleterious effects on virus replication. We also showed that readthrough efficiency could be driven to even higher levels in vitro, and that the combination of the small molecules and the RNA structure at the MoMLV stop codon could achieve extremely high readthrough efficiencies.
Collapse
Affiliation(s)
- Lisa Green
- Department of Biological Sciences, Columbia University Medical Center, New York, NY 10032, USA
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA.,Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY 10032, USA.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
106
|
Jiménez-Moreno E, Montalvillo-Jiménez L, Santana AG, Gómez AM, Jiménez-Osés G, Corzana F, Bastida A, Jiménez-Barbero J, Cañada FJ, Gómez-Pinto I, González C, Asensio JL. Finding the Right Candidate for the Right Position: A Fast NMR-Assisted Combinatorial Method for Optimizing Nucleic Acids Binders. J Am Chem Soc 2016; 138:6463-74. [DOI: 10.1021/jacs.6b00328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Ester Jiménez-Moreno
- Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | | | - Andrés G. Santana
- Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ana M. Gómez
- Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Gonzalo Jiménez-Osés
- Departamento de Química y Centro de Investigación en
Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
- Institute of Biocomputation and Physics of Complex Systems
(BIFI), University of Zaragoza, BIFI-IQFR (CSIC), 50018 Zaragoza, Spain
| | - Francisco Corzana
- Departamento de Química y Centro de Investigación en
Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Agatha Bastida
- Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Jesús Jiménez-Barbero
- Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
- Center for Cooperative Research in Biosciences (CIC-bioGUNE), 48160 Derio, Bizkaia, Spain
- Basque Foundation for Science, Ikerbasque, 48013 Bilbao, Bizkaia, Spain
| | | | - Irene Gómez-Pinto
- Instituto de Química-Física Rocasolano (IQFR-CSIC), C/ Serrano 119, 28006 Madrid, Spain
| | - Carlos González
- Instituto de Química-Física Rocasolano (IQFR-CSIC), C/ Serrano 119, 28006 Madrid, Spain
| | - Juan Luis Asensio
- Instituto de Química Orgánica (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
107
|
No JH. Visceral leishmaniasis: Revisiting current treatments and approaches for future discoveries. Acta Trop 2016; 155:113-23. [PMID: 26748356 DOI: 10.1016/j.actatropica.2015.12.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/24/2015] [Accepted: 12/25/2015] [Indexed: 12/12/2022]
Abstract
The current treatments for visceral leishmaniasis are old and toxic with limited routes of administration. The emergence of drug-resistant Leishmania threatens the efficacy of the existing reservoir of antileishmanials, leading to an urgent need to develop new treatments. It is particularly important to review and understand how the current treatments act against Leishmania in order to identify valid drug targets or essential pathways for next-generation antileishmanials. It is equally important to adapt newly emerging biotechnologies to facilitate the current research on the development of novel antileishmanials in an efficient fashion. This review covers the basic background of the current visceral leishmaniasis treatments with an emphasis on the modes of action. It briefly discusses the role of the immune system in aiding the chemotherapy of leishmaniasis, describes potential new antileishmanial drug targets and pathways, and introduces recent progress on the utilization of high-throughput phenotypic screening assays to identify novel antileishmanial compounds.
Collapse
Affiliation(s)
- Joo Hwan No
- Institut Pasteur Korea, Leishmania Research Laboratory, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
108
|
Molla MR, Levkin PA. Combinatorial Approach to Nanoarchitectonics for Nonviral Delivery of Nucleic Acids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:1159-1175. [PMID: 26608939 DOI: 10.1002/adma.201502888] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/01/2015] [Indexed: 06/05/2023]
Abstract
Nanoparticles based on cationic polymers, lipids or lipidoids are of great interest in the field of gene delivery applications. The research on these nanosystems is rapidly growing as they hold promise to treat wide variety of human diseases ranging from viral infections to genetic disorders and cancer. Recently, combinatorial design principles have been adopted for rapid generation of large numbers of chemically diverse polymers and lipids capable of forming multifunctional nanocarriers for the use in gene delivery applications. At the same time, current high-throughput screening systems as well as convenient cell assays and readout techniques allow for fast evaluation of cell transfection efficiencies and toxicities of libraries of novel gene delivery agents. This allows for a rapid evaluation of structure-function relationship as well as identification of novel efficient nanocarriers for cell transfection and gene therapy. Here, the recent contribution of high-throughput synthesis to the development of novel nanocarriers for gene delivery applications is described.
Collapse
Affiliation(s)
- Mijanur Rahaman Molla
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Pavel A Levkin
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- University of Heidelberg, Department of Applied Physical Chemistry, 69120, Heidelberg, Germany
| |
Collapse
|
109
|
Favrot L, Blanchard JS, Vergnolle O. Bacterial GCN5-Related N-Acetyltransferases: From Resistance to Regulation. Biochemistry 2016; 55:989-1002. [PMID: 26818562 DOI: 10.1021/acs.biochem.5b01269] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The GCN5-related N-acetyltransferases family (GNAT) is an important family of proteins that includes more than 100000 members among eukaryotes and prokaryotes. Acetylation appears as a major regulatory post-translational modification and is as widespread as phosphorylation. N-Acetyltransferases transfer an acetyl group from acetyl-CoA to a large array of substrates, from small molecules such as aminoglycoside antibiotics to macromolecules. Acetylation of proteins can occur at two different positions, either at the amino-terminal end (αN-acetylation) or at the ε-amino group (εN-acetylation) of an internal lysine residue. GNAT members have been classified into different groups on the basis of their substrate specificity, and in spite of a very low primary sequence identity, GNAT proteins display a common and conserved fold. This Current Topic reviews the different classes of bacterial GNAT proteins, their functions, their structural characteristics, and their mechanism of action.
Collapse
Affiliation(s)
- Lorenza Favrot
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - John S Blanchard
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Olivia Vergnolle
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
110
|
Ariza-Mateos A, Díaz-Toledano R, Block TM, Prieto-Vega S, Birk A, Gómez J. Geneticin Stabilizes the Open Conformation of the 5' Region of Hepatitis C Virus RNA and Inhibits Viral Replication. Antimicrob Agents Chemother 2016; 60:925-35. [PMID: 26621620 PMCID: PMC4750704 DOI: 10.1128/aac.02511-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/17/2015] [Indexed: 01/10/2023] Open
Abstract
The aminoglycoside Geneticin (G418) is known to inhibit cell culture proliferation, via virus-specific mechanisms, of two different virus genera from the family Flaviviridae. Here, we tried to determine whether Geneticin can selectively alter the switching of the nucleotide 1 to 570 RNA region of hepatitis C virus (HCV) and, if so, whether this inhibits viral growth. Two structure-dependent RNases known to specifically cleave HCV RNA were tested in the presence or absence of the drug. One was the Synechocystis sp. RNase P ribozyme, which cleaves the tRNA-like domain around the AUG start codon under high-salt buffer conditions; the second was Escherichia coli RNase III, which recognizes a double-helical RNA switch element that changes the internal ribosome entry site (IRES) from a closed (C) conformation to an open (O) one. While the drug did not affect RNase P activity, it did inhibit RNase III in the micromolar range. Kinetic studies indicated that the drug favors the switch from the C to the O conformation of the IRES by stabilizing the distal double-stranded element and inhibiting further processing of the O form. We demonstrate that, because the RNA in this region is highly conserved and essential for virus survival, Geneticin inhibits HCV Jc1 NS3 expression, the release of the viral genomic RNA, and the propagation of HCV in Huh 7.5 cells. Our study highlights the crucial role of riboswitches in HCV replication and suggests the therapeutic potential of viral-RNA-targeted antivirals.
Collapse
Affiliation(s)
- Ascensión Ariza-Mateos
- Instituto de Parasitología y Biomedicina López-Neyra CSIC, Granada, Spain CIBERehd Centro de Investigación Biomédica en RED de Enfermedades Hepáticas y Digestivas (ISCIII), Madrid, Spain
| | - Rosa Díaz-Toledano
- Instituto de Parasitología y Biomedicina López-Neyra CSIC, Granada, Spain CIBERehd Centro de Investigación Biomédica en RED de Enfermedades Hepáticas y Digestivas (ISCIII), Madrid, Spain
| | | | - Samuel Prieto-Vega
- Instituto de Parasitología y Biomedicina López-Neyra CSIC, Granada, Spain
| | - Alex Birk
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York, USA
| | - Jordi Gómez
- Instituto de Parasitología y Biomedicina López-Neyra CSIC, Granada, Spain CIBERehd Centro de Investigación Biomédica en RED de Enfermedades Hepáticas y Digestivas (ISCIII), Madrid, Spain
| |
Collapse
|
111
|
Henley RY, Carson S, Wanunu M. Studies of RNA Sequence and Structure Using Nanopores. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 139:73-99. [PMID: 26970191 DOI: 10.1016/bs.pmbts.2015.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanopores are powerful single-molecule sensors with nanometer scale dimensions suitable for detection, quantification, and characterization of nucleic acids and proteins. Beyond sequencing applications, both biological and solid-state nanopores hold great promise as tools for studying the biophysical properties of RNA. In this review, we highlight selected landmark nanopore studies with regards to RNA sequencing, microRNA detection, RNA/ligand interactions, and RNA structural/conformational analysis.
Collapse
Affiliation(s)
- Robert Y Henley
- Department of Physics, Northeastern University, Boston, Massachusetts, USA
| | - Spencer Carson
- Department of Physics, Northeastern University, Boston, Massachusetts, USA
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, Massachusetts, USA; Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA.
| |
Collapse
|
112
|
Rzuczek SG, Southern MR, Disney MD. Studying a Drug-like, RNA-Focused Small Molecule Library Identifies Compounds That Inhibit RNA Toxicity in Myotonic Dystrophy. ACS Chem Biol 2015; 10:2706-15. [PMID: 26414664 DOI: 10.1021/acschembio.5b00430] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There are many RNA targets in the transcriptome to which small molecule chemical probes and lead therapeutics are desired. However, identifying compounds that bind and modulate RNA function in cellulo is difficult. Although rational design approaches have been developed, they are still in their infancies and leave many RNAs "undruggable". In an effort to develop a small molecule library that is biased for binding RNA, we computationally identified "drug-like" compounds from screening collections that have favorable properties for binding RNA and for suitability as lead drugs. As proof-of-concept, this collection was screened for binding to and modulating the cellular dysfunction of the expanded repeating RNA (r(CUG)(exp)) that causes myotonic dystrophy type 1. Hit compounds bind the target in cellulo, as determined by the target identification approach Competitive Chemical Cross-Linking and Isolation by Pull-down (C-ChemCLIP), and selectively improve several disease-associated defects. The best compounds identified from our 320-member library are more potent in cellulo than compounds identified by high-throughput screening (HTS) campaigns against this RNA. Furthermore, the compound collection has a higher hit rate (9% compared to 0.01-3%), and the bioactive compounds identified are not charged; thus, RNA can be "drugged" with compounds that have favorable pharmacological properties. Finally, this RNA-focused small molecule library may serve as a useful starting point to identify lead "drug-like" chemical probes that affect the biological (dys)function of other RNA targets by direct target engagement.
Collapse
Affiliation(s)
- Suzanne G. Rzuczek
- Department
of Chemistry and ‡Translational Research Institute, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida 33458, United States
| | - Mark R. Southern
- Department
of Chemistry and ‡Translational Research Institute, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida 33458, United States
| | - Matthew D. Disney
- Department
of Chemistry and ‡Translational Research Institute, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida 33458, United States
| |
Collapse
|
113
|
Yeluri T, Bhosale RS, Ghule NV, Raynor AM, Bhosale SV, Bhosale SV. Neomycin and gentamicin detection via molecular recognition with cyclam-decorated gold nanoparticles. Supramol Chem 2015. [DOI: 10.1080/10610278.2015.1071819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Tanuja Yeluri
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500 007, India
| | - Rajesh S. Bhosale
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500 007, India
| | - Namdev V. Ghule
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500 007, India
| | - Aaron M. Raynor
- School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Sidhanath V. Bhosale
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500 007, India
| | - Sheshanath V. Bhosale
- School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
| |
Collapse
|
114
|
Alguacil J, Robles J, Ràfols C, Bosch E. Binding thermodynamics of paromomycin, neomycin, neomycin-dinucleotide and -diPNA conjugates to bacterial and human rRNA. J Mol Recognit 2015; 29:142-50. [DOI: 10.1002/jmr.2513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 09/18/2015] [Accepted: 09/19/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Javier Alguacil
- Departament de Química Orgànica; Facultat de Química and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona; Martí i Franquès, 1-11 08028 Barcelona Spain
| | - Jordi Robles
- Departament de Química Orgànica; Facultat de Química and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona; Martí i Franquès, 1-11 08028 Barcelona Spain
| | - Clara Ràfols
- Departament de Química Analítica; Facultat de Química and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona; Martí i Franquès, 1-11 08028 Barcelona Spain
| | - Elisabeth Bosch
- Departament de Química Analítica; Facultat de Química and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona; Martí i Franquès, 1-11 08028 Barcelona Spain
| |
Collapse
|
115
|
Abstract
The bacterial ribosome is a complex macromolecular machine that deciphers the genetic code with remarkable fidelity. During the elongation phase of protein synthesis, the ribosome selects aminoacyl-tRNAs as dictated by the canonical base pairing between the anticodon of the tRNA and the codon of the messenger RNA. The ribosome's participation in tRNA selection is active rather than passive, using conformational changes of conserved bases of 16S rRNA to directly monitor the geometry of codon-anticodon base pairing. The tRNA selection process is divided into an initial selection step and a subsequent proofreading step, with the utilization of two sequential steps increasing the discriminating power of the ribosome far beyond that which could be achieved based on the thermodynamics of codon-anticodon base pairing stability. The accuracy of decoding is impaired by a number of antibiotics and can be either increased or decreased by various mutations in either subunit of the ribosome, in elongation factor Tu, and in tRNA. In this chapter we will review our current understanding of various forces that determine the accuracy of decoding by the bacterial ribosome.
Collapse
|
116
|
Schudoma C. It's a loop world - single strands in RNA as structural and functional elements. Biomol Concepts 2015; 2:171-81. [PMID: 25962027 DOI: 10.1515/bmc.2011.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 03/25/2011] [Indexed: 01/31/2023] Open
Abstract
Unpaired regions in RNA molecules - loops - are centrally involved in defining the characteristic three-dimensional (3D) architecture of RNAs and are of high interest in RNA engineering and design. Loops adopt diverse, but specific conformations stabilised by complex tertiary structural interactions that provide structural flexibility to RNA structures that would otherwise not be possible if they only consisted of the rigid A-helical shapes usually formed by canonical base pairing. By participating in sequence-non-local contacts, they furthermore contribute to stabilising the overall fold of RNA molecules. Interactions between RNAs and other nucleic acids, proteins, or small molecules are also generally mediated by RNA loop structures. Therefore, the function of an RNA molecule is generally dependent on its loops. Examples include intermolecular interactions between RNAs as part of the microRNA processing pathways, ribozymatic activity, or riboswitch-ligand interactions. Bioinformatics approaches have been successfully applied to the identification of novel RNA structural motifs including loops, local and global RNA 3D structure prediction, and structural and conformational analysis of RNAs and have contributed to a better understanding of the sequence-structure-function relationships in RNA loops.
Collapse
|
117
|
Luo Y, Sintim HO, Dayie TK. Synthesis of a biotinylated photocleavable nucleotide monophosphate for the preparation of natively folded RNAs. Methods Enzymol 2015; 549:115-31. [PMID: 25432747 DOI: 10.1016/b978-0-12-801122-5.00006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
RNAs are involved in many functional roles in the cell, and this functional diversity is predicated on RNAs adopting requisite three-dimensional architectures. Preparing such "natively folded" RNAs with a homogeneous population is sometimes problematic for structural or enzymatic studies. Yet, standard methods for RNA preparations denature the RNA and create a heterogeneous population of conformers. Therefore, preparation of "natively folded" RNAs without going through the process of denaturing and refolding is important to obtain maximal biological function. Here, we present a simple strategy using "click" chemistry to couple biotin to a "caged" photocleavable (PC) guanosine monophosphate (GMP) in high yield. This biotin-PC-GMP is readily accepted by T7 RNA polymerase to transcribe "natively folded" RNAs ranging in size from 27 to 493 nucleotides. This facile strategy allows efficient biotinylation of RNA and provides a traceless means to remove the biotin after the purification. Such preparation of natively folded RNAs should benefit biophysical and therapeutic applications.
Collapse
Affiliation(s)
- Yiling Luo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Herman O Sintim
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA.
| | - T Kwaku Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA; Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
118
|
Fox DJ, Cooper MD, Speil CA, Roberts MH, Yanik SC, Meech RP, Hargrove TL, Verhulst SJ, Rybak LP, Campbell KCM. d-Methionine reduces tobramycin-induced ototoxicity without antimicrobial interference in animal models. J Cyst Fibros 2015; 15:518-30. [PMID: 26166286 DOI: 10.1016/j.jcf.2015.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/19/2015] [Accepted: 06/19/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Tobramycin is a critical cystic fibrosis treatment however it causes ototoxicity. This study tested d-methionine protection from tobramycin-induced ototoxicity and potential antimicrobial interference. METHODS Auditory brainstem responses (ABRs) and outer hair cell (OHC) quantifications measured protection in guinea pigs treated with tobramycin and a range of d-methionine doses. In vitro antimicrobial interference studies tested inhibition and post antibiotic effect assays. In vivo antimicrobial interference studies tested normal and neutropenic Escherichia coli murine survival and intraperitoneal lavage bacterial counts. RESULTS d-Methionine conferred significant ABR threshold shift reductions. OHC protection was less robust but significant at 20kHz in the 420mg/kg/day group. In vitro studies did not detect d-methionine-induced antimicrobial interference. In vivo studies did not detect d-methionine-induced interference in normal or neutropenic mice. CONCLUSIONS d-Methionine protects from tobramycin-induced ototoxicity without antimicrobial interference. The study results suggest d-met as a potential otoprotectant from clinical tobramycin use in cystic fibrosis patients.
Collapse
Affiliation(s)
- Daniel J Fox
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, USA; Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA; Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA.
| | - Morris D Cooper
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Cristian A Speil
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Melissa H Roberts
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Susan C Yanik
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Robert P Meech
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Tim L Hargrove
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Steven J Verhulst
- Statistics and Research Consulting, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Leonard P Rybak
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kathleen C M Campbell
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, USA; Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
119
|
De Silva D, Tu YT, Amunts A, Fontanesi F, Barrientos A. Mitochondrial ribosome assembly in health and disease. Cell Cycle 2015; 14:2226-50. [PMID: 26030272 DOI: 10.1080/15384101.2015.1053672] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ribosome is a structurally and functionally conserved macromolecular machine universally responsible for catalyzing protein synthesis. Within eukaryotic cells, mitochondria contain their own ribosomes (mitoribosomes), which synthesize a handful of proteins, all essential for the biogenesis of the oxidative phosphorylation system. High-resolution cryo-EM structures of the yeast, porcine and human mitoribosomal subunits and of the entire human mitoribosome have uncovered a wealth of new information to illustrate their evolutionary divergence from their bacterial ancestors and their adaptation to synthesis of highly hydrophobic membrane proteins. With such structural data becoming available, one of the most important remaining questions is that of the mitoribosome assembly pathway and factors involved. The regulation of mitoribosome biogenesis is paramount to mitochondrial respiration, and thus to cell viability, growth and differentiation. Moreover, mutations affecting the rRNA and protein components produce severe human mitochondrial disorders. Despite its biological and biomedical significance, knowledge on mitoribosome biogenesis and its deviations from the much-studied bacterial ribosome assembly processes is scarce, especially the order of rRNA processing and assembly events and the regulatory factors required to achieve fully functional particles. This article focuses on summarizing the current available information on mitoribosome assembly pathway, factors that form the mitoribosome assembly machinery, and the effect of defective mitoribosome assembly on human health.
Collapse
Affiliation(s)
- Dasmanthie De Silva
- a Department of Biochemistry and Molecular Biology ; University of Miami Miller School of Medicine ; Miami , FL USA
| | | | | | | | | |
Collapse
|
120
|
Jiang L, Watkins D, Jin Y, Gong C, King A, Washington AZ, Green KD, Garneau-Tsodikova S, Oyelere AK, Arya DP. Rapid synthesis, RNA binding, and antibacterial screening of a peptidic-aminosugar (PA) library. ACS Chem Biol 2015; 10:1278-89. [PMID: 25706406 DOI: 10.1021/cb5010367] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A 215-member mono- and diamino acid peptidic-aminosugar (PA) library, with neomycin as the model aminosugar, was systematically and rapidly synthesized via solid phase synthesis. Antibacterial activities of the PA library, on 13 bacterial strains (seven Gram-positive and six Gram-negative bacterial strains), and binding affinities of the PA library for a 27-base model of the bacterial 16S ribosomal A-site RNA were evaluated using high-throughput screening. The results of the two assays were correlated using Ribosomal Binding-Bacterial Inhibition Plot (RB-BIP) analysis to provide structure-activity relationship (SAR) information. From this work, we have identified PAs that can discriminate the E. coli A-site from the human A-site by up to a 28-fold difference in binding affinity. Aminoglycoside-modifying enzyme activity studies indicate that APH(2″)-Ia showed nearly complete removal of activity with a number of PAs. The synthesis of the compound library and screening can both be performed rapidly, allowing for an iterative process of aminoglycoside synthesis and screening of PA libraries for optimal binding and antibacterial activity for lead identification.
Collapse
Affiliation(s)
- Liuwei Jiang
- Laboratory
of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | | | - Yi Jin
- Laboratory
of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Changjun Gong
- Laboratory
of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Ada King
- NUBAD, LLC, Greenville, South Carolina 29605, United States
| | - Arren Z. Washington
- School
of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Keith D. Green
- College
of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Sylvie Garneau-Tsodikova
- College
of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Adegboyega K. Oyelere
- School
of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Dev P. Arya
- Laboratory
of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
- NUBAD, LLC, Greenville, South Carolina 29605, United States
| |
Collapse
|
121
|
Inoue R, Watanabe K, Katou T, Ikezawa Y, Hamasaki K. Nucleobase modified neamines with a lysine as a linker, their inhibition specificity for TAR-Tat derived from HIV-1. Bioorg Med Chem 2015; 23:2139-47. [DOI: 10.1016/j.bmc.2015.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 02/24/2015] [Accepted: 03/01/2015] [Indexed: 12/20/2022]
|
122
|
Structural Insights into tRNA Dynamics on the Ribosome. Int J Mol Sci 2015; 16:9866-95. [PMID: 25941930 PMCID: PMC4463622 DOI: 10.3390/ijms16059866] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 11/17/2022] Open
Abstract
High-resolution structures at different stages, as well as biochemical, single molecule and computational approaches have highlighted the elasticity of tRNA molecules when bound to the ribosome. It is well acknowledged that the inherent structural flexibility of the tRNA lies at the heart of the protein synthesis process. Here, we review the recent advances and describe considerations that the conformational changes of the tRNA molecules offer about the mechanisms grounded in translation.
Collapse
|
123
|
Panecka J, Šponer J, Trylska J. Conformational dynamics of bacterial and human cytoplasmic models of the ribosomal A-site. Biochimie 2015; 112:96-110. [PMID: 25748164 DOI: 10.1016/j.biochi.2015.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/23/2015] [Indexed: 01/12/2023]
Abstract
The aminoacyl-tRNA binding site (A-site) is located in helix 44 of small ribosomal subunit. The mobile adenines 1492 and 1493 (Escherichia coli numbering), forming the A-site bulge, act as a functional switch that ensures mRNA decoding accuracy. Structural data on the oligonucleotide models mimicking the ribosomal A-site with sequences corresponding to bacterial and human cytoplasmic sites confirm that this RNA motif forms also without the ribosome context. We performed all-atom molecular dynamics simulations of these crystallographic A-site models to compare their conformational properties. We found that the human A-site bulge is more internally flexible than the bacterial one and has different base pairing preferences, which result in the overall different shapes of these bulges and cation density distributions. Also, in the human A-site model we observed repetitive destacking of A1492, while A1493 was more stably paired than in the bacterial variant. Based on the dynamics of the A-sites we suggest why aminoglycoside antibiotics, which target the bacterial A-site, have lower binding affinities and anti-translational activities toward the human variant.
Collapse
Affiliation(s)
- Joanna Panecka
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland; Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Jiří Šponer
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic; Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic.
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland.
| |
Collapse
|
124
|
Pentobra: A Potent Antibiotic with Multiple Layers of Selective Antimicrobial Mechanisms against Propionibacterium Acnes. J Invest Dermatol 2015; 135:1581-1589. [PMID: 25668237 PMCID: PMC4430421 DOI: 10.1038/jid.2015.40] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/21/2014] [Accepted: 01/26/2015] [Indexed: 02/08/2023]
Abstract
Although antibiotics are a common treatment for acne, the difficulties inherent to effective antimicrobial penetration in sebum and selective antimicrobial action in skin are compounded by increasing resistance of Propionibacterium acnes clinical isolates. To address these problems, we engineered Pentobra, a peptide-aminoglycoside molecule which has multiple mechanisms of antibacterial action, and investigated whether it can be a potential candidate for the treatment of acne. Pentobra combines the potent ribosomal activity of aminoglycosides with the bacteria-selective membrane-permeabilizing abilities of antimicrobial peptides (AMPs). Pentobra demonstrated potent and selective killing of P. acnes, but not against human skin cells in vitro. In direct comparison, Pentobra demonstrated bactericidal activity and drastically outperformed free tobramycin (by 5–7 logs) against multiple P. acnes clinical strains. Moreover, EM studies showed that Pentobra had robust membrane activity, as treatment with Pentobra killed P. acnes cells and caused leakage of intracellular contents. Pentobra may also have potential anti-inflammatory effects as demonstrated by suppression of some P. acnes-induced chemokines. Importantly, the killing activity was maintained in sebaceous environments as Pentobra was bactericidal against clinical isolates in comedones extracts isolated from human donors. Our work demonstrates that equipping aminoglycosides with selective membrane activity is a viable approach for developing antibiotics against P. acnes that are effective in cutaneous environments.
Collapse
|
125
|
Kirmizialtin S, Hennelly SP, Schug A, Onuchic JN, Sanbonmatsu KY. Integrating molecular dynamics simulations with chemical probing experiments using SHAPE-FIT. Methods Enzymol 2015; 553:215-34. [PMID: 25726467 DOI: 10.1016/bs.mie.2014.10.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Integration and calibration of molecular dynamics simulations with experimental data remain a challenging endeavor. We have developed a novel method to integrate chemical probing experiments with molecular simulations of RNA molecules by using a native structure-based model. Selective 2'-hydroxyl acylation by primer extension (SHAPE) characterizes the mobility of each residue in the RNA. Our method, SHAPE-FIT, automatically optimizes the potential parameters of the force field according to measured reactivities from SHAPE. The optimized parameter set allows simulations of dynamics highly consistent with SHAPE probing experiments. Such atomistic simulations, thoroughly grounded in experiment, can open a new window on RNA structure-function relations.
Collapse
Affiliation(s)
- Serdal Kirmizialtin
- New Mexico Consortium, Los Alamos, New Mexico, USA; Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA.
| | - Scott P Hennelly
- New Mexico Consortium, Los Alamos, New Mexico, USA; Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Alexander Schug
- Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jose N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, USA; Department of Physics and Astronomy, Rice University, Houston, Texas, USA; Department of Chemistry, Rice University, Houston, Texas, USA; Department of Biosciences, Rice University, Houston, Texas, USA; Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, USA
| | - Karissa Y Sanbonmatsu
- New Mexico Consortium, Los Alamos, New Mexico, USA; Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA.
| |
Collapse
|
126
|
Ruer S, Pinotsis N, Steadman D, Waksman G, Remaut H. Virulence-targeted Antibacterials: Concept, Promise, and Susceptibility to Resistance Mechanisms. Chem Biol Drug Des 2015; 86:379-99. [DOI: 10.1111/cbdd.12517] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Ségolène Ruer
- Structural and Molecular Microbiology; Structural Biology Research Center; VIB; Pleinlaan 2 Brussels 1050 Belgium
- Structural Biology Brussels; Vrije Universiteit Brussel; Pleinlaan 2 Brussels 1050 Belgium
| | - Nikos Pinotsis
- Institute of Structural and Molecular Biology (ISMB); UCL and Birkbeck College; London WC1E 7HX UK
| | - David Steadman
- Wolfson Institute for Biomedical Research (WIBR); UCL; London WC1E 6BT UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology (ISMB); UCL and Birkbeck College; London WC1E 7HX UK
| | - Han Remaut
- Structural and Molecular Microbiology; Structural Biology Research Center; VIB; Pleinlaan 2 Brussels 1050 Belgium
- Structural Biology Brussels; Vrije Universiteit Brussel; Pleinlaan 2 Brussels 1050 Belgium
| |
Collapse
|
127
|
Pawar MG, Nuthanakanti A, Srivatsan SG. Heavy atom containing fluorescent ribonucleoside analog probe for the fluorescence detection of RNA-ligand binding. Bioconjug Chem 2014; 24:1367-77. [PMID: 23841942 DOI: 10.1021/bc400194g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although numerous biophysical tools have provided effective systems to study nucleic acids, our current knowledge on how RNA structure complements its function is limited. Therefore, development of robust tools to study the structure–function relationship of RNA is highly desired. Toward this endeavor, we have developed a new ribonucleoside analog, based on a (selenophen-2-yl)pyrimidine core, which could serve as a fluorescence probe to study the function of RNA in real time and as an anomalous scattering label (selenium atom) for the phase determination in X-ray crystallography. The fluorescent selenophene-modified uridine analog is minimally perturbing and exhibits probe-like properties such as sensitivity to microenvironment and conformation changes. Utilizing these properties and amicability of the corresponding ribonucleotide analog to enzymatic incorporation, we have synthesized a fluorescent bacterial ribosomal decoding site (A-site) RNA construct and have developed a fluorescence binding assay to effectively monitor the binding of aminoglycoside antibiotics to the A-site. Our results demonstrate that this simple approach of building a dual probe could provide new avenues to study the structure–function relationship of not only nucleic acids, but also other biomacromolecules.
Collapse
|
128
|
Oren YS, McClure ML, Rowe SM, Sorscher EJ, Bester AC, Manor M, Kerem E, Rivlin J, Zahdeh F, Mann M, Geiger T, Kerem B. The unfolded protein response affects readthrough of premature termination codons. EMBO Mol Med 2014; 6:685-701. [PMID: 24705877 PMCID: PMC4023889 DOI: 10.1002/emmm.201303347] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
One-third of monogenic inherited diseases result from premature termination codons (PTCs). Readthrough of in-frame PTCs enables synthesis of full-length functional proteins. However, extended variability in the response to readthrough treatment is found among patients, which correlates with the level of nonsense transcripts. Here, we aimed to reveal cellular pathways affecting this inter-patient variability. We show that activation of the unfolded protein response (UPR) governs the response to readthrough treatment by regulating the levels of transcripts carrying PTCs. Quantitative proteomic analyses showed substantial differences in UPR activation between patients carrying PTCs, correlating with their response. We further found a significant inverse correlation between the UPR and nonsense-mediated mRNA decay (NMD), suggesting a feedback loop between these homeostatic pathways. We uncovered and characterized the mechanism underlying this NMD-UPR feedback loop, which augments both UPR activation and NMD attenuation. Importantly, this feedback loop enhances the response to readthrough treatment, highlighting its clinical importance. Altogether, our study demonstrates the importance of the UPR and its regulatory network for genetic diseases caused by PTCs and for cell homeostasis under normal conditions.
Collapse
Affiliation(s)
- Yifat S Oren
- Department of Genetics, The Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Mentewab A, Matheson K, Adebiyi M, Robinson S, Elston B. RNA-seq analysis of the effect of kanamycin and the ABC transporter AtWBC19 on Arabidopsis thaliana seedlings reveals changes in metal content. PLoS One 2014; 9:e109310. [PMID: 25310285 PMCID: PMC4195610 DOI: 10.1371/journal.pone.0109310] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 09/09/2014] [Indexed: 11/19/2022] Open
Abstract
Plants are exposed to antibiotics produced by soil microorganisms, but little is known about their responses at the transcriptional level. Likewise, few endogenous mechanisms of antibiotic resistance have been reported. The Arabidopsis thaliana ATP Binding Cassette (ABC) transporter AtWBC19 (ABCG19) is known to confer kanamycin resistance, but the exact mechanism of resistance is not well understood. Here we examined the transcriptomes of control seedlings and wbc19 mutant seedlings using RNA-seq analysis. Exposure to kanamycin indicated changes in the organization of the photosynthetic apparatus, metabolic fluxes and metal uptake. Elemental analysis showed a 60% and 80% reduction of iron uptake in control and wbc19 mutant seedlings respectively, upon exposure to kanamycin. The drop in iron content was accompanied by the upregulation of the gene encoding for FERRIC REDUCTION OXIDASE 6 (FRO6) in mutant seedlings but not by the differential expression of other transport genes known to be induced by iron deficiency. In addition, wbc19 mutants displayed a distinct expression profile in the absence of kanamycin. Most notably the expression of several zinc ion binding proteins, including ZINC TRANSPORTER 1 PRECURSOR (ZIP1) was increased, suggesting abnormal zinc uptake. Elemental analysis confirmed a 50% decrease of zinc content in wbc19 mutants. Thus, the antibiotic resistance gene WBC19 appears to also have a role in zinc uptake.
Collapse
Affiliation(s)
- Ayalew Mentewab
- Biology Department, Spelman College, Atlanta, Georgia, United States of America
- * E-mail:
| | - Kinnari Matheson
- Biology Department, Spelman College, Atlanta, Georgia, United States of America
- Molecular Biology Department, Princeton University, Princeton, New Jersey, United States of America
| | - Morayo Adebiyi
- Biology Department, Spelman College, Atlanta, Georgia, United States of America
- The Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Shanice Robinson
- Biology Department, Spelman College, Atlanta, Georgia, United States of America
| | - Brianna Elston
- Biology Department, Spelman College, Atlanta, Georgia, United States of America
- College of Health Care Sciences, Nova Southeastern University, Davie, Florida, United States of America
| |
Collapse
|
130
|
Schmidt NW, Deshayes S, Hawker S, Blacker A, Kasko AM, Wong GCL. Engineering persister-specific antibiotics with synergistic antimicrobial functions. ACS NANO 2014; 8:8786-93. [PMID: 25130648 PMCID: PMC4173747 DOI: 10.1021/nn502201a] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Most antibiotics target growth processes and are ineffective against persister bacterial cells, which tolerate antibiotics due to their reduced metabolic activity. These persisters act as a genetic reservoir for resistant mutants and constitute a root cause of antibiotic resistance, a worldwide problem in human health. We re-engineer antibiotics specifically for persisters using tobramycin, an aminoglycoside antibiotic that targets bacterial ribosomes but is ineffective against persisters with low metabolic and cellular transport activity. By giving tobramycin the ability to induce nanoscopic negative Gaussian membrane curvature via addition of 12 amino acids, we transform tobramycin itself into a transporter sequence. The resulting molecule spontaneously permeates membranes, retains the high antibiotic activity of aminoglycosides, kills E. coli and S. aureus persisters 4-6 logs better than tobramycin, but remains noncytotoxic to eukaryotes. These results suggest a promising paradigm to renovate traditional antibiotics.
Collapse
|
131
|
Destache CJ. Aminoglycoside-induced nephrotoxicity--a focus on monitoring: a review of literature. J Pharm Pract 2014; 27:562-6. [PMID: 25124375 DOI: 10.1177/0897190014546102] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The use of aminoglycoside (AG) antibiotics has declined over the past 15 years primarily due to comparable potency of other antimicrobials and the nephrotoxicity potential of AG drugs. However, resurgence in the use of AG antimicrobials is occurring due to multidrug-resistant gram-negative nosocomial infections. Multidrug-resistant Pseudomonas and Acinetobacter isolates as well as extended-spectrum beta-lactamase-producing Enterobacteriaceae continue to force clinicians to consider AG therapy for nosocomial infections in hospitalized patients and enterococcal endocarditis. Additionally, AGs are still indicated in the treatment of pulmonary exacerbations of cystic fibrosis. Along with the use of AG antibiotics is the associated renal insufficiency complication. This review discusses the mechanism for AG-induced nephrotoxicity. Patient- and drug-related risk factors are discussed to help identify patients at increased risk. The issue of serum-level monitoring is discussed relative to the development of nephrotoxicity.
Collapse
Affiliation(s)
- Christopher J Destache
- Department of Pharmacy Practice, Creighton University Schools of Pharmacy & Health Professions and Medicine, Omaha, NE, USA
| |
Collapse
|
132
|
Hong W, Zeng J, Xie J. Antibiotic drugs targeting bacterial RNAs. Acta Pharm Sin B 2014; 4:258-65. [PMID: 26579393 PMCID: PMC4629089 DOI: 10.1016/j.apsb.2014.06.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/04/2014] [Accepted: 06/20/2014] [Indexed: 10/26/2022] Open
Abstract
RNAs have diverse structures that include bulges and internal loops able to form tertiary contacts or serve as ligand binding sites. The recent increase in structural and functional information related to RNAs has put them in the limelight as a drug target for small molecule therapy. In addition, the recognition of the marked difference between prokaryotic and eukaryotic rRNA has led to the development of antibiotics that specifically target bacterial rRNA, reduce protein translation and thereby inhibit bacterial growth. To facilitate the development of new antibiotics targeting RNA, we here review the literature concerning such antibiotics, mRNA, riboswitch and tRNA and the key methodologies used for their screening.
Collapse
Affiliation(s)
| | | | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
133
|
Panecka J, Havrila M, Réblová K, Šponer J, Trylska J. Role of S-turn2 in the structure, dynamics, and function of mitochondrial ribosomal A-site. A bioinformatics and molecular dynamics simulation study. J Phys Chem B 2014; 118:6687-701. [PMID: 24845793 DOI: 10.1021/jp5030685] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mRNA decoding site (A-site) in the small ribosomal subunit controls fidelity of the translation process. Here, using molecular dynamics simulations and bioinformatic analyses, we investigated the structural dynamics of the human mitochondrial A-site (native and A1490G mutant) and compared it with the dynamics of the bacterial A-site. We detected and characterized a specific RNA backbone configuration, S-turn2, which occurs in the human mitochondrial but not in the bacterial A-site. Mitochondrial and bacterial A-sites show different propensities to form S-turn2 that may be caused by different base-pairing patterns of the flanking nucleotides. Also, the S-turn2 structural stability observed in the simulations supports higher accuracy and lower speed of mRNA decoding in mitochondria in comparison with bacteria. In the mitochondrial A-site, we observed collective movement of stacked nucleotides A1408·C1409·C1410, which may explain the known differences in aminoglycoside antibiotic binding affinities toward the studied A-site variants.
Collapse
Affiliation(s)
- Joanna Panecka
- Department of Biophysics, Institute of Experimental Physics and ∥Centre of New Technologies, University of Warsaw , Żwirki i Wigury 93, 02-089 Warsaw, Poland
| | | | | | | | | |
Collapse
|
134
|
Structural analysis of base substitutions in Thermus thermophilus 16S rRNA conferring streptomycin resistance. Antimicrob Agents Chemother 2014; 58:4308-17. [PMID: 24820088 DOI: 10.1128/aac.02857-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Streptomycin is a bactericidal antibiotic that induces translational errors. It binds to the 30S ribosomal subunit, interacting with ribosomal protein S12 and with 16S rRNA through contacts with the phosphodiester backbone. To explore the structural basis for streptomycin resistance, we determined the X-ray crystal structures of 30S ribosomal subunits from six streptomycin-resistant mutants of Thermus thermophilus both in the apo form and in complex with streptomycin. Base substitutions at highly conserved residues in the central pseudoknot of 16S rRNA produce novel hydrogen-bonding and base-stacking interactions. These rearrangements in secondary structure produce only minor adjustments in the three-dimensional fold of the pseudoknot. These results illustrate how antibiotic resistance can occur as a result of small changes in binding site conformation.
Collapse
|
135
|
Flipping of the ribosomal A-site adenines provides a basis for tRNA selection. J Mol Biol 2014; 426:3201-3213. [PMID: 24813122 DOI: 10.1016/j.jmb.2014.04.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/13/2014] [Accepted: 04/14/2014] [Indexed: 11/22/2022]
Abstract
Ribosomes control the missense error rate of ~10(-4) during translation though quantitative contributions of individual mechanistic steps of the conformational changes yet to be fully determined. Biochemical and biophysical studies led to a qualitative tRNA selection model in which ribosomal A-site residues A1492 and A1493 (A1492/3) flip out in response to cognate tRNA binding, promoting the subsequent reactions, but not in the case of near-cognate or non-cognate tRNA. However, this model was recently questioned by X-ray structures revealing conformations of extrahelical A1492/3 and domain closure of the decoding center in both cognate and near-cognate tRNA bound ribosome complexes, suggesting that the non-specific flipping of A1492/3 has no active role in tRNA selection. We explore this question by carrying out molecular dynamics simulations, aided with fluorescence and NMR experiments, to probe the free energy cost of extrahelical flipping of 1492/3 and the strain energy associated with domain conformational change. Our rigorous calculations demonstrate that the A1492/3 flipping is indeed a specific response to the binding of cognate tRNA, contributing 3kcal/mol to the specificity of tRNA selection. Furthermore, the different A-minor interactions in cognate and near-cognate complexes propagate into the conformational strain and contribute another 4kcal/mol in domain closure. The recent structure of ribosome with features of extrahelical A1492/3 and closed domain in near-cognate complex is reconciled by possible tautomerization of the wobble base pair in mRNA-tRNA. These results quantitatively rationalize other independent experimental observations and explain the ribosomal discrimination mechanism of selecting cognate versus near-cognate tRNA.
Collapse
|
136
|
Molecular recognition and modification of the 30S ribosome by the aminoglycoside-resistance methyltransferase NpmA. Proc Natl Acad Sci U S A 2014; 111:6275-80. [PMID: 24717845 DOI: 10.1073/pnas.1402789111] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aminoglycosides are potent, broad spectrum, ribosome-targeting antibacterials whose clinical efficacy is seriously threatened by multiple resistance mechanisms. Here, we report the structural basis for 30S recognition by the novel plasmid-mediated aminoglycoside-resistance rRNA methyltransferase A (NpmA). These studies are supported by biochemical and functional assays that define the molecular features necessary for NpmA to catalyze m(1)A1408 modification and confer resistance. The requirement for the mature 30S as a substrate for NpmA is clearly explained by its recognition of four disparate 16S rRNA helices brought into proximity by 30S assembly. Our structure captures a "precatalytic state" in which multiple structural reorganizations orient functionally critical residues to flip A1408 from helix 44 and position it precisely in a remodeled active site for methylation. Our findings provide a new molecular framework for the activity of aminoglycoside-resistance rRNA methyltransferases that may serve as a functional paradigm for other modification enzymes acting late in 30S biogenesis.
Collapse
|
137
|
Chen D, Murchie AIH. An aminoglycoside sensing riboswitch controls the expression of aminoglycoside resistance acetyltransferase and adenyltransferases. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:951-8. [PMID: 24631585 DOI: 10.1016/j.bbagrm.2014.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 02/13/2014] [Accepted: 02/25/2014] [Indexed: 11/27/2022]
Abstract
The emergence of antibiotic resistance in human pathogens is an increasing threat to public health. The fundamental mechanisms that control the high levels of expression of antibiotic resistance genes are not yet completely understood. The aminoglycosides are one of the earliest classes of antibiotics that were introduced in the 1940s. In the clinic aminoglycoside resistance is conferred most commonly through enzymatic modification of the drug although resistance through enzymatic modification of the target rRNA through methylation or the overexpression of efflux pumps is also appearing. An aminoglycoside sensing riboswitch has been identified that controls expression of the aminoglycoside resistance genes that encode the aminoglycoside acetyltransferase (AAC) and aminoglycoside nucleotidyltransferase (ANT) (adenyltransferase (AAD)) enzymes. AAC and ANT cause resistance to aminoglycoside antibiotics through modification of the drugs. Expression of the AAC and ANT resistance genes is regulated by aminoglycoside binding to the 5' leader RNA of the aac/aad genes. The aminoglycoside sensing RNA is also associated with the integron cassette system that captures antibiotic resistance genes. Specific aminoglycoside binding to the leader RNA induces a structural transition in the leader RNA, and consequently induction of resistance protein expression. Reporter gene expression, direct measurements of drug RNA binding, chemical probing and UV cross-linking combined with mutational analysis demonstrated that the leader RNA functioned as an aminoglycoside sensing riboswitch in which drug binding to the leader RNA leads to the induction of aminoglycoside antibiotic resistance. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Dongrong Chen
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, PR China; Institutes of Biomedical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, PR China.
| | - Alastair I H Murchie
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, PR China; Institutes of Biomedical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, PR China; School of Pharmacy, Fudan University, Zhang Heng Road 826, Pudong 201203, Shanghai, PR China.
| |
Collapse
|
138
|
Aytenfisu A, Spasic A, Seetin MG, Serafini J, Mathews DH. Modified Amber Force Field Correctly Models the Conformational Preference for Tandem GA pairs in RNA. J Chem Theory Comput 2014; 10:1292-1301. [PMID: 24803859 PMCID: PMC3985902 DOI: 10.1021/ct400861g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Indexed: 01/18/2023]
Abstract
Molecular mechanics with all-atom models was used to understand the conformational preference of tandem guanine-adenine (GA) noncanonical pairs in RNA. These tandem GA pairs play important roles in determining stability, flexibility, and structural dynamics of RNA tertiary structures. Previous solution structures showed that these tandem GA pairs adopt either imino (cis Watson-Crick/Watson-Crick A-G) or sheared (trans Hoogsteen/sugar edge A-G) conformations depending on the sequence and orientation of the adjacent closing base pairs. The solution structures (GCGGACGC)2 [Biochemistry, 1996, 35, 9677-9689] and (GCGGAUGC)2 [Biochemistry, 2007, 46, 1511-1522] demonstrate imino and sheared conformations for the two central GA pairs, respectively. These systems were studied using molecular dynamics and free energy change calculations for conformational changes, using umbrella sampling. For the structures to maintain their native conformations during molecular dynamics simulations, a modification to the standard Amber ff10 force field was required, which allowed the amino group of guanine to leave the plane of the base [J. Chem. Theory Comput., 2009, 5, 2088-2100] and form out-of-plane hydrogen bonds with a cross-strand cytosine or uracil. The requirement for this modification suggests the importance of out-of-plane hydrogen bonds in stabilizing the native structures. Free energy change calculations for each sequence demonstrated the correct conformational preference when the force field modification was used, but the extent of the preference is underestimated.
Collapse
Affiliation(s)
- Asaminew
H. Aytenfisu
- Department
of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, United States
| | - Aleksandar Spasic
- Department
of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, United States
| | - Matthew G. Seetin
- Department
of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, United States
| | - John Serafini
- Department
of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, United States
| | - David H. Mathews
- Department
of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, United States
- Department
of Biostatistics and Computational Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, United States
| |
Collapse
|
139
|
Abstract
RNA dynamics play a fundamental role in many cellular functions. However, there is no general framework to describe these complex processes, which typically consist of many structural maneuvers that occur over timescales ranging from picoseconds to seconds. Here, we classify RNA dynamics into distinct modes representing transitions between basins on a hierarchical free-energy landscape. These transitions include large-scale secondary-structural transitions at >0.1-s timescales, base-pair/tertiary dynamics at microsecond-to-millisecond timescales, stacking dynamics at timescales ranging from nanoseconds to microseconds, and other "jittering" motions at timescales ranging from picoseconds to nanoseconds. We review various modes within these three different tiers, the different mechanisms by which they are used to regulate function, and how they can be coupled together to achieve greater functional complexity.
Collapse
|
140
|
Mavridis I, Kythreoti G, Koltsida K, Vourloumis D. Rigid spiroethers targeting the decoding center of the bacterial ribosome. Bioorg Med Chem 2014; 22:1329-41. [PMID: 24457095 DOI: 10.1016/j.bmc.2013.12.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/30/2013] [Accepted: 12/30/2013] [Indexed: 01/21/2023]
Abstract
Continuing our efforts towards understanding the principles governing ribosomal recognition and function, we have synthesized and evaluated a series of diversely functionalized 5,6-, 6,6- and 7,6-spiroethers. These compounds successfully mimic natural aminoglycosides regarding their binding to the decoding center of the bacterial ribosome. Their potential to inhibit prokaryotic protein production in vitro along with their antibacterial potencies have also been examined.
Collapse
Affiliation(s)
- Ioannis Mavridis
- Chemical Biology Laboratories, National Center for Scientific Research 'Demokritos', Agia Paraskevi Attikis, GR-15310, Greece
| | - Georgia Kythreoti
- Chemical Biology Laboratories, National Center for Scientific Research 'Demokritos', Agia Paraskevi Attikis, GR-15310, Greece
| | - Konstantina Koltsida
- Chemical Biology Laboratories, National Center for Scientific Research 'Demokritos', Agia Paraskevi Attikis, GR-15310, Greece
| | - Dionisios Vourloumis
- Chemical Biology Laboratories, National Center for Scientific Research 'Demokritos', Agia Paraskevi Attikis, GR-15310, Greece.
| |
Collapse
|
141
|
Strategies to overcome the action of aminoglycoside-modifying enzymes for treating resistant bacterial infections. Future Med Chem 2014; 5:1285-309. [PMID: 23859208 DOI: 10.4155/fmc.13.80] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Shortly after the discovery of the first antibiotics, bacterial resistance began to emerge. Many mechanisms give rise to resistance; the most prevalent mechanism of resistance to the aminoglycoside (AG) family of antibiotics is the action of aminoglycoside-modifying enzymes (AMEs). Since the identification of these modifying enzymes, many efforts have been put forth to prevent their damaging alterations of AGs. These diverse strategies are discussed within this review, including: creating new AGs that are unaffected by AMEs; developing inhibitors of AMEs to be co-delivered with AGs; or regulating AME expression. Modern high-throughput methods as well as drug combinations and repurposing are highlighted as recent drug-discovery efforts towards fighting the increasing antibiotic resistance crisis.
Collapse
|
142
|
Abstract
The ribosome is one of the main antibiotic targets in the bacterial cell. Crystal structures of naturally produced antibiotics and their semi-synthetic derivatives bound to ribosomal particles have provided unparalleled insight into their mechanisms of action, and they are also facilitating the design of more effective antibiotics for targeting multidrug-resistant bacteria. In this Review, I discuss the recent structural insights into the mechanism of action of ribosome-targeting antibiotics and the molecular mechanisms of bacterial resistance, in addition to the approaches that are being pursued for the production of improved drugs that inhibit bacterial protein synthesis.
Collapse
|
143
|
Mehdizadeh Aghdam E, Barzegar A, Hejazi MS. Evolutionary Origin and Conserved Structural Building Blocks of Riboswitches and Ribosomal RNAs: Riboswitches as Probable Target Sites for Aminoglycosides Interaction. Adv Pharm Bull 2014; 4:225-35. [PMID: 24754005 DOI: 10.5681/apb.2014.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 11/24/2013] [Accepted: 11/26/2013] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Riboswitches, as noncoding RNA sequences, control gene expression through direct ligand binding. Sporadic reports on the structural relation of riboswitches with ribosomal RNAs (rRNA), raises an interest in possible similarity between riboswitches and rRNAs evolutionary origins. Since aminoglycoside antibiotics affect microbial cells through binding to functional sites of the bacterial rRNA, finding any conformational and functional relation between riboswitches/rRNAs is utmost important in both of medicinal and basic research. METHODS Analysis of the riboswitches structures were carried out using bioinformatics and computational tools. The possible functional similarity of riboswitches with rRNAs was evaluated based on the affinity of paromomycin antibiotic (targeting "A site" of 16S rRNA) to riboswitches via docking method. RESULTS There was high structural similarity between riboswitches and rRNAs, but not any particular sequence based similarity between them was found. The building blocks including "hairpin loop containing UUU", "peptidyl transferase center conserved hairpin A loop"," helix 45" and "S2 (G8) hairpin" as high identical rRNA motifs were detected in all kinds of riboswitches. Surprisingly, binding energies of paromomycin with different riboswitches are considerably better than the binding energy of paromomycin with "16S rRNA A site". Therefore the high affinity of paromomycin to bind riboswitches in comparison with rRNA "A site" suggests a new insight about riboswitches as possible targets for aminoglycoside antibiotics. CONCLUSION These findings are considered as a possible supporting evidence for evolutionary origin of riboswitches/rRNAs and also their role in the exertion of antibiotics effects to design new drugs based on the concomitant effects via rRNA/riboswitches.
Collapse
Affiliation(s)
- Elnaz Mehdizadeh Aghdam
- Drug Applied Research Center and Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegar
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran. ; The School of Advanced Biomedical Sciences (SABS), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Drug Applied Research Center and Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. ; The School of Advanced Biomedical Sciences (SABS), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
144
|
Synthesis of triazole-functionalized 2-DOS analogues and their evaluation as A-site binders. Bioorg Med Chem Lett 2014; 24:1122-6. [DOI: 10.1016/j.bmcl.2013.12.125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 12/30/2013] [Accepted: 12/31/2013] [Indexed: 11/19/2022]
|
145
|
Demirci H, Wang L, Murphy FV, Murphy EL, Carr JF, Blanchard SC, Jogl G, Dahlberg AE, Gregory ST. The central role of protein S12 in organizing the structure of the decoding site of the ribosome. RNA (NEW YORK, N.Y.) 2013; 19:1791-801. [PMID: 24152548 PMCID: PMC3884664 DOI: 10.1261/rna.040030.113] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/18/2013] [Indexed: 05/18/2023]
Abstract
The ribosome decodes mRNA by monitoring the geometry of codon-anticodon base-pairing using a set of universally conserved 16S rRNA nucleotides within the conformationally dynamic decoding site. By applying single-molecule FRET and X-ray crystallography, we have determined that conditional-lethal, streptomycin-dependence mutations in ribosomal protein S12 interfere with tRNA selection by allowing conformational distortions of the decoding site that impair GTPase activation of EF-Tu during the tRNA selection process. Distortions in the decoding site are reversed by streptomycin or by a second-site suppressor mutation in 16S rRNA. These observations encourage a refinement of the current model for decoding, wherein ribosomal protein S12 and the decoding site collaborate to optimize codon recognition and substrate discrimination during the early stages of the tRNA selection process.
Collapse
Affiliation(s)
- Hasan Demirci
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Leyi Wang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York 10021, USA
| | | | - Eileen L. Murphy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Jennifer F. Carr
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Scott C. Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York 10021, USA
| | - Gerwald Jogl
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Albert E. Dahlberg
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Steven T. Gregory
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
- Corresponding authorE-mail
| |
Collapse
|
146
|
Kulkarni SS, Chi FC, Hung SC. Biologically PotentL-Hexoses and 6-Deoxy-L-Hexoses: Their Syntheses and Applications. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200400175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
147
|
Wong CH. Design and Synthesis of Carbohydrate Mimetics: A New Strategy for Tackling the Problem of Carbohydrate-Mediated Biological Recognition. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.199900043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
148
|
Zhang Y, Pelet JM, Heller DA, Dong Y, Chen D, Gu Z, Joseph BJ, Wallas J, Anderson DG. Lipid-modified aminoglycoside derivatives for in vivo siRNA delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:4641-5. [PMID: 23813808 PMCID: PMC3898629 DOI: 10.1002/adma.201301917] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Indexed: 04/14/2023]
Abstract
Rationally designed siRNA delivery materials that are enabled by lipid-modified aminoglycosides are demonstrated. Leading materials identified are able to self-assemble with siRNA into well-defined nanoparticles and induce efficient gene knockdown both in vitro and in vivo. Histology studies and liver function tests reveal that no apparent toxicity is caused by these nanoparticles at doses over two orders of magnitude.
Collapse
Affiliation(s)
- Yunlong Zhang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge, MA 02139, USA; Department of Anesthesiology, Children's Hospital Boston Boston, MA 02115, USA
| | - Jeisa M Pelet
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology Cambridge, MA 02139, USA; Department of Anesthesiology, Children's Hospital Boston Boston, MA 02115, USA
| | - Daniel A Heller
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge, MA 02139, USA; Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center New York, NY 10065, USA
| | - Yizhou Dong
- Department of Anesthesiology, Children's Hospital Boston Boston, MA 02115, USA
| | - Delai Chen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology Cambridge, MA 02139, USA
| | - Zhen Gu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology Cambridge, MA 02139, USA; Department of Anesthesiology, Children's Hospital Boston Boston, MA 02115, USA
| | - Brian J. Joseph
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge, MA 02139, USA; Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center New York, NY 10065, USA
| | - Jasmine Wallas
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center New York, NY 10065, USA
| | - Daniel G. Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge, MA 02139, USA; Department of Anesthesiology, Children's Hospital Boston Boston, MA 02115, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology Boston, MA 02139, USA
| |
Collapse
|
149
|
Gutierrez B, Douthwaite S, Gonzalez-Zorn B. Indigenous and acquired modifications in the aminoglycoside binding sites of Pseudomonas aeruginosa rRNAs. RNA Biol 2013; 10:1324-32. [PMID: 23948732 PMCID: PMC3817154 DOI: 10.4161/rna.25984] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/26/2013] [Accepted: 07/31/2013] [Indexed: 01/23/2023] Open
Abstract
Aminoglycoside antibiotics remain the drugs of choice for treatment of Pseudomonas aeruginosa infections, particularly for respiratory complications in cystic-fibrosis patients. Previous studies on other bacteria have shown that aminoglycosides have their primary target within the decoding region of 16S rRNA helix 44 with a secondary target in 23S rRNA helix 69. Here, we have mapped P. aeruginosa rRNAs using MALDI mass spectrometry and reverse transcriptase primer extension to identify nucleotide modifications that could influence aminoglycoside interactions. Helices 44 and 45 contain indigenous (housekeeping) modifications at m (4)Cm1402, m (3)U1498, m (2)G1516, m (6) 2A1518, and m (6) 2A1519; helix 69 is modified at m (3)Ψ1915, with m (5)U1939 and m (5)C1962 modification in adjacent sequences. All modifications were close to stoichiometric, with the exception of m (3)Ψ1915, where about 80% of rRNA molecules were methylated. The modification status of a virulent clinical strain expressing the acquired methyltransferase RmtD was altered in two important respects: RmtD stoichiometrically modified m (7)G1405 conferring high resistance to the aminoglycoside tobramycin and, in doing so, impeded one of the methylation reactions at C1402. Mapping the nucleotide methylations in P. aeruginosa rRNAs is an essential step toward understanding the architecture of the aminoglycoside binding sites and the rational design of improved drugs against this bacterial pathogen.
Collapse
MESH Headings
- Aminoglycosides/chemistry
- Aminoglycosides/genetics
- Aminoglycosides/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Binding Sites
- Circular Dichroism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Methylation
- Methyltransferases/chemistry
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Models, Molecular
- Nucleic Acid Conformation
- Protein Structure, Tertiary
- Pseudomonas aeruginosa/genetics
- Pseudomonas aeruginosa/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Belen Gutierrez
- Departamento de Sanidad Animal; Facultad de Veterinaria; Universidad Complutense de Madrid; Madrid, Spain
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET); Universidad Complutense de Madrid; Madrid, Spain
| | - Stephen Douthwaite
- Department of Biochemistry & Molecular Biology; University of Southern Denmark; Odense, Denmark
| | - Bruno Gonzalez-Zorn
- Departamento de Sanidad Animal; Facultad de Veterinaria; Universidad Complutense de Madrid; Madrid, Spain
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET); Universidad Complutense de Madrid; Madrid, Spain
| |
Collapse
|
150
|
He W, Zhang X, Zhang J, Jia X, Zhang J, Sun W, Jiang H, Chen D, Murchie AIH. Riboswitch control of induction of aminoglycoside resistance acetyl and adenyl-transferases. RNA Biol 2013; 10:1266-73. [PMID: 23880830 DOI: 10.4161/rna.25757] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The acquisition of antibiotic resistance by human pathogens poses a significant threat to public health. The mechanisms that control the proliferation and expression of antibiotic resistance genes are not yet completely understood. The aminoglycosides are a historically important class of antibiotics that were introduced in the 1940s. Aminoglycoside resistance is conferred most commonly through enzymatic modification of the drug or enzymatic modification of the target rRNA through methylation or through the overexpression of efflux pumps. In our recent paper, we reported that expression of the aminoglycoside resistance genes encoding the aminoglycoside acetyl transferase (AAC) and aminoglycoside adenyl transferase (AAD) enzymes was controlled by an aminoglycoside-sensing riboswitch RNA. This riboswitch is embedded in the leader RNA of the aac/aad genes and is associated with the integron cassette system. The leader RNA can sense and bind specific aminoglycosides such that the binding causes a structural transition in the leader RNA, which leads to the induction of aminoglycoside antibiotic resistance. Specific aminoglycosides induce reporter gene expression mediated by the leader RNA. Aminoglycoside RNA binding was measured directly and, aminoglycoside-induced changes in RNA structure monitored by chemical probing. UV cross-linking and mutational analysis identified potential aminoglycoside binding sites on the RNA.
Collapse
Affiliation(s)
- Weizhi He
- Key Laboratory of Molecular Medicine; the Ministry of Education; Department of Biochemistry and Molecular Biology; Fudan University Shanghai Medical College; Shanghai, PR China; Institutes of Biomedical Sciences; Fudan University Shanghai Medical College; Shanghai, PR China; School of Pharmacy; Fudan University; Pudong, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|