101
|
Rajawat YS, Hilioti Z, Bossis I. Aging: central role for autophagy and the lysosomal degradative system. Ageing Res Rev 2009; 8:199-213. [PMID: 19427410 DOI: 10.1016/j.arr.2009.05.001] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/01/2009] [Accepted: 05/01/2009] [Indexed: 12/19/2022]
Abstract
The lysosomal network is the major intracellular proteolytic system accounting for more than 98% of long-lived bulk protein degradation and recycling particularly in tissues such as liver and muscles. Lysosomes are the final destination of intracellular damaged structures, identified and sequestered by the processes of macroautophagy and chaperone-mediated autophagy (CMA). In the process of macroautophagy, long-lived proteins and other macromolecular aggregates and damaged intracellular organelles are first engulfed by autophagosomes. Autophagosomes themselves have limited degrading capacity and rely on fusion with lysosomes. Unlike macroautophagy, CMA does not require intermediate vesicle formation and the cytosolic proteins recognized by this pathway are directly translocated to the lysosomal membrane. Aging is a universal phenomenon characterized by progressive deterioration of cells and organs due to accumulation of macromolecular and organelle damage. The continuous removal of worn-out components and replacement with newly synthesized ones ensures cellular homeostasis and delays the aging process. Growing evidence indicate that the rate of autophagosome formation and maturation and the efficiency of autophagosome/lysosome fusion decline with age. In addition, a progressive increase in intralysosomal concentration of free radicals and the age pigment lipofuscin further diminish the efficiency of lysosomal protein degradation. Therefore, integrity of the autophagosomal-lysosomal network appears to be critical in the progression of aging. Discovery of the genes involved in the process of autophagy has provided insight into the various molecular pathways that may be involved in aging and senescence. In this review, we discuss the cellular and molecular mechanisms involved in autophagy and the role of autophagosome/lysosome network in the aging process.
Collapse
Affiliation(s)
- Yogendra S Rajawat
- University of Maryland, Department of Veterinary Medicine, College Park, MD 20742, United States
| | | | | |
Collapse
|
102
|
Abstract
Heat-shock proteins (Hsps) are increasingly being implicated in aging phenotypes and control of life span across species. They are targets of the conserved heat-shock factor and insulin/IGF1-like signaling pathways that affect life span and aging phenotypes. Hsps are expressed in tissue-specific and disease-specific patterns during aging, and their level of expression and induction by stress correlates with and, in some instances, predicts life span. In model organisms, Hsps have been shown to increase life span and ameliorate aging-associated proteotoxicity. Finally, Hsps have emerged as key components in regulating aging-related cellular phenotypes, including cell senescence, apoptosis and cancer. The Hsps, therefore, provide a metric of individual stress and aging and are potential targets for interventions in aging and aging-related diseases.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-2910, USA.
| |
Collapse
|
103
|
Variability in response to medicines in older people: phenotypic and genotypic factors. Clin Pharmacol Ther 2009; 85:431-3. [PMID: 19225449 DOI: 10.1038/clpt.2009.1] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
104
|
Aging alters functionally human dermal papillary fibroblasts but not reticular fibroblasts: a new view of skin morphogenesis and aging. PLoS One 2008; 3:e4066. [PMID: 19115004 PMCID: PMC2605251 DOI: 10.1371/journal.pone.0004066] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 11/26/2008] [Indexed: 11/19/2022] Open
Abstract
Understanding the contribution of the dermis in skin aging is a key question, since this tissue is particularly important for skin integrity, and because its properties can affect the epidermis. Characteristics of matched pairs of dermal papillary and reticular fibroblasts (Fp and Fr) were investigated throughout aging, comparing morphology, secretion of cytokines, MMPs/TIMPs, growth potential, and interaction with epidermal keratinocytes. We observed that Fp populations were characterized by a higher proportion of small cells with low granularity and a higher growth potential than Fr populations. However, these differences became less marked with increasing age of donors. Aging was also associated with changes in the secretion activity of both Fp and Fr. Using a reconstructed skin model, we evidenced that Fp and Fr cells do not possess equivalent capacities to sustain keratinopoiesis. Comparing Fp and Fr from young donors, we noticed that dermal equivalents containing Fp were more potent to promote epidermal morphogenesis than those containing Fr. These data emphasize the complexity of dermal fibroblast biology and document the specific functional properties of Fp and Fr. Our results suggest a new model of skin aging in which marked alterations of Fp may affect the histological characteristics of skin.
Collapse
|
105
|
Koropatnick TA, Kimbell J, Chen R, Grove JS, Donlon TA, Masaki KH, Rodriguez BL, Willcox BJ, Yano K, Curb JD. A prospective study of high-density lipoprotein cholesterol, cholesteryl ester transfer protein gene variants, and healthy aging in very old Japanese-american men. J Gerontol A Biol Sci Med Sci 2008; 63:1235-40. [PMID: 19038839 DOI: 10.1093/gerona/63.11.1235] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND High-density lipoprotein cholesterol (HDL-C) and cholesteryl ester transfer protein (CETP) gene deficiency mutations that increase HDL-C levels have been associated with exceptional longevity. However, a recent clinical trial of a promising CETP inhibitor that markedly increases HDL-C was terminated due to increased mortality. In light of this controversy, we examined the relationship among HDL-C, CETP mutations, and longevity phenotypes in the long-lived Japanese-American men of the Honolulu Heart Program (HHP). METHODS Japanese-American men (n = 3562) were followed for up to 8 years, from average age 78 to average age 84 (maximum age 99), or until death. Total mortality, cause-specific mortality, and healthy survival were evaluated for associations with HDL-C level and CETP genetic variants common in the Japanese population (CD442G and Int 14A). RESULTS HDL-C was negatively associated with cardiovascular disease (CVD) mortality (p =.002) but not related to non-CVD (p =.147) or total (p =.547) mortality after adjustment for common risk factors. There was a trend for lower mortality for the men with the Int 14A variant. These men also had higher HDL-C levels (p =.047) and were significantly more likely to be healthy survivors (absence of six major age-related diseases and high physical/cognitive function) beyond the age of 90 years (p =.005). CONCLUSIONS Low HDL-C level is a risk factor for CVD mortality in elderly Japanese-American men. High HDL-C and the Int 14A variant of the CETP gene may increase odds for healthy aging.
Collapse
Affiliation(s)
- Tanya A Koropatnick
- Pacific Health Research Institute, 846 South Hotel St., Suite 301, Honolulu, Hawaii 96813, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Lindenberger U, Nagel IE, Chicherio C, Li SC, Heekeren HR, Bäckman L. Age-related decline in brain resources modulates genetic effects on cognitive functioning. Front Neurosci 2008; 2:234-44. [PMID: 19225597 PMCID: PMC2622748 DOI: 10.3389/neuro.01.039.2008] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Accepted: 11/11/2008] [Indexed: 01/17/2023] Open
Abstract
Individual differences in cognitive performance increase from early to late adulthood, likely reflecting influences of a multitude of factors. We hypothesize that losses in neurochemical and anatomical brain resources in normal aging modulate the effects of common genetic variations on cognitive functioning. Our hypothesis is based on the assumption that the function relating brain resources to cognition is nonlinear, so that genetic differences exert increasingly large effects on cognition as resources recede from high to medium levels in the course of aging. Direct empirical support for this hypothesis comes from a study by Nagel et al. (2008), who reported that the effects of the Catechol-O-Methyltransferase (COMT) gene on cognitive performance are magnified in old age and interacted with the Brain-Derived Neurotrophic Factor (BDNF) gene. We conclude that common genetic polymorphisms contribute to the increasing heterogeneity of cognitive functioning in old age. Extensions of the hypothesis to other polymorphisms are discussed. (150 of 150 words)
Collapse
|
107
|
Strub GM, Depcrynski A, Elmore LW, Holt SE. Recovery from stress is a function of age and telomere length. Cell Stress Chaperones 2008; 13:475-82. [PMID: 18491040 PMCID: PMC2673929 DOI: 10.1007/s12192-008-0047-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 04/07/2008] [Accepted: 04/14/2008] [Indexed: 10/22/2022] Open
Abstract
Cells are constantly exposed to a wide variety of stimuli and must be able to mount appropriate physiological responses in order to maintain proper form and function. Cells from every organism have evolved highly conserved mechanisms to cope with environmental changes, including the widely studied heat shock response (HSR), which is induced by a variety of cellular stresses such as heavy metal ion exposure. It has long been known that as organisms and individual cells age, their ability to appropriately cope with environmental stress is attenuated. Here, we examine the ability of two heavy metal ions (ZnCl(2), SnCl(2)) to induce the HSR in human fibroblasts by assessing the expression of heat shock proteins (Hsp90, Hsp70, and p23) and the ability of the cells to recover over time. We demonstrate that the induction and recovery of chaperone levels is attenuated with age and that cells immortalized with the human telomerase reverse transcriptase component of the telomerase enzyme do not attenuate their HSR as their replicative age increases. Our data suggest that the recovery of normal human cells from an HSR is related in part to age and the cell's overall telomere length.
Collapse
Affiliation(s)
- Graham M. Strub
- Department of Biochemistry, Medical College of Virginia Campus at Virginia Commonwealth University, 1101 E. Marshall St., Richmond, VA 23298-0662 USA
| | - Amy Depcrynski
- Department of Human and Molecular Genetics, Medical College of Virginia Campus at Virginia Commonwealth University, 1101 E. Marshall St., Richmond, VA 23298-0662 USA
| | - Lynne W. Elmore
- Department of Pathology, Medical College of Virginia Campus at Virginia Commonwealth University, 1101 E. Marshall St., Richmond, VA 23298-0662 USA
- Massey Cancer Center, Medical College of Virginia Campus at Virginia Commonwealth University, 1101 E. Marshall St., Richmond, VA 23298–0662 USA
| | - Shawn E. Holt
- Department of Human and Molecular Genetics, Medical College of Virginia Campus at Virginia Commonwealth University, 1101 E. Marshall St., Richmond, VA 23298-0662 USA
- Department of Pathology, Medical College of Virginia Campus at Virginia Commonwealth University, 1101 E. Marshall St., Richmond, VA 23298-0662 USA
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus at Virginia Commonwealth University, 1101 E. Marshall St., Richmond, VA 23298–0662 USA
- Massey Cancer Center, Medical College of Virginia Campus at Virginia Commonwealth University, 1101 E. Marshall St., Richmond, VA 23298–0662 USA
| |
Collapse
|
108
|
Neurofibrillary degeneration in Alzheimer's disease: from molecular mechanisms to identification of drug targets. Curr Opin Psychiatry 2008; 21:555-61. [PMID: 18852562 DOI: 10.1097/yco.0b013e328314b78b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Great progress has been made in understanding the pathogenesis of neurofibrillary degeneration in Alzheimer's disease brains in the last two decades. In this review we summarize how neurons are degenerated in Alzheimer's disease brains and highlight the evidence of using kinases such as glycogen synthase kinase 3 and p70 S6 kinase and phosphatases such as protein phosphatase 2A as drug targets to prohibit the formation of neurofibrillary degeneration of Alzheimer's disease. RECENT FINDINGS In general there are two types of neuronal degeneration in Alzheimer's disease brains: neurofibrillary formation and apoptosis. The microtubule-associated protein tau that stabilizes neuronal microtubules under normal physiological conditions is abnormally hyperphosphorylated in Alzheimer's disease brains, resulting in the generation of aberrant aggregates that are toxic to neurons. The processes of tau hyperphosphorylation and the formation of neurofibrillary tangles are caused by the imbalance of the activities of protein kinases and protein phosphatases in Alzheimer's disease brains. Recent findings from our and other groups have suggested glycogen synthase kinase 3 and p70 S6 kinase as main tau kinases and protein phosphatase 2A as the main tau phosphatase involved in the formation of these processes. Activities of these targets are implicated by Abeta peptide, the major component of another hallmark in Alzheimer's disease brains, senile plaques. SUMMARY To prevent the clinical progression of neurodegeneration, a combination strategy is suggested to target both senile plaques with immunization and neurofibrillary tangles with drugs to prevent the synthesis and phosphorylation of tau.
Collapse
|
109
|
Shim S, Lee E, Kim J, Kang S, Ha H, Lee H, Kim C, Lee JH, Son K. Rat Growth-Hormone Release Stimulators from Fenugreek Seeds. Chem Biodivers 2008; 5:1753-61. [DOI: 10.1002/cbdv.200890164] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
110
|
Ricklefs RE, Cadena CD. Heritability of Longevity in Captive Populations of Nondomesticated Mammals and Birds. J Gerontol A Biol Sci Med Sci 2008; 63:435-46. [DOI: 10.1093/gerona/63.5.435] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
111
|
McDonald RJ, Craig LA, Hong NS. Enhanced cell death in hippocampus and emergence of cognitive impairments following a localized mini-stroke in hippocampus if preceded by a previous episode of acute stress. Eur J Neurosci 2008; 27:2197-209. [DOI: 10.1111/j.1460-9568.2008.06151.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
112
|
Abstract
There is clear heritability of human longevity. However, the genetics of ageing is likely to be complex. Evolution theory tells us not to expect genes that have been selected to promote ageing. Ageing is not programmed but results from accumulation of somatic damage, owing to limited investments in maintenance and repair. Genes controlling the levels of activities, such as DNA repair and antioxidant defence, thus regulate longevity. In addition, there may be contributions either from late-acting deleterious genes that escape the force of natural selection or that trade benefit at an early age against harm at older ages. In some species, there is evidence that genes have evolved to detect and respond to changes in the environment, e.g. food supply. Evolutionary understanding can also help to understand important features of the human life history such as menopause.
Collapse
Affiliation(s)
- T B L Kirkwood
- Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
113
|
Gottlieb MGV, Carvalho D, Schneider RH, Cruz IBMD. Aspectos genéticos do envelhecimento e doenças associadas: uma complexa rede de interações entre genes e ambiente. REVISTA BRASILEIRA DE GERIATRIA E GERONTOLOGIA 2007. [DOI: 10.1590/1809-9823.2007.10032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resumo O envelhecimento é um processo dinâmico, no qual ocorrem modificações do nível molecular ao morfo-fisiológico, logo após a maturidade, que induzem ao declínio orgânico, aumentando a susceptibilidade e vulnerabilidade a doenças e à morte. A genética do envelhecimento dedica-se ao estudo da contribuição hereditária da espécie e sua interação com o ambiente, que incidem no aumento de modificações biológicas ao longo do tempo. Fez-se uma revisão sobre estudos realizados na área e que sugerem que o envelhecimento está sob um controle genético-ambiental. Exceto em síndromes, a contribuição genética, tanto para o tempo de vida quanto algumas doenças crônicas (Alzheimer, doenças cardiovasculares e diabetes mellitus tipo 2), é relativamente baixa. Este fato demonstra que fatores ambientais, como estilo de vida e dieta, desempenham papel fundamental no fenótipo do envelhecimento. Ou seja, a genética não é uma rota determinística, e cada vez mais pode ser “manipulada” em benefício da saúde. Além disso, o conhecimento da genética do envelhecimento e doenças associadas proporciona, cada vez mais, a elaboração de instrumentos clínicos para o benefício das pessoas idosas.
Collapse
Affiliation(s)
| | - Denise Carvalho
- Pontifícia Universidade Católica do Rio Grande do Sul, Brasil; Universidade de Santa Cruz, Brasil; Universidade Federal de Santa Maria, Brasil
| | | | | |
Collapse
|
114
|
Dichgans J, Schulz JB. [Does youth mean vigorous and age, feeble biological repair mechanisms?]. DER NERVENARZT 2007; 78:1399-406. [PMID: 17926014 DOI: 10.1007/s00115-007-2363-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
All living creatures are subject to aging, but our understanding of what governs aging is limited. In the course of a lifetime, with the constant renewal of the organic substance of living creatures errors arise, e.g. in the formation, disposal, and reproduction of DNA, proteins and lipids or in the constant substitution of aging cells in the organs. These errors are recognized and generally counterbalanced by appropriate repair mechanisms. This process is obviously determined partly by environmental influences (e.g. UV radiation, oxidizing influences, thermal shock) and genetic factors (such as the significance of so-called survival genes and gene mutations). In this paper the authors both explain and test the hypothesis that the aging of organs and organisms is the consequence of and not the reason for a progressive weakening of the repair mechanisms throughout life.
Collapse
Affiliation(s)
- J Dichgans
- Zentrum für Neurologie, Universitat Tübingen, Bei der Ochsenweide 6, 72076 Tübingen, Germany
| | | |
Collapse
|
115
|
Martin GM, Bergman A, Barzilai N. Genetic determinants of human health span and life span: progress and new opportunities. PLoS Genet 2007; 3:e125. [PMID: 17677003 PMCID: PMC1934400 DOI: 10.1371/journal.pgen.0030125] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We review three approaches to the genetic analysis of the biology and pathobiology of human aging. The first and so far the best-developed is the search for the biochemical genetic basis of varying susceptibilities to major geriatric disorders. These include a range of progeroid syndromes. Collectively, they tell us much about the genetics of health span. Given that the major risk factor for virtually all geriatric disorders is biological aging, they may also serve as markers for the study of intrinsic biological aging. The second approach seeks to identify allelic contributions to exceptionally long life spans. While linkage to a locus on Chromosome 4 has not been confirmed, association studies have revealed a number of significant polymorphisms that impact upon late-life diseases and life span. The third approach remains theoretical. It would require longitudinal studies of large numbers of middle-aged sib-pairs who are extremely discordant or concordant for their rates of decline in various physiological functions. We can conclude that there are great opportunities for research on the genetics of human aging, particularly given the huge fund of information on human biology and pathobiology, and the rapidly developing knowledge of the human genome.
Collapse
Affiliation(s)
- George M Martin
- Department of Pathology, University of Washington, Seattle, Washington, United States of America.
| | | | | |
Collapse
|
116
|
Warner HR. If You Wish to Live a Long Time in Good Health, Choose Your Parents Carefully. J Gerontol A Biol Sci Med Sci 2007; 62:575-6. [PMID: 17595411 DOI: 10.1093/gerona/62.6.575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
117
|
Abstract
This review provides an overview of a selection of the most pertinent molecular pathways that link cancer and aging and focuses on those where recent advances were most important. When organizing the bulk of information on this subject, I became aware of the fact that the most evident partition, namely, mechanisms that influence aging and mechanisms that influence cancer occurrence, is difficult to apply. Most mechanisms explaining the aging process are also those that influence carcinogenesis. Mechanisms that are described in tumor suppressor pathways are also contributors to the aging process. From an intuitive point of view, there are phenomena that have traditionally been contributed to aging others to cancer-inducing factors and they are presented herein.
Collapse
Affiliation(s)
- Irmgard Irminger-Finger
- Laboratory of Molecular Gynecology and Obstetrics, Department of Gynecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
118
|
Weithoff G. Dietary restriction in two rotifer species: the effect of the length of food deprivation on life span and reproduction. Oecologia 2007; 153:303-8. [PMID: 17453249 DOI: 10.1007/s00442-007-0739-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 03/21/2007] [Indexed: 11/27/2022]
Abstract
According to resource allocation theory, animals face a trade off between the allocation of resources into reproduction and into individual growth/maintenance. This trade off is reinforced when food conditions decline. It is well established in biological research that many animals increase their life span when food is in suboptimal supply for growth and/or reproduction. Such a situation of reduced food availability is called dietary restriction. An increase in life span under dietary restricted conditions is seen as a strategy to tolerate periods of food shortage so that the animals can start reproduction again when food is in greater supply. In this study, the effect of dietary restriction on life span and reproduction in two rotifer species, Cephalodella sp. and Elosa worallii, was investigated using life table experiments. The food concentration under dietary restricted conditions was below the threshold for population growth. It was (1) tested whether the rotifers start reproduction again after food replenishment, and (2) estimated whether the time scale of dietary restricted conditions is relevant for the persistence of a population in the field. Only E. worallii responded to dietary restriction with an increase in life span at the expense of reproduction. After replenishment of food, E. worallii started to reproduce again within 1 day. With an increase in the duration of dietary restricted conditions of up to 15 days, which is longer than the median life span of E. worallii under food saturation, the life span increased and the life time reproduction decreased. These results suggest that in a temporally (or spatially) variable environment, some rotifer populations can persist even during long periods of severe food deprivation.
Collapse
Affiliation(s)
- Guntram Weithoff
- Institute for Biochemistry and Biology, University of Potsdam, AM Neuen Palais 10, 14469 Potsdam, Germany.
| |
Collapse
|
119
|
Goto S. Health span extension by later-life caloric or dietary restriction: a view based on rodent studies. Biogerontology 2007; 7:135-8. [PMID: 16732405 DOI: 10.1007/s10522-006-9011-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 02/10/2006] [Indexed: 01/15/2023]
Abstract
In spite of the potential benefit of lifelong food restriction to retard aging and extend life span, it is unrealistic in human. The restriction late in life may be more practical. There are, however, only limited studies on the effect of late onset caloric or dietary restriction. We and other investigators have shown that the late life restriction rejuvenates some parameters that decline with age in rats and mice. Although such studies may provide a basis for human application of late-life caloric or dietary restriction, the prolongation of maximum life span would not be expected in view of the current status of the long-lived population in which maximum life span potential appears to have already been achieved. The late life caloric restriction, however, could extend the health span if the extent were appropriate.
Collapse
Affiliation(s)
- Sataro Goto
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan.
| |
Collapse
|
120
|
De Luca M, Leips J. Mapping genetic polymorphisms affecting natural variation in Drosophila longevity. Methods Mol Biol 2007; 371:307-20. [PMID: 17634590 DOI: 10.1007/978-1-59745-361-5_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Analyses of mutations affecting life span in model organisms have revealed a number of genes that regulate longevity in evolutionarily conserved signaling pathways. These studies suggest that genes involved in insulin-like signaling pathways, metabolism, stress response, and prevention of oxidative damage influence life span. However, we do not know whether functional polymorphisms at these candidate genes affect population variation in longevity. To identify naturally occurring molecular polymorphisms that are responsible for variation in life span, we must first map the quantitative trait gene (QTG), followed by linkage disequilibrium mapping in a large sample of alleles collected from a natural population. Genome-wide recombination mapping is a well developed approach for identifying the chromosomal regions (quantitative trait loci [QTLs]) where the QTGs affecting variation in life span between two strains map. The challenge for this approach has been to resolve the QTL to the level of individual genes. This chapter reports details of quantitative complementation tests and linkage disequilibrium mapping to identify positional genes and causative genetic polymorphisms determining variation in Drosophila longevity.
Collapse
Affiliation(s)
- Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|
121
|
|
122
|
Yin D, Chen K. The essential mechanisms of aging: Irreparable damage accumulation of biochemical side-reactions. Exp Gerontol 2006; 40:455-65. [PMID: 15935593 DOI: 10.1016/j.exger.2005.03.012] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Accepted: 03/29/2005] [Indexed: 11/23/2022]
Abstract
Explanations on aging mechanisms have now become unexpectedly complicated. However, it is gradually accepted that 'senescence is a collective consequence of both inheritance and environment'. Based on the achievements of biological and medical research in related fields, we pinpoint in this review that although aging is mainly considered a physiological (non-pathological) process, the biochemical structure of aged organisms is deranged, or 'sick' at the molecular level. The free radical/glycation induced carbonyl stress, the key culprit to form crosslinks, has been identified to cause stable cyclic conjugates of mainly protein-based aggregates implying entropy increase (the Second Law of Thermodynamics) during aging. When combining such key aging processes with age pigment biochemistry, a general picture of aging process can be figured out, as the main clues and results are available. In this review we also propose for the first time that by focusing on 'process' rather than on 'causes' (damages), we can then get a clear view of aging mechanisms. Through rational thinking and critical analysis, we conclude that the accumulation of irreparable damages and alternations caused by spontaneous biological side-reactions seems to be the essential and profound nature of higher animals' aging mechanisms.
Collapse
Affiliation(s)
- Dazhong Yin
- Aging Biochemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
| | | |
Collapse
|
123
|
Christensen K, Johnson TE, Vaupel JW. The quest for genetic determinants of human longevity: challenges and insights. Nat Rev Genet 2006; 7:436-48. [PMID: 16708071 PMCID: PMC2726954 DOI: 10.1038/nrg1871] [Citation(s) in RCA: 323] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Twin studies show that genetic differences account for about a quarter of the variance in adult human lifespan. Common polymorphisms that have a modest effect on lifespan have been identified in one gene, APOE, providing hope that other genetic determinants can be uncovered. However, although variants with substantial beneficial effects have been proposed to exist and several candidates have been put forward, their effects have yet to be confirmed. Human studies of longevity face numerous theoretical and logistical challenges, as the determinants of lifespan are extraordinarily complex. However, large-scale linkage studies of long-lived families, longitudinal candidate-gene association studies and the development of analytical methods provide the potential for future progress.
Collapse
Affiliation(s)
- Kaare Christensen
- Epidemiology, Institute of Public Health, University of Southern Denmark, J.B. Winslows Vej 9B, 5000 Odense C, Denmark.
| | | | | |
Collapse
|
124
|
Wilson RH, Morgan TJ, Mackay TFC. High-resolution mapping of quantitative trait loci affecting increased life span in Drosophila melanogaster. Genetics 2006; 173:1455-63. [PMID: 16702433 PMCID: PMC1526659 DOI: 10.1534/genetics.105.055111] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Limited life span and senescence are near-universal characteristics of eukaryotic organisms, controlled by many interacting quantitative trait loci (QTL) with individually small effects, whose expression is sensitive to the environment. Analyses of mutations in model organisms have shown that genes affecting stress resistance and metabolism affect life span across diverse taxa. However, there is considerable segregating variation for life span in nature, and relatively little is known about the genetic basis of this variation. Replicated lines of Drosophila that have evolved increased longevity as a correlated response to selection for postponed senescence are valuable resources for identifying QTL affecting naturally occurring variation in life span. Here, we used deficiency complementation mapping to identify at least 11 QTL on chromosome 3 that affect variation in life span between five old (O) lines selected for postponed senescence and their five base (B) population control lines. Most QTL were sex specific, and all but one affected multiple O lines. The latter observation is consistent with alleles at intermediate frequency in the base population contributing to the response to selection for postponed senescence. The QTL were mapped with high resolution and contained from 12 to 170 positional candidate genes.
Collapse
Affiliation(s)
- Rhonda H Wilson
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | |
Collapse
|
125
|
|
126
|
Ikeda A, Iso H, Toyoshima H, Kondo T, Mizoue T, Koizumi A, Inaba Y, Tamakoshi A. Parental longevity and mortality amongst Japanese men and women: the JACC Study. J Intern Med 2006; 259:285-95. [PMID: 16476106 DOI: 10.1111/j.1365-2796.2005.01609.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To examine whether the risk of mortality varies according to parents' age at death. DESIGN AND SUBJECTS A large prospective study in Japanese men and women from 45 communities across Japan. A total of 51 485 men and women aged 40-79 years completed self-administered questionnaires at baseline and followed up for 9.6 years. RESULTS The risk of mortality from stroke, cardiovascular disease, and all causes was 20-30% lower in men and women with fathers who died at age > or = 80 years, compared with those with fathers whose age at death was <60 years. A similar reduction was found when the age at death of mothers was > or = 85 years compared with <65 years. Furthermore, the risk reduction was more evident amongst persons with both parents being long-lived parents compared with those with being short-lived parents, especially for death from cardiovascular disease. CONCLUSIONS Our findings indicate that parental longevity could be a predictor for reduced risk of mortality from stroke, cardiovascular disease, and all causes for both Japanese men and women.
Collapse
Affiliation(s)
- A Ikeda
- Department of Public Health Medicine, Graduate School of Comprehensive Human Science, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
127
|
vB Hjelmborg J, Iachine I, Skytthe A, Vaupel JW, McGue M, Koskenvuo M, Kaprio J, Pedersen NL, Christensen K. Genetic influence on human lifespan and longevity. Hum Genet 2006; 119:312-21. [PMID: 16463022 DOI: 10.1007/s00439-006-0144-y] [Citation(s) in RCA: 288] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 01/06/2006] [Indexed: 12/15/2022]
Abstract
There is an intense search for longevity genes in both animal models and humans. Human family studies have indicated that a modest amount of the overall variation in adult lifespan (approximately 20-30%) is accounted for by genetic factors. But it is not known if genetic factors become increasingly important for survival at the oldest ages. We study the genetic influence on human lifespan and how it varies with age using the almost extinct cohorts of Danish, Finnish and Swedish twins born between 1870 and 1910 comprising 20,502 individuals followed until 2003-2004. We first estimate mean lifespan of twins by lifespan of co-twin and then turn to the relative recurrence risk of surviving to a given age. Mean lifespan for male monozygotic (MZ) twins increases 0.39 [95% CI (0.28, 0.50)] years for every year his co-twin survives past age 60 years. This rate is significantly greater than the rate of 0.21 (0.11, 0.30) for dizygotic (DZ) males. Females and males have similar rates and these are negligible before age 60 for both MZ and DZ pairs. We moreover find that having a co-twin surviving to old ages substantially and significantly increases the chance of reaching the same old age and this chance is higher for MZ than for DZ twins. The relative recurrence risk of reaching age 92 is 4.8 (2.2, 7.5) for MZ males, which is significantly greater than the 1.8 (0.10, 3.4) for DZ males. The patterns for females and males are very similar, but with a shift of the female pattern with age that corresponds to the better female survival. Similar results arise when considering only those Nordic twins that survived past 75 years of age. The present large population based study shows genetic influence on human lifespan. While the estimated overall strength of genetic influence is compatible with previous studies, we find that genetic influences on lifespan are minimal prior to age 60 but increase thereafter. These findings provide a support for the search for genes affecting longevity in humans, especially at advanced ages.
Collapse
Affiliation(s)
- Jacob vB Hjelmborg
- Institute of Public Health, University of Southern Denmark, J. B. Winslovsvej 9 B, 5000, Odense C, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Reynolds CA, Prince JA, Feuk L, Brookes AJ, Gatz M, Pedersen NL. Longitudinal memory performance during normal aging: twin association models of APOE and other Alzheimer candidate genes. Behav Genet 2006; 36:185-94. [PMID: 16402284 DOI: 10.1007/s10519-005-9027-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2005] [Accepted: 07/28/2005] [Indexed: 10/25/2022]
Abstract
The APOE gene (apolipoprotein E) is a major risk factor for Alzheimer's Disease (AD) but has been inconsistently associated with memory in nondemented adults. Two other genes with mixed support as genetic risk factors for AD, A2M (alpha-2-macroglobulin) and LRP (low-density lipoprotein receptor-related protein), have not been studied in relation to memory among nondemented adults. The present study examined these three genes and latent growth parameters estimated from memory performance spanning 13 years in 478 twins from the Swedish Adoption/Twin Study of Aging (SATSA). APOE was associated with working and recall memory ability levels and working memory rate of change, with e4 homozygotes exhibiting the worst performance at all ages. Homozygotes for the rare A2M insertion/deletion variant exhibited accelerating decline on delayed figural recognition. There were no significant findings for LRP. Dominance, often untested in previous studies, was important in the current study's findings.
Collapse
Affiliation(s)
- Chandra A Reynolds
- Department of Psychology, University of California--Riverside, 92521, USA.
| | | | | | | | | | | |
Collapse
|
129
|
Goffaux J, Friesinger GC, Lambert W, Shroyer LW, Moritz TE, McCarthy M, Henderson WG, Hammermeister KE. Biological age--a concept whose time has come: a preliminary study. South Med J 2006; 98:985-93. [PMID: 16295813 DOI: 10.1097/01.smj.0000182178.22607.47] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Chronology poorly predicts biological age (BA) or physiologic reserve (PR). An objective approach to the heterogeneity of aging would greatly help clinical decision making in the elderly. MATERIALS AND METHODS The first pilot study evaluated 130 "healthy" volunteers, ages 70 to 95 years. A summary BA/PR index was developed, using measures of endurance, strength, flexibility, balance, cognition, depression, comorbidity, and exercise. The second study applied the BA/PR concept to prediction of death after a first elective coronary artery bypass graft, using a Veterans Administration database. RESULTS The BA/PR index was a better predictor of 3-year functional outcomes and death than was chronological age. In the coronary artery bypass graft study, the inclusion of BA/PR variables significantly improved prediction of 6-month and long-term death for Veterans Administration patients. CONCLUSIONS The usefulness of a biological age (BA/PR) approach in predicting outcomes in the elderly was supported. Needed research should develop tools for routine "tracking" of the aging process.
Collapse
Affiliation(s)
- Jacqueline Goffaux
- Vanderbilt University, Department of Medicine, Division of Cardiovascular Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Abete P, Della Morte D, Mazzella F, D'Ambrosio D, Galizia G, Testa G, Gargiulo G, Cacciatore F, Rengo F. Lifestyle and Prevention of Cardiovascular Disease in the Elderly: An Italian Perspective. ACTA ACUST UNITED AC 2006; 15:28-34. [PMID: 16415644 DOI: 10.1111/j.1076-7460.2006.05285.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The life span of human beings is partially influenced by genetic factors, but outcomes of aging are profoundly influenced by lifestyle and other environmental factors. Age-related modifications of the cardiovascular system are preserved by antiaging lifestyle interventions such as physical activity and caloric restriction. Accordingly, physical activity and low body mass index reduce mortality in older men with cardiovascular diseases. Several mechanisms have been proposed to explain the protective effect of lifestyle interventions against cardiovascular diseases in the elderly, including a reduction of vulnerability (i.e., the age-related reduction of endogenous mechanisms protective against pathologic insults). The age-related reduction of ischemic preconditioning, the most powerful endogenous protective mechanism against myocardial ischemia, is restored by both physical activity and caloric restriction. Thus, older persons can implement lifestyle practices that minimize their risk of death from cardiovascular diseases.
Collapse
Affiliation(s)
- Pasquale Abete
- Dipartimento di Medicina Clinica, Scienze Cardiovascolari ed Immunologiche, Cattedra di Geriatria, Università degli Studi di Napoli Federico II, Naples, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Reddy PH, Beal MF. Are mitochondria critical in the pathogenesis of Alzheimer's disease? ACTA ACUST UNITED AC 2005; 49:618-32. [PMID: 16269322 DOI: 10.1016/j.brainresrev.2005.03.004] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 03/11/2005] [Accepted: 03/14/2005] [Indexed: 12/11/2022]
Abstract
This review summarizes recent findings that suggest a causal connection between mitochondrial abnormalities and sporadic Alzheimer's disease (AD). Genetic causes of AD are known only for a small proportion of familial AD patients, but for a majority of sporadic AD patients, genetic causal factors are still unknown. Currently, there are no early detectable biomarkers for sporadic AD, and there is a lack of understanding of the pathophysiology of the disease. Findings from recent genetic studies of AD pathogenesis suggest that mitochondrial defects may play an important role in sporadic AD progression, and that mitochondrial abnormalities and oxidative damage may play a significant role in the progression of familial AD. Findings from biochemical studies, in vitro studies, gene expression studies, and animal model studies of AD are reviewed, and the possible contribution of mitochondrial mutations to late-onset sporadic AD is discussed.
Collapse
Affiliation(s)
- P Hemachandra Reddy
- Neurogenetics Laboratory, Neurological Sciences Institute, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| | | |
Collapse
|
132
|
Abstract
Ageing is characterized by a progressive accumulation of molecular damage in nucleic acids, proteins and lipids. The inefficiency and failure of maintenance, repair and turnover pathways is the main cause of age-related accumulation of damage. Research in molecular gerontology is aimed at understanding the genetic and epigenetic regulation of survival and maintenance mechanisms at the levels of transcription, post-transcriptional processing, post-translational modifications, and interactions among various gene products. Concurrently, several approaches are being tried and tested to modulate ageing in a wide variety of organisms. The ultimate aim of such studies is to improve the quality of human life in old age and prolong the health-span. Various gerontomodulatory approaches include gene therapy, hormonal supplementation, nutritional modulation and intervention by free radical scavengers and other molecules. A recent approach is that of applying hormesis in ageing research and therapy, which is based on the principle of stimulation of maintenance and repair pathways by repeated exposure to mild stress. A combination of molecular, physiological and psychological modulatory approaches can realize "healthy ageing" as an achievable goal in the not-so-distant future.
Collapse
Affiliation(s)
- Suresh I S Rattan
- Danish Centre for Molecular Gerontology, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark.
| | | |
Collapse
|
133
|
Kachiwala SJ, Harris SE, Wright AF, Hayward C, Starr JM, Whalley LJ, Deary IJ. Genetic influences on oxidative stress and their association with normal cognitive ageing. Neurosci Lett 2005; 386:116-20. [PMID: 16023289 DOI: 10.1016/j.neulet.2005.05.067] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 05/28/2005] [Indexed: 10/25/2022]
Abstract
Oxidative stress is hypothesised to play a major role in ageing processes. Reactive oxygen species produced during normal aerobic metabolism damage cellular macromolecules. The brain is particularly susceptible to oxidative stress due to its high rate of aerobic metabolism. We hypothesised that polymorphisms in genes contributing to antioxidant defences are associated with variation in normal cognitive ageing in the absence of dementia. We examined associations between two SNPs (rs2073495 and rs743658) in Lactotransferrin (LTF), a gene involved in iron absorption, and the common M129V SNP in the prion protein gene, PRNP (rs1799990), with cognitive ability and cognitive ageing in a cohort of non-demented individuals born in 1921. All had cognitive ability measured at age 11 in the Scottish Mental Survey of 1932, and again at age 79. No association was identified with LTF. PRNP M129V was significantly related to Moray House Test (MHT) IQ scores at age 79, adjusted for sex and age 11 IQ (p=0.006). Individuals homozygous for the methionine allele performed significantly better than heterozygotes. This study supports the hypothesis that genetic variations in antioxidant defence genes, specifically PRNP, are important influences on the trajectory of normal cognitive ageing. An interaction between PRNP and klotho (KL) genotypes was also identified (p=0.015), highlighting the importance of analysing gene interactions when investigating associations with quantitative traits.
Collapse
Affiliation(s)
- Swati J Kachiwala
- Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK
| | | | | | | | | | | | | |
Collapse
|
134
|
Abstract
This review covers the application of mass spectrometric techniques to aging research. Modern proteomic strategies will be discussed as well as the targeted analysis of specific proteins for the correlation of post-translational modifications with protein function. Selected examples will show both the power and also current limitations of the respective techniques. Experimental results and strategies are discussed in view of current theories of the aging process.
Collapse
Affiliation(s)
- Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047, USA
| |
Collapse
|
135
|
Rea SL, Wu D, Cypser JR, Vaupel JW, Johnson TE. A stress-sensitive reporter predicts longevity in isogenic populations of Caenorhabditis elegans. Nat Genet 2005; 37:894-8. [PMID: 16041374 PMCID: PMC1479894 DOI: 10.1038/ng1608] [Citation(s) in RCA: 297] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Accepted: 06/20/2005] [Indexed: 11/08/2022]
Abstract
When both genotype and environment are held constant, 'chance' variation in the lifespan of individuals in a population is still quite large. Using isogenic populations of the nematode Caenorhabditis elegans, we show that, on the first day of adult life, chance variation in the level of induction of a green fluorescent protein (GFP) reporter coupled to a promoter from the gene hsp-16.2 predicts as much as a fourfold variation in subsequent survival. The same reporter is also a predictor of ability to withstand a subsequent lethal thermal stress. The level of induction of GFP is not heritable, and GFP expression levels in other reporter constructs are not associated with differences in longevity. HSP-16.2 itself is probably not responsible for the observed differences in survival but instead probably reflects a hidden, heterogeneous, but now quantifiable, physiological state that dictates the ability of an organism to deal with the rigors of living.
Collapse
Affiliation(s)
- Shane L Rea
- Institute for Behavioral Genetics, University of Colorado at Boulder, Box 447, Boulder, Colorado 80309, USA
| | | | | | | | | |
Collapse
|
136
|
Abstract
Longevity, i.e., the property of being long-lived, has its natural limitation in the aging process. Longevity has a strong genetic component, as has become apparent from studies with a variety of organisms, from yeast to humans. Genetic screening efforts with invertebrates have unraveled multiple genetic pathways that suggest longevity is promoted through the manipulation of metabolism and the resistance to oxidative stress. To some extent, these same mechanisms appear to act in mammals also, despite considerable divergence during evolution. Thus far, evidence from population-based studies with humans suggests the importance of genes involved in cardiovascular disease as important determinants of longevity. The challenge is to test if the candidate longevity genes that have emerged from studies with model organisms exhibit genetic variation for life span in human populations. Future investigations are likely to involve large-scale case-control studies, in which large numbers of genes, corresponding to entire gene functional modules, will be assessed for all possible sequence variation and associated with detailed phenotypic information on each individual over extended periods of time. This should eventually unravel the genetic factors that contribute to each particular aging phenotype.
Collapse
Affiliation(s)
- Jan Vijg
- University of Texas Health Science Center, San Antonio, Texas 78245, USA.
| | | |
Collapse
|
137
|
Abstract
The prevalence of osteoporosis is raising worldwide as improving conditions of living and treatment of other common diseases continuously increases life expectancy. Thus, osteoporosis affects most women above 80 years of age and, at the age of 50, the lifetime risk of suffering an osteoporosis-related fracture approaches 50% in women and 20% in men. Numerous genetic, hormonal, nutritional and life-style factors contribute to the acquisition and maintenance of bone mass. Among them, genetic variations explain as much as 70% of the variance for bone mineral density (BMD) in the population. Dozens of quantitative trait loci (QTLs) for BMD have been identified by genome screening and linkage approaches in humans and mice, and more than 100 candidate gene polymorphisms tested for association with BMD and/or fracture. Sequence variants in the vitamin D receptor (VDR), collagen 1 alpha 1 chain (Col1A1), estrogen receptor alpha (ESR1), interleukin-6 (IL-6) and LDL receptor-related protein 5 (LRP5) genes were all found to be significantly associated with differences in BMD and/or fracture risk in multiple replication studies. Moreover, some genes, such as VDR and IL-6, were shown to interact with non-genetic factors, i.e. calcium intake and estrogens, to modulate BMD. Since these gene variants have also been associated with other complex disorders, including cancer and coronary heart disease, they may represent common genetic susceptibility factors exerting pleiotropic effects during the aging process.
Collapse
Affiliation(s)
- Serge L Ferrari
- Service of Bone Diseases, WHO Collaborating Center for Osteoporosis Prevention, Department of Rehabilitation and Geriatrics, Geneva University Hospital, Switzerland.
| | | |
Collapse
|
138
|
Zhu M, de Cabo R, Anson RM, Ingram DK, Lane MA. Caloric restriction modulates insulin receptor signaling in liver and skeletal muscle of rat. Nutrition 2005; 21:378-88. [PMID: 15797682 DOI: 10.1016/j.nut.2004.06.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Accepted: 06/23/2004] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We investigated how the insulin/insulin-like growth factor-1 signaling pathway is involved in the robust antiaging effects produced by caloric restriction. METHODS We subjected male rats to feeding ad libitum or calorie restriction, i.e., 60% of the ad libitum amount, for 2 and 25 mo and then assessed the effects of calorie restriction on insulin receptor (IR) signaling in liver and skeletal muscle. RESULTS The results indicated that aging was accompanied by a significant decrease in IR tyrosine phosphorylation after insulin stimulation in live and skeletal muscle, which was associated with a significant increase in the activity of protein tyrosine phosphatase-1B. However, these age-related alterations were attenuated by long-term calorie restriction. Expression profile of mRNA showed an increased expression of mRNAs for IR and insulin-like growth factor-1 receptor in both tissues of calorie-restricted rats, but increased expression of IR mRNA was dissociated with the IR gene product in rats maintained on long-term calorie-restricted diet. CONCLUSION IR signaling may play an important role in aging and its retardation by calorie restriction, and normal function of IR in liver and skeletal muscle is required for healthy aging and extending lifespan in mammals.
Collapse
Affiliation(s)
- Min Zhu
- Laboratory of Experimental Gerontology, Gerontology Research Center, Intramural Research Program, National Institute on Aging, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
139
|
Abstract
Clinical medicine and health policy planning find common cause as they seek to define the determinants of health. There is substantial recent interest in the social ecology in which health is embedded. However, biology is where these contributing environmental factors are translated. I provide a new conceptual framework for the biological determinants of health. The old public health rubric of host, agent, and environment as the features that define the root elements of health is an impoverished scheme, because it does not represent our new appreciation of genetic and aging contributions to phenotypic health. I propose genes, external agency, internal agency, and aging as more operationally helpful determinants that effectively describe the biological experience of the organism. This scheme has the advantage of differentiating those agencies that are practically approachable, and therefore deserving of increased attention and investment, and those that are currently intractable.
Collapse
Affiliation(s)
- Walter M Bortz
- Stanford University School of Medicine, 167 Bolivar Lane, Portola Valley, CA, 94028, USA.
| |
Collapse
|
140
|
Abstract
Apoptosis is a genetically programmed cell death mechanism that appears to occur in all multicellular organisms. It is a normal process that serves to maintain cellular homeostasis. However, in many diseases there is a disruption in the equilibrium between cell proliferation and cell death that contributes directly to the disease. In these cases, a possible therapeutic intervention would be to restore the skewed equilibrium by pushing it in the desired direction through the use of pharmacological agents or genetic approaches. These observations have instigated substantial research in the field of apoptosis, resulting in an increasingly detailed analysis of the molecular mechanisms and the sequence of events that occur in this cell death pathway. In addition, by trying to understand this pathway, several potential therapeutic agents have arisen from those used in chemo-, radio-, and cytokine therapy. While these agents have been relatively successful, it is rare that their effect is complete. Thus, the search continues for a strategy to conquer those cells that are resistant to these regimens. Genetic approaches are novel and have been shown to be quite successful in several in vitro and animal models. They also tend to have low toxicity. It is believed that using a more traditional front-line approach of therapy, supplemented by appropriate genetic intervention, will allow substantial increases in the efficacy of treatment, while at the same time introducing little or no additional toxicity.
Collapse
Affiliation(s)
- S C Dixon
- Medicine Branch, Clinical Pharmacokinetics Unit, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
141
|
Panza F, D'Introno A, Colacicco AM, Capurso C, Palasciano R, Capurso S, Gadaleta A, Capurso A, Kehoe PG, Solfrizzi V. Molecular Determinants of Human Longevity. Adv Clin Chem 2005; 39:185-210. [PMID: 16013672 DOI: 10.1016/s0065-2423(04)39007-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Francesco Panza
- Department of Geriatrics, Center for the Aging Brain, Memory Unit, University of Bari, 11-70124, Bari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Iqbal K, Grundke-Iqbal I. Metabolic/signal transduction hypothesis of Alzheimer's disease and other tauopathies. Acta Neuropathol 2005; 109:25-31. [PMID: 15645264 DOI: 10.1007/s00401-004-0951-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Accepted: 10/19/2004] [Indexed: 01/28/2023]
Abstract
Alzheimer's disease (AD), the major cause of dementia in middle- to old-aged individuals, is multifactorial. Independent of the etiology, whether genetic or non-genetic, this disease is characterized by extracellular beta-amyloid plaques and intraneuronal neurofibrillary tangles of abnormally hyperphosphorylated tau. However, the molecular mechanisms of neither AD nor other tauopathies are completely understood. To date, the most popular hypothesis of AD is the "Amyloid cascade hypothesis", according to which beta-amyloid, the cleavage product of beta-amyloid precursor protein (APP), is neurotoxic and causes neurodegeneration and dementia. However, this hypothesis is inconsistent with the presence in normal aged human brain of the beta-amyloid plaque burden similar to that in AD, and the absence of neurofibrillary pathology and neurodegeneration in mutated APP, presenilin-1 and presenilin-2 transgenic mice that show extensive beta-amyloid plaque pathology. Here we propose an alternate hypothesis, the "Metabolic/signal transduction hypothesis", which is consistent both with the pathology seen in AD and other tauopathies and as well as all experimental animal conditions. In this hypothesis, with increasing age, the fluidity of neuronal membranes is progressively reduced, which makes it less resistant to environmental/metabolic insults affecting one or more signal transduction pathways, which lead to a protein phosphorylation/dephosphorylation imbalance and abnormal hyperphosphorylation of tau. The hyperphosphorylated tau sequesters normal tau, MAP1 and MAP2, which results in breakdown of the microtubule network and, consequently, a progressive retrograde degeneration of the affected neurons and, ultimately, dementia.
Collapse
Affiliation(s)
- Khalid Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research In Developmental Disabilities, Staten Island, 10314-6399, USA.
| | | |
Collapse
|
143
|
Bergamini E, Cavallini G, Donati A, Gori Z. The role of macroautophagy in the ageing process, anti-ageing intervention and age-associated diseases. Int J Biochem Cell Biol 2004; 36:2392-404. [PMID: 15325580 DOI: 10.1016/j.biocel.2004.05.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Macroautophagy is a degradation/recycling system ubiquitous in eukariotic cells, which generates nutrients during fasting under the control of amino acids and hormones, and contributes to the turnover and rejuvenation of cellular components (long-lived proteins, cytomembranes and organelles). Tight coupling between these two functions may be the weak point in cell housekeeping. Ageing denotes a post-maturational deterioration of tissues and organs with the passage of time, due to the progressive accumulation of the misfunctioning cell components because of oxidative damage and an age-dependent decline of turnover rate and housekeeping. Caloric restriction (CR) and lower insulin levels may slow down many age-dependent processes and extend lifespan. Recent evidence is reviewed showing that autophagy is involved in ageing and in the anti-ageing action of anti-ageing calorie restriction: function of autophagy declines during adulthood and is almost negligible at older age; CR prevents the age-dependent decline of autophagic proteolysis and improves the sensitivity of liver cells to stimulation of lysosomal degradation; protection of autophagic proteolysis from the age-related decline co-varies with the duration and level of anti-ageing food restriction like the effects of CR extending lifespan; the pharmacological stimulation of macroautophagy has anti-ageing effects. Besides the involvement in ageing, macroautophagy may have an essential role in the pathogenesis of many age-associated diseases. Higher protein turnover may not fully account for the anti-ageing effects of macroautophagy, and effects of macroautophagy on housekeeping of the cell organelles, antioxidant machinery of cell membranes and transmembrane cell signaling should also be considered.
Collapse
Affiliation(s)
- E Bergamini
- Centro di Ricerca di Biologia e Patologia dell'Invecchiamento, University of Pisa, Scuola Medica, via Roma 55, 56126 Pisa, Italy.
| | | | | | | |
Collapse
|
144
|
Jiang JC, Kirchman PA, Allen M, Jazwinski SM. Suppressor analysis points to the subtle role of the LAG1 ceramide synthase gene in determining yeast longevity. Exp Gerontol 2004; 39:999-1009. [PMID: 15236759 DOI: 10.1016/j.exger.2004.03.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Revised: 02/16/2004] [Accepted: 03/05/2004] [Indexed: 10/26/2022]
Abstract
Individual yeast cells display a finite replicative capacity. LAG1 was identified as a gene that is differentially expressed during the yeast replicative life span and was shown to play a role in determining yeast longevity. This gene is not essential, but simultaneous deletion of LAG1 and its close homologue LAC1 is lethal. Lag1p and Lac1p have been found to be an essential component of ceramide synthase. In this study, multicopy suppressors of the lethality of a lag1delta lac1delta double mutant were isolated to help clarify the role of LAG1 in yeast longevity. The two multicopy suppressors YBR183w (YPC1) and YPL087w (YDC1) encode ceramidases unrelated to Lag1p and Lac1p, which were previously found to support the reverse reaction of ceramide synthesis. Multiple copies of YPC1 were much more efficient than YDC1 in rescuing cell growth. They were also much more effective in rescuing the life span of a lag1delta lac1delta double mutant, sustaining a life span approaching that obtained by the restoration of LAG1 expression. Neither deletion of LAC1 nor overexpression of YPC1 had a detectable effect on wild-type life span. However, the overexpression of LAG1 had a bimodal effect on longevity, with moderate expression resulting in increased longevity and with higher expression curtailing life span. These results suggest that subtle changes in ceramide/sphingolipid metabolism are important in determining yeast longevity. They also indicate that Lag1p plays a special role in this relationship. Homologues of Lag1p have been identified in higher eukaryotes, including human, raising the possibility that ceramide and other sphingolipid metabolites play a wider role in biological aging.
Collapse
Affiliation(s)
- James C Jiang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1901 Perdido St., Box P7-2, New Orleans 70112, USA
| | | | | | | |
Collapse
|
145
|
Geiger-Thornsberry GL, Mackay TFC. Quantitative trait loci affecting natural variation in Drosophila longevity. Mech Ageing Dev 2004; 125:179-89. [PMID: 15013662 DOI: 10.1016/j.mad.2003.12.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 12/15/2003] [Accepted: 12/15/2003] [Indexed: 10/26/2022]
Abstract
Limited life span and senescence are universal phenomena, controlled by genetic and environmental factors whose interactions both limit life span and generate variation in life span between individuals, populations and species. To understand the genetic architecture of longevity it is necessary to know what loci affect variation in life span, what are the allelic effects at these loci and what molecular polymorphisms define quantitative trait locus (QTL) alleles. Here, we used quantitative complementation tests to determine whether genes that regulate longevity also contribute to naturally occurring variation in Drosophila life span. Inbred strains derived from a natural population were crossed to stocks containing null mutations (m) or deficiencies (Df) uncovering the candidate genes, maintained over a Balancer (Bal) chromosome. We measured the life span of the resulting F(1) genotypes, +(i)/m (Df) and +(i)/Bal, where +(i) denotes one of the i natural alleles. Failure of the QTL alleles to complement the candidate gene mutation is indicated by a significant cross (mutant versus wild-type allele of the candidate gene) by inbred line interaction term from analysis of variance of life span. Failure to complement indicates a genetic interaction between the candidate gene allele and the naturally occurring life span QTL, and implicates the candidate gene as potential cause of variation in longevity. Of the 16 candidate regions and genes tested, Df(2L)c17, Df(3L)Ly, Df(3L)AC1 and Df(3R)e-BS2 showed significant failure to complement wild-type alleles in both sexes, and an Alcohol dehydrogenase mutant failed to complement in females. Several genes that regulate life span (e.g., Superoxide dismutase, Catalase, and rosy) complemented the life span effects of wild-derived alleles, suggesting little natural variation affecting longevity at these loci, at least in this sample of alleles. Quantitative complementation tests are therefore useful for identifying QTL contributing to segregating genetic variation in life span in nature.
Collapse
|
146
|
Gurland BJ, Page WF, Plassman BL. A twin study of the genetic contribution to age-related functional impairment. J Gerontol A Biol Sci Med Sci 2004; 59:859-63. [PMID: 15345739 DOI: 10.1093/gerona/59.8.m859] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND A key element in the quality of later life is the prevalence of age-related functional impairments. The objective of this study was to quantify the genetic and environmental influences on age-related functional impairment in a population of white male twin elders who were fit in young adulthood when entering military service. The extent of genetic influence on functioning in later life affects the role of public health, personal initiative, and service interventions. METHODS Indicators of functional impairment were determined by telephone survey and by twin pair responses to 10 indicators of basic, instrumental, and social activities, and mobility. Responses were analyzed using structural equation modeling. Prevalence and concordances were determined by zygosity status. Covariance was partitioned between twins in a pair into components attributable to additive genetics, common environment, and unique environment. RESULTS Data from 2721 twin pairs (1384 monozygotic and 1337 dizygotic) were analyzed for the 10 dichotomous indicators of functional impairment and for a subscale of 8 of these indicators. For the subscale, additive genes accounted for approximately 21% of covariance in liability for a higher score, whereas unique environment accounted for approximately 78% of variance, with age accounting for a very small proportion. In two indicators there were nontrivial effects of common environment. CONCLUSIONS Within the expressed limits on generalization, the study findings suggest a major potential role for interventions aimed at a person's unique environment to maintain good functioning in aging and to lengthen the period of active life. Genetic effects play a modest but also important role in age-related functional impairment.
Collapse
Affiliation(s)
- Barry J Gurland
- Columbia University Stroud Center, Tower 3, Apt. 30F, 100 Haven Ave., New York, NY 10032, USA.
| | | | | |
Collapse
|
147
|
Pasyukova EG, Roshina NV, Mackay TFC. Shuttle craft: a candidate quantitative trait gene for Drosophila lifespan. Aging Cell 2004; 3:297-307. [PMID: 15379853 DOI: 10.1111/j.1474-9728.2004.00114.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Variation in longevity in natural populations is attributable to the segregation of multiple interacting loci, whose effects are sensitive to the environment. Although there has been considerable recent progress towards understanding the environmental factors and genetic pathways that regulate lifespan, little is known about the genes causing naturally occurring variation in longevity. Previously, we used deficiency complementation mapping to map two closely linked quantitative trait loci (QTL) causing female-specific variation in longevity between the Oregon (Ore) and 2b strains of Drosophila melanogaster to 35B9-C3 and 35C3 on the second chromosome. The 35B9-C3 QTL encompasses a 50-kb region including four genes, for one of which, shuttle craft (stc), mutations have been generated. The 35C3 QTL localizes to a 200-kb interval with 15 genes, including three genes for which mutations exist (reduced (rd), guftagu (gft) and ms(2)35Ci). Here, we report quantitative complementation tests to mutations at these four positional candidate genes, and show that ms(2)35Ci and stc are novel candidate quantitative trait genes affecting variation in Drosophila longevity. Complementation tests with stc alleles reveal sex- and allele-specific failure to complement, and complementation effects are dependent on the genetic background, indicating considerable epistasis for lifespan. In addition, a homozygous viable stc allele has a sex-specific effect on lifespan. stc encodes an RNA polymerase II transcription factor, and is an attractive candidate gene for the regulation of longevity and variation in longevity, because it is required for motoneuron development and is expressed throughout development. Quantitative genetic analysis of naturally occurring variants with subtle effects on lifespan can identify novel candidate genes and pathways important in the regulation of longevity.
Collapse
Affiliation(s)
- Elena G Pasyukova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | | | | |
Collapse
|
148
|
Abstract
The decrease of neurological performance in normal aging is directly related to brain oxidative stress and inversely related to lifespan. Male mice lifespan was increased by 8-10% (median and maximal lifespan, respectively) in mice with high spontaneous neurological activity, by 21-15% after moderate exercise; and by 25-20% after supplementation with vitamin E. Oxidative stress markers, TBARS and protein carbonyl content, were found increased on aging; a higher content of oxidation products is considered an effective aging factor, specially in the brain, with a majority of postmitotic cells. Mitochondrial enzyme activities, mitochondrial nitric oxide synthase (mtNOS), NADH dehydrogenase and cytochrome oxidase, behaved as markers of brain aging. The decrease in enzyme activities was directly related to the content of oxidation products and to the loss of neurological function in aged mice, this latter was determined in the tighrope and the T-maze tests. The above mentioned conditions that increased mice lifespan were effective to decrease the level of oxidative stress markers, and to retard the decreases in mitochondrial enzyme activities and neurological function associated to aging. The activities of mtNOS, NADH dehydrogenase and cytochrome oxidase may be used as indicators of the effectiveness of antiaging treatments.
Collapse
Affiliation(s)
- Ana Navarro
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Cádiz, 11003 Cádiz, Spain.
| |
Collapse
|
149
|
Abstract
The results of recent clinical studies have challenged our previously held view that estrogen therapy promotes neurological health and prevents or ameliorates Alzheimer's disease. A major question emerging from these studies is: how can there be such disparity between the basic science and epidemiological data that show that estrogen can protect neurons against degenerative insults and reduce the risk of Alzheimer's disease and the recent data (from the Women's Health Initiative Memory Study [WHIMS] trial and the trial of estrogen treatment for Alzheimer's disease), which show that hormone replacement therapy (HRT) showed no benefit and even a potential deleterious effect? Which set of data is correct? The proposition put forth in this review is that both sets of data are correct and that two major factors determine the efficacy of estrogen or HRT. First is the time at which estrogen therapy is initiated. The data indicate that initiation of therapy early in menopause and when neurons are in a healthy state, reduces the risk of Alzheimer's disease; whereas, estrogen therapy initiated after the disease has developed or decades following menopause is without benefit. Second, estrogen therapy is not the same as HRT and the type of progestogen used determines the outcome of the therapeutic intervention. Insights into the mechanisms of action of estrogen and progestogen in the brain provide a framework for understanding the paradox of the benefit of estrogen in the prevention of Alzheimer's disease versus the lack of benefit in treatment trials and in trials when HRT is instituted many years after menopause. Based on estrogen-inducible mechanisms, which have been elucidated in healthy neuron model systems, it would be predicted that estrogen therapy could be highly effective in preventing neurodegenerative disease by promoting neuronal defence and memory mechanisms. The mechanisms of action of estrogen also predict that estrogen therapy would be an ineffective strategy for reversing the pathology of Alzheimer's disease. In summary, the time at which estrogen therapy is initiated, the neurological status of the brain at the time of estrogen therapy initiation and the type of progestogen used all contribute to the efficacy of estrogen in preventing neurodegenerative disease and to sustaining neurological health and function. An estrogen advantage hypothesis is put forth that provides a unifying mechanism of estrogen action with implications for both the benefits and risks of estrogen therapy.
Collapse
Affiliation(s)
- Roberta D Brinton
- Department of Molecular Pharmacology and Toxicology and the Program in Neuroscience, University of Southern California, Pharmaceutical Sciences Center, Los Angeles, California, USA.
| |
Collapse
|
150
|
Abstract
The quest for therapies based on molecular genetics (pharmacogenomics, DNA microarrays, etc.) drives pharmaceutical research into individual diseases of old age, but has failed to deliver an unequivocal clinical breakthrough. Attempts to treat most age-related diseases using antioxidant supplements have been equally disappointing, despite the clear benefits of a healthy diet. The double-agent theory is a new, unifying synthesis that draws on flaws in three leading theories of ageing. It argues that there is a tradeoff between oxidative stress as a critical redox signal that marshals genetic defences against physiological stress (such as infection) and oxidative stress as a cause of ageing and age-related disease. The stress response and ageing are linked by redox-sensitive transcription factors, such as NFkappaB. Ageing is a function of rising intracellular oxidative stress, rather than chronological time, but this relationship is obscured because free-radical leakage from mitochondria also tends to rise with age. Mitochondrial leakage produces a genetic response which mirrors that following infection, but because mitochondrial leakage is continuous the shift in gene expression is persistent, leading to the chronic inflammation characteristic of old age. Age-related diseases are thus the price we pay for redox control of stress-gene expression. Because the selective pressure favouring the stress response in youth is stronger than that penalising degenerative diseases after reproductive decline, we may be homeostatically refractory to antioxidant supplements that 'swamp' the redox switch. Furthermore, because genetic selection takes place predominantly in the reductive homeostatic environment of youth, alleles associated with age-related diseases are not inherently damaging (they do not inevitably express a negative effect over time), but are simply less effective in the oxidising conditions of old age. Gene therapies for age-related diseases are unlikely to succeed unless oxidative stress can be controlled physiologically, thereby altering the activity and function of potentially hundreds of genes.
Collapse
Affiliation(s)
- Nick Lane
- Department of Surgery, Royal Free and University College Medical School, Pond Street, NW3 2QG London, UK.
| |
Collapse
|