101
|
Owusu-Anim D, Kwon DH. Differential Role of Two-Component Regulatory Systems ( phoPQ and pmrAB) in Polymyxin B Susceptibility of Pseudomonas aeruginosa.. ACTA ACUST UNITED AC 2012; 2. [PMID: 24349887 DOI: 10.4236/aim.2012.21005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polymyxins are often considered as a last resort to treat multidrug resistant P. aeruginosa but polymyxin resistance has been increasingly reported worldwide in clinical isolates. Polymyxin resistance in P. aeruginosa is known to be associated with alterations in either PhoQ or PmrB. In this study, mutant strains of P. aeruginosa carrying amino acid substitution, a single and/or dual inactivation of PhoQ and PmrB were constructed to further understand the roles of PhoQ and PmrB in polymyxin susceptibility. Polymyxin B resistance was caused by both inactivation and/or amino acid substitutions in PhoQ but by only amino acid substitutions of PmrB. Alterations of both PhoQ and PmrB resulted in higher levels of polymyxin B resistance than alteration of either PhoQ or PmrB alone. These results were confirmed by time-killing assays suggesting that high-level polymyxin resistance in P. aeruginosa is caused by alterations of both PhoQ and PmrB.
Collapse
Affiliation(s)
| | - Dong H Kwon
- Department of Biology, Long Island University, New York, USA ; Department of Medicine of Michael E DeBakey VA Medical Center, Baylor College of Medicine, Houston, USA
| |
Collapse
|
102
|
Lee JY, Ko KS. Antimicrobial Resistance and Clones ofAcinetobacterSpecies andPseudomonas aeruginosa. ACTA ACUST UNITED AC 2012. [DOI: 10.4167/jbv.2012.42.1.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Ji-Young Lee
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Kwan Soo Ko
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
103
|
PhoQ mutations promote lipid A modification and polymyxin resistance of Pseudomonas aeruginosa found in colistin-treated cystic fibrosis patients. Antimicrob Agents Chemother 2011; 55:5761-9. [PMID: 21968359 DOI: 10.1128/aac.05391-11] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa can develop resistance to polymyxin and other cationic antimicrobial peptides. Previous work has shown that mutations in the PmrAB and PhoPQ regulatory systems can confer low to moderate levels of polymyxin resistance (MICs of 8 to 64 mg/liter) in laboratory and clinical strains of this organism. To explore the role of PhoPQ in high-level clinical polymyxin resistance, P. aeruginosa strains with colistin MICs > 512 mg/liter that had been isolated from cystic fibrosis patients treated with inhaled colistin (polymyxin E) were analyzed. Probable loss-of-function phoQ alleles found in these cystic fibrosis strains conferred resistance to polymyxin. Partial and complete suppressor mutations in phoP were identified in some cystic fibrosis strains with resistance-conferring phoQ mutations, suggesting that additional loci can be involved in polymyxin resistance in P. aeruginosa. Disruption of chromosomal phoQ in the presence of an intact phoP allele stimulated 4-amino-l-arabinose addition to lipid A and induced transcription from the promoter of the pmrH (arnB) operon, consistent with the known role of this lipid A modification in polymyxin resistance. These results indicate that phoQ loss-of-function mutations can contribute to high-level polymyxin resistance in clinical strains of P. aeruginosa.
Collapse
|
104
|
Abstract
Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates treatable with a single agent, colistin. Acquired resistance in this organism is multifactorial and attributable to chromosomal mutations and the acquisition of resistance genes via horizontal gene transfer. Mutational changes impacting resistance include upregulation of multidrug efflux systems to promote antimicrobial expulsion, derepression of ampC, AmpC alterations that expand the enzyme's substrate specificity (i.e., extended-spectrum AmpC), alterations to outer membrane permeability to limit antimicrobial entry and alterations to antimicrobial targets. Acquired mechanisms contributing to resistance in P. aeruginosa include β-lactamases, notably the extended-spectrum β-lactamases and the carbapenemases that hydrolyze most β-lactams, aminoglycoside-modifying enzymes, and 16S rRNA methylases that provide high-level pan-aminoglycoside resistance. The organism's propensity to grow in vivo as antimicrobial-tolerant biofilms and the occurrence of hypermutator strains that yield antimicrobial resistant mutants at higher frequency also compromise anti-pseudomonal chemotherapy. With limited therapeutic options and increasing resistance will the untreatable P. aeruginosa infection soon be upon us?
Collapse
Affiliation(s)
- Keith Poole
- Department of Microbiology and Immunology, Queen's University Kingston, ON, Canada
| |
Collapse
|
105
|
Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system. Antimicrob Agents Chemother 2011; 55:3370-9. [PMID: 21576434 DOI: 10.1128/aac.00079-11] [Citation(s) in RCA: 288] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colistin resistance is rare in Acinetobacter baumannii, and little is known about its mechanism. We investigated the role of PmrCAB in this trait, using (i) resistant and susceptible clinical strains, (ii) laboratory-selected mutants of the type strain ATCC 19606 and of the clinical isolate ABRIM, and (iii) a susceptible/resistant pair of isogenic clinical isolates, Ab15/133 and Ab15/132, isolated from the same patient. pmrAB sequences in all the colistin-susceptible isolates were identical to reference sequences, whereas resistant clinical isolates harbored one or two amino acid replacements variously located in PmrB. Single substitutions in PmrB were also found in resistant mutants of strains ATCC 19606 and ABRIM and in the resistant clinical isolate Ab15/132. No mutations in PmrA or PmrC were found. Reverse transcriptase (RT)-PCR identified increased expression of pmrA (4- to 13-fold), pmrB (2- to 7-fold), and pmrC (1- to 3-fold) in resistant versus susceptible organisms. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry showed the addition of phosphoethanolamine to the hepta-acylated form of lipid A in the resistant variants and in strain ATCC 19606 grown under low-Mg(2+) induction conditions. pmrB gene knockout mutants of the colistin-resistant ATCC 19606 derivative showed >100-fold increased susceptibility to colistin and 5-fold decreased expression of pmrC; they also lacked the addition of phosphoethanolamine to lipid A. We conclude that the development of a moderate level of colistin resistance in A. baumannii requires distinct genetic events, including (i) at least one point mutation in pmrB, (ii) upregulation of pmrAB, and (iii) expression of pmrC, which lead to addition of phosphoethanolamine to lipid A.
Collapse
|
106
|
Park YK, Choi JY, Shin D, Ko KS. Correlation between overexpression and amino acid substitution of the PmrAB locus and colistin resistance in Acinetobacter baumannii. Int J Antimicrob Agents 2011; 37:525-30. [PMID: 21497062 DOI: 10.1016/j.ijantimicag.2011.02.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 02/07/2011] [Accepted: 02/07/2011] [Indexed: 11/17/2022]
Abstract
Relationships between the PmrAB two-component system and colistin resistance were investigated in Acinetobacter baumannii. The sequences of pmrA, pmrB and pmrC in 26 colistin-susceptible (ColS) and 7 colistin-resistant (ColR) A. baumannii isolates were determined. In addition, 30 ColR mutants (colistin minimum inhibitory concentration >64 mg/L) were selected in vitro from 10 ColS strains and the pmrA, pmrB and pmrC sequences of the in-vitro-selected ColR mutants were also determined. Expression of pmrA and pmrB was compared between the ColR mutants and their parent ColS strains using a quantitative real-time polymerase chain reaction method. Elevated expression of pmrA and pmrB genes was evident both in wild-type and in in-vitro-selected ColR strains. However, no amino acid differences in the pmrA, pmrB and pmrC genes were found between wild-type ColR and ColS isolates. Although six kinds of amino acid alterations in pmrB were identified in in-vitro-selected ColR mutants, no changes were found in some of the mutants. These findings indicate that increased expression of the PmrAB system is essential for colistin resistance in A. baumannii but that amino acid alterations might be only partially responsible for resistance.
Collapse
Affiliation(s)
- Young Kyoung Park
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, South Korea
| | | | | | | |
Collapse
|
107
|
Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol 2011; 2:65. [PMID: 21747788 PMCID: PMC3128976 DOI: 10.3389/fmicb.2011.00065] [Citation(s) in RCA: 564] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/24/2011] [Indexed: 01/04/2023] Open
Abstract
Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates treatable with a single agent, colistin. Acquired resistance in this organism is multifactorial and attributable to chromosomal mutations and the acquisition of resistance genes via horizontal gene transfer. Mutational changes impacting resistance include upregulation of multidrug efflux systems to promote antimicrobial expulsion, derepression of ampC, AmpC alterations that expand the enzyme's substrate specificity (i.e., extended-spectrum AmpC), alterations to outer membrane permeability to limit antimicrobial entry and alterations to antimicrobial targets. Acquired mechanisms contributing to resistance in P. aeruginosa include β-lactamases, notably the extended-spectrum β-lactamases and the carbapenemases that hydrolyze most β-lactams, aminoglycoside-modifying enzymes, and 16S rRNA methylases that provide high-level pan-aminoglycoside resistance. The organism's propensity to grow in vivo as antimicrobial-tolerant biofilms and the occurrence of hypermutator strains that yield antimicrobial resistant mutants at higher frequency also compromise anti-pseudomonal chemotherapy. With limited therapeutic options and increasing resistance will the untreatable P. aeruginosa infection soon be upon us?
Collapse
Affiliation(s)
- Keith Poole
- Department of Microbiology and Immunology, Queen's University Kingston, ON, Canada
| |
Collapse
|
108
|
Lee JY, Song JH, Ko KS. Identification of nonclonal Pseudomonas aeruginosa isolates with reduced colistin susceptibility in Korea. Microb Drug Resist 2011; 17:299-304. [PMID: 21381965 DOI: 10.1089/mdr.2010.0145] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The in vitro activity of colistin was evaluated against 215 nonduplicated Pseudomonas aeruginosa isolates, including 53 multidrug-resistant isolates, which were collected between 2006 and 2007 from nine tertiary care hospitals in Korea. Colistin-nonsusceptible P. aeruginosa (CNPA) isolates were genotyped using multilocus sequence typing. Sixteen (7.4%) CNPA isolates (minimum inhibitory concentration [MIC], >2 mg/l) were identified, including three resistant isolates. All but one of the MDR P. aeruginosa isolates was susceptible to colistin. Multilocus sequence typing analysis identified 12 sequence types (STs) among 16 CNPA isolates, indicating that colistin nonsusceptibility might arise independently. However, ST244 and ST292, which may be international clones, were found in multiple CNPA isolates. Our data indicate an increase of P. aeruginosa isolates with reduced colistin susceptibility, suggesting the need for continuous surveillance of P. aeruginosa.
Collapse
Affiliation(s)
- Ji-Young Lee
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | | | | |
Collapse
|
109
|
Soon RL, Nation RL, Cockram S, Moffatt JH, Harper M, Adler B, Boyce JD, Larson I, Li J. Different surface charge of colistin-susceptible and -resistant Acinetobacter baumannii cells measured with zeta potential as a function of growth phase and colistin treatment. J Antimicrob Chemother 2011; 66:126-33. [PMID: 21081544 PMCID: PMC3001852 DOI: 10.1093/jac/dkq422] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/06/2010] [Accepted: 10/12/2010] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES electrostatic forces mediate the initial interaction between cationic colistin and Gram-negative bacterial cells. Lipopolysaccharide (LPS) loss mediates colistin resistance in some A. baumannii strains. Our aim was to determine the surface charge of colistin-susceptible and -resistant A. baumannii as a function of growth phase and in response to polymyxin treatment. METHODS the zeta potential of A. baumannii ATCC 19606 and 10 clinical multidrug-resistant strains (MICs 0.5-2 mg/L) was assessed. Colistin-resistant derivatives (MIC >128 mg/L) of wild-type strains were selected in the presence of 10 mg/L colistin, including the LPS-deficient lpxA mutant, ATCC 19606R. To determine the contribution of LPS to surface charge, two complemented ATCC 19606R derivatives were examined, namely ATCC 19606R + lpxA (containing an intact lpxA gene) and ATCC 19606R + V (containing empty vector). Investigations were conducted as a function of growth phase and polymyxin treatment (1, 4 and 8 mg/L). RESULTS wild-type cells exhibited a greater negative charge (-60.5 ± 2.36 to -26.2 ± 2.56 mV) thancolistin-resistant cells (-49.2 ± 3.09 to -19.1 ± 2.80 mV) at mid-log phase (ANOVA, P < 0.05). Opposing growth-phase trends were observed for both phenotypes: wild-type cells displayed reduced negative charge and colistin-resistant cells displayed increased negative charge at stationary compared with mid-logarithmic phase. Polymyxin exposure resulted in a concentration-dependent increase in zeta potential. Examination of ATCC 19606R and complemented strains supported the importance of LPS in determining surface charge, suggesting a potential mechanism of colistin resistance. CONCLUSIONS zeta potential differences between A. baumannii phenotypes probably reflect compositional outer-membrane variations that impact the electrostatic component of colistin activity.
Collapse
Affiliation(s)
- Rachel L. Soon
- Facility for Anti-infective Drug Development and Innovation, Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | - Roger L. Nation
- Facility for Anti-infective Drug Development and Innovation, Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | - Stewart Cockram
- Facility for Anti-infective Drug Development and Innovation, Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | | | - Marina Harper
- Department of Microbiology, Monash University, Victoria, Australia
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Victoria, Australia
| | - Ben Adler
- Department of Microbiology, Monash University, Victoria, Australia
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Victoria, Australia
| | - John D. Boyce
- Department of Microbiology, Monash University, Victoria, Australia
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Victoria, Australia
| | - Ian Larson
- Facility for Anti-infective Drug Development and Innovation, Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | - Jian Li
- Facility for Anti-infective Drug Development and Innovation, Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| |
Collapse
|
110
|
A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides, fluoroquinolones, and β-lactams in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2010; 55:1211-21. [PMID: 21149619 DOI: 10.1128/aac.01252-10] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Constitutive overexpression of the active efflux system MexXY/OprM is a major cause of resistance to aminoglycosides, fluoroquinolones, and cefepime in clinical strains of Pseudomonas aeruginosa. Upregulation of this pump often results from mutations occurring in mexZ, the local repressor gene of the mexXY operon. In this study, analysis of MexXY-overproducing mutants selected in vitro from reference strain PAO1Bes on amikacin (at a concentration 1.5-fold higher than the MIC) led to identification of a new class of mutants harboring an intact mexZ gene and exhibiting increased resistance to colistin and imipenem in addition to aminoglycosides, fluoroquinolones, and cefepime. Reverse transcription-quantitative PCR (RT-qPCR) experiments on a selected clone named PAOW2 demonstrated that mexXY overexpression was independent of mexZ and the PA5471 gene, which is required for drug-dependent induction of mexXY. Furthermore, the transcript levels of the oprD gene, which encodes the carbapenem-selective porin OprD, were found to be reduced drastically in PAOW2. Whole-genome sequencing revealed a single mutation resulting in an M59I substitution in the ParR protein, the response regulator of the ParRS two-component regulatory system (with ParS being the sensor kinase), which is required for adaptive resistance of P. aeruginosa to polycationic peptides such as colistin. The multidrug resistance phenotype was suppressed in PAOW2 by deletion of the parS and parRS genes and conferred to PAO1Bes by chromosomal insertion of the mutated parRS locus from PAOW2. As shown by transcriptomic analysis, only a very small number of genes were expressed differentially between PAOW2 and PAO1Bes, including the lipopolysaccharide (LPS) modification operon arnBCADTEF-ugd, responsible for resistance to polycationic agents. Exposure of wild-type PAO1Bes to different polycationic peptides, including colistin, was shown to result in increased mexY and repressed oprD expression via ParRS, independent of PA5471. In agreement with these results, colistin antagonized activity of the MexXY/OprM substrates in PAO1Bes but not in a ΔparRS derivative. Finally, screening of clinical strains exhibiting the PAOW2 resistance phenotype allowed the identification of additional alterations in ParRS. Collectively, our data indicate that ParRS may promote either induced or constitutive multidrug resistance to four different classes of antibiotics through the activation of three distinct mechanisms (efflux, porin loss, and LPS modification).
Collapse
|