101
|
Large-molecular-weight carbohydrate-binding agents as HIV entry inhibitors targeting glycoprotein gp120. Curr Opin HIV AIDS 2006; 1:355-60. [DOI: 10.1097/01.coh.0000239846.36076.2c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
102
|
Aquaro S, Svicher V, Schols D, Pollicita M, Antinori A, Balzarini J, Perno CF. Mechanisms underlying activity of antiretroviral drugs in HIV-1-infected macrophages: new therapeutic strategies. J Leukoc Biol 2006; 80:1103-10. [PMID: 16931601 DOI: 10.1189/jlb.0606376] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Monocyte-derived macrophages (M/M) are considered the second cellular target of HIV-1 and a crucial virus reservoir. M/M are widely distributed in all tissues and organs, including the CNS, where they represent the most common HIV-infected cells. Differently from activated CD4+ T lymphocytes, M/M are resistant to the cytopathic effect of HIV and survive HIV infection for a long time. Moreover, HIV-1 replication in M/M is a key pathogenetic event during the course of HIV-1 infection. Overall findings strongly support the clinical relevance of anti-HIV drugs in M/M. Nucleoside RT inhibitors (NRTIs) are more active against HIV in M/M than in CD4+ T lymphocytes. Their activity is further boosted by the presence of an additional monophosphate group (i.e., a phosphonate group, as in the case of Tenofovir), thus overcoming the bottleneck of the low phosphorylation ability of M/M. In contrast, the antiviral activity of non-NRTIs (not affecting the DNA chain elongation) in M/M is similar to that in CD4+ T lymphocytes. Protease inhibitors are the only clinically approved drugs acting at a late stage of the HIV lifecycle. They are able to interfere with HIV replication in HIV-1 chronically infected M/M, even if at concentrations greater than those observed in HIV-1 chronically infected CD4+ T lymphocytes. Finally, several new drugs have been shown to interfere efficiently with HIV replication in M/M, including entry inhibitors. A better understanding of the activity of the anti-HIV drugs in M/M may represent a key element for the design of effective anti-HIV chemotherapy.
Collapse
Affiliation(s)
- Stefano Aquaro
- Department of Experimental Medicine and Biochemical Sciences, University of Rome, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
103
|
Perno CF, Svicher V, Schols D, Pollicita M, Balzarini J, Aquaro S. Therapeutic strategies towards HIV-1 infection in macrophages. Antiviral Res 2006; 71:293-300. [PMID: 16806514 DOI: 10.1016/j.antiviral.2006.05.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 05/24/2006] [Accepted: 05/24/2006] [Indexed: 11/18/2022]
Abstract
It is widely recognized that macrophages (M/M) represent a crucial target of HIV-1 in the body and play a pivotal role in the pathogenic progression of HIV-1 infection. This strongly supports the clinical relevance of therapeutic strategies able to interfere with HIV-1 replication in M/M. In vitro studies showed that nucleoside analogue inhibitors of HIV-1 reverse transcriptase have potent antiviral activity in M/M, although the limited penetration of these compounds in sequestered body compartments and low phosphorylation ability of M/M, suggest that a phosphonate group linked to NRTIs may confer greater anti-HIV-1 activity in M/M. Differently, the antiviral activity of non-nucleoside reverse transcriptase inhibitors in M/M is similar to that found in CD4+ lymphocytes. Interestingly, protease inhibitors, acting at a post-integrational stage of HIV-1 life-cycle are the only drugs active in chronically infected M/M. A careful analysis of the distribution of antiviral drugs, and the assessment of their activity in M/M, represent key factors in the development of therapeutic strategies aimed to the treatment of HIV-1-infected patients. Moreover, testing new and promising antiviral compounds in such cells may provide crucial hints about their efficacy in patients infected by HIV.
Collapse
Affiliation(s)
- Carlo Federico Perno
- National Institute for Infectious Diseases L. Spallanzani, Via Portuense 292, 00149 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
104
|
Balzarini J. Inhibition of HIV entry by carbohydrate-binding proteins. Antiviral Res 2006; 71:237-47. [PMID: 16569440 DOI: 10.1016/j.antiviral.2006.02.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 01/31/2006] [Accepted: 02/01/2006] [Indexed: 11/18/2022]
Abstract
Carbohydrate-binding proteins (CBP) can be isolated from a variety of species, including procaryotes (i.e. cyanobacteria), sea corals, algae, plants, invertebrates and vertebrates. A number of them, in particular those CBP that show specific recognition for mannose (Man) and N-acetylglucosamine (GlcNAc) are endowed with a remarkable anti-HIV activity in cell culture. The smallest CBP occur as monomeric peptides with a molecular weight of approximately 8.5 kDa. Many others are functionally dimers, trimers or tetramers, and their molecular weight can sometimes largely exceed 50 kDa. CBP can contain 2 to up to 12 carbohydrate-binding sites per single molecule, depending on the nature of the lectin and its oligomerization state. CBP qualify as potential anti-HIV microbicide drugs because they not only inhibit infection of cells by cell-free virus (in some cases in the lower nano- or even subnanomolar range) but they can also efficiently prevent virus transmission from virus-infected cells to uninfected T-lymphocytes. Their most likely mechanism of antiviral action is the interruption of virus entry (i.e. fusion) into its target cell. CBP presumably act by direct binding to the glycans that are abundantly present on the HIV-1 gp120 envelope. They may cross-link several glycans during virus/cell interaction and/or freeze the conformation of gp120 consequently preventing further interaction with the coreceptor. Several CBP were shown to have a high genetic barrier since multiple (>or=5) glycan deletions in the HIV envelope are necessary to provoke a moderate level of drug resistance. CBP are the prototypes of conceptionally novel chemotherapeutics with a unique mechanism of antiviral action, drug resistance profile and an intrinsic capacity to trigger a specific immune response against HIV strains after glycan deletions on their envelope occur in an attempt to escape CBP drug pressure.
Collapse
Affiliation(s)
- J Balzarini
- Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| |
Collapse
|
105
|
An J, Liu JZ, Wu CF, Li J, Dai L, Van Damme E, Balzarini J, De Clercq E, Chen F, Bao JK. Anti-HIV I/II activity and molecular cloning of a novel mannose/sialic acid-binding lectin from rhizome of Polygonatum cyrtonema Hua. Acta Biochim Biophys Sin (Shanghai) 2006; 38:70-8. [PMID: 16474897 DOI: 10.1111/j.1745-7270.2006.00140.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The anti-human immunodeficiency virus (HIV) I/II activity of a mannose and sialic acid binding lectin isolated from rhizomes of Polygonatum cyrtonema Hua was elucidated by comparing its HIV infection inhibitory activity in MT-4 and CEM cells with that of other mannose-binding lectins (MBLs). The anti-HIV activity of Polygonatum cyrtonema Hua lectin (PCL) was 10- to 100-fold more potent than other tested MBLs, but without significant cytotoxicity towards MT-4 or CEM cells. To amplify cDNA of PCL by 3'/5'-rapid amplification of cDNA ends (RACE), the 30 amino acids of N-terminal were determined by sequencing and the degenerate oligonucleotide primers were designed. The full-length cDNA of PCL contained 693 bp with an open reading frame encoding a precursor protein of 160 amino acid residues, consisting of a 28-residue signal peptide, a 22-residue C-terminal cleavage peptide and a 110-residue mature polypeptide which contained three tandemly arranged subdomains with an obvious sequence homology to the monocot MBL. However, only one active mannose-binding site (QDNVY) was found in subdomain I of PCL, that of subdomain II and III changed to HNNVY and PDNVY, respectively. There was no intron in PCL, which was in good agreement with other monocot MBLs. Molecular modeling of PCL indicated that its three-dimensional structure resembles that of the snowdrop agglutinin. By docking, an active sialic acid-binding site was found in PCL. The instabilization of translation initiation region (TIR) in mRNA of PCL benefits its high expression in rhizomes.
Collapse
Affiliation(s)
- Jie An
- College of Life Science, Sichuan University, Chengdu 610064, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Blay WM, Gnanakaran S, Foley B, Doria-Rose NA, Korber BT, Haigwood NL. Consistent patterns of change during the divergence of human immunodeficiency virus type 1 envelope from that of the inoculated virus in simian/human immunodeficiency virus-infected macaques. J Virol 2006; 80:999-1014. [PMID: 16379001 PMCID: PMC1346845 DOI: 10.1128/jvi.80.2.999-1014.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have analyzed changes to proviral Env gp120 sequences and the development of neutralizing antibodies (NAbs) during 1 year of simian/human immunodeficiency virus SHIV-89.6P infection in 11 Macaca nemestrina macaques. Seven macaques had significant env divergence from that of the inoculum, and macaques with greater divergence had higher titers of homologous NAbs. Substitutions in sequons encoding potential N-linked glycosylation sites (PNGs) were among the first to be established, although overall the total number of sequons did not increase significantly. The majority (19 of 23) of PNGs present in the inoculum were conserved in the sequences from all macaques. Statistically significant variations in PNGs occurred in multiple macaques within constrained regions we term "hot spots," resulting in the selection of sequences more similar to the B consensus. These included additions on V1, the N-terminal side of V4, and the outer region of C2. Complex mutational patterns resulted in convergent PNG shifts in V2 and V5. Charge changes in Env V1V2, resulting in a net acidic charge, and a proline addition in V5 occurred in several macaques. Molecular modeling of the 89.6P sequence showed that the conserved glycans lie on the silent face of Env and that many are proximal to disulfide bonds, while PNG additions and shifts are proximal to the CD4 binding site. Nonsynonymous-to-synonymous substitution ratios suggest that these changes result from selective pressure. This longitudinal and cross-sectional study of mutations in human immunodeficiency virus (HIV) env in the SHIV background provides evidence that there are more constraints on the configuration of the glycan shield than were previously appreciated.
Collapse
Affiliation(s)
- W M Blay
- Department of Pathobiology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
107
|
De Clercq E. Recent highlights in the development of new antiviral drugs. Curr Opin Microbiol 2006; 8:552-60. [PMID: 16125443 PMCID: PMC7108330 DOI: 10.1016/j.mib.2005.08.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 08/15/2005] [Indexed: 11/18/2022]
Abstract
Twenty antiviral drugs, that is about half of those that are currently approved, are formally licensed for clinical use in the treatment of human immunodeficiency virus infections (acquired immune deficiency syndrome). The others are used in the treatment of herpesvirus (e.g. herpes simplex virus, varicella zoster virus and cytomegalo virus), hepatitis B virus, hepatitis C virus or influenza virus infections. Recent endeavours have focussed on the development of improved antiviral therapies for virus infections that have already proved amenable to antiviral drug treatment, as well as for virus infections for which, at present, no antiviral drugs have been formally approved (i.e. human papilloma viruses, adenoviruses, human herpesvirus type 6, poxviruses, severe acute respiratory syndrome coronavirus and hemorrhagic fever viruses).
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| |
Collapse
|
108
|
Abstract
Approximately 40 compounds have been formally licensed for clinical use as antiviral drugs, with half of these in use for the treatment of HIV infections. The remaining have been approved for use in the therapy of herpes virus (herpes simplex virus, varicella zoster virus and cytomegalovirus), hepadnavirus, hepacivirus and myxovirus (influenza and respiratory syncytial virus) infections. New compounds are in clinical development or under preclinical evaluation, and again, half of these are intended to target HIV infections. However, quite a number of important viral pathogens (i.e., human papillomavirus, hepatitis C virus and hemorrhagic fever viruses) remain in need of effective and/or improved antiviral therapies.
Collapse
Affiliation(s)
- Erik De Clercq
- Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| |
Collapse
|
109
|
Wang JH, Kong J, Li W, Molchanova V, Chikalovets I, Belogortseva N, Luk'yanov P, Zheng YT. A beta-galactose-specific lectin isolated from the marine worm Chaetopterus variopedatus possesses anti-HIV-1 activity. Comp Biochem Physiol C Toxicol Pharmacol 2006; 142:111-7. [PMID: 16316787 DOI: 10.1016/j.cbpc.2005.10.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2005] [Revised: 10/30/2005] [Accepted: 10/31/2005] [Indexed: 10/25/2022]
Abstract
A 30 kDa beta-galactose-specific lectin named CVL was isolated from the polychaete marine worm Chaetopterus variopedatus (Annelida) and its anti-HIV-1 activity in vitro was determined. Results showed that CVL inhibited cytopathic effect induced by HIV-1 and the production of viral p24 antigen. The EC(50) values were 0.0043 and 0.057 microM, respectively. Time-of-addition analysis of anti-HIV-1 activity indicated its action was at the early stage of virus replication. CVL could blocked the cell-to-cell fusion process of HIV infected and uninfected cells with an EC(50) of 0.073 microM. The inhibition of HIV-1 entry into host cells was demonstrated by using fluorescence-based real-time quantify PCR. At CVL concentration of 0.33 microM and 0.07 microM, 86% and 21% virus attachment were blocked, respectively. The anti-HIV-1 action of CVL might relate to blockade of HIV-1 entry into cells.
Collapse
Affiliation(s)
- Jian-Hua Wang
- Laboratory of Molecular Immunopharmacology, Kunming Institute of Zoology, Chinese Academy of Sciences, Yunnan, China
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Barral K, Balzarini J, Neyts J, De Clercq E, Hider RC, Camplo M. Synthesis and Antiviral Evaluation of Cyclic and Acyclic 2-Methyl-3-hydroxy-4-pyridinone Nucleoside Derivatives. J Med Chem 2005; 49:43-50. [PMID: 16392791 DOI: 10.1021/jm0504306] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of cyclic and acyclic nucleoside analogues derived from 3-hydroxy-4-pyridinone were synthesized using the Vorbrüggen reaction. Iron chelation studies, and antiviral evaluation against a broad panel of viruses, were performed. The pK(a) value of ligand 25 and the stability constant of the corresponding iron(III) complex were compared to those of deferiprone. The pFe(3+) values were found to be similar. Some compounds showed moderate activity against both wild-type HSV-1 and HSV-2, as well as against a thymidine kinase deficient strain of HSV-1. These results suggest a novel mode of action for this group of nucleoside analogues.
Collapse
Affiliation(s)
- Karine Barral
- Laboratoire des Matériaux Moléculaires et des Biomatériaux, GCOM2, UMR CNRS 6114, Université de la Méditerranée, case 901, 163 av. de Luminy, 13288 Marseille Cedex 9, France
| | | | | | | | | | | |
Collapse
|
111
|
Balzarini J, Van Laethem K, Hatse S, Froeyen M, Peumans W, Van Damme E, Schols D. Carbohydrate-binding Agents Cause Deletions of Highly Conserved Glycosylation Sites in HIV GP120. J Biol Chem 2005; 280:41005-14. [PMID: 16183648 DOI: 10.1074/jbc.m508801200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mannose-binding proteins derived from several plants (i.e. Hippeastrum hybrid and Galanthus nivalis agglutinin) or prokaryotes (i.e. cyanovirin-N) inhibit human immunodeficiency virus (HIV) replication and select for drug-resistant viruses that show profound deletion of N-glycosylation sites in the GP120 envelope (Balzarini, J., Van Laethem, K., Hatse, S., Vermeire, K., De Clercq, E., Peumans, W., Van Damme, E., Vandamme, A.-M., Bolmstedt, A., and Schols, D. (2004) J. Virol. 78, 10617-10627; Balzarini, J., Van Laethem, K., Hatse, S., Froeyen, M., Van Damme, E., Bolmstedt, A., Peumans, W., De Clercq, E., and Schols, D. (2005) Mol. Pharmacol. 67, 1556-1565). Here we demonstrated that the N-acetylglucosamine-binding protein from Urtica dioica (UDA) prevents HIV entry and eventually selects for viruses in which conserved N-glycosylation sites in GP120 were deleted. In contrast to the mannose-binding proteins, which have a 50-100-fold decreased antiviral activity against the UDA-exposed mutant viruses, UDA has decreased anti-HIV activity to a very limited extent, even against those mutant virus strains that lack at least 9 of 22 ( approximately 40%) glycosylation sites in their GP120 envelope. Therefore, UDA represents the prototype of a new conceptual class of carbohydrate-binding agents with an unusually specific and targeted drug resistance profile. It forces HIV to escape drug pressure by deleting the indispensable glycans on its GP120, thereby obligatorily exposing previously hidden immunogenic epitopes on its envelope.
Collapse
Affiliation(s)
- Jan Balzarini
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
112
|
Balzarini J. Targeting the glycans of gp120: a novel approach aimed at the Achilles heel of HIV. THE LANCET. INFECTIOUS DISEASES 2005; 5:726-31. [PMID: 16253890 DOI: 10.1016/s1473-3099(05)70271-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The development of drug resistance in HIV compromises the long-term efficacy of current therapies. Furthermore, vaccine development faces huge problems, mainly because of the low antigenicity and immunogenicity of the HIV envelope glycoprotein gp120 and the efficient hiding of highly immunogenic epitopes by its glycans. There is evidence that mutant HIV strains containing glycosylation site deletions trigger the production of specific neutralising antibodies to previously hidden gp120 epitopes. I present a hypothesis that development of resistance against drugs that target the glycans on gp120 would result in a marked enhancement of neutralisation of HIV by the immune system--ie, drugs directed against the carbohydrate component of gp120 will select for mutant virus strains that progressively gain deletions in the glycosylation sites of gp120. Previously hidden epitopes would then be uncovered, and the virus will become highly susceptible to markedly increased immunological neutralisation. I believe this novel approach may become an entirely new therapeutic concept that exploits the high mutation rate of HIV and allows drug therapy to act in concert with a triggered immune response to suppress HIV more efficiently. Moreover, this approach could be applied to treat other chronic infections by viruses that contain a glycosylated envelope (eg, hepatitis B and C).
Collapse
Affiliation(s)
- Jan Balzarini
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
113
|
Turville SG, Vermeire K, Balzarini J, Schols D. Sugar-binding proteins potently inhibit dendritic cell human immunodeficiency virus type 1 (HIV-1) infection and dendritic-cell-directed HIV-1 transfer. J Virol 2005; 79:13519-27. [PMID: 16227272 PMCID: PMC1262561 DOI: 10.1128/jvi.79.21.13519-13527.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Both endocytic uptake and viral fusion can lead to human immunodeficiency virus type 1 (HIV-1) transfer to CD4+ lymphocytes, either through directional regurgitation (infectious transfer in trans [I-IT]) or through de novo viral production in dendritic cells (DCs) resulting in a second-phase transfer to CD4+ lymphocytes (infectious second-phase transfer [I-SPT]). We have evaluated in immature monocyte-derived DCs both pathways of transfer with regard to their susceptibilities to being blocked by potential microbicidal compounds, including cyanovirin (CNV); the plant lectins Hippeastrum hybrid agglutinin, Galanthus nivalis agglutinin, Urtica dioica agglutinin, and Cymbidium hybrid agglutinin; and the glycan mannan. I-IT was a relatively inefficient means of viral transfer compared to I-SPT at both high and low levels of the viral inoculum. CNV was able to completely block I-IT at 15 microg/ml. All other compounds except mannan could inhibit I-IT by at least 90% when used at doses of 15 microg/ml. In contrast, efficient inhibition of I-SPT was remarkably harder to achieve, as 50% effective concentration levels for plant lectins and CNV to suppress this mode of HIV-1 transfer increased significantly. Thus, our findings indicate that I-SPT may be more elusive to targeting by antiviral drugs and stress the need for drugs affecting the pronounced inhibition of the infection of DCs by HIV-1.
Collapse
Affiliation(s)
- Stuart G Turville
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
114
|
Vermeire K, Schols D. Anti-HIV agents targeting the interaction of gp120 with the cellular CD4 receptor. Expert Opin Investig Drugs 2005; 14:1199-212. [PMID: 16185162 DOI: 10.1517/13543784.14.10.1199] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Perhaps one of the most effective approaches to prevent and inhibit viral infections is to block host cell receptors that are used by viruses to gain cell entry. Major advances have been made over the past decade in the understanding of the molecular mechanism of HIV entry into target cells. A crucial step in this entry process is the interaction of the external HIV envelope glycoprotein, gp120, with the cellular CD4 receptor molecule. This binding step represents a potential target for new antiviral agents, and current efforts to develop safe and effective HIV entry inhibitors are focused on natural ligands and/or monoclonal antibodies that interfere with gp120/CD4 interaction. Also, small synthetic compounds obtained either by high-throughput screening of large compound libraries or by structure-guided rational design have recently entered the antiretroviral arena. In this review, the anti-HIV activity of novel entry inhibitors targeting gp120/CD4 interaction is outlined, and special attention is given to the cyclotriazadisulfonamide compounds, which are the most specific CD4-targeted antiviral drugs described so far.
Collapse
Affiliation(s)
- Kurt Vermeire
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | | |
Collapse
|
115
|
Balzarini J, Van Damme L. Intravaginal and intrarectal microbicides to prevent HIV infection. CMAJ 2005; 172:461-4. [PMID: 15710933 PMCID: PMC548403 DOI: 10.1503/cmaj.1041462] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Jan Balzarini
- Rega Institute for Medical Research, Leuven, Belgium
| | | |
Collapse
|
116
|
Abstract
There are now exactly 20 anti-HIV drugs licenced (approved) for clinical use, and > 30 anti-HIV compounds under (pre)clinical development. The licensed anti-HIV drugs fall into five categories: nucleoside reverse transcriptase inhibitors (NRTIs: zidovudine, didanosine, zalcitabine, stavudine, lamivudine, abacavir and emtricitabine); nucleotide reverse transcriptase inhibitors (NtRTIs: tenofovir disoproxil fumarate); non-nucleoside reverse transcriptase inhibitors (NNRTIs: nevirapine, delavirdine and efavirenz); protease inhibitors (PIs: saquinavir, indinavir, ritonavir, nelfinavir, amprenavir, lopinavir, atazanavir and fosamprenavir); and fusion inhibitors (FIs: enfuvirtide). The compounds that are currently under clinical (Phase I, II or III) or preclinical investigation are either targeted at the same specific viral proteins as the licensed compounds (i.e., reverse transcriptase [NRTIs: PSI-5004, (-)-dOTC, DPC-817, elvucitabine, alovudine, MIV-210, amdoxovir, DOT; NNRTIs: thiocarboxanilide, UC-781, capravirine, dapivirine, etravirine, rilpivirine], protease [PIs: tipranavir, TMC-114]) or other specific viral proteins (i.e., gp120: cyanovirin N; attachment inhibitors: AIs, such as BMS-488043; integrase: L-870,812, PDPV-165; capsid proteins: PA-457, alpha-HCG); or cellular proteins (CD4 downmodulators: CADAs; CXCR4 antagonists: AMD-070, CS-3955; CCR5 antagonists: TAK-220, SCH-D, AK-602, UK-427857). Combination therapy is likely to remain the gold standard for the treatment of AIDS so as to maximise potency, minimise toxicity and diminish the risk for resistance development. Ideally, pill burden should be reduced to once-daily dosing so as to optimise the patient's compliance and reduce the treatment costs.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, K.U.Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| |
Collapse
|
117
|
Balzarini J, Van Laethem K, Hatse S, Froeyen M, Van Damme E, Bolmstedt A, Peumans W, De Clercq E, Schols D. Marked depletion of glycosylation sites in HIV-1 gp120 under selection pressure by the mannose-specific plant lectins of Hippeastrum hybrid and Galanthus nivalis. Mol Pharmacol 2005; 67:1556-65. [PMID: 15718224 DOI: 10.1124/mol.104.005082] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The plant lectins from Hippeastrum hybrid (HHA) and Galanthus nivalis (GNA) are 50,000-D tetramers showing specificity for alpha-(1,3) and/or alpha-(1,6)-mannose oligomers. They inhibit HIV-1 infection at a 50% effective concentration of 0.2 to 0.3 microg/ml. Escalating HHA or GNA concentrations (up to 500 microg/ml) led to the isolation of three HIV-1(III(B)) strains in CEM T cell cultures that were highly resistant to HHA and GNA, several other related mannose-specific plant lectins, and the monoclonal antibody 2G12, modestly resistant to the mannose-specific cyanovirin, which is derived from a blue-green alga, but fully susceptible to other HIV entry inhibitors as well as HIV reverse transcriptase inhibitors. These mutant virus strains were devoid of up to seven or eight of 22 glycosylation sites in the viral envelope glycoprotein gp120 because of mutations at the Asn or Thr/Ser sites of the N-glycosylation motifs. In one of the strains, a novel glycosylation site was created near a deleted glycosylation site. The affected glycosylation sites were predominantly clustered in regions of gp120 that are not involved in the direct interaction with either CD4, CCR5, CXCR4, or gp41. The mutant viruses containing the deleted glycosylation sites were markedly more infectious in CEM T-cell cultures than wild-type virus.
Collapse
Affiliation(s)
- Jan Balzarini
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| |
Collapse
|
119
|
Balzarini J, Van Laethem K, Hatse S, Vermeire K, De Clercq E, Peumans W, Van Damme E, Vandamme AM, Bölmstedt A, Schols D, Böhlmstedt A. Profile of resistance of human immunodeficiency virus to mannose-specific plant lectins. J Virol 2004; 78:10617-27. [PMID: 15367629 PMCID: PMC516383 DOI: 10.1128/jvi.78.19.10617-10627.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mannose-specific plant lectins from the Amaryllidaceae family (e.g., Hippeastrum sp. hybrid and Galanthus nivalis) inhibit human immunodeficiency virus (HIV) infection of human lymphocytic cells in the higher nanogram per milliliter range and suppress syncytium formation between persistently HIV type 1 (HIV-1)-infected cells and uninfected CD4(+) T cells. These lectins inhibit virus entry. When exposed to escalating concentrations of G. nivalis and Hippeastrum sp. hybrid agglutinin, a variety of HIV-1(III(B)) strains were isolated after 20 to 40 subcultivations which showed a decreased sensitivity to the plant lectins. Several amino acid changes in the envelope glycoprotein gp120, but not in gp41, of the mutant virus isolates were observed. The vast majority of the amino acid changes occurred at the N glycosylation sites and at the S or T residues that are part of the N glycosylation motif. The degree of resistance to the plant lectins was invariably correlated with an increasing number of mutated glycosylation sites in gp120. The nature of these mutations was entirely different from that of mutations that are known to appear in HIV-1 gp120 under the pressure of other viral entry inhibitors such as dextran sulfate, bicyclams (i.e., AMD3100), and chicoric acid, which also explains the lack of cross-resistance of plant lectin-resistant viruses to any other HIV inhibitor including T-20 and the blue-green algae (cyanobacteria)-derived mannose-specific cyanovirin. The plant lectins represent a well-defined class of anti-HIV (microbicidal) drugs with a novel HIV drug resistance profile different from those of other existing anti-HIV drugs.
Collapse
|