101
|
Abstract
In contrast to viruses of plants and animals, viruses of fungi, mycoviruses, uniformly lack an extracellular phase to their replication cycle. The persistent, intracellular nature of the mycovirus life cycle presents technical challenges to experimental design. However, these properties, coupled with the relative simplicity and evolutionary position of the fungal host, also provide opportunities for examining fundamental aspects of virus-host interactions from a perspective that is quite different from that pertaining for most plant and animal virus infections. This chapter presents support for this view by describing recent advances in the understanding of antiviral defense responses against one group of mycoviruses for which many of the technical experimental challenges have been overcome, the hypoviruses responsible for hypovirulence of the chestnut blight fungus Cryphonectria parasitica. The findings reveal new insights into the induction and suppression of RNA silencing as an antiviral defense response and an unexpected role for RNA silencing in viral RNA recombination.
Collapse
Affiliation(s)
- Donald L Nuss
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| |
Collapse
|
102
|
Li L, Chang SS, Liu Y. RNA interference pathways in filamentous fungi. Cell Mol Life Sci 2010; 67:3849-63. [PMID: 20680389 PMCID: PMC4605205 DOI: 10.1007/s00018-010-0471-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/01/2010] [Accepted: 07/14/2010] [Indexed: 11/28/2022]
Abstract
RNA interference is a conserved homology-dependent post-transcriptional/transcriptional gene silencing mechanism in eukaryotes. The filamentous fungus Neurospora crassa is one of the first organisms used for RNAi studies. Quelling and meiotic silencing by unpaired DNA are two RNAi-related phenomena discovered in Neurospora, and their characterizations have contributed significantly to our understanding of RNAi mechanisms in eukaryotes. A type of DNA damage-induced small RNA, microRNA-like small RNAs and Dicer-independent small silencing RNAs were recently discovered in Neurospora. In addition, there are at least six different pathways responsible for the production of these small RNAs, establishing this fungus as an important model system to study small RNA function and biogenesis. The studies in Cryphonectria, Mucor, Aspergillus and other species indicate that RNAi is widely conserved in filamentous fungi and plays important roles in genome defense. This review summarizes our current understanding of RNAi pathways in filamentous fungi.
Collapse
Affiliation(s)
- Liande Li
- Department of Physiology, ND13.214A, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9040 USA
| | - Shwu-shin Chang
- Department of Physiology, ND13.214A, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9040 USA
| | - Yi Liu
- Department of Physiology, ND13.214A, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9040 USA
| |
Collapse
|
103
|
Urayama S, Kato S, Suzuki Y, Aoki N, Le MT, Arie T, Teraoka T, Fukuhara T, Moriyama H. Mycoviruses related to chrysovirus affect vegetative growth in the rice blast fungus Magnaporthe oryzae. J Gen Virol 2010; 91:3085-94. [DOI: 10.1099/vir.0.025411-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
104
|
Jamal A, Bignell EM, Coutts RHA. Complete nucleotide sequences of four dsRNAs associated with a new chrysovirus infecting Aspergillus fumigatus. Virus Res 2010; 153:64-70. [PMID: 20621139 DOI: 10.1016/j.virusres.2010.07.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 07/01/2010] [Accepted: 07/05/2010] [Indexed: 12/26/2022]
Abstract
A new double-stranded RNA (dsRNA) virus designated A. fumigatus chrysovirus (AfuCV), belonging to the family Chrysoviridae, has been identified in the filamentous fungus Aspergillus fumigatus. The virus was detected in five of 390 A. fumigatus isolates screened. Analysis of purified dsRNA revealed four distinct species 3560, 3159, 3006 and 2863 base pairs in length (dsRNAs 1-4) which were cloned and sequenced. Each dsRNA contains a single open reading frame (ORF) with short 5' and 3' untranslated regions containing strictly conserved termini. The deduced 1114 amino acid (aa) protein (molecular mass=128 kDa) encoded by the dsRNA1 ORF showed homology to the RNA-dependent RNA polymerase (RdRP) of viruses belonging to the Chrysoviridae. Eight motifs characteristic of RdRPs were identified. The dsRNA2 ORF encodes the putative coat protein subunit (953aa; molecular mass=107 kDa). The dsRNA3 and dsRNA4 ORFs respectively encode putative proteins (891aa, molecular mass=99 kDa) and (847aa, molecular mass=95 kDa), both of which have significant similarity to proteins encoded by comparable chrysovirus dsRNAs. The dsRNA profile, amino acid sequence alignments, and phylogenetic analyses all indicate that AfuCV is a new species within the family Chrysoviridae.
Collapse
Affiliation(s)
- Atif Jamal
- Division of Biology, Faculty of Natural Sciences Imperial College London, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
105
|
van de Sande WWJ, Lo-Ten-Foe JR, van Belkum A, Netea MG, Kullberg BJ, Vonk AG. Mycoviruses: future therapeutic agents of invasive fungal infections in humans? Eur J Clin Microbiol Infect Dis 2010; 29:755-63. [PMID: 20437251 DOI: 10.1007/s10096-010-0946-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 04/12/2010] [Indexed: 12/22/2022]
Abstract
Invasive fungal infections are relatively common opportunistic infections in immunocompromised patients and are still associated with a high mortality rate. Furthermore, these infections are often complicated by resistance or refractoriness to current antimicrobial agents. Therefore, an urgent need exists for new therapeutic strategies based on the identification of new microbial targets and novel antimicrobial agents. One such hypothetical therapeutic strategy may involve the use of mycoviruses that are able to selectively infect fungi. Current knowledge of mycoviruses of human pathogenic fungi and the scope for using (recombinant) mycoviruses as future biological control agents are reviewed here.
Collapse
Affiliation(s)
- W W J van de Sande
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam, s-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
106
|
Himeno M, Maejima K, Komatsu K, Ozeki J, Hashimoto M, Kagiwada S, Yamaji Y, Namba S. Significantly low level of small RNA accumulation derived from an encapsidated mycovirus with dsRNA genome. Virology 2009; 396:69-75. [PMID: 19878965 DOI: 10.1016/j.virol.2009.10.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 08/30/2009] [Accepted: 10/04/2009] [Indexed: 01/16/2023]
Abstract
The role of RNA silencing as an antiviral defence has been well elucidated in plants and invertebrates, but not in filamentous fungi. We have previously determined the complete genome sequence of Magnaporthe oryzae virus 2 (MoV2), a dsRNA virus that infects the rice blast fungus Magnaporthe oryzae. In this study, we detected small interfering RNAs (siRNAs) from both positive- and negative-strand MoV2 viral RNA, suggesting that the RNA silencing machinery in M. oryzae functions against the mycovirus. Cloning and characterisation of MoV2 siRNAs indicated that, in MoV2, the ratio of virus-derived siRNAs to total small RNA is significantly lower than that in either plant viruses or Cryphonectria hypovirus 1 (CHV1), another mycovirus. Nevertheless, any MoV2-encoded proteins did not exhibit RNA silencing suppressor activity in both the plant and fungal systems. Our study suggests the existence of a novel viral strategy employed to evade host RNA silencing.
Collapse
Affiliation(s)
- Misako Himeno
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | |
Collapse
|
107
|
A single Argonaute gene is required for induction of RNA silencing antiviral defense and promotes viral RNA recombination. Proc Natl Acad Sci U S A 2009; 106:17927-32. [PMID: 19822766 DOI: 10.1073/pnas.0907552106] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Dicer gene dcl2, required for the RNA silencing antiviral defense response in the chestnut blight fungus Cryphonectria parasitica, is inducible upon mycovirus infection and promotes viral RNA recombination. We now report that the antiviral defense response requires only one of the four C. parasitica Argonaute-like protein genes, agl2. The agl2 gene is required for the virus-induced increase in dcl2 transcript accumulation. Agl2 and dcl2 transcripts accumulated to much higher levels in response to hairpin RNA production or infection by a mutant CHV1-EP713 hypovirus lacking the suppressor of RNA silencing p29 than to wild-type CHV1-EP713. Similar results were obtained for an agl2-promoter/EGFP-reporter construct, indicating that p29-mediated repression of agl2 transcript accumulation is promoter-dependent. Significantly, the agl2 deletion mutant exhibited stable maintenance of non-viral sequences in recombinant hypovirus RNA virus vectors and the absence of hypovirus-defective interfering (DI) RNA production. These results establish a key role for an Argonaute gene in the induction of an RNA silencing antiviral defense response and the promotion of viral RNA recombination. They also provide evidence for a mechanism by which a virus-encoded RNA silencing suppressor represses the transcriptional induction of an RNA silencing component.
Collapse
|
108
|
The RNA interference-virus interplay: tools of nature for gene modulation, morphogenesis, evolution and a possible mean for aflatoxin control. Appl Microbiol Biotechnol 2009; 83:611-5. [PMID: 19466405 DOI: 10.1007/s00253-009-2007-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 04/08/2009] [Accepted: 04/08/2009] [Indexed: 11/27/2022]
Abstract
This article points out, that viruses, in an interplay with RNA interference and as vehicles for intergenic and interspecies gene transfer, may work as agents for intracellular gene modulation, for steering of individual morphogenesis and as a driving force of evolution in the toolbox of nature. This is illustrated in particular in the light of a fungal double-stranded RNA virus that may be employed as a suitable agent for a biological control of aflatoxins, the most carcinogenic natural substances occurring in food and feedstuff.
Collapse
|
109
|
Aoki N, Moriyama H, Kodama M, Arie T, Teraoka T, Fukuhara T. A novel mycovirus associated with four double-stranded RNAs affects host fungal growth in Alternaria alternata. Virus Res 2009; 140:179-87. [PMID: 19118588 DOI: 10.1016/j.virusres.2008.12.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Revised: 11/30/2008] [Accepted: 12/04/2008] [Indexed: 01/01/2023]
Abstract
Four double-stranded RNAs (dsRNAs), referred to as dsRNA 1 (3617 bp), dsRNA 2 (2794 bp), dsRNA 3 (2576 bp) and dsRNA 4 (1420 bp), were detected in the EGS 35-193 strain of Alternaria alternata at high concentration ( approximately 3 microg/g dried mycelium). This strain had an impaired growth phenotype. By exposing the strain to cycloheximide during hyphal tip isolation, we isolated strains which had normal mycelial growth and pigmentation, in which decreased levels of the dsRNAs were observed ( approximately 0.3 microg/g dried mycelium). These results indicate that this dsRNA mycovirus might be involved in modulating traits of its fungal host, A. alternata. The buoyant density of isometric virus particles (about 33 nm in diameter) containing these dsRNAs in CsCl was 1.35-1.40 g/cm(3) depending on the size of the packaged dsRNAs. The dsRNA 1 encodes a single open reading frame (3447 nt) containing the conserved motifs of viral RNA-dependent RNA polymerase (RdRp), which is related to the ORF encoded by dsRNA 1 of Aspergillus mycovirus 341. It is noteworthy that all of the coding strands of the four dsRNA genomes have 3'-poly (A) tails ranging from 33 to 50 nt in length. We named this novel dsRNA mycovirus in the EGS 35-193 strain A. alternata virus-1 (AaV-1).
Collapse
Affiliation(s)
- Nanako Aoki
- Laboratories of Molecular and Cellular Biology, Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | | | |
Collapse
|
110
|
Obbard DJ, Gordon KHJ, Buck AH, Jiggins FM. The evolution of RNAi as a defence against viruses and transposable elements. Philos Trans R Soc Lond B Biol Sci 2009; 364:99-115. [PMID: 18926973 PMCID: PMC2592633 DOI: 10.1098/rstb.2008.0168] [Citation(s) in RCA: 335] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
RNA interference (RNAi) is an important defence against viruses and transposable elements (TEs). RNAi not only protects against viruses by degrading viral RNA, but hosts and viruses can also use RNAi to manipulate each other's gene expression, and hosts can encode microRNAs that target viral sequences. In response, viruses have evolved a myriad of adaptations to suppress and evade RNAi. RNAi can also protect cells against TEs, both by degrading TE transcripts and by preventing TE expression through heterochromatin formation. The aim of our review is to summarize and evaluate the current data on the evolution of these RNAi defence mechanisms. To this end, we also extend a previous analysis of the evolution of genes of the RNAi pathways. Strikingly, we find that antiviral RNAi genes, anti-TE RNAi genes and viral suppressors of RNAi all evolve rapidly, suggestive of an evolutionary arms race between hosts and parasites. Over longer time scales, key RNAi genes are repeatedly duplicated or lost across the metazoan phylogeny, with important implications for RNAi as an immune defence.
Collapse
Affiliation(s)
- Darren J Obbard
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, Edinburgh EH9 3JT, UK.
| | | | | | | |
Collapse
|
111
|
Nakayashiki H, Nguyen QB. RNA interference: roles in fungal biology. Curr Opin Microbiol 2008; 11:494-502. [PMID: 18955156 DOI: 10.1016/j.mib.2008.10.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Revised: 09/26/2008] [Accepted: 10/01/2008] [Indexed: 12/30/2022]
Abstract
The discovery of RNA interference (RNAi) has been the major recent breakthrough in biology. Only a few years after its discovery, RNAi has rapidly become a powerful reverse genetic tool, especially in organisms where gene targeting is inefficient and/or time-consuming. In filamentous fungi, RNAi is not currently used as widely as is gene targeting by homologous recombination that works with practical efficiencies in most model fungal species. However, to explore gene function in filamentous fungi, RNAi has the potential to offer new, efficient tools that gene disruption methods cannot provide. In this review, possible advantages and disadvantages of RNAi for fungal biology in the postgenomics era will be discussed. In addition, we will briefly review recent discoveries on RNAi-related biological phenomena (RNA silencing) in fungi.
Collapse
Affiliation(s)
- Hitoshi Nakayashiki
- Laboratory of Plant Pathology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| | | |
Collapse
|
112
|
RNA silencing gene truncation in the filamentous fungus Aspergillus nidulans. EUKARYOTIC CELL 2007; 7:339-49. [PMID: 18065653 DOI: 10.1128/ec.00355-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The genus Aspergillus is ideally suited for the investigation of RNA silencing evolution because it includes species that have experienced a variety of RNA silencing gene changes. Our work on this subject begins here with the model species Aspergillus nidulans. Filamentous ascomycete fungi generally each encode two of the core RNA silencing proteins, Dicer and Argonaute, but A. nidulans appears to have lost one of each to gene truncation events. Although a role in growth, development, or RNA silencing was not detected for the truncated genes, they do produce spliced and poly(A)-tailed transcripts, suggesting that they may have an undetermined biological function. Population analysis demonstrates that the truncated genes are fixed at the species level and that their full-length orthologs in a closely related species are also unstable. With these gene truncation events, A. nidulans encodes only a single intact Dicer and Argonaute. Their deletion results in morphologically and reproductively normal strains that are incapable of experimental RNA silencing. Thus, our results suggest that the remaining A. nidulans RNA silencing genes have a "nonhousekeeping" function, such as defense against viruses and transposons.
Collapse
|