101
|
Stabb EV, Ruby EG. Contribution of pilA to competitive colonization of the squid Euprymna scolopes by Vibrio fischeri. Appl Environ Microbiol 2003; 69:820-6. [PMID: 12571000 PMCID: PMC143614 DOI: 10.1128/aem.69.2.820-826.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio fischeri colonizes the squid Euprymna scolopes in a mutualistic symbiosis. Hatchling squid lack these bacterial symbionts, and V. fischeri strains must compete to occupy this privileged niche. We cloned a V. fischeri gene, designated pilA, that contributes to colonization competitiveness and encodes a protein similar to type IV-A pilins. Unlike its closest known relatives, Vibrio cholerae mshA and vcfA, pilA is monocistronic and not clustered with genes associated with pilin export or assembly. Using wild-type strain ES114 as the parent, we generated an in-frame pilA deletion mutant, as well as pilA mutants marked with a kanamycin resistance gene. In mixed inocula, marked mutants were repeatedly outcompeted by ES114 (P < 0.05) but not by an unmarked pilA mutant, for squid colonization. In contrast, the ratio of mutant to ES114 CFUs did not change during 70 generations of coculturing. The competitive defect of pilA mutants ranged from 1.7- to 10-fold and was more pronounced when inocula were within the range estimated for V. fischeri populations in Hawaiian seawater (200 to 2,000 cells/ml) than when higher densities were used. ES114 also outcompeted a pilA mutant by an average of twofold at lower inoculum densities, when only a fraction of the squid became infected, most by only one strain. V. fischeri strain ET101, which was isolated from Euprymna tasmanica and is outcompeted by ES114, lacks pilA; however, 11 other diverse V. fischeri isolates apparently possess pilA. The competitive defect of pilA mutants suggests that cell surface molecules may play important roles in the initiation of beneficial symbioses in which animals must acquire symbionts from a mixed community of environmental bacteria.
Collapse
Affiliation(s)
- Eric V Stabb
- Pacific Biomedical Research Center, University of Hawaii, Honolulu, Hawaii 96813, USA.
| | | |
Collapse
|
102
|
Abstract
Twitching motility is a flagella-independent form of bacterial translocation over moist surfaces. It occurs by the extension, tethering, and then retraction of polar type IV pili, which operate in a manner similar to a grappling hook. Twitching motility is equivalent to social gliding motility in Myxococcus xanthus and is important in host colonization by a wide range of plant and animal pathogens, as well as in the formation of biofilms and fruiting bodies. The biogenesis and function of type IV pili is controlled by a large number of genes, almost 40 of which have been identified in Pseudomonas aeruginosa. A number of genes required for pili assembly are homologous to genes involved in type II protein secretion and competence for DNA uptake, suggesting that these systems share a common architecture. Twitching motility is also controlled by a range of signal transduction systems, including two-component sensor-regulators and a complex chemosensory system.
Collapse
Affiliation(s)
- John S Mattick
- ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane Qld. 4072, Australia.
| |
Collapse
|
103
|
Fullner KJ, Boucher JC, Hanes MA, Haines GK, Meehan BM, Walchle C, Sansonetti PJ, Mekalanos JJ. The contribution of accessory toxins of Vibrio cholerae O1 El Tor to the proinflammatory response in a murine pulmonary cholera model. J Exp Med 2002; 195:1455-62. [PMID: 12045243 PMCID: PMC2193536 DOI: 10.1084/jem.20020318] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The contribution of accessory toxins to the acute inflammatory response to Vibrio cholerae was assessed in a murine pulmonary model. Intranasal administration of an El Tor O1 V. cholerae strain deleted of cholera toxin genes (ctxAB) caused diffuse pneumonia characterized by infiltration of PMNs, tissue damage, and hemorrhage. By contrast, the ctxAB mutant with an additional deletion in the actin-cross-linking repeats-in-toxin (RTX) toxin gene (rtxA) caused a less severe pathology and decreased serum levels of proinflammatory molecules interleukin (IL)-6 and murine macrophage inflammatory protein (MIP)-2. These data suggest that the RTX toxin contributes to the severity of acute inflammatory responses. Deletions within the genes for either hemagglutinin/protease (hapA) or hemolysin (hlyA) did not significantly affect virulence in this model. Compound deletion of ctxAB, hlyA, hapA, and rtxA created strain KFV101, which colonized the lung but induced pulmonary disease with limited inflammation and significantly reduced serum titers of IL-6 and MIP-2. 100% of mice inoculated with KFV101 survive, compared with 20% of mice inoculated with the ctxAB mutant. Thus, the reduced virulence of KFV101 makes it a prototype for multi-toxin deleted vaccine strains that could be used for protection against V. cholerae without the adverse effects of the accessory cholera toxins.
Collapse
Affiliation(s)
- Karla Jean Fullner
- Departments of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Morton 6-626, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Tauschek M, Gorrell RJ, Strugnell RA, Robins-Browne RM. Identification of a protein secretory pathway for the secretion of heat-labile enterotoxin by an enterotoxigenic strain of Escherichia coli. Proc Natl Acad Sci U S A 2002; 99:7066-71. [PMID: 12011463 PMCID: PMC124529 DOI: 10.1073/pnas.092152899] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2001] [Accepted: 03/14/2002] [Indexed: 11/18/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an enteric pathogen that causes cholera-like diarrhea in humans and animals. ETEC secretes a heat-labile enterotoxin (LT), which resembles cholera toxin, but the actual mechanism of LT secretion is presently unknown. We have identified a previously unrecognized type II protein secretion pathway in the prototypic human ETEC strain, H10407 (serotype O78:H11). The genes for this pathway are absent from E. coli K-12, although examination of the K-12 genome suggests that it probably once possessed them. The secretory pathway bears significant homology at the amino acid level to the type II protein secretory pathway required by Vibrio cholerae for the secretion of cholera toxin. With this in mind, we determined whether the homologous pathway of E. coli H10407 played a role in the secretion of LT. To this end, we inactivated the pathway by inserting a kanamycin-resistance gene into one of the genes (gspD) of the type II secretion pathway by homologous recombination. LT secretion by E. coli H10407 and the gspD mutant was assayed by enzyme immunoassay, and its biological activity was assessed by using Y-1 adrenal cells. This investigation showed that the protein secretory pathway is functional and necessary for the secretion of LT by ETEC. Our findings have revealed the mechanism for the secretion of LT by ETEC, which previously was unknown, and provide further evidence of close biological similarities of the LT and cholera toxin.
Collapse
Affiliation(s)
- Marija Tauschek
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia
| | | | | | | |
Collapse
|
105
|
Buddelmeijer N, Judson N, Boyd D, Mekalanos JJ, Beckwith J. YgbQ, a cell division protein in Escherichia coli and Vibrio cholerae, localizes in codependent fashion with FtsL to the division site. Proc Natl Acad Sci U S A 2002; 99:6316-21. [PMID: 11972052 PMCID: PMC122946 DOI: 10.1073/pnas.092128499] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
YgbQ is a cell division protein in Escherichia coli and Vibrio cholerae. In E. coli the ygbQ gene was discovered as a result of a computer search of the E. coli genome designed to find potential interacting partners for cell division protein FtsL. In V. cholerae, ygbQ was identified as an essential gene by using a transposon that fuses genes to an arabinose promoter. The role of YgbQ in cell division is supported by the following. Cells depleted of YgbQ in both organisms form long filaments, but DNA segregation is not affected. YgbQ localizes to the constriction site in wild-type E. coli cells. Localization of E. coli YgbQ to the constriction site depends on cell division proteins FtsQ and FtsL but not FtsW and FtsI, placing YgbQ in the sequential dependency order of proteins localizing to the division site. Localization of green fluorescent protein-FtsL also depends on YgbQ, indicating that FtsL and YgbQ colocalize to the division site in E. coli. Our results show colocalization of proteins to the bacterial midcell in E. coli and raise the possibility that these proteins interact in a coiled-coil structure.
Collapse
Affiliation(s)
- Nienke Buddelmeijer
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
106
|
Toma C, Kuroki H, Nakasone N, Ehara M, Iwanaga M. Minor pilin subunits are conserved in Vibrio cholerae type IV pili. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2002; 33:35-40. [PMID: 11985966 DOI: 10.1111/j.1574-695x.2002.tb00569.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nucleotide sequences of five open reading frames within the Vibrio cholerae NAGV14 type IV pilus gene cluster were determined. The genes showed high homology to the mannose-sensitive hemagglutinin (MSHA) pilus genes mshB, mshC, mshD, mshO and mshP. PCR analysis showed that a MSHA-like gene cluster is highly conserved among different V. cholerae strains, with the exception of the previously reported major pilin subunit. Recombinant MshB and MshO proteins were purified and specific antiserum was raised to each of them. Western blotting analyses showed that these antisera reacted with purified NAGV14 and MSHA pili. The results suggested that MshB and MshO are minor components of the pilus fiber. Although there was no cross-reaction between the major pilin subunits of NAGV14 and MSHA pili, minor components seemed to be highly homologous and immunologically cross-reactive.
Collapse
Affiliation(s)
- Claudia Toma
- Department of Bacteriology, Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan.
| | | | | | | | | |
Collapse
|
107
|
Scott ME, Dossani ZY, Sandkvist M. Directed polar secretion of protease from single cells of Vibrio cholerae via the type II secretion pathway. Proc Natl Acad Sci U S A 2001; 98:13978-83. [PMID: 11698663 PMCID: PMC61152 DOI: 10.1073/pnas.241411198] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteria have long been thought of as little more than sacks of homogeneously distributed enzymes. However, recent cytological studies indicate that bacteria are compartmentalized with proteins involved in processes such as cell division, motility, chemotaxis, and development located at distinct sites. We have used the green fluorescent protein as a reporter to determine the cellular distribution of the extracellular protein secretion (eps)-encoded type II secretion complex responsible for extracellular secretion of cholera toxin and hemagglutinin/protease in Vibrio cholerae. Real-time monitoring of green fluorescent protein fused to EpsM in living cells indicated that, like the single polar flagellum, the Eps complex is located at the old pole after cell division. Eps-dependent protease secretion was also visualized in single cells by fluorescence microscopy by using intramolecularly quenched casein. This analysis demonstrated that active protease secretion is focused at the poles and colocalizes with the site of the polar Eps apparatus. These results suggest that the type II secretion complex is responsible for directed delivery of virulence factors during cholera pathogenesis.
Collapse
Affiliation(s)
- M E Scott
- Department of Biochemistry, American Red Cross, Jerome H. Holland Laboratory, 15601 Crabbs Branch Way, Rockville, MD 20855, USA
| | | | | |
Collapse
|
108
|
Fullner KJ, Lencer WI, Mekalanos JJ. Vibrio cholerae-induced cellular responses of polarized T84 intestinal epithelial cells are dependent on production of cholera toxin and the RTX toxin. Infect Immun 2001; 69:6310-7. [PMID: 11553575 PMCID: PMC98766 DOI: 10.1128/iai.69.10.6310-6317.2001] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To study the utility of in vitro-polarized intestinal cell monolayers for modeling Vibrio cholerae-host cell interactions, we added live V. cholerae bacteria to the apical surfaces of polarized T84 cell monolayers and monitored changes in electrical properties. We found that both classical and El Tor strains produce cholera toxin after addition to the monolayer, but induction is most likely due to medium components rather than bacterium-cell interactions. We also found that the RTX toxin is produced by El Tor strains. This toxin caused a loss of the barrier function of the paracellular tight junction that was measured as a decrease in transepithelial resistance. This decrease occurred when bacteria were added to either the apical or basolateral surfaces, indicating that the RTX toxin receptor is expressed on both surfaces. These results are discussed with regard to the applicability of the polarized T84 cell monolayers as an in vitro model of host-pathogen interactions.
Collapse
Affiliation(s)
- K J Fullner
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
109
|
Affiliation(s)
- M Sandkvist
- Jerome H. Holland Laboratory, Department of Biochemistry, American Red Cross, Rockville, Maryland 20855, USA.
| |
Collapse
|
110
|
Brown II, Häse CC. Flagellum-independent surface migration of Vibrio cholerae and Escherichia coli. J Bacteriol 2001; 183:3784-90. [PMID: 11371543 PMCID: PMC95256 DOI: 10.1128/jb.183.12.3784-3790.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2000] [Accepted: 03/19/2001] [Indexed: 11/20/2022] Open
Abstract
Surface translocation has been described in a large variety of microorganisms, including some gram-negative enteric bacteria. Here, we describe the novel observation of the flagellum-independent migration of Vibrio cholerae and Escherichia coli on semisolid surfaces with remarkable speeds. Important aspects of this motility are the form of inoculation, the medium composition, and the use of agarose rather than agar. Mutations in several known regulatory or surface structure proteins, such as ToxR, ToxT, TCP, and PilA, did not affect migration, whereas a defect in lipopolysaccharide biosynthesis prevented translocation. We propose that the observed surface migration is an active process, since heat, protease, or chloramphenicol treatments of the cells have strong negative effects on this phenotype. Furthermore, several V. cholerae strains strongly expressing the hemagglutinin/protease but not their isogenic hap-negative mutants, lacked the ability of surface motility, and the treatment of migrating strains with culture supernatants from hap strains but not hap-null strains prevented surface translocation.
Collapse
Affiliation(s)
- I I Brown
- Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
111
|
van Doorn J, Hollinger TC, Oudega B. Analysis of the type IV fimbrial-subunit gene fimA of Xanthomonas hyacinthi: application in PCR-mediated detection of yellow disease in Hyacinths. Appl Environ Microbiol 2001; 67:598-607. [PMID: 11157222 PMCID: PMC92626 DOI: 10.1128/aem.67.2.598-607.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2000] [Accepted: 11/16/2000] [Indexed: 11/20/2022] Open
Abstract
A sensitive and specific detection method was developed for Xanthomonas hyacinthi; this method was based on amplification of a subsequence of the type IV fimbrial-subunit gene fimA from strain S148. The fimA gene was amplified by PCR with degenerate DNA primers designed by using the N-terminal and C-terminal amino acid sequences of trypsin fragments of FimA. The nucleotide sequence of fimA was determined and compared with the nucleotide sequences coding for the fimbrial subunits in other type IV fimbria-producing bacteria, such as Xanthomonas campestris pv. vesicatoria, Neisseria gonorrhoeae, and Moraxella bovis. In a PCR internal primers JAAN and JARA, designed by using the nucleotide sequences of the variable central and C-terminal region of fimA, amplified a 226-bp DNA fragment in all X. hyacinthi isolates. This PCR was shown to be pathovar specific, as assessed by testing 71 Xanthomonas pathovars and bacterial isolates belonging to other genera, such as Erwinia and Pseudomonas. Southern hybridization experiments performed with the labelled 226-bp DNA amplicon as a probe suggested that there is only one structural type IV fimbrial-gene cluster in X. hyacinthi. Only two Xanthomonas translucens pathovars cross-reacted weakly in PCR. Primers amplifying a subsequence of the fimA gene of X. campestris pv. vesicatoria (T. Ojanen-Reuhs, N. Kalkkinen, B. Westerlund-Wikström, J. van Doorn, K. Haahtela, E.-L. Nurmiaho-Lassila, K. Wengelink, U. Bonas, and T. K. Korhonen, J. Bacteriol. 179: 1280-1290, 1997) were shown to be pathovar specific, indicating that the fimbrial-subunit sequences are more generally applicable in xanthomonads for detection purposes. Under laboratory conditions, approximately 1,000 CFU of X. hyacinthi per ml could be detected. In inoculated leaves of hyacinths the threshold was 5,000 CFU/ml. The results indicated that infected hyacinths with early symptoms could be successfully screened for X. hyacinthi with PCR.
Collapse
Affiliation(s)
- J van Doorn
- Department of Plant Quality, Bulb Research Centre, 2160 AB Lisse, The Netherlands.
| | | | | |
Collapse
|
112
|
Fullner KJ, Mekalanos JJ. In vivo covalent cross-linking of cellular actin by the Vibrio cholerae RTX toxin. EMBO J 2000; 19:5315-23. [PMID: 11032799 PMCID: PMC314022 DOI: 10.1093/emboj/19.20.5315] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Enteric pathogens often export toxins that elicit diarrhea as a part of the etiology of disease, including toxins that affect cytoskeletal structure. Recently, we discovered that the intestinal pathogen Vibrio cholerae elicits rounding of epithelial cells that is dependent upon a gene we designated rtxA. Here we investigate the association of rtxA with the cell-rounding effect. We find that V. cholerae exports a large toxin, RTX (repeats-in-toxin) toxin, to culture supernatant fluids and that this toxin is responsible for cell rounding. Furthermore, we find that cell rounding is not due to necrosis, suggesting that RTX toxin is not a typical member of the RTX family of pore-forming toxins. Rather, RTX toxin causes depolymerization of actin stress fibers and covalent cross-linking of cellular actin into dimers, trimers and higher multimers. This RTX toxin-specific cross-linking occurs in cells previously rounded with cytochalasin D, indicating that G-actin is the toxin target. Although several models explain our observations, our simultaneous detection of actin cross-linking and depolymerization points toward a novel mechanism of action for RTX toxin, distinguishing it from all other known toxins.
Collapse
Affiliation(s)
- K J Fullner
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, D1-408, Boston, MA 02115, USA
| | | |
Collapse
|
113
|
Abstract
Cholera has been the scourge of humankind for centuries. Although most of the time Vibrio cholerae, the microbe that causes this disease, is a free-living organism inhabiting aquatic environments, it can invade human hosts causing severe diarrhea and often death. As DiRita explains in his Perspective, sequencing of the entire V. cholerae genome is revealing new facets of the pathogenesis of this dangerous microbe.
Collapse
Affiliation(s)
- V J DiRita
- Department of Microbiology and Immunology and Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
114
|
Judson N, Mekalanos JJ. TnAraOut, a transposon-based approach to identify and characterize essential bacterial genes. Nat Biotechnol 2000; 18:740-5. [PMID: 10888841 DOI: 10.1038/77305] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Identification of genes that encode essential products provides a promising approach to validation of new antibacterial drug targets. We have developed a mariner-based transposon, TnAraOut, that allows efficient identification and characterization of essential genes by transcriptionally fusing them to an outward-facing, arabinose-inducible promoter, PBAD, located at one end of the transposon. In the absence of arabinose, such TnAraOut fusion strains display pronounced growth defects. Of a total of 16 arabinose-dependent TnAraOut mutants characterized in Vibrio cholerae, four were found to carry insertions upstream of known essential genes (gyrB, proRS, ileRS, and aspRS) whereas the other strains carried insertions upstream of known and hypothetical genes not previously shown to encode essential gene products. One of the essential genes identified by this analysis appears to be unique to V. cholerae and thus may represent an example of a species-specific drug target.
Collapse
Affiliation(s)
- N Judson
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
115
|
Kirov SM, Barnett TC, Pepe CM, Strom MS, Albert MJ. Investigation of the role of type IV Aeromonas pilus (Tap) in the pathogenesis of Aeromonas gastrointestinal infection. Infect Immun 2000; 68:4040-8. [PMID: 10858220 PMCID: PMC101691 DOI: 10.1128/iai.68.7.4040-4048.2000] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although there is substantial evidence that type IV pili purified from diarrhea-associated Aeromonas species (designated Bfp for bundle-forming pilus) are intestinal colonization factors (S. M. Kirov, L. A. O'Donovan, and K. Sanderson, Infect. Immun. 67:5447-5454, 1999), nothing is known regarding the function of a second family of Aeromonas type IV pili (designated Tap for type IV Aeromonas pilus), identified following the cloning of a pilus biogenesis gene cluster tapABCD. Related pilus gene clusters are widely conserved among gram-negative bacteria, but their significance for virulence has been controversial. To investigate the role of Tap pili in Aeromonas pathogenesis, mutants of Aeromonas strains (a fish isolate of A. hydrophila and a human dysenteric isolate of A. veronii bv. sobria) were prepared by insertional inactivation of the tapA gene which encodes the type IV pilus subunit protein, TapA. Exotoxic activities were unaffected by the mutation in tapA. Inactivation of tapA had no effect on the bacterial adherence of these two isolates to HEp-2 cells. For the A. veronii bv. sobria isolate, adhesion to Henle 407 intestinal cells and to human intestinal tissue was also unaffected. There was no significant effect on the duration of colonization or incidence of diarrhea when the A. veronii bv. sobria strain was tested in the removable intestinal tie adult rabbit diarrhea model or on its ability to colonize infant mice. Evidence was obtained that demonstrated that TapA was expressed by both Aeromonas species and was present on the cell surface, although if assembled into pili this pilus type appears to be an uncommon one under standard bacterial growth conditions. Further studies into factors which may influence Tap expression are required, but the present study suggests that Tap pili may not be as significant as Bfp pili for Aeromonas intestinal colonization.
Collapse
Affiliation(s)
- S M Kirov
- Discipline of Pathology, University of Tasmania, Hobart 7001, Tasmania, Australia.
| | | | | | | | | |
Collapse
|
116
|
Davis BM, Lawson EH, Sandkvist M, Ali A, Sozhamannan S, Waldor MK. Convergence of the secretory pathways for cholera toxin and the filamentous phage, CTXphi. Science 2000; 288:333-5. [PMID: 10764646 DOI: 10.1126/science.288.5464.333] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Virulence of Vibrio cholerae depends on secretion of cholera toxin (CT), which is encoded within the genome of a filamentous phage, CTXphi. Release of CT is mediated by the extracellular protein secretion (eps) type II secretion system. Here, the outer membrane component of this system, EpsD, was shown to be required for secretion of the phage as well. Thus, EpsD plays a role both in pathogenicity and in horizontal transfer of a key virulence gene. Genomic analysis suggests that additional filamentous phages also exploit chromosome-encoded outer membrane channels.
Collapse
Affiliation(s)
- B M Davis
- Division of Geographic Medicine and Infectious Diseases, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
117
|
Aragon V, Kurtz S, Flieger A, Neumeister B, Cianciotto NP. Secreted enzymatic activities of wild-type and pilD-deficient Legionella pneumophila. Infect Immun 2000; 68:1855-63. [PMID: 10722574 PMCID: PMC97358 DOI: 10.1128/iai.68.4.1855-1863.2000] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/1999] [Accepted: 12/15/1999] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila, the agent of Legionnaires' disease, is an intracellular pathogen of protozoa and macrophages. Previously, we had determined that the Legionella pilD gene is involved in type IV pilus biogenesis, type II protein secretion, intracellular infection, and virulence. Since the loss of pili and a protease do not account for the infection defect exhibited by a pilD-deficient strain, we sought to define other secreted proteins absent in the mutant. Based upon the release of p-nitrophenol (pNP) from p-nitrophenyl phosphate, acid phosphatase activity was detected in wild-type but not in pilD mutant supernatants. Mutant supernatants also did not release either pNP from p-nitrophenyl caprylate and palmitate or free fatty acid from 1-monopalmitoylglycerol, suggesting that they lack a lipase-like activity. However, since wild-type samples failed to release free fatty acids from 1,2-dipalmitoylglycerol or to cleave a triglyceride derivative, this secreted activity should be viewed as an esterase-monoacylglycerol lipase. The mutant supernatants were defective for both release of free fatty acids from phosphatidylcholine and degradation of RNA, indicating that PilD-negative bacteria lack a secreted phospholipase A (PLA) and nuclease. Finally, wild-type but not mutant supernatants liberated pNP from p-nitrophenylphosphorylcholine (pNPPC). Characterization of a new set of mutants defective for pNPPC-hydrolysis indicated that this wild-type activity is due to a novel enzyme, as opposed to a PLC or another known enzyme. Some, but not all, of these mutants were greatly impaired for intracellular infection, suggesting that a second regulator or processor of the pNPPC hydrolase is critical for L. pneumophila virulence.
Collapse
Affiliation(s)
- V Aragon
- Department of Microbiology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
118
|
Abstract
Bacterial infections of the small and large intestine are widespread and continue to be topics of active research. Surveys document the importance of diarrheal disease in many settings. Major breakthroughs in the understanding of pathogenic mechanisms (especially the interactions of bacteria and intestinal cells) continue, particularly with respect to shigella, salmonella, Yersinia species, and enteropathogenic Escherichia coli. Pathogenic mechanisms of other bacteria, such as campylobacter and entero-aggregative E. coli, are not well defined. Vaccines for cholera and typhoid fever are available, and new vaccines are in various stages of development ranging from synthesis of novel constructs to large-scale field trials. Several candidate vaccines are being exploited as carriers of antigens from other pathogens. Extraintestinal complications from salmonella, shigella, campylobacter, Yersinia species, and Shiga toxin-expressing E. coli are receiving much attention. Genomic sequencing of several of these pathogens is underway. The impact of this work is hard to predict, but expectations are high.
Collapse
Affiliation(s)
- M K Wolf
- Walter Reed Army Institute of Research, Department of Enteric Infections, Washington, DC 20307, USA.
| |
Collapse
|
119
|
Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L, Gill SR, Nelson KE, Read TD, Tettelin H, Richardson D, Ermolaeva MD, Vamathevan J, Bass S, Qin H, Dragoi I, Sellers P, McDonald L, Utterback T, Fleishmann RD, Nierman WC, White O, Salzberg SL, Smith HO, Colwell RR, Mekalanos JJ, Venter JC, Fraser CM. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 2000; 406:477-83. [PMID: 10952301 PMCID: PMC8288016 DOI: 10.1038/35020000] [Citation(s) in RCA: 1322] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Here we determine the complete genomic sequence of the gram negative, gamma-Proteobacterium Vibrio cholerae El Tor N16961 to be 4,033,460 base pairs (bp). The genome consists of two circular chromosomes of 2,961,146 bp and 1,072,314 bp that together encode 3,885 open reading frames. The vast majority of recognizable genes for essential cell functions (such as DNA replication, transcription, translation and cell-wall biosynthesis) and pathogenicity (for example, toxins, surface antigens and adhesins) are located on the large chromosome. In contrast, the small chromosome contains a larger fraction (59%) of hypothetical genes compared with the large chromosome (42%), and also contains many more genes that appear to have origins other than the gamma-Proteobacteria. The small chromosome also carries a gene capture system (the integron island) and host 'addiction' genes that are typically found on plasmids; thus, the small chromosome may have originally been a megaplasmid that was captured by an ancestral Vibrio species. The V. cholerae genomic sequence provides a starting point for understanding how a free-living, environmental organism emerged to become a significant human bacterial pathogen.
Collapse
Affiliation(s)
- John F. Heidelberg
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, 20850 Maryland USA
| | - Jonathan A. Eisen
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, 20850 Maryland USA
| | - William C. Nelson
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, 20850 Maryland USA
| | | | - Michelle L. Gwinn
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, 20850 Maryland USA
| | - Robert J. Dodson
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, 20850 Maryland USA
| | - Daniel H. Haft
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, 20850 Maryland USA
| | - Erin K. Hickey
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, 20850 Maryland USA
| | - Jeremy D. Peterson
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, 20850 Maryland USA
| | - Lowell Umayam
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, 20850 Maryland USA
| | - Steven R. Gill
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, 20850 Maryland USA
| | - Karen E. Nelson
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, 20850 Maryland USA
| | - Timothy D. Read
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, 20850 Maryland USA
| | - Hervé Tettelin
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, 20850 Maryland USA
| | - Delwood Richardson
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, 20850 Maryland USA
| | - Maria D. Ermolaeva
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, 20850 Maryland USA
| | - Jessica Vamathevan
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, 20850 Maryland USA
| | - Steven Bass
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, 20850 Maryland USA
| | - Haiying Qin
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, 20850 Maryland USA
| | - Ioana Dragoi
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, 20850 Maryland USA
| | - Patrick Sellers
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, 20850 Maryland USA
| | - Lisa McDonald
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, 20850 Maryland USA
| | - Teresa Utterback
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, 20850 Maryland USA
| | - Robert D. Fleishmann
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, 20850 Maryland USA
| | - William C. Nierman
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, 20850 Maryland USA
| | - Owen White
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, 20850 Maryland USA
| | - Steven L. Salzberg
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, 20850 Maryland USA
| | - Hamilton O. Smith
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, 20850 Maryland USA
- Present Address: Celera Genomics, 45 West Gude Drive, Rockville, Maryland 20850 USA
| | - Rita R. Colwell
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, 701 East Pratt Street, Baltimore, 21202 Maryland USA
- Department of Cell and Molecular Biology, University of Maryland, College Park, 20742 Maryland USA
| | - John J. Mekalanos
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue , Boston, 02115 Massachusetts USA
| | - J. Craig Venter
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, 20850 Maryland USA
- Present Address: Celera Genomics, 45 West Gude Drive, Rockville, Maryland 20850 USA
| | - Claire M. Fraser
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, 20850 Maryland USA
| |
Collapse
|
120
|
Watnick PI, Fullner KJ, Kolter R. A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor. J Bacteriol 1999; 181:3606-9. [PMID: 10348878 PMCID: PMC93833 DOI: 10.1128/jb.181.11.3606-3609.1999] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While much has been learned regarding the genetic basis of host-pathogen interactions, less is known about the molecular basis of a pathogen's survival in the environment. Biofilm formation on abiotic surfaces represents a survival strategy utilized by many microbes. Here it is shown that Vibrio cholerae El Tor does not use the virulence-associated toxin-coregulated pilus to form biofilms on borosilicate but rather uses the mannose-sensitive hemagglutinin (MSHA) pilus, which plays no role in pathogenicity. In contrast, attachment of V. cholerae to chitin is shown to be independent of the MSHA pilus, suggesting divergent pathways for biofilm formation on nutritive and nonnutritive abiotic surfaces.
Collapse
Affiliation(s)
- P I Watnick
- Infectious Disease Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|