101
|
Li S, Xiao X, Li J, Luo J, Wang F. Identification of genes regulated by changing salinity in the deep-sea bacterium Shewanella sp. WP3 using RNA arbitrarily primed PCR. Extremophiles 2005; 10:97-104. [PMID: 16133656 DOI: 10.1007/s00792-005-0476-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2005] [Accepted: 07/25/2005] [Indexed: 11/30/2022]
Abstract
The differential gene transcription of a deep-sea bacterium Shewanella sp. WP3 in response to changing salinity was analyzed by RNA fingerprinting using arbitrarily primed PCR (RAP-PCR). Ninety primer sets were used to scan two different RNA pools derived from cultures of 1% and 7% NaCl concentrations. Forty-three putative differential-expressed fragments were identified, cloned, and sequenced. Six out of the 43 fragments were confirmed to be truly differentially transcribed in terms of changing salinity. The deduced amino acid sequences of the six gene fragments showed highest identities (66-96%) with ribosomal protein L24, ATP binding protein, and chaperon protein HscA of Shewanella oneidensis MR-1 (Y6, Y9, and Y29); isocitrate lyase of Pseudomonas aeruginosa (Y15); peptidylprolyl cis-trans isomerase of Shewanella sp. SIB1 (Y21), glutamine synthetase of Shewanella violacea (Y25), respectively. Four genes (Y6, Y15, Y21, and Y25) were up regulated in 7% NaCl, while the other two (Y9 and Y29) contained more abundant transcripts in 1% NaCl. The data suggested that strategies involved in controlling protein synthesis, protein folding and/or trafficking, glutamate concentration, fatty acid metabolism, and substance transporting were used for salt adaptation in Shewanella sp. WP3. The expression patterns of the six genes in response to transient stress shocks including salt shock (3% NaCl shift to 12%), cold shock (15 degrees C shift to 0 degrees C), and high-hydrostatic pressure shock (0.1 MPa shift to 50 MPa) were further examined. Y29 encoding the putative HscA chaperon protein was indicated to be involved in adaptation of all the stresses tested.
Collapse
Affiliation(s)
- Shengkang Li
- College of Life Science, Zhongshan University, Guangzhou, People's Republic of China
| | | | | | | | | |
Collapse
|
102
|
Pieterse B, Jellema RH, van der Werf MJ. Quenching of microbial samples for increased reliability of microarray data. J Microbiol Methods 2005; 64:207-16. [PMID: 15982764 DOI: 10.1016/j.mimet.2005.04.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 04/25/2005] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
Messenger RNA levels change on a minutes scale due to both degradation and de novo transcription. Consequently, alterations in the transcript profiles that are not representative for the condition of interest are easily introduced during sample harvesting and work-up. In order to avoid these unwanted changes we have validated a -45 degrees C methanol-based quenching method for obtaining reliable and reproducible 'snapshot' samples of Lactobacillus plantarum cells for transcriptome analyses. Transcript profiles of cells harvested with the quenching method were compared with transcript profiles of cells that were harvested according to two different commonly applied protocols. Significant differences between the transcript profiles of cells harvested by the different methods from the same steady-state culture were observed. In total, 42 genes or operons were identified from which the transcript levels were altered when the cells were not immediately quenched upon harvesting. Among these, several have previously been associated with cold-shock response. Furthermore, the reproducibility of transcript profiles improved, as indicated by the fact that the variation in the data sets obtained from the quenched cells was smaller than in the data sets obtained from the cells that were harvested under non-quenched conditions.
Collapse
Affiliation(s)
- Bart Pieterse
- Wageningen Centre for Food Sciences, Diedenweg 20, 6700 AN Wageningen, The Netherlands
| | | | | |
Collapse
|
103
|
Stübs D, Fuchs TM, Schneider B, Bosserhoff A, Gross R. Identification and regulation of cold-inducible factors of Bordetella bronchiseptica. Microbiology (Reading) 2005; 151:1895-1909. [PMID: 15941997 DOI: 10.1099/mic.0.27785-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The expression of bacterial cold-shock proteins (CSPs) is highly induced in response to cold shock, and some CSPs are essential for cells to resume growth at low temperature.Bordetella bronchisepticaencodes five CSPs (named CspA to CspE) with significant amino acid homology to CspA ofEscherichia coli. In contrast toE. coli, the insertional knock-out of a singlecspgene (cspB) strongly affected growth ofB. bronchisepticaindependent of temperature. In the case of three of thecspgenes (cspA,cspB,cspC) more than one specific transcript could be detected. The net amount ofcspA,cspBandcspCtranscripts increased strongly after cold shock, while no such effect could be observed forcspDandcspE. The exposure to other stress conditions, including translation inhibitors, heat shock, osmotic stress and nutrient deprivation in the stationary phase, indicated that thecspgenes are also responsive to these conditions. The coding regions of all of the cold-shock genes are preceded by a long non-translated upstream region (5′-UTR). In the case of thecspBgene, a deletion of parts of this region led to a significant reduction of translation of the resulting truncated transcript, indicating a role of the 5′-UTR in translational control. The cold-shock stimulon was investigated by 2D-PAGE and mass spectrometric characterization, leading to the identification of additional cold-inducible proteins (CIPs). Interestingly, two cold-shock genes (cspCandcspD) were found to be under the negative control of the BvgAS system, the main transcriptional regulator ofBordetellavirulence genes. Moreover, a negative effect of slight overexpression of CspB, but not of the other CSPs, on the transcription of the adenylate cyclase toxin CyaA ofBordetella pertussiswas observed, suggesting cross-talk between the CSP-mediated stress response stimulon and theBordetellavirulence regulon.
Collapse
Affiliation(s)
- Dorothee Stübs
- Lehrstuhl für Mikrobiologie, Biozentrum der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Thilo M Fuchs
- Zentralinstitut für Ernährungs- und Lebensmittelforschung, Abteilung Mikrobiologie, D-85354 Freising, Germany
| | - Boris Schneider
- Lehrstuhl für Mikrobiologie, Biozentrum der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Armin Bosserhoff
- Zentrum für Molekulare Biologie, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Roy Gross
- Lehrstuhl für Mikrobiologie, Biozentrum der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
104
|
Seo JB, Kim HS, Jung GY, Nam MH, Chung JH, Kim JY, Yoo JS, Kim CW, Kwon O. Psychrophilicity of Bacillus psychrosaccharolyticus: a proteomic study. Proteomics 2005; 4:3654-9. [PMID: 15529406 DOI: 10.1002/pmic.200401025] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Psychrophilicity of Gram-positive bacterium, Bacillus psychrosaccharolyticus was investigated in a proteomic approach. One hundred and thirty-one protein spots were analyzed by electrospray ionization-quadrupole-time of flight-tandem mass spectrometry and identified using an unpublished translated contig database as well as a nonredundant Gram-positive bacteria protein database from NCBI because of the lack of a genome sequence of this organism. Results focused on proteomic behavior of cold-response show that global up-regulation of metabolic functions and protective mechanism by stress responses might play a major role in psychrophilicity of B. psychrosaccharolyticus.
Collapse
Affiliation(s)
- Jong Bok Seo
- Seoul Branch, Korea Basic Science Institute, Seoul
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Spano G, Beneduce L, Perrotta C, Massa S. Cloning and characterization of the hsp 18.55 gene, a new member of the small heat shock gene family isolated from wine Lactobacillus plantarum. Res Microbiol 2005; 156:219-24. [PMID: 15748987 DOI: 10.1016/j.resmic.2004.09.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 09/08/2004] [Accepted: 09/28/2004] [Indexed: 10/26/2022]
Abstract
Using a molecular approach based on PCR, RT-PCR and northern blot analysis, a new member of the small heat shock family of wine, Lactobacillus plantarum, was cloned and characterized. The protein sequence deduced from the isolated gene had a calculated molecular mass of 18.548 kDa and was therefore named HSP 18.55. The gene codes for a protein homologous to the previously characterized HSP 19.3 and HSP 18.5 and is co-transcribed with an upstream gene of unknown function. Analysis of the 5' flanking region of the hsp 18.55 gene revealed the presence of putative cis elements able to bind alternative sigma factor sigma(B). Based on its structure, the gene was classified as belonging to class II of the heat shock genes according to Bacillus subtilis nomenclature for shock-responsive genes. Expression of the newly identified small heat shock gene, analyzed by RT-PCR and northern blot analysis, was induced by a wide range of abiotic stresses including heat, cold and ethanol, suggesting that the small family of heat shock genes is probably involved in the general stress response in wine L. plantarum. Moreover, the expression of hsp 18.5, hsp 18.55 and hsp 19.3 genes, analyzed over a complete culture cycle, revealed that early growing cells contained substantial amounts of hsp 18.5, hsp 18.55 and hsp 19.3 mRNAs, which rapidly declined upon entry into stationary phase.
Collapse
Affiliation(s)
- G Spano
- Department of Food Science, Foggia University, via Napoli 25, 71100 Foggia, Italy.
| | | | | | | |
Collapse
|
106
|
Silva J, Carvalho AS, Ferreira R, Vitorino R, Amado F, Domingues P, Teixeira P, Gibbs PA. Effect of the pH of growth on the survival of Lactobacillus delbrueckii subsp. bulgaricus to stress conditions during spray-drying. J Appl Microbiol 2005; 98:775-82. [PMID: 15715882 DOI: 10.1111/j.1365-2672.2004.02516.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIMS The aim of this study was to optimize survival of Lactobacillus delbrueckii subsp. bulgaricus during spray-drying and subsequent storage through optimizing the pH of growth conditions. METHODS AND RESULTS Cell concentrates previously grown without or with pH controlled were spray-dried and stored at 20 degrees C and heat treated at 57 degrees C. Cells grown under noncontrolled pH were more resistant to both drying and heating than cells grown under controlled pH but no significant differences were observed during storage. The intracellular proteins profile of cells grown under both conditions was studied by two-dimensional SDS-polyacrylamide gel electrophoresis. Eight proteins were identified using automated mass spectrometry (MS) and tandem mass spectrometry (MS/MS) data acquisition. Of the identified proteins, only cochaperonin GroES corresponded to a known heat shock protein (HSP). The other proteins identified are proteins involved in glycolysis. For cells grown under noncontrolled pH the expression of the Hsp70, GroES and GroEL, measured by Western blotting, was enhanced. CONCLUSIONS The higher resistance of cells grown under noncontrolled pH correlates with the enhanced production of heat shock proteins. SIGNIFICANCE AND IMPACT OF THE STUDY Growth of L. bulgaricus under controlled pH (commonly used by the starter cultures production industry) results in cells more sensitive to stresses frequently encountered by the cells during starter cultures preparation/storage/utilization.
Collapse
Affiliation(s)
- J Silva
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Dr. António Bernardino de Almeida, Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Marceau A, Zagorec M, Chaillou S, Méra T, Champomier-Vergès MC. Evidence for involvement of at least six proteins in adaptation of Lactobacillus sakei to cold temperatures and addition of NaCl. Appl Environ Microbiol 2004; 70:7260-8. [PMID: 15574925 PMCID: PMC535173 DOI: 10.1128/aem.70.12.7260-7268.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Accepted: 07/22/2004] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus sakei is a lactic acid bacterium widely represented in the natural flora of fresh meat. The aim of this study was to analyze the differences in protein expression during environmental changes encountered during technological processes in which L. sakei is involved in order to gain insight into the ability of this species to grow and survive in such environments. Using two-dimensional electrophoresis, we observed significant variation of a set of 21 proteins in cells grown at 4 degrees C or in the presence of 4% NaCl. Six proteins could be identified by determination of their N-terminal sequences, and the corresponding gene clusters were studied. Two proteins belong to carbon metabolic pathways, and four can be clustered as general stress proteins. A phenotype was observed at low temperature for five of the six mutants constructed for these genes. The survival of four mutants during stationary phase at 4 degrees C was affected, and surprisingly, one mutant showed enhanced survival during stationary phase at low temperatures.
Collapse
Affiliation(s)
- Anika Marceau
- Unité Flore Lactique et Environnement Carné, Institut National de la Recherche Agronomique, Domaine de Vilvert, Jouy en Josas, France
| | | | | | | | | |
Collapse
|
108
|
Hecker M, Völker U. Towards a comprehensive understanding ofBacillus subtiliscell physiology by physiological proteomics. Proteomics 2004; 4:3727-50. [PMID: 15540212 DOI: 10.1002/pmic.200401017] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Using Bacillus subtilis as a model system for functional genomics, this review will provide insights how proteomics can be used to bring the virtual life of genes to the real life of proteins. Physiological proteomics will generate a new and broad understanding of cellular physiology because the majority of proteins synthesized in the cell can be visualized. From a physiological point of view two major proteome fractions can be distinguished: proteomes of growing cells and proteomes of nongrowing cells. In the main analytical window almost 50% of the vegetative proteome expressed in growing cells of B. subtilis were identified. This proteomic view of growing cells can be employed for analyzing the regulation of entire metabolic pathways and thus opens the chance for a comprehensive understanding of metabolism and growth processes of bacteria. Proteomics, on the other hand, is also a useful tool for analyzing the adaptational network of nongrowing cells that consists of several partially overlapping regulation groups induced by stress/starvation stimuli. Furthermore, proteomic signatures for environmental stimuli can not only be applied to predict the physiological state of cells, but also offer various industrial applications from fermentation monitoring up to the analysis of the mode of action of drugs. Even if DNA array technologies currently provide a better overview of the gene expression profile than proteome approaches, the latter address biological problems in which they can not be replaced by mRNA profiling procedures. This proteomics of the second generation is a powerful tool for analyzing global control of protein stability, the protein interaction network, protein secretion or post-translational modifications of proteins on the way towards the elucidation of the mystery of life.
Collapse
Affiliation(s)
- Michael Hecker
- Institute for Microbiology, Erst-Moritz-Arndt-University, Greifswald, Germany.
| | | |
Collapse
|
109
|
Phadtare S, Inouye M. Genome-wide transcriptional analysis of the cold shock response in wild-type and cold-sensitive, quadruple-csp-deletion strains of Escherichia coli. J Bacteriol 2004; 186:7007-14. [PMID: 15466053 PMCID: PMC522181 DOI: 10.1128/jb.186.20.7007-7014.2004] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A DNA microarray-based global transcript profiling of Escherichia coli in response to cold shock showed that in addition to the known cold shock-inducible genes, new genes such as the flagellar operon, those encoding proteins involved in sugar transport and metabolism, and remarkably, genes encoding certain heat shock proteins are induced by cold shock. In the light of strong reduction in metabolic activity of the cell after temperature downshift, the induction of sugar metabolism machinery is unexpected. The deletion of four csps (cspA, cspB, cspG, and cspE) affected cold shock induction of mostly those genes that are transiently induced in the acclimation phase, emphasizing that CspA homologues are essential in the acclimation phase. Relevance of these findings with respect to the known RNA chaperone function of CspA homologues is discussed.
Collapse
Affiliation(s)
- Sangita Phadtare
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Ln., Piscataway, NJ 08854, USA.
| | | |
Collapse
|
110
|
Lang EAS, Marques MV. Identification and transcriptional control of Caulobacter crescentus genes encoding proteins containing a cold shock domain. J Bacteriol 2004; 186:5603-13. [PMID: 15317764 PMCID: PMC516811 DOI: 10.1128/jb.186.17.5603-5613.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cold shock proteins are small peptides that share a conserved domain, called the cold shock domain (CSD), that is important for nucleic acid binding. The Caulobacter crescentus genome has four csp genes that encode proteins containing CSDs. Three of these (cspA, cspB, and cspC) encode peptides of about 7 kDa and are very similar to the cold shock proteins of other bacteria. Analysis by reverse transcription-PCR of the fourth gene (cspD), which was previously annotated as encoding a 7-kDa protein, revealed that the mRNA is larger and probably encodes a putative 21-kDa protein, containing two CSDs. A search in protein sequences databases revealed that this new domain arrangement has thus far only been found among deduced peptides of alpha-proteobacteria. Expression of each Caulobacter csp gene was studied both in response to cold shock and to growth phase, and we have found that only cspA and cspB are induced by cold shock, whereas cspC and cspD are induced at stationary phase, with different induction rates. The transcription start sites were determined for each gene, and a deletion mapping of the cspD promoter region defined a sequence required for maximal levels of expression, indicating that regulation of this gene occurs at the transcriptional level. Deletion of cspA, but not cspD, caused a reduction in viability when cells were incubated at 10 degrees C for prolonged times, suggesting that cspA is important for adaptation to a low temperature.
Collapse
Affiliation(s)
- Elza A S Lang
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
111
|
Joshi B, Schmid R, Altendorf K, Apte SK. Protein recycling is a major component of post-irradiation recovery in Deinococcus radiodurans strain R1. Biochem Biophys Res Commun 2004; 320:1112-7. [PMID: 15249204 DOI: 10.1016/j.bbrc.2004.06.062] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Indexed: 11/26/2022]
Abstract
Exposure to 6kGy dose of (60)Co gamma-rays resulted in immediate growth arrest, followed by complete recovery of Deinococcus radiodurans strain R1 cells. Selective degradation and resynthesis of several predicted highly expressed proteins (including major chaperones, key TCA cycle enzymes, and few stress proteins) and several hypothetical proteins marked the lag period, preceding resumption of growth. A major exercise in protein recycling appears to be an integral component of post-irradiation recovery in D. radiodurans and complements the extensive DNA repair, characteristic of this extremely radioresistant bacterium.
Collapse
Affiliation(s)
- Bhakti Joshi
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | | | | | |
Collapse
|
112
|
Tjalsma H, Antelmann H, Jongbloed JDH, Braun PG, Darmon E, Dorenbos R, Dubois JYF, Westers H, Zanen G, Quax WJ, Kuipers OP, Bron S, Hecker M, van Dijl JM. Proteomics of protein secretion by Bacillus subtilis: separating the "secrets" of the secretome. Microbiol Mol Biol Rev 2004; 68:207-33. [PMID: 15187182 PMCID: PMC419921 DOI: 10.1128/mmbr.68.2.207-233.2004] [Citation(s) in RCA: 439] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Secretory proteins perform a variety of important "remote-control" functions for bacterial survival in the environment. The availability of complete genome sequences has allowed us to make predictions about the composition of bacterial machinery for protein secretion as well as the extracellular complement of bacterial proteomes. Recently, the power of proteomics was successfully employed to evaluate genome-based models of these so-called secretomes. Progress in this field is well illustrated by the proteomic analysis of protein secretion by the gram-positive bacterium Bacillus subtilis, for which approximately 90 extracellular proteins were identified. Analysis of these proteins disclosed various "secrets of the secretome," such as the residence of cytoplasmic and predicted cell envelope proteins in the extracellular proteome. This showed that genome-based predictions reflect only approximately 50% of the actual composition of the extracellular proteome of B. subtilis. Importantly, proteomics allowed the first verification of the impact of individual secretion machinery components on the total flow of proteins from the cytoplasm to the extracellular environment. In conclusion, proteomics has yielded a variety of novel leads for the analysis of protein traffic in B. subtilis and other gram-positive bacteria. Ultimately, such leads will serve to increase our understanding of virulence factor biogenesis in gram-positive pathogens, which is likely to be of high medical relevance.
Collapse
Affiliation(s)
- Harold Tjalsma
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Nickel M, Homuth G, Böhnisch C, Mäder U, Schweder T. Cold induction of the Bacillus subtilis bkd operon is mediated by increased mRNA stability. Mol Genet Genomics 2004; 272:98-107. [PMID: 15241682 DOI: 10.1007/s00438-004-1038-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2004] [Accepted: 06/18/2004] [Indexed: 11/30/2022]
Abstract
Recently it has been demonstrated that the ptb - bcd - buk - lpdV - bkdAA - bkdAB - bkdB operon ( bkdoperon) of Bacillus subtilis, which encodes the enzymes that catalyze the degradation of branched-chain amino acids, is inducible by a temperature downshift from 37 to 18 degrees C. Deamination and oxidative decarboxylation of isoleucine generates 2-methyl-butyryl-CoA, which serves as the precursor of anteiso-branched fatty acid species. Most probably, the induction of this operon upon cold shock ensures an increase in the content of anteiso-branched fatty acids in the membrane lipids at low temperature, thus permitting maintenance of membrane fluidity at lower temperatures. In the present study, we have analyzed the mechanism of cold induction of the bkd operon and of four further cold-inducible transcriptional units in B. subtilis. We demonstrate that cold induction of these genes is mediated by an increase in the stability of the corresponding mRNAs. None of the promoters that control the five transcriptional units analyzed is actually cold-inducible. Furthermore, the results of this study indicate that the 5' leader regions are not involved in the cold-induced stabilization of the mRNAs. The structural elements that enhance mRNA stability must therefore be restricted to the 3'-ends and/or the coding regions.
Collapse
Affiliation(s)
- M Nickel
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität Greifswald, 17487, Greifswald, Germany
| | | | | | | | | |
Collapse
|
114
|
Suzuki Y, Haruki M, Takano K, Morikawa M, Kanaya S. Possible involvement of an FKBP family member protein from a psychrotrophic bacterium Shewanella sp. SIB1 in cold-adaptation. ACTA ACUST UNITED AC 2004; 271:1372-81. [PMID: 15030488 DOI: 10.1111/j.1432-1033.2004.04049.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A psychrotrophic bacterium Shewanella sp. strain SIB1 was grown at 4 and 20 degrees C, and total soluble proteins extracted from the cells were analyzed by two-dimensional polyacrylamide gel electrophoresis. Comparison of these patterns showed that the cellular content of a protein with a molecular mass of 28 kDa and an isoelectric point of four greatly increased at 4 degrees C compared to that at 20 degrees C. Determination of the N-terminal amino acid sequence, followed by the cloning and sequencing of the gene encoding this protein, revealed that this protein is a member of the FKBP family of proteins with an amino acid sequence identity of 56% to Escherichia coli FKBP22. This protein was overproduced in E. coli in a His-tagged form, purified, and analyzed for peptidyl-prolyl cis-trans isomerase activity. When this activity was determined by the protease coupling assay using N-succinyl-Ala-Leu-Pro-Phe-p-nitroanilide as a substrate at various temperatures, the protein exhibited the highest activity at 10 degrees C with a k(cat)/K(m) value of 0.87 micro m(-1) x s(-1). When the peptidyl-prolyl cis-trans isomerase activity was determined by the RNase T(1) refolding assay at 10 and 20 degrees C, the protein exhibited higher activity at 10 degrees C with a k(cat)/K(m) value of 0.50 micro m(-1) x s(-1). These k(cat)/K(m) values are lower but comparable to those of E. coli FKBP22. We propose that a FKBP family protein is involved in cold-adaptation of psychrotrophic bacteria.
Collapse
Affiliation(s)
- Yutaka Suzuki
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Japan
| | | | | | | | | |
Collapse
|
115
|
Angelidis AS, Smith GM. Role of the glycine betaine and carnitine transporters in adaptation of Listeria monocytogenes to chill stress in defined medium. Appl Environ Microbiol 2004; 69:7492-8. [PMID: 14660402 PMCID: PMC310023 DOI: 10.1128/aem.69.12.7492-7498.2003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The food-borne pathogen Listeria monocytogenes proliferates at refrigeration temperatures, rendering refrigeration ineffective in the preservation of Listeria-contaminated foods. The uptake and intracellular accumulation of the potent compatible solutes glycine betaine and carnitine has been shown to be a key mediator of the pathogen's cold-tolerant phenotype. To date, three compatible solute systems are known to operate in L. monocytogenes: glycine betaine porter I (BetL), glycine betaine porter II (Gbu), and the carnitine transporter OpuC. We investigated the specificity of each transporter towards each compatible solute at 4 degrees C by examining mutant derivatives of L. monocytogenes 10403S that possess each of the transporters in isolation. Kinetic and steady-state compatible solute accumulation data together with growth rate experiments demonstrated that under cold stress glycine betaine transport is primarily mediated by Gbu and that Gbu-mediated betaine uptake results in significant growth stimulation of chill-stressed cells. BetL and OpuC can serve as minor porters for the uptake of betaine, and their action is capable of providing a small degree of cryotolerance. Under cold stress, carnitine transport occurs primarily through OpuC and results in a high level of cryoprotection. Weak carnitine transport occurs via Gbu and BetL, conferring correspondingly weak cryoprotection. No other transporter in L. monocytogenes 10403S appears to be involved in transport of either compatible solute at 4 degrees C, since a triple mutant strain yielded neither transport nor accumulation of glycine betaine or carnitine and could not be rescued by either osmolyte when grown at that temperature.
Collapse
Affiliation(s)
- Apostolos S Angelidis
- Department of Food Science and Technology, University of California, Davis, California 95616, USA
| | | |
Collapse
|
116
|
Trun N, Johnston D. Folding chromosomes in bacteria: examining the role of Csp proteins and other small nucleic acid-binding proteins. Curr Top Dev Biol 2004; 55:173-201. [PMID: 12959196 DOI: 10.1016/s0070-2153(03)01004-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Nancy Trun
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | | |
Collapse
|
117
|
Khan M, Bajpai VK, Anasari SA, Kumar A, Goel R. Characterization and localization of fluorescent Pseudomonas cold shock protein(s) by monospecific polyclonal antibodies. Microbiol Immunol 2004; 47:895-901. [PMID: 14695438 DOI: 10.1111/j.1348-0421.2003.tb03456.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cold shock protein (CSP) from Pseudomonas fluorescens MTCC 103 and cold resistant protein (CRP) from its mutant CRPF8 of 14 and 35 kd, respectively were purified to homogeneity by HPLC. Polyclonal antibodies were raised against these proteins and the expression level was checked at different temperatures, i.e., 4, 10, 20, 30 and 37 C. Furthermore, morphological changes in P. fluorescens MTCC 103 and its mutant (CRPF8) were analyzed by transmission electron microscopy (TEM). Localization of CSP and CRP documented with immunoelectron microscopy, using colloidal gold particles conjugated with secondary antibodies being the probe were used. Nevertheless, the results of cytosolic localization of CSP and CRP were evident. Furthermore, the expression of CSP and CRP increased with decrease in temperature and the cell wall thickness of the mutant exhibited 2-fold increase, thus facilitating low temperature survival.
Collapse
Affiliation(s)
- Mahejibin Khan
- Department of Microbiology, College of Basic Sciences & Humanities, G.B. Pant University of Agriculture & Technology, Pantnagar-263145 (US Nagar), Uttaranchal, India
| | | | | | | | | |
Collapse
|
118
|
De Angelis M, Di Cagno R, Huet C, Crecchio C, Fox PF, Gobbetti M. Heat shock response in Lactobacillus plantarum. Appl Environ Microbiol 2004; 70:1336-46. [PMID: 15006751 PMCID: PMC368309 DOI: 10.1128/aem.70.3.1336-1346.2004] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2003] [Accepted: 12/05/2003] [Indexed: 11/20/2022] Open
Abstract
Heat stress resistance and response were studied in strains of Lactobacillus plantarum. Stationary-phase cells of L. plantarum DPC2739 had decimal reduction times (D values) (D value was the time that it took to reduce the number of cells by 1 log cycle) in sterile milk of 32.9, 14.7, and 7.14 s at 60, 72, and 75 degrees C, respectively. When mid-exponential-phase cells were used, the D values decreased. The temperature increases which caused a 10-fold reduction in the D value ranged from 9 to 20 degrees C, depending on the strain. Part of the cell population treated at 72 degrees C for 90 s recovered viability during incubation at 7 degrees C in sterile milk for 20 days. When mid-exponential- or stationary-phase cells of L. plantarum DPC2739 were adapted to 42 degrees C for 1 h, the heat resistance at 72 degrees C for 90 s increased ca. 3 and 2 log cycles, respectively. Heat-adapted cells also showed increased growth at pH 5 and in the presence of 6% NaCl. Two-dimensional gel electrophoresis of proteins expressed by control and heat-adapted cells revealed changes in the levels of expression of 31 and 18 proteins in mid-exponential- and stationary-phase cells, respectively. Twelve proteins were commonly induced. Nine proteins induced in the heat-adapted mid-exponential- and/or stationary-phase cells of L. plantarum DPC2739 were subjected to N-terminal sequencing. These proteins were identified as DnaK, GroEL, trigger factor, ribosomal proteins L1, L11, L31, and S6, DNA-binding protein II HlbA, and CspC. All of these proteins have been found to play a role in the mechanisms of stress adaptation in other bacteria. Antibodies against GroES detected a protein which was induced moderately, while antibodies against DnaJ and GrpE reacted with proteins whose level of expression did not vary after heat adaptation. This study showed that the heat resistance of L. plantarum is a complex process involving proteins with various roles in cell physiology, including chaperone activity, ribosome stability, stringent response mediation, temperature sensing, and control of ribosomal function. The physiological mechanisms of response to pasteurization in L. plantarum are fundamental for survival in cheese during manufacture.
Collapse
Affiliation(s)
- Maria De Angelis
- Institute of Sciences of Food Production, CNR, 70125 Bari, Italy
| | | | | | | | | | | |
Collapse
|
119
|
Méndez MB, Orsaria LM, Philippe V, Pedrido ME, Grau RR. Novel roles of the master transcription factors Spo0A and sigmaB for survival and sporulation of Bacillus subtilis at low growth temperature. J Bacteriol 2004; 186:989-1000. [PMID: 14761993 PMCID: PMC344201 DOI: 10.1128/jb.186.4.989-1000.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spore development and stress resistance in Bacillus subtilis are governed by the master transcription factors Spo0A and sigma(B), respectively. Here we show that the coding genes for both regulatory proteins are dramatically induced, during logarithmic growth, after a temperature downshift from 37 to 20 degrees C. The loss of sigma(B) reduces the stationary-phase viability of cold-adapted cells 10- to 50-fold. Furthermore, we show that sigma(B) activity is required at a late stage of development for efficient sporulation at a low temperature. On the other hand, Spo0A loss dramatically reduces the stationary-phase viability of cold-adapted cells 10,000-fold. We show that the requirement of Spo0A for cellular survival during the cold is independent of the activity of the key transition state regulator AbrB and of the simple loss of sporulation ability. Furthermore, Spo0A, and not proficiency in sporulation, is required for the development of complete stress resistance of cold-adapted cells to heat shock (54 degrees C, 1 h), since a loss of Spo0A, but not a loss of the essential sporulation transcription factor sigma(F), reduced the cellular survival in response to heat by more than 1,000-fold. The overall results argue for new and important roles for Spo0A in the development of full stress resistance by nonsporulating cells and for sigma(B) in sporulation proficiency at a low temperature.
Collapse
Affiliation(s)
- Marcelo B Méndez
- Department of Microbiology, Rosario University School of Biochemistry and Pharmacy, and Institute of Molecular and Cellular Biology of Rosario, IBR-CONICET, Rosario, Argentina
| | | | | | | | | |
Collapse
|
120
|
Beales N. Adaptation of Microorganisms to Cold Temperatures, Weak Acid Preservatives, Low pH, and Osmotic Stress: A Review. Compr Rev Food Sci Food Saf 2004; 3:1-20. [DOI: 10.1111/j.1541-4337.2004.tb00057.x] [Citation(s) in RCA: 459] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
121
|
Jones DL, Petty J, Hoyle DC, Hayes A, Ragni E, Popolo L, Oliver SG, Stateva LI. Transcriptome profiling of a Saccharomyces cerevisiae mutant with a constitutively activated Ras/cAMP pathway. Physiol Genomics 2003; 16:107-18. [PMID: 14570984 DOI: 10.1152/physiolgenomics.00139.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Often changes in gene expression levels have been considered significant only when above/below some arbitrarily chosen threshold. We investigated the effect of applying a purely statistical approach to microarray analysis and demonstrated that small changes in gene expression have biological significance. Whole genome microarray analysis of a pde2Delta mutant, constructed in the Saccharomyces cerevisiae reference strain FY23, revealed altered expression of approximately 11% of protein encoding genes. The mutant, characterized by constitutive activation of the Ras/cAMP pathway, has increased sensitivity to stress, reduced ability to assimilate nonfermentable carbon sources, and some cell wall integrity defects. Applying the Munich Information Centre for Protein Sequences (MIPS) functional categories revealed increased expression of genes related to ribosome biogenesis and downregulation of genes in the cell rescue, defense, cell death and aging category, suggesting a decreased response to stress conditions. A reduced level of gene expression in the unfolded protein response pathway (UPR) was observed. Cell wall genes whose expression was affected by this mutation were also identified. Several of the cAMP-responsive orphan genes, upon further investigation, revealed cell wall functions; others had previously unidentified phenotypes assigned to them. This investigation provides a statistical global transcriptome analysis of the cellular response to constitutive activation of the Ras/cAMP pathway.
Collapse
Affiliation(s)
- D L Jones
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester M60 1QD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Brigulla M, Hoffmann T, Krisp A, Völker A, Bremer E, Völker U. Chill induction of the SigB-dependent general stress response in Bacillus subtilis and its contribution to low-temperature adaptation. J Bacteriol 2003; 185:4305-14. [PMID: 12867438 PMCID: PMC165770 DOI: 10.1128/jb.185.15.4305-4314.2003] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A variety of environmental and metabolic cues trigger the transient activation of the alternative transcription factor SigB of Bacillus subtilis, which subsequently leads to the induction of more than 150 general stress genes. This general stress regulon provides nongrowing and nonsporulated cells with a multiple, nonspecific, and preemptive stress resistance. By a proteome approach we have detected the expression of the SigB regulon during continuous growth at low temperature (15 degrees C). Using a combination of Western blot analysis and SigB-dependent reporter gene fusions, we provide evidence for high-level and persistent induction of the sigB operon and the SigB regulon, respectively, in cells continuously exposed to low temperatures. In contrast to all SigB-activating stimuli described thus far, induction by low temperatures does not depend on the positive regulatory protein RsbV or its regulatory phosphatases RsbU and RsbP, indicating the presence of an entirely new pathway for the activation of SigB by chill stress in B. subtilis. The physiological importance of the induction of the general stress response for the adaptation of B. subtilis to low temperatures is emphasized by the observation that growth of a sigB mutant is drastically impaired at 15 degrees C. Inclusion of the compatible solute glycine betaine in the growth medium not only improved the growth of the wild-type strain but rescued the growth defect of the sigB mutant, indicating that the induction of the general stress regulon and the accumulation of glycine betaine are independent means by which B. subtilis cells cope with chill stress.
Collapse
Affiliation(s)
- Matthias Brigulla
- Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, D-35032 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
123
|
Katzif S, Danavall D, Bowers S, Balthazar JT, Shafer WM. The major cold shock gene, cspA, is involved in the susceptibility of Staphylococcus aureus to an antimicrobial peptide of human cathepsin G. Infect Immun 2003; 71:4304-12. [PMID: 12874306 PMCID: PMC166043 DOI: 10.1128/iai.71.8.4304-4312.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Tn551 insertional library of Staphylococcus aureus strain ISP479 was challenged with an antimicrobial peptide (CG 117-136) derived from human neutrophil cathepsin G (CG). After repeated selection and screening of surviving colonies, a mutant was identified that expressed increased resistance to CG 117-136. Southern hybridization analysis revealed that the Tn551 insert in this mutant (SK1) was carried on a 10.6-kb EcoRI chromosomal DNA fragment. Subsequent physical mapping of this Tn551 insert revealed that it was positioned between a putative promoter sequence and the translational start codon of the cspA gene, which encodes a protein (CspA) highly similar to the major cold shock proteins CspA and CspB of Escherichia coli and Bacillus subtilis, respectively. This Tn551 insertion as well as a separate deletion-insertion mutation in cspA decreased the capacity of S. aureus to respond to the stress of cold shock and increased resistance to CG 117-136. The results indicate for the first time that a physiologic link exists between bacterial susceptibility to an antimicrobial peptide and a stress response system.
Collapse
Affiliation(s)
- Samuel Katzif
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
124
|
Leverrier P, Dimova D, Pichereau V, Auffray Y, Boyaval P, Jan G. Susceptibility and adaptive response to bile salts in Propionibacterium freudenreichii: physiological and proteomic analysis. Appl Environ Microbiol 2003; 69:3809-18. [PMID: 12839748 PMCID: PMC165135 DOI: 10.1128/aem.69.7.3809-3818.2003] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tolerance to digestive stresses is one of the main factors limiting the use of microorganisms as live probiotic agents. Susceptibility to bile salts and tolerance acquisition in the probiotic strain Propionibacterium freudenreichii SI41 were characterized. We showed that pretreatment with a moderate concentration of bile salts (0.2 g/liter) greatly increased its survival during a subsequent lethal challenge (1.0 g/liter, 60 s). Bile salts challenge led to drastic morphological changes, consistent with intracellular material leakage, for nonadapted cells but not for preexposed ones. Moreover, the physiological state of the cells during lethal treatment played an important role in the response to bile salts, as stationary-phase bacteria appeared much less sensitive than exponentially growing cells. Either thermal or detergent pretreatment conferred significantly increased protection toward bile salts challenge. In contrast, some other heterologous pretreatments (hypothermic and hyperosmotic) had no effect on tolerance to bile salts, while acid pretreatment even might have sensitized the cells. Two-dimensional electrophoresis experiments revealed that at least 24 proteins were induced during bile salts adaptation. Identification of these polypeptides suggested that the bile salts stress response involves signal sensing and transduction, a general stress response (also triggered by thermal denaturation, oxidative toxicity, and DNA damage), and an alternative sigma factor. Taken together, our results provide new insights into the tolerance of P. freudenreichii to bile salts, which must be taken into consideration for the use of probiotic strains and the improvement of technological processes.
Collapse
Affiliation(s)
- Pauline Leverrier
- Laboratoire de Recherches de Technologie Laitière, Institut National de la Recherche Agronomique, 65 Rue de St. Brieuc, 35042 Rennes Cedex, France
| | | | | | | | | | | |
Collapse
|
125
|
Derzelle S, Hallet B, Ferain T, Delcour J, Hols P. Improved adaptation to cold-shock, stationary-phase, and freezing stresses in Lactobacillus plantarum overproducing cold-shock proteins. Appl Environ Microbiol 2003; 69:4285-90. [PMID: 12839816 PMCID: PMC165198 DOI: 10.1128/aem.69.7.4285-4290.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated the effect of overproducing each of the three cold shock proteins (CspL, CspP, and CspC) in the mesophilic lactic acid bacterium Lactobacillus plantarum NC8. CspL overproduction transiently alleviated the reduction in growth rate triggered by exposing exponentially growing cells to cold shock (8 degrees C), suggesting that CspL is involved in cold adaptation. The strain overproducing CspC resumed growth more rapidly when stationary-phase cultures were diluted into fresh medium, indicating a role in the adaptation and recovery of nutritionally deprived cells. Overproduction of CspP led to an enhanced capacity to survive freezing.
Collapse
Affiliation(s)
- Sylviane Derzelle
- Institut des Sciences de la Vie/Unité de Génétique, Université catholique de Louvain, 5 Place Croix du Sud, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | | | |
Collapse
|
126
|
Kingsley RJ, Afif E, Cox BC, Kothari S, Kriechbaum K, Kuchinsky K, Neill AT, Puri AF, Kish VM. Expression of heat shock and cold shock proteins in the gorgonian Leptogorgia virgulata. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, COMPARATIVE EXPERIMENTAL BIOLOGY 2003; 296:98-107. [PMID: 12658715 DOI: 10.1002/jez.a.10248] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, we analyzed the response of the temperate, shallow-water gorgonian, Leptogorgia virgulata, to temperature stress. Proteins were pulse labeled with (35)S-methionine/cysteine for 1 h to 2 h at 22 degrees C (control), or 38 degrees C, or for 4 h at 12.5 degrees C. Heat shock induced synthesis of unique proteins of 112, 89, and 74 kDa, with 102, 98 and 56 kDa proteins present in the control as well. Cold shock from 22 degrees C-12.5 degrees C induced the synthesis of a 25 kDa protein, with a 44 kDa protein present in the control as well. Control samples expressed unique proteins of 38, and 33 kDa. Non-radioactive proteins expressed under the same conditions as above, as well as natural field conditions, were tested for reactivity with antibodies to heat shock proteins (HSPs). HSP60 was the major protein found in L. virgulata. Although HSP47, HSP60, and HSP104 were present in all samples, the expression of HSP60 was enhanced in heat stressed colonies, while HSP47 and HSP104 expression were greatest in cold shocked samples. Inducible HSP70 was expressed in cold-shocked, heat-shocked, and field samples. Constitutively expressed HSP70 was absent from all samples. The expression of HSP90 was limited to heat shocked colonies. The expression of both HSP70 and HSP104 suggests that the organism may also develop a stress tolerance response.
Collapse
Affiliation(s)
- Roni J Kingsley
- Department of Biology, University of Richmond, Virginia 23173, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Braunstein M, Espinosa BJ, Chan J, Belisle JT, Jacobs WR. SecA2 functions in the secretion of superoxide dismutase A and in the virulence of Mycobacterium tuberculosis. Mol Microbiol 2003; 48:453-64. [PMID: 12675804 DOI: 10.1046/j.1365-2958.2003.03438.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tuberculosis remains a severe worldwide health threat. A thorough understanding of Mycobacterium tuberculosis pathogenesis will facilitate the development of new treatments for tuberculosis. Numerous bacterial pathogens possess specialized protein secretion systems that are dedicated to the export of virulence factors. Mycobacterium tuberculosis is part of a developing group of pathogenic bacteria that share the uncommon property of possessing two secA genes (secA1 and secA2). In mycobacteria, SecA1 is the essential 'housekeeping' SecA protein whereas SecA2 is an accessory secretion factor. Here we demonstrate that SecA2 contributes to the pathogenesis of M. tuberculosis. A deletion of the secA2 gene in M. tuberculosis attenuates the virulence of the organism in mice. By comparing the profile of proteins secreted by wild-type M. tuberculosis and the DeltasecA2 mutant, we identified superoxide dismutase A (SodA) as a protein dependent on SecA2 for secretion. SodA lacks a classical signal sequence for protein export. Our data suggests that SecA2-dependent export is a new type of secretion pathway that is part of a virulence mechanism of M. tuberculosis to elude the oxidative attack of macrophages.
Collapse
Affiliation(s)
- Miriam Braunstein
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
128
|
Abstract
As a measure for molecular motion, temperature is one of the most important environmental factors for life as it directly influences structural and hence functional properties of cellular components. After a sudden increase in ambient temperature, which is termed heat shock, bacteria respond by expressing a specific set of genes whose protein products are designed to mainly cope with heat-induced alterations of protein conformation. This heat shock response comprises the expression of protein chaperones and proteases, and is under central control of an alternative sigma factor (sigma 32) which acts as a master regulator that specifically directs RNA polymerase to transcribe from the heat shock promotors. In a similar manner, bacteria express a well-defined set of proteins after a rapid decrease in temperature, which is termed cold shock. This protein set, however, is different from that expressed under heat shock conditions and predominantly comprises proteins such as helicases, nucleases, and ribosome-associated components that directly or indirectly interact with the biological information molecules DNA and RNA. Interestingly, in contrast to the heat shock response, to date no cold-specific sigma factor has been identified. Rather, it appears that the cold shock response is organized as a complex stimulon in which post-transcriptional events play an important role. In this review, we present a summary of research results that have been acquired in recent years by examinations of bacterial cold shock responses. Important processes such as cold signal perception, membrane adaptation, and the modification of the translation apparatus are discussed together with many other cold-relevant aspects of bacterial physiology and first attempts are made to dissect the cold shock stimulon into less complex regulatory subunits. Special emphasis is placed on findings concerning the nucleic acid-binding cold shock proteins which play a fundamental role not only during cold shock adaptation but also under optimal growth conditions.
Collapse
|
129
|
Sahara T, Goda T, Ohgiya S. Comprehensive expression analysis of time-dependent genetic responses in yeast cells to low temperature. J Biol Chem 2002; 277:50015-21. [PMID: 12379644 DOI: 10.1074/jbc.m209258200] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We performed genome-wide expression analysis to determine genetic responses in Saccharomyces cerevisiae to a low temperature environment using a cDNA microarray. Approximately 25% of the genes in the yeast genome were found to be involved in the response of yeast to low temperature. This finding of a large number of genes being involved in the response to low temperature enabled us to give a functional interpretation to the genetic responses to the stimulus. Functional and clustering analyses of temporal changes in gene expression revealed that global states of the expressions of up-regulated genes could be characterized as having three phases (the early, middle, and late phases). In each phase, genes related to rRNA synthesis, ribosomal proteins, or several stress responses are time-dependently up-regulated, respectively. Through these phases, yeast cells may improve reduced efficiency of translation and enhance cell protection mechanisms to survive under a low temperature condition. Furthermore, these time-dependent regulations of these genes would be controlled by the cAMP-protein kinase A pathway. The results of our study provide a global description of transcriptional response for adaptation to low temperature in yeast cells.
Collapse
Affiliation(s)
- Takehiko Sahara
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, 2-17-2-1 Tsukisamu-higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | | | | |
Collapse
|
130
|
Kaan T, Homuth G, Mäder U, Bandow J, Schweder T. Genome-wide transcriptional profiling of the Bacillus subtilis cold-shock response. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3441-3455. [PMID: 12427936 DOI: 10.1099/00221287-148-11-3441] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The transcriptome of Bacillus subtilis was analysed at different time points (30, 60 and 90 min) after a temperature downshift from 37 to 18 degrees C using DNA macroarrays. This approach allowed the identification of around 50 genes exhibiting an increased mRNA level and around 50 genes exhibiting a decreased mRNA level under cold-shock conditions. Many of the repressed genes encode enzymes involved in the biosynthesis of amino acids, nucleotides and coenzymes, indicating metabolic adaptation of the cells to the decreased growth rate at the lower temperature. The strongest cold-inducible gene encodes fatty acid desaturase, which forms unsaturated fatty acids from saturated phospholipid precursors, thereby increasing membrane fluidity. The cold-shock-induced increase of mRNA levels of the classical cold-shock genes cspB, cspC and cspD could be verified. Furthermore, besides many genes encoding proteins of unknown function, some genes encoding ribosomal proteins were transcriptionally up-regulated, which points to an adaptive reprogramming of the ribosomes under cold-shock conditions. Interestingly, the amount of mRNA specified by the operon ptb-bcd-buk-lpd-bkdA1-bkdA2-bkdB, which encodes enzymes involved in degradation of branched-chain amino acids, also increases after a temperature downshift. As cells utilize the isoleucine and valine degradation intermediates alpha-methylbutyryl-CoA and isobutyryl-CoA for synthesis of branched-chain fatty acids, this finding reflects the adaptation of membrane lipid composition, ensuring the maintenance of appropriate membrane fluidity at low temperatures. The results of the DNA array analyses were verified for several selected genes by RNA slot-blot analysis and compared with two-dimensional PAGE analyses.
Collapse
Affiliation(s)
- Tanja Kaan
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald,F.-L.-Jahn-Str. 15, D-17487 Greifswald, Germany1
| | - Georg Homuth
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald,F.-L.-Jahn-Str. 15, D-17487 Greifswald, Germany1
| | - Ulrike Mäder
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald,F.-L.-Jahn-Str. 15, D-17487 Greifswald, Germany1
| | - Julia Bandow
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald,F.-L.-Jahn-Str. 15, D-17487 Greifswald, Germany1
| | - Thomas Schweder
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald,F.-L.-Jahn-Str. 15, D-17487 Greifswald, Germany1
| |
Collapse
|
131
|
Beckering CL, Steil L, Weber MHW, Völker U, Marahiel MA. Genomewide transcriptional analysis of the cold shock response in Bacillus subtilis. J Bacteriol 2002; 184:6395-402. [PMID: 12399512 PMCID: PMC151959 DOI: 10.1128/jb.184.22.6395-6402.2002] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Previous studies with two-dimensional gel electrophoresis techniques revealed that the cold shock response in Bacillus subtilis is characterized by rapid induction and accumulation of two classes of specific proteins, which have been termed cold-induced proteins (CIPs) and cold acclimatization proteins (CAPs), respectively. Only recently, the B. subtilis two-component system encoded by the desKR operon has been demonstrated to be essential for the cold-induced expression of the lipid-modifying desaturase Des, which is required for efficient cold adaptation of the membrane in the absence of isoleucine. At present, one of the most intriguing questions in this research field is whether DesKR plays a global role in cold signal perception and transduction in B. subtilis. In this report, we present the first genomewide transcriptional analysis of a cold-exposed bacterium and demonstrate that the B. subtilis two-component system DesKR exclusively controls the desaturase gene des and is not the cold-triggered regulatory system of global relevance. In addition to this, we identified a set of genes that might participate as novel players in the cold shock adaptation of B. subtilis. Two cold-induced genes, the elongation factor homolog ylaG and the sigma(L)-dependent transcriptional activator homolog yplP, have been examined by construction and analysis of deletion mutants.
Collapse
|
132
|
Duché O, Trémoulet F, Namane A, Labadie J. A proteomic analysis of the salt stress response of Listeria monocytogenes. FEMS Microbiol Lett 2002; 215:183-8. [PMID: 12399033 DOI: 10.1111/j.1574-6968.2002.tb11389.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Protein variations in Listeria monocytogenes were analyzed by 2-D electrophoresis. Bacteria were grown either in a rich medium or in a chemically defined medium. Three proteins, which are more expressed in the chemically defined medium than in the rich medium, were identified by mass spectrometry. They are closely related to AppA, Ctc and YvyD. After an osmotic shock, according to the medium and the NaCl concentration, the synthesis rate (P<0.05) of 59 proteins is altered by salinity. Half of them were more expressed, some of these proteins were closely related to Ctc, GbuA and the 30S ribosomal protein S6. Among the proteins which were down-expressed in the presence of salt, two were similar to AckA and PdhD.
Collapse
Affiliation(s)
- Ophélie Duché
- Station de Recherches sur la Viande, Institut National de la Recherche Agronomique, 63122, Saint-Genès Champanelle, France
| | | | | | | |
Collapse
|
133
|
Movahedi S, Waites W. Cold shock response in sporulating Bacillus subtilis and its effect on spore heat resistance. J Bacteriol 2002; 184:5275-81. [PMID: 12218012 PMCID: PMC135340 DOI: 10.1128/jb.184.19.5275-5281.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2002] [Accepted: 06/26/2002] [Indexed: 11/20/2022] Open
Abstract
Cold shock and ethanol and puromycin stress responses in sporulating Bacillus subtilis cells have been investigated. We show that a total of 13 proteins are strongly induced after a short cold shock treatment of sporulating cells. The cold shock pretreatment affected the heat resistance of the spores formed subsequently, with spores heat killed at 85 or 90 degrees C being more heat resistant than the control spores while they were more heat sensitive than controls that were heat treated at 95 or 100 degrees C. However, B. subtilis spores with mutations in the main cold shock proteins, CspB, -C, and -D, did not display decreased heat resistance compared to controls, indicating that these proteins are not directly responsible for the increased heat resistance of the spores. The disappearance of the stress proteins later in sporulation suggests that they cannot be involved in repairing heat damage during spore germination and outgrowth but must alter spore structure in a way which increases or decreases heat resistance. Since heat, ethanol, and puromycin stress produce similar proteins and similar changes in spore heat resistance while cold shock is different in both respects, these alterations appear to be very specific.
Collapse
Affiliation(s)
- Sara Movahedi
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | | |
Collapse
|
134
|
Weber MHW, Marahiel MA. Coping with the cold: the cold shock response in the Gram-positive soil bacterium Bacillus subtilis. Philos Trans R Soc Lond B Biol Sci 2002; 357:895-907. [PMID: 12171653 PMCID: PMC1693001 DOI: 10.1098/rstb.2002.1078] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
All organisms examined to date, respond to a sudden change in environmental temperature with a specific cascade of adaptation reactions that, in some cases, have been identified and monitored at the molecular level. According to the type of temperature change, this response has been termed heat shock response (HSR) or cold shock response (CSR). During the HSR, a specialized sigma factor has been shown to play a central regulatory role in controlling expression of genes predominantly required to cope with heat-induced alteration of protein conformation. In contrast, after cold shock, nucleic acid structure and proteins interacting with the biological information molecules DNA and RNA appear to play a major cellular role. Currently, no cold-specific sigma factor has been identified. Therefore, unlike the HSR, the CSR appears to be organized as a complex stimulon rather than resembling a regulon. This review has been designed to draw a refined picture of our current understanding of the CSR in Bacillus subtilis. Important processes such as temperature sensing, membrane adaptation, modification of the translation apparatus, as well as nucleoid reorganization and some metabolic aspects, are discussed in brief. Special emphasis is placed on recent findings concerning the nucleic acid binding cold shock proteins, which play a fundamental role, not only during cold shock adaptation but also under optimal growth conditions.
Collapse
Affiliation(s)
- Michael H W Weber
- Philipps-Universität Marburg, Department of Chemistry, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
| | | |
Collapse
|
135
|
Abstract
It has been reported that the hyperthermophilic archaeon, Methanococcus jannaschii, possesses two FKBP (FK506 binding protein) genes in the genome, one being 26 kDa FKBP (long-type FKBP) and the other, 18 kDa FKBP (short-type FKBP). FKBP is a family of peptidyl-prolyl cis-trans isomerases (PPIases). In order to clarify the difference between their roles in archaeal cells, they were expressed in Escherichia coli, and their PPIase and chaperone-like protein-folding activities were investigated. The catalytic efficiency of the PPIase activity of the long-type FKBP was significantly lower than that of short-type FKBP (less than 1/1000) which is comparable to that of human FKBP12. Both FKBPs showed chaperone-like protein-folding activity to enhance the refolding yield of an unfolded protein (Thermoplasma citrate synthase) in vitro. The chaperone-like protein-folding activity of the short type was higher than that of the long type. While the intracellular content of long-type FKBP in M. jannaschii tended to increase, that of short-type FKBP obviously decreased at growth temperatures higher than the optimum of 85 degrees C. In Pyrococcus horikoshii, another hyperthermophilic archaeon, the intracellular content of long-type FKBP did not change with temperature (80-102 degrees C). These results suggest that long-type FKBP functions at any temperature in the cells as a chaperone to maintain the folding states of intracellular proteins. On the other hand, short-type FKBP may be required at lower temperatures. Peptidyl-prolyl cis-trans isomerization is known to be a rate-limiting step in protein-folding and is slower at low temperature. Since the PPIase activity of short-type FKBP was much stronger than that of the long type, it may be required to accelerate the folding of intracellular proteins and for the hyperthermophilic cell to live at low growth temperatures.
Collapse
Affiliation(s)
- Akira Ideno
- Marine Biotechnology Institute, 3-75-1 Heita, Kamaishi, Iwate 026-0001, Japan.
| | | |
Collapse
|
136
|
Yang C, Maiguel DA, Carrier F. Identification of nucleolin and nucleophosmin as genotoxic stress-responsive RNA-binding proteins. Nucleic Acids Res 2002; 30:2251-60. [PMID: 12000845 PMCID: PMC115285 DOI: 10.1093/nar/30.10.2251] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2001] [Revised: 03/15/2002] [Accepted: 03/15/2002] [Indexed: 01/25/2023] Open
Abstract
Genotoxic stress (DNA damage) can elicit multiple responses in mammalian cells, including the activation of numerous cascades of signal transduction that result in the activation of cellular genes involved in growth control, DNA repair and apoptosis. In an earlier report, we have shown that DNA-damaging agents can also induce the RNA-binding activity of several specific proteins that favor a double stem-loop RNA structure. Here we report the purification and identification of nucleophosmin (NPM) and nucleolin as two genotoxic stress-responsive RNA-binding proteins. UV radiation induces the protein expression levels and RNA-binding activity of NPM while nucleolin RNA-binding activity increases after UV or ionizing radiation exposure. Moreover, we have identified 40 mRNA ligands that are potentially regulated by nucleolin, several of which are stress-responsive transcripts. In addition, our data indicate that activation of nucleolin RNA-binding activity by genotoxic stress is mediated by stress-activated protein kinase p38. Our findings suggest that activation of the RNA-binding properties of nucleolin and NPM is part of the cellular response to genotoxic stress.
Collapse
Affiliation(s)
- Chonglin Yang
- University of Maryland, Baltimore, School of Medicine, Biochemistry and Molecular Biology Department, 108 North Greene Street, Baltimore, MD 21201-1503, USA
| | | | | |
Collapse
|
137
|
Sardesai N, Babu CR. Cold stress induced high molecular weight membrane polypeptides are responsible for cold tolerance in Rhizobium DDSS69. Microbiol Res 2002; 156:279-84. [PMID: 11716216 DOI: 10.1078/0944-5013-00112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cold stress induces a lag phase in the growth cycle of Rhizobium DDSS69. Two cold sensitive mutants of DDSS69 were generated through Tn5 tagged mutagenesis. These mutants do not grow below 15 degrees C but show a growth curve comparable with the wild type grown at 5 degrees C. There is a rapid induction of two high molecular weight membrane polypeptides of 135 and 119 kDa within 15 min of exposure to 5 degrees C in DDSS69. PAGE membrane protein profiles of stressed and non-stressed cells reveal differential regulation of genes. At 15 degrees C both mutants lack the high molecular weight polypeptides, suggesting a role in alleviation of cold stress.
Collapse
Affiliation(s)
- N Sardesai
- Department of Botany, University of Delhi, India.
| | | |
Collapse
|
138
|
Duché O, Trémoulet F, Glaser P, Labadie J. Salt stress proteins induced in Listeria monocytogenes. Appl Environ Microbiol 2002; 68:1491-8. [PMID: 11916660 PMCID: PMC123839 DOI: 10.1128/aem.68.4.1491-1498.2002] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of Listeria monocytogenes to tolerate salt stress is of particular importance, as this pathogen is often exposed to such environments during both food processing and food preservation. In order to understand the survival mechanisms of L. monocytogenes, an initial approach using two-dimensional polyacrylamide gel electrophoresis was performed to analyze the pattern of protein synthesis in response to salt stress. Of 400 to 500 visible proteins, the synthesis of 40 proteins (P < 0.05) was repressed or induced at a higher rate during salt stress. Some of the proteins were identified on the basis of mass spectrometry or N-terminal sequence analysis and database searching. Twelve proteins showing high induction after salt stress were similar to general stress proteins (Ctc and DnaK), transporters (GbuA and mannose-specific phosphotransferase system enzyme IIAB), and general metabolism proteins (alanine dehydrogenase, CcpA, CysK, EF-Tu, Gap, GuaB, PdhA, and PdhD).
Collapse
Affiliation(s)
- Ophélie Duché
- Station de Recherches sur la Viande, Institut National de la Recherche Agronomique, Theix, 63122 Saint-Genès Champanelle, France
| | | | | | | |
Collapse
|
139
|
Wemekamp-Kamphuis HH, Karatzas AK, Wouters JA, Abee T. Enhanced levels of cold shock proteins in Listeria monocytogenes LO28 upon exposure to low temperature and high hydrostatic pressure. Appl Environ Microbiol 2002; 68:456-63. [PMID: 11823178 PMCID: PMC126669 DOI: 10.1128/aem.68.2.456-463.2002] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2001] [Accepted: 10/30/2001] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a psychrotrophic food-borne pathogen that is problematic for the food industry because of its ubiquitous distribution in nature and its ability to grow at low temperatures and in the presence of high salt concentrations. Here we demonstrate that the process of adaptation to low temperature after cold shock includes elevated levels of cold shock proteins (CSPs) and that the levels of CSPs are also elevated after treatment with high hydrostatic pressure (HHP). Two-dimensional gel electrophoresis combined with Western blotting performed with anti-CspB of Bacillus subtilis was used to identify four 7-kDa proteins, designated Csp1, Csp2, Csp3, and Csp4. In addition, Southern blotting revealed four chromosomal DNA fragments that reacted with a csp probe, which also indicated that a CSP family is present in L. monocytogenes LO28. After a cold shock in which the temperature was decreased from 37 degrees C to 10 degrees C the levels of Csp1 and Csp3 increased 10- and 3.5-fold, respectively, but the levels of Csp2 and Csp4 were not elevated. Pressurization of L. monocytogenes LO28 cells resulted in 3.5- and 2-fold increases in the levels of Csp1 and Csp2, respectively. Strikingly, the level of survival after pressurization of cold-shocked cells was 100-fold higher than that of cells growing exponentially at 37 degrees C. These findings imply that cold-shocked cells are protected from HHP treatment, which may affect the efficiency of combined preservation techniques.
Collapse
|
140
|
Yang C, Carrier F. The UV-inducible RNA-binding protein A18 (A18 hnRNP) plays a protective role in the genotoxic stress response. J Biol Chem 2001; 276:47277-84. [PMID: 11574538 DOI: 10.1074/jbc.m105396200] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have previously shown that specific RNA-binding proteins (RBP) are activated by genotoxic stress. The role and function of these stress-activated RBP are, however, poorly understood. The data presented here indicate that the RBP A18 heterogeneous ribonucleoprotein (hnRNP) is induced and translocated from the nuclei to the cytoplasm after exposure to UV radiation. Using a new in vitro system we identified potential cellular targets for A18 hnRNP. Forty-six mRNA transcripts were identified, most of which are stress- or UV-responsive genes. Two important stress-responsive transcripts, the replication protein A (RPA2) and thioredoxin, were studied in more detail. Northwestern analyses indicate that A18 hnRNP binds specifically to the 3'-untranslated region of RPA2 transcript independently of its poly(A) tail, whereas the poly(A) tail of thioredoxin mRNA reinforces binding. Overexpression of A18 hnRNP increases the mRNAs stability and consequently enhances translation in a dose-dependent manner. Moreover, cell lines expressing reduced levels of A18 hnRNP are more sensitive to UV radiation. These data suggest that A18 hnRNP plays a protective role against genotoxic stresses by translocating to the cytosol and stabilizing specific transcripts involved in cell survival.
Collapse
MESH Headings
- 3' Untranslated Regions
- 5' Untranslated Regions
- Blotting, Northern
- Blotting, Western
- Cell Division
- Cell Line
- Cell Nucleus/radiation effects
- Cell Survival
- Chloramphenicol O-Acetyltransferase/metabolism
- Cytoplasm/radiation effects
- DNA, Complementary/metabolism
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Dose-Response Relationship, Radiation
- Heterogeneous-Nuclear Ribonucleoproteins
- Humans
- Microscopy, Fluorescence
- Models, Genetic
- Open Reading Frames
- Plasmids/metabolism
- Poly A
- Protein Biosynthesis
- Protein Transport/radiation effects
- RNA, Messenger/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/physiology
- Recombinant Fusion Proteins/metabolism
- Replication Protein A
- Ribonucleoproteins/chemistry
- Ribonucleoproteins/physiology
- Stress, Physiological
- Time Factors
- Transcription, Genetic
- Tumor Cells, Cultured
- Ultraviolet Rays
Collapse
Affiliation(s)
- C Yang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201-1503, USA
| | | |
Collapse
|
141
|
Abstract
AIMS The effects of stresses imposed on bacterial contaminants during food processing and treatment of packaging material were evaluated on the food pathogen Bacillus cereus. METHODS AND RESULTS Conditions were established which allowed the cells to adapt to heat, ethanol and hydrogen peroxide stresses, but not to osmotic shock. Cross protection between stresses indicated a clear hierarchy of resistance with salt protecting against hydrogen peroxide, which protected against ethanol, which protected against heat shock. The cultures were shown to be most sensitive to heat, ethanol and oxidative stress at mid-exponential phase and to become resistant at stationary phase. Adaptive levels of stressor were found to induce synthesis of general stress and stress-specific proteins and differential accumulation of proteins was demonstrated between heat- or salt-stressed and unstressed cells. CONCLUSIONS Sequencing revealed that a number of glycolytic enzymes were regulated by heat and osmotic shocks and that the chaperone GroEL was induced by heat shock. SIGNIFICANCE AND IMPACT OF THE STUDY The implications of the physiological data in designing storage and processing conditions for food are discussed. The identification of stress-regulated proteins reveals a clear role for glycolysis in adaptation to heat shock and osmotic stress.
Collapse
Affiliation(s)
- N Browne
- Department of Biology and Institute of Bioengineering and Agroecology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | | |
Collapse
|
142
|
Weber MH, Beckering CL, Marahiel MA. Complementation of cold shock proteins by translation initiation factor IF1 in vivo. J Bacteriol 2001; 183:7381-6. [PMID: 11717297 PMCID: PMC95587 DOI: 10.1128/jb.183.24.7381-7386.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cold shock response in both Escherichia coli and Bacillus subtilis is induced by an abrupt downshift in growth temperature and leads to a dramatic increase in the production of a homologous class of small, often highly acidic cold shock proteins. This protein family is the prototype of the cold shock domain (CSD) that is conserved from bacteria to humans. For B. subtilis it has been shown that at least one of the three resident cold shock proteins (CspB to D) is essential under optimal growth conditions as well as during cold shock. Analysis of the B. subtilis cspB cspC double deletion mutant revealed that removal of these csp genes results in pleiotropic alteration of protein synthesis, cell lysis during the entry of stationary growth phase, and the inability to differentiate into endospores. We show here that heterologous expression of the translation initiation factor IF1 from E. coli in a B. subtilis cspB cspC double deletion strain is able to cure both the growth and the sporulation defects observed for this mutant, suggesting that IF1 and cold shock proteins have at least in part overlapping cellular function(s). Two of the possible explanation models are discussed.
Collapse
Affiliation(s)
- M H Weber
- Philipps-Universität Marburg, FB Chemie, D-35032 Marburg, Germany
| | | | | |
Collapse
|
143
|
Abstract
Optimal conditions for two-dimensional gel electrophoresis of total cellular proteins from Myxococcus xanthus were established. Using these conditions, we analyzed protein patterns of heat-shocked M. xanthus cells. Eighteen major spots and 15 minor spots were found to be induced by heat shock. From N-terminal sequences of 15 major spots, DnaK, GroEL, GroES, alkyl hydroperoxide reductase, aldehyde dehydrogenase, succinyl coenzyme A (CoA) synthetase, 30S ribosomal protein S6, and ATP synthase alpha subunit were identified. Three of the 18 major spots had an identical N-terminal sequence, indicating that they may be different forms of the same protein. Although a DnaK homologue, SglK, has been identified in M. xanthus (R. M. Weimer, C. Creghton, A. Stassinopoulos, P. Youderian, and P. L. Hartzell, J. Bacteriol. 180:5357-5368, 1998; Z. Yang, Y. Geng, and W. Shi, J. Bacteriol. 180:218-224, 1998), SglK was not induced by heat shock. In addition, there were seven substitutions within the N-terminal 30-residue sequence of the newly identified DnaK. This is the first report to demonstrate that succinyl CoA synthetase, 30S ribosomal protein S6, and ATP synthase alpha subunit are heat shock inducible.
Collapse
Affiliation(s)
- M Otani
- Faculty of Pharmaceutical Sciences, Kobe-Gakuin University, Nishi-ku, Kobe 651-2180, Japan
| | | | | | | | | |
Collapse
|
144
|
Büttner K, Bernhardt J, Scharf C, Schmid R, Mäder U, Eymann C, Antelmann H, Völker A, Völker U, Hecker M. A comprehensive two-dimensional map of cytosolic proteins of Bacillus subtilis. Electrophoresis 2001; 22:2908-35. [PMID: 11565787 DOI: 10.1002/1522-2683(200108)22:14<2908::aid-elps2908>3.0.co;2-m] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Proteomics relying on two-dimensional (2-D) gel electrophoresis of proteins followed by spot identification with mass spectrometry is an excellent experimental tool for physiological studies opening a new perspective for understanding overall cell physiology. This is the intriguing outcome of a method introduced by Klose and O'Farrell independently 25 years ago. Physiological proteomics requires a 2-D reference map on which most of the main proteins were identified. In this paper, we present such a reference map with more than 300 entries for Bacillus subtilis proteins with an isoelectric point (pI) between 4 and 7. The most abundant proteins of exponentially growing cells were compiled and shown to perform mainly housekeeping functions in glycolysis, tricarboxylic acid cycle (TCC), amino acid biosynthesis and translation as well as protein quality control. Furthermore, putative post-translational modifications were shown at a large scale, with 47 proteins in total forming more than one spot. In a few selected cases evidence for phosphorylation of these proteins is presented. The proteome analysis in the standard pI range was complemented by either stretching the most crowded regions in a narrow pH gradient 4.5-5.5, or by adding other fractions of the total B. subtilis proteome such as alkaline proteins as well as extracellular proteins. A big challenge for future studies is to provide an experimental protocol covering the fraction of intrinsic membrane proteins that almost totally escaped detection by the experimental procedure used in this study.
Collapse
Affiliation(s)
- K Büttner
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Cold-induced proteins in cold-active isolates of the insectpathogenic fungus Metarhizium anisopliae. ACTA ACUST UNITED AC 2001. [DOI: 10.1017/s0953756201004099] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
146
|
Rosen R, Büttner K, Schmid R, Hecker M, Ron EZ. Stress-induced proteins of Agrobacterium tumefaciens. FEMS Microbiol Ecol 2001; 35:277-285. [PMID: 11311438 DOI: 10.1111/j.1574-6941.2001.tb00813.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The pattern of proteins produced by bacteria represents the physiological state of the organism as well as the environmental conditions encountered. Environmental stress induces the expression of several regulons encoding stress proteins. Extensive information about the proteins which constitute these regulons (or stimulons) and their control is available for very few bacteria, such as the Gram-positive Bacillus subtilis and the Gram-negative Escherichia coli (gamma-proteobacteria) and is minimal for all other bacteria. Agrobacterium tumefaciens is a Gram-negative plant pathogen of the alpha-proteobacteria, which constitutes the main tool for plant recombinant genetics. Our previous studies on the control of chaperone-coding operons indicated that A. tumefaciens has unique features and combines regulatory elements from both B. subtilis and E. coli. Therefore, we examined the patterns of proteins induced in A. tumefaciens by environmental changes using two-dimensional gel electrophoresis and dual-channel image analysis. Shifts to high temperature, oxidative and mild acid stresses stimulated the expression of 97 proteins. The results indicate that most of these stress-induced proteins (80/97) were specific to one stress stimulon. Only 10 proteins appear to belong to a general stress regulon.
Collapse
|
147
|
Yamanaka K, Zheng W, Crooke E, Wang YH, Inouye M. CspD, a novel DNA replication inhibitor induced during the stationary phase in Escherichia coli. Mol Microbiol 2001; 39:1572-84. [PMID: 11260474 DOI: 10.1046/j.1365-2958.2001.02345.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CspD is a stationary phase-induced, stress response protein in the CspA family of Escherichia coli. Here, we demonstrate that overproduction of CspD is lethal, with the cells displaying a morphology typical of cells with impaired DNA replication. CspD consists mainly of beta-strands, and the purified protein exists exclusively as a dimer and binds to single-stranded (ss)DNA and RNA in a dose-dependent manner without apparent sequence specificity. CsdD effectively inhibits both the initiation and the elongation steps of minichromosome replication in vitro. Electron microscopic studies revealed that CspD tightly packs ssDNA, resulting in structures distinctly different from those of SSB-coated DNA. We propose that CspD dimers, with two independent beta-sheets interacting with ssDNA, function as a novel inhibitor of DNA replication and play a regulatory role in chromosomal replication in nutrient-depleted cells.
Collapse
Affiliation(s)
- K Yamanaka
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
148
|
Weber MH, Klein W, Müller L, Niess UM, Marahiel MA. Role of the Bacillus subtilis fatty acid desaturase in membrane adaptation during cold shock. Mol Microbiol 2001; 39:1321-9. [PMID: 11251847 DOI: 10.1111/j.1365-2958.2001.02322.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In our attempt to understand the cold shock response of Bacillus subtilis, we report on the role of the B. subtilis fatty acid desaturase (FA-D) Des during membrane adaptation to low temperatures and demonstrate its importance during cold shock. A des null mutant was constructed and analysed in comparison with its parental strain. Growth studies and large-scale comparative fatty acid (FA) analysis revealed a severe cold-sensitive phenotype of the des deletion mutant during the absence of isoleucine and showed that four unsaturated fatty acid (UFA) species differing in length, branching pattern and position of the double bond are synthesized in B. subtilis JH642 but not in the des null mutant. Apart from the lack of UFA synthesis, the FA-D deletion strain showed a dramatically altered saturated fatty acid (SFA) profile at the onset of the stationary growth phase in the presence of exogenous isoleucine sources. Expression of des integrated in trans at the amyE locus of the des deletion strain not only cured the cold-sensitive phenotype observed for the des mutant but allowed much better growth than in strain JH642 after a shift from 37 degrees C to 15 degrees C. These results show that, during cold shock adaptation, des expression can completely replace the isoleucine-dependent, long-term, FA branching adaptation mechanism. We conclude that the crucial aspect in cold adaptation of the cytoplasmic membrane is not its specific molecular composition but rather its physical status in terms of its fluidity.
Collapse
Affiliation(s)
- M H Weber
- Philipps-Universität Marburg, FB Chemie, Hans-Meerwein-Str., D-35032 Marburg, Germany
| | | | | | | | | |
Collapse
|
149
|
Bollman J, Ismond A, Blank G. Survival of Escherichia coli O157:H7 in frozen foods: impact of the cold shock response. Int J Food Microbiol 2001; 64:127-38. [PMID: 11252494 DOI: 10.1016/s0168-1605(00)00463-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The survival of Escherichia coli O157:H7 strains in both frozen foods and trypticase soy broth (TSB) was investigated following cold shocking at 10 degrees C for 1.5 h. Using both trypticase soy agar (TSA) and violet red bile agar (VRBA) as recovery media, it was demonstrated that survival levels between cold shocked (CS) and non-cold shocked (NS) E. coli in ground beef or pork were not significantly different (P < or = 0.05). In contrast, cold shocking E. coli in either milk, whole egg or sausage resulted in a significant(P < or = 0.05) enhancement in survival. For milk, survival levels of CS E. coli, by 28 days of frozen storage, were 1.89 and 1.66 log10 cfu/ml higher on TSA and VRBA, respectively, when compared to NS cells. In egg these values were 0.64 and 1.31, while in sausage, values of 0.74 and 1.19 were obtained. In TSB (pH 7) survival of CS E. coli for some strains was about 3 log10 cfu/ml higher when compared to NS cells. Acidification of TSB (pH 5), however, appeared to negate the protective effects of the cold shock treatment. In milk, increasing the differential between the growth and cold shock temperatures resulted in higher numbers of survivors. In this regard the growth-cold shock temperature protocol giving optimum protection was 37-10 degrees C. In contrast, growth of E. coli at 20 degrees C followed by cold shocking at 10 degrees C did not result in any significant freeze protection. In addition, increased protection due to cold shocking was correlated with the appearance of a novel protein appearing at pI 4.8 following isoelectric focusing analysis, thus demonstrating an alteration of protein synthesis.
Collapse
Affiliation(s)
- J Bollman
- Department of Food Science, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
150
|
Shires K, Steyn L. The cold-shock stress response in Mycobacterium smegmatis induces the expression of a histone-like protein. Mol Microbiol 2001; 39:994-1009. [PMID: 11251819 DOI: 10.1046/j.1365-2958.2001.02291.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The response of Mycobacterium smegmatis to a cold shock was investigated by monitoring changes in both growth and cellular protein composition of the organism. The nature of the cellular response was influenced by the magnitude of the temperature reduction, with the shock from 37 degrees C to 10 degrees C having the most widespread effect on growth, metabolism and protein composition. This 27 degrees C temperature reduction was associated with a lag period of 21-24 h before increases were seen in all the measured cellular activities. The response to cold shock was adaptive, with growth resuming after this period, albeit at a 50-fold slower rate. The synthesis of at least 15 proteins was induced during the lag period. Two distinct patterns of cold-induced synthesis were apparent, namely transient and continuous, indicating the production of both cold-induced and cold-acclimation proteins. One of these cold-shock proteins, CipMa, was identified as the histone-like protein, Hlp, of M. smegmatis, which is also induced during anaerobic-induced dormancy. The corresponding gene demonstrated transient, cold-inducible expression with a five- to sevenfold increase in mRNA occurring 9-12 h after temperature shift. Although bacterial survival was unaffected, CipMa/Hlp knock-out mutants were unable to adapt metabolically to the cold shock and resume growth, thus indicating a key role for CipMa in the cold-shock response.
Collapse
Affiliation(s)
- K Shires
- Medical Microbiology Department, University of Cape Town Medical School, Werner-Beit Building, Anzio Road, Observatory, Cape Town, South Africa.
| | | |
Collapse
|