101
|
Malki K, Sawaya NA, Tisza MJ, Coutinho FH, Rosario K, Székely AJ, Breitbart M. Spatial and Temporal Dynamics of Prokaryotic and Viral Community Assemblages in a Lotic System (Manatee Springs, Florida). Appl Environ Microbiol 2021; 87:e0064621. [PMID: 34232732 PMCID: PMC8388828 DOI: 10.1128/aem.00646-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/29/2021] [Indexed: 01/04/2023] Open
Abstract
Flow from high-magnitude springs fed by the Floridan aquifer system contributes hundreds of liters of water per second to rivers, creating unique lotic systems. Despite their importance as freshwater sources and their contributions to the state's major rivers, little is known about the composition and spatiotemporal variability of prokaryotic and viral communities of these spring systems or their influence on downstream river sites. At four time points throughout a year, we determined the abundance and diversity of prokaryotic and viral communities at three sites within the first-magnitude Manatee Springs system (the spring head where water emerges from the aquifer, a mixed region where the spring run ends, and a downstream site in the Suwannee River). The abundance of prokaryotes and virus-like particles increased 100-fold from the spring head to the river and few members from the head communities persisted in the river at low abundance, suggesting the springs play a minor role in seeding downstream communities. Prokaryotic and viral communities within Manatee Springs clustered by site, with seasonal variability likely driven by flow. As water flowed through the system, microbial community composition was affected by changes in physiochemical parameters and community coalescence. Evidence of species sorting and mass effects could be seen in the assemblages. Greater temporal fluctuations were observed in prokaryotic and viral community composition with increasing distance from the spring outflow, reflecting the relative stability of the groundwater environment, and comparisons to springs from prior work reaffirmed that distinct first-magnitude springs support unique communities. IMPORTANCE Prokaryotic and viral communities are central to food webs and biogeochemical processes in aquatic environments, where they help maintain ecosystem health. The Floridan aquifer system (FAS), which is the primary drinking water source for millions of people in the southeastern United States, contributes large amounts of freshwater to major river systems in Florida through its springs. However, there is a paucity of information regarding the spatiotemporal dynamics of microbial communities in these essential flowing freshwater systems. This work explored the prokaryotic and viral communities in a first-magnitude spring system fed by the FAS that discharges millions of liters of water per day into the Suwannee River. This study examined microbial community composition through space and time as well as the environmental parameters and metacommunity assembly mechanisms that shape these communities, providing a foundational understanding for monitoring future changes.
Collapse
Affiliation(s)
- Kema Malki
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, USA
| | - Natalie A. Sawaya
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, USA
| | - Michael J. Tisza
- Laboratory of Cellular Oncology, NCI, NIH, Bethesda, Maryland, USA
| | - Felipe H. Coutinho
- Departamento de Produccíon Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, USA
| | - Anna J. Székely
- Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, USA
| |
Collapse
|
102
|
Harnessing the Genetic Plasticity of Porcine Circovirus Type 2 to Target Suicidal Replication. Viruses 2021; 13:v13091676. [PMID: 34578257 PMCID: PMC8473201 DOI: 10.3390/v13091676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022] Open
Abstract
Porcine circovirus type 2 (PCV2), the causative agent of a wasting disease in weanling piglets, has periodically evolved into several new subtypes since its discovery, indicating that the efficacy of current vaccines can be improved. Although a DNA virus, the mutation rates of PCV2 resemble RNA viruses. The hypothesis that recoding of selected serine and leucine codons in the PCV2b capsid gene could result in stop codons due to mutations occurring during viral replication and thus result in rapid attenuation was tested. Vaccination of weanling pigs with the suicidal vaccine constructs elicited strong virus-neutralizing antibody responses. Vaccination prevented lesions, body-weight loss, and viral replication on challenge with a heterologous PCV2d strain. The suicidal PCV2 vaccine construct was not detectable in the sera of vaccinated pigs at 14 days post-vaccination, indicating that the attenuated vaccine was very safe. Exposure of the modified virus to immune selection pressure with sub-neutralizing levels of antibodies resulted in 5 of the 22 target codons mutating to a stop signal. Thus, the described approach for the rapid attenuation of PCV2 was both effective and safe. It can be readily adapted to newly emerging viruses with high mutation rates to meet the current need for improved platforms for rapid-response vaccines.
Collapse
|
103
|
Nigam D. Genomic Variation and Diversification in Begomovirus Genome in Implication to Host and Vector Adaptation. PLANTS (BASEL, SWITZERLAND) 2021; 10:1706. [PMID: 34451752 PMCID: PMC8398267 DOI: 10.3390/plants10081706] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 01/02/2023]
Abstract
Begomoviruses (family Geminiviridae, genus Begomovirus) are DNA viruses transmitted in a circulative, persistent manner by the whitefly Bemisia tabaci (Gennadius). As revealed by their wide host range (more than 420 plant species), worldwide distribution, and effective vector transmission, begomoviruses are highly adaptive. Still, the genetic factors that facilitate their adaptation to a diverse array of hosts and vectors remain poorly understood. Mutations in the virus genome may confer a selective advantage for essential functions, such as transmission, replication, evading host responses, and movement within the host. Therefore, genetic variation is vital to virus evolution and, in response to selection pressure, is demonstrated as the emergence of new strains and species adapted to diverse hosts or with unique pathogenicity. The combination of variation and selection forms a genetic imprint on the genome. This review focuses on factors that contribute to the evolution of Begomovirus and their global spread, for which an unforeseen diversity and dispersal has been recognized and continues to expand.
Collapse
Affiliation(s)
- Deepti Nigam
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
104
|
Abstract
The family Genomoviridae (phylum Cressdnaviricota, class Repensiviricetes, order Geplafuvirales) includes viruses with circular single-stranded DNA genomes encoding two proteins, the capsid protein and the rolling-circle replication initiation protein. The genomes of the vast majority of members in this family have been sequenced directly from diverse environmental or animal- and plant-associated samples, but two genomoviruses have been identified infecting fungi. Since the last taxonomic update of the Genomoviridae, a number of new members of this family have been sequenced. Here, we report on the most recent taxonomic update, including the creation of one new genus, Gemytripvirus, and classification of ~420 new genomoviruses into 164 new species. We also announce the adoption of the "Genus + freeform epithet" binomial system for the naming of all 236 officially recognized species in the family Genomoviridae. The updated taxonomy presented in this article has been accepted by the International Committee on Taxonomy of Viruses (ICTV).
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, USA.
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Paris, France.
| |
Collapse
|
105
|
Rakibuzzaman A, Ramamoorthy S. Comparative immunopathogenesis and biology of recently discovered porcine circoviruses. Transbound Emerg Dis 2021; 68:2957-2968. [PMID: 34288522 DOI: 10.1111/tbed.14244] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022]
Abstract
Porcine circoviruses are important pathogens of production swine. Porcine circovirus type 1 (PCV1) is non-pathogenic, and discovered as a contaminant of a porcine kidney cell line, PK-15. The discovery of pathogenic variant, PCV2, occurred in the late 90s in association with post-weaning multi-systemic wasting disease syndrome (PMWS), which is characterized by wasting, respiratory signs and lymphadenopathy in weanling pigs. A new PCV type, designated as PCV3, was discovered in 2016, in pigs manifesting porcine dermatitis and nephropathy syndrome (PDNS), respiratory distress and reproductive failure. Pathological manifestations of PCV3 Infections include systemic inflammation, vasculitis and myocarditis. A fourth PCV type, PCV4, was identified in 2020 in pigs with PDNS, respiratory and enteric signs. All the pathogenic PCV types are detected in both healthy and morbid pigs. They cause chronic, systemic infections with various clinical manifestations. Dysregulation of the immune system homeostasis is a pivotal trigger for pathogenesis in porcine circoviral infections. While the study of PCV3 immunobiology is still in its infancy lessons learned from PCV2 and other circular replication-associated protein (Rep)-encoding single stranded (ss) (CRESS) DNA viruses can inform the field of exploration for PCV3. Viral interactions with the innate immune system, interference with dendritic cell function coupled with the direct loss of lymphocytes compromises both innate and adaptive immunity in PCV2 infections. Dysregulated immune responses leading to the establishment of a pro-inflammatory state, immune complex associated hypersensitivity, and the necrosis of lymphocytes and immune cells are key features of PCV3 immunopathogenesis. A critical overview of the comparative immunopathology of PCV2 and PCV3/4, and directions for future research in the field are presented in this review.
Collapse
Affiliation(s)
- Agm Rakibuzzaman
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Sheela Ramamoorthy
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
106
|
Genomic Diversity of CRESS DNA Viruses in the Eukaryotic Virome of Swine Feces. Microorganisms 2021; 9:microorganisms9071426. [PMID: 34361862 PMCID: PMC8307498 DOI: 10.3390/microorganisms9071426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/29/2023] Open
Abstract
Replication-associated protein (Rep)-encoding single-stranded DNA (CRESS DNA) viruses are a diverse group of viruses, and their persistence in the environment has been studied for over a decade. However, the persistence of CRESS DNA viruses in herds of domestic animals has, in some cases, serious economic consequence. In this study, we describe the diversity of CRESS DNA viruses identified during the metagenomics analysis of fecal samples collected from a single swine herd with apparently healthy animals. A total of nine genome sequences were assembled and classified into two different groups (CRESSV1 and CRESSV2) of the Cirlivirales order (Cressdnaviricota phylum). The novel CRESS DNA viral sequences shared 85.8–96.8% and 38.1–94.3% amino acid sequence identities for the Rep and putative capsid protein sequences compared to their respective counterparts with extant GenBank record. Data presented here show evidence for simultaneous infection of swine herds with multiple novel CRESS DNA viruses, including po-circo-like viruses and fur seal feces-associated circular DNA viruses. Given that viral genomes with similar sequence and structure have been detected in swine fecal viromes from independent studies, investigation of the association between presence of CRESS DNA viruses and swine health conditions seems to be justified.
Collapse
|
107
|
StemLoop-Finder: a Tool for the Detection of DNA Hairpins with Conserved Motifs. Microbiol Resour Announc 2021; 10:e0042421. [PMID: 34197205 PMCID: PMC8248882 DOI: 10.1128/mra.00424-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nucleic acid secondary structures play important roles in regulating biological processes. StemLoop-Finder is a computational tool to recognize and annotate conserved structural motifs in large data sets. The program is optimized for the detection of stem-loop structures that may serve as origins of replication in circular replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA viruses.
Collapse
|
108
|
Lechmann J, Ackermann M, Kaiser V, Bachofen C. Viral infections shared between water buffaloes and small ruminants in Switzerland. J Vet Diagn Invest 2021; 33:894-905. [PMID: 34166139 DOI: 10.1177/10406387211027131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Importation of exotic animals that may harbor infectious agents poses risks for native species with potentially severe impacts on animal health and animal production. Although the Asian water buffalo (Bubalus bubalis) population in Europe is steadily increasing, its susceptibility to viral infections and its role for interspecies transmission is largely unknown. To identify viral infections that are shared between exotic water buffaloes and native small ruminants, we collected blood samples from 3 Swiss farms on which water buffaloes were kept either without, or together with, sheep or goats. These samples were analyzed by next-generation sequencing (NGS) as well as by selected conventional tests, including PCR, ELISA, and in some cases a virus neutralization test. By NGS, a novel virus of the genus Gemykrogvirus (GyKV; Genomoviridae) was first detected in the buffaloes on one farm, and subsequently confirmed by PCR, and was also detected in the co-housed sheep. In contrast, this virus was not detected in buffaloes on the farms without sheep. Moreover, conventional methods identified a number of viral infections that were not shared between the exotic and the native animals, and provided evidence for potential roles of water buffaloes in the epidemiology of ruminant pestiviruses, especially bovine viral diarrhea virus, bluetongue virus, and possibly bovine alphaherpesvirus 2. Our results clearly indicate that water buffaloes are susceptible to interspecies viral transmission and may act as intermediate hosts, or even as reservoirs, for these viruses.
Collapse
Affiliation(s)
- Julia Lechmann
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Mathias Ackermann
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Vanessa Kaiser
- Institute of Virology and Immunology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Current address: MSD Animal Health, Lucerne, Switzerland
| | - Claudia Bachofen
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
109
|
Circular Rep-Encoding Single-Stranded DNA Sequences in Milk from Water Buffaloes ( Bubalus arnee f. bubalis). Viruses 2021; 13:v13061088. [PMID: 34200389 PMCID: PMC8228113 DOI: 10.3390/v13061088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Isolation and characterization of circular replicase-encoding single-stranded (ss) DNA from animal, plant and environmental samples are rapidly evolving in virology. We detected 21 circular DNA elements, including one genomoviral sequence, in individual milk samples from domesticated Asian water buffaloes (Bubalus arnee f. bubalis). Most of the obtained genomes are related to Sphinx 1.76 and Sphinx 2.36 sequences and share a high degree of similarity to recently published circular DNAs—named BMMF (bovine meat and milk factors)—that have been isolated from commercial milk, as well as from bovine serum. Characteristic features such as rep genes, tandem repeats and inverted repeats were detected. These BMMF have recently been found to be present in taurine-type dairy cattle breeds descending from the aurochs (Bos primigenius). Importantly, the occurrence of BMMF has been linked to the higher incidence of colorectal and breast cancer in North America and Western Europe compared with Asia. This is the first report of circular ssDNA detected in milk from the domesticated form of the wild Asian water buffalo (B. arnee) belonging to the subfamily Bovinae. This novelty should be taken into account in view of the above-mentioned cancer hypothesis.
Collapse
|
110
|
Avalos-Calleros JA, Pastor-Palacios G, Bolaños-Martínez OC, Mauricio-Castillo A, Gregorio-Jorge J, Martínez-Marrero N, Bañuelos-Hernández B, Méndez-Lozano J, Arguello-Astorga GR. Two strains of a novel begomovirus encoding Rep proteins with identical β1 strands but different β5 strands are not compatible in replication. Arch Virol 2021; 166:1691-1709. [PMID: 33852083 DOI: 10.1007/s00705-021-05066-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/20/2021] [Indexed: 10/21/2022]
Abstract
Geminiviruses have genomes composed of single-stranded DNA molecules and encode a rolling-circle replication (RCR) initiation protein ("Rep"), which has multiple functions. Rep binds to specific repeated DNA motifs ("iterons"), which are major determinants of virus-specific replication. The particular amino acid (aa) residues that determine the preference of a geminivirus Rep for specific iterons (i.e., the trans-acting replication "specificity determinants", or SPDs) are largely unknown, but diverse lines of evidence indicate that most of them are closely associated with the so-called RCR motif I (FLTYP), located in the first 12-19 aa residues of the protein. In this work, we characterized two strains of a novel begomovirus, rhynchosia golden mosaic Sinaloa virus (RhGMSV), that were incompatible in replication in pseudorecombination experiments. Systematic comparisons of the Rep proteins of both RhGMSV strains in the DNA-binding domain allowed the aa residues at positions 71 and 74 to be identified as the residues most likely to be responsible for differences in replication specificity. Residue 71 is part of the β-5 strand structural element, which was predicted in previous studies to contain Rep SPDs. Since the Rep proteins encoded by both RhGMSV strains are identical in their first 24 aa residues, where other studies have mapped potential SPDs, this is the first study lending direct support to the notion that geminivirus Rep proteins contain separate SPDs in their N-terminal domain.
Collapse
Affiliation(s)
- Jesús Aarón Avalos-Calleros
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C. Camino a la Presa de San José 2055, Lomas 4a Sección, C.P. 78216, San Luis Potosí, S.L.P., Mexico
| | - Guillermo Pastor-Palacios
- CONACYT-Consorcio de Investigación Innovación y Desarrollo para las Zonas Áridas, Instituto Potosino de Investigación Científica y Tecnológica, A.C. Camino a La Presa de San José 2055, Lomas 4a Sección, C.P. 78216, San Luis Potosí, S.L.P., Mexico
| | - Omayra C Bolaños-Martínez
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C. Camino a la Presa de San José 2055, Lomas 4a Sección, C.P. 78216, San Luis Potosí, S.L.P., Mexico
| | | | - Josefat Gregorio-Jorge
- Consejo Nacional de Ciencia y Tecnología, Universidad Politécnica de Tlaxcala (UPTx)., Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, 03940, Mexico City, Mexico
| | - Nadia Martínez-Marrero
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C. Camino a la Presa de San José 2055, Lomas 4a Sección, C.P. 78216, San Luis Potosí, S.L.P., Mexico
| | - Bernardo Bañuelos-Hernández
- Facultad de Agronomia y Veterinaria, Universidad De La Salle Bajio, Avenida Universidad 602, Lomas del Campestre, 37150, León Guanajuato, Mexico
| | - Jesús Méndez-Lozano
- Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, 81101, Guasave, Sinaloa, Mexico
| | - Gerardo Rafael Arguello-Astorga
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C. Camino a la Presa de San José 2055, Lomas 4a Sección, C.P. 78216, San Luis Potosí, S.L.P., Mexico.
| |
Collapse
|
111
|
Tong P, Ren M, Xu X, Song X, Zhang L, Kuang L, Xie J. Identification and genomic characterization of emerging CRESS DNA viruses in thoroughbred horses in China. Virus Genes 2021; 57:390-394. [PMID: 34021872 DOI: 10.1007/s11262-021-01845-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022]
Abstract
Multiple novel circular replication-associated protein (Rep)-encoding single stranded (CRESS) DNA viruses have been extensively identified in the feces of humans and animals. Here, we first detected CRESS DNA virus (named Horse-CRESS DNA-like virus, HCLV) in two fecal samples from 10 imported thoroughbred (TB) horses in the customs quarantine station in North Xinjiang province, China. Additionally, we found that this virus was not detected in local breeds (LBs) (0/41) and was found only in imported TB horses (2/73). We obtained the whole-genome sequences of four viruses (HCLV ALSK-3-4, ALSK-13-10, CJ-1-2, and CJ-13-1). Unlike Circovirus and Cyclovirus, whose genome sequences have 1700 to 2100 nucleotides (nt), these HCLVs have circular genome with 3503, 3504, 3485, 3491 nt, respectively and five major ORFs. The ORF1 gene encodes the Rep protein in HCLVs. Furthermore, the Rep protein of the four HCLVs share 23.3-84.8%, 21.6-27.4%, 23.7-27.2% amino acid identity with the corresponding reference viruses of Kirkoviruses, genus Circovirus, and genus Cyclovirus, respectively. Moreover, RCR domain, P-loop NTPase domains, and nonanucleotide motif (TAGTATTAC) of the HCLVs are similar to Circovirus and Cyclovirus. Phylogenetic analysis showed that the virus was grouped together with members in Kirkoviruses. These results suggest the HCLV probably entered Xinjiang province via the international trade of horses.
Collapse
Affiliation(s)
- Panpan Tong
- Laboratory of Animal Etiology and Epidemiology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Meiling Ren
- Laboratory of Animal Etiology and Epidemiology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Xinlong Xu
- Alashan Customs Technical Center, Alashan, Xinjiang, China
| | - Xiaozhen Song
- Laboratory of Animal Etiology and Epidemiology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Lei Zhang
- Laboratory of Animal Etiology and Epidemiology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Ling Kuang
- Laboratory of Animal Etiology and Epidemiology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Jinxin Xie
- Laboratory of Animal Etiology and Epidemiology, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China.
| |
Collapse
|
112
|
Wu M, Wei H, Tan H, Pan S, Liu Q, Bejarano ER, Lozano-Durán R. Plant DNA polymerases α and δ mediate replication of geminiviruses. Nat Commun 2021; 12:2780. [PMID: 33986276 PMCID: PMC8119979 DOI: 10.1038/s41467-021-23013-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Geminiviruses are causal agents of devastating diseases in crops. Geminiviruses have circular single-stranded (ss) DNA genomes that are replicated in the nucleus of the infected plant cell through double-stranded (ds) DNA intermediates by the plant DNA replication machinery. Which host DNA polymerase mediates geminiviral multiplication, however, has so far remained elusive. Here, we show that subunits of the nuclear replicative DNA polymerases α and δ physically interact with the geminivirus-encoded replication enhancer protein, C3, and that these polymerases are required for viral replication. Our results suggest that, while DNA polymerase α is essential to generate the viral dsDNA intermediate, DNA polymerase δ mediates the synthesis of new copies of the geminiviral ssDNA genome, and that the virus-encoded C3 may act selectively, recruiting DNA polymerase δ over ε to favour productive replication.
Collapse
Affiliation(s)
- Mengshi Wu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Hua Wei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Huang Tan
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Shaojun Pan
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Qi Liu
- Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Area de Genética, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, Málaga, Spain
| | - Rosa Lozano-Durán
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
113
|
Genome Sequences of Microviruses Identified in a Sample from a Sewage Treatment Oxidation Pond. Microbiol Resour Announc 2021; 10:10/19/e00373-21. [PMID: 33986100 PMCID: PMC8142586 DOI: 10.1128/mra.00373-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oxidation ponds are often used in the treatment of sewage as an aeration step prior to discharge. We identified 99 microvirus genomes from a sample from a sewage oxidation pond. This diverse group of microviruses expands our knowledge of bacteriophages associated with sewage oxidation pond ecosystems. Oxidation ponds are often used in the treatment of sewage as an aeration step prior to discharge. We identified 99 microvirus genomes from a sample from a sewage oxidation pond. This diverse group of microviruses expands our knowledge of bacteriophages associated with sewage oxidation pond ecosystems.
Collapse
|
114
|
Rengasvirus, a Circular Replication-Associated Protein-Encoding Single-Stranded DNA Virus-Related Genome That Is a Common Contaminant in Metagenomic Data. Microbiol Resour Announc 2021; 10:10/18/e00273-21. [PMID: 33958399 PMCID: PMC8103869 DOI: 10.1128/mra.00273-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We report the genome of a circular Rep-encoding segmented or satellite virus, which we have provisionally named rengasvirus. In metagenomic studies of virus-enriched fractions, rengasvirus was detected widely, including in reagent-negative controls. We thus report this genome to help others recognize a probable contaminating sequence. We report the genome of a circular replication-associated protein (Rep)-encoding segmented or satellite virus, which we have provisionally named rengasvirus. In metagenomic studies of virus-enriched fractions, rengasvirus was detected widely, including in reagent-negative controls. We thus report this genome to help others recognize a probable contaminating sequence.
Collapse
|
115
|
Smith K, Fielding R, Schiavone K, Hall KR, Reid VS, Boyea D, Smith EL, Schmidlin K, Fontenele RS, Kraberger S, Varsani A. Circular DNA viruses identified in short-finned pilot whale and orca tissue samples. Virology 2021; 559:156-164. [PMID: 33892449 DOI: 10.1016/j.virol.2021.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022]
Abstract
Members of the Delphinidae family are widely distributed across the world's oceans. We used a viral metagenomic approach to identify viruses in orca (Orcinus orca) and short-finned pilot whale (Globicephala macrorhynchus) muscle, kidney, and liver samples from deceased animals. From orca tissue samples (muscle, kidney, and liver), we identified a novel polyomavirus (Polyomaviridae), three cressdnaviruses, and two genomoviruses (Genomoviridae). In the short-finned pilot whale we were able to identify one genomovirus in a kidney sample. The presence of unclassified cressdnavirus within two samples (muscle and kidney) of the same animal supports the possibility these viruses might be widespread within the animal. The orca polyomavirus identified here is the first of its species and is not closely related to the only other dolphin polyomavirus previously discovered. The identification and verification of these viruses expands the current knowledge of viruses that are associated with the Delphinidae family.
Collapse
Affiliation(s)
- Kendal Smith
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Russell Fielding
- HTC Honors College, Coastal Carolina University, Conway, SC, 29528, USA.
| | - Kelsie Schiavone
- Department of Earth and Environmental Systems, The University of the South, Sewanee, TN, 37383, USA
| | - Katharine R Hall
- Department of Earth and Environmental Systems, The University of the South, Sewanee, TN, 37383, USA
| | - Vincent S Reid
- Barrouallie Whaler's Project, Saint Vincent and the Grenadines
| | | | - Emma L Smith
- Department of Chemical & Biological Sciences, University of the West Indies-Cave Hill, Barbados
| | - Kara Schmidlin
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Rafaela S Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA; Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Rondebosch, 7700, Cape Town, South Africa.
| |
Collapse
|
116
|
Pasin F. Oligonucleotide abundance biases aid design of a type IIS synthetic genomics framework with plant virome capacity. Biotechnol J 2021; 16:e2000354. [PMID: 33410597 DOI: 10.1002/biot.202000354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/23/2022]
Abstract
Synthetic genomics-driven dematerialization of genetic resources facilitates flexible hypothesis testing and rapid product development. Biological sequences have compositional biases, which, I reasoned, could be exploited for engineering of enhanced synthetic genomics systems. In proof-of-concept assays reported herein, the abundance of random oligonucleotides in viral genomic components was analyzed and used for the rational design of a synthetic genomics framework with plant virome capacity (SynViP). Type IIS endonucleases with low abundance in the plant virome, as well as Golden Gate and No See'm principles were combined with DNA chemical synthesis for seamless viral clone assembly by one-step digestion-ligation. The framework described does not require subcloning steps, is insensitive to insert terminal sequences, and was used with linear and circular DNA molecules. Based on a digital template, DNA fragments were chemically synthesized and assembled by one-step cloning to yield a scar-free infectious clone of a plant virus suitable for Agrobacterium-mediated delivery. SynViP allowed rescue of a genuine virus without biological material, and has the potential to greatly accelerate biological characterization and engineering of plant viruses as well as derived biotechnological tools. Finally, computational identification of compositional biases in biological sequences might become a common standard to aid scalable biosystems design and engineering.
Collapse
Affiliation(s)
- Fabio Pasin
- School of Science, University of Padova, Padova, Italy.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
117
|
Nguyen VG, Do HQ, Huynh TML, Park YH, Park BK, Chung HC. Molecular-based detection, genetic characterization and phylogenetic analysis of porcine circovirus 4 from Korean domestic swine farms. Transbound Emerg Dis 2021; 69:538-548. [PMID: 33529468 DOI: 10.1111/tbed.14017] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 01/18/2023]
Abstract
Porcine circovirus 4 (PCV4), a novel and unclassified member of the genus Circovirus, was first reported in China in 2019. Aiming to provide more evidence about the active circulation of PCV4, this study screened 335 pooled internal organs and detected the virus (i) at a rate of 3.28%, (ii) from both clinically healthy and clinically sick pigs of various age groups, and (iii) in six out of nine provinces of Korea. The complete genomic sequence of the Korean PCV4 strain (E115) was 1,770 nucleotides in length and had 98.5%-98.9% identity to three PCV4 strains currently available at GenBank. Utilizing a set of bioinformatic programs, it was revealed that the Korean PCV4 strain contained several genomic features of (i) a palindrome stem-loop structure with a conserved nonanucleotide, (ii) packed overlapping ORFs oriented in different directions and (iii) two intergenic regions in between genes encoding the putative replication-associated protein (Rep) and capsid (Cap) proteins. This study also predicted the presence of essential elements for the replication of circoviruses in all PCV4 strains, for example the origin of DNA replication, endonuclease and helicase domains of Rep, and the nuclear localization signal on the putative Cap protein. Finally, based on the phylogeny inferred from sequences of the putative Rep protein, this study further clarified the genetic relationships between PCV4 and other CRESS DNA viruses in general and circoviruses in particular.
Collapse
Affiliation(s)
- Van-Giap Nguyen
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Hai-Quynh Do
- Department of Veterinary Medicine Virology Lab, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea.,Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Thi-My-Le Huynh
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Yong-Ho Park
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Bong-Kyun Park
- Department of Veterinary Medicine Virology Lab, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Hee-Chun Chung
- Department of Veterinary Medicine Virology Lab, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| |
Collapse
|
118
|
Guo J, Bolduc B, Zayed AA, Varsani A, Dominguez-Huerta G, Delmont TO, Pratama AA, Gazitúa MC, Vik D, Sullivan MB, Roux S. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. MICROBIOME 2021; 9:37. [PMID: 33522966 PMCID: PMC7852108 DOI: 10.1186/s40168-020-00990-y] [Citation(s) in RCA: 580] [Impact Index Per Article: 145.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 12/29/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Viruses are a significant player in many biosphere and human ecosystems, but most signals remain "hidden" in metagenomic/metatranscriptomic sequence datasets due to the lack of universal gene markers, database representatives, and insufficiently advanced identification tools. RESULTS Here, we introduce VirSorter2, a DNA and RNA virus identification tool that leverages genome-informed database advances across a collection of customized automatic classifiers to improve the accuracy and range of virus sequence detection. When benchmarked against genomes from both isolated and uncultivated viruses, VirSorter2 uniquely performed consistently with high accuracy (F1-score > 0.8) across viral diversity, while all other tools under-detected viruses outside of the group most represented in reference databases (i.e., those in the order Caudovirales). Among the tools evaluated, VirSorter2 was also uniquely able to minimize errors associated with atypical cellular sequences including eukaryotic genomes and plasmids. Finally, as the virosphere exploration unravels novel viral sequences, VirSorter2's modular design makes it inherently able to expand to new types of viruses via the design of new classifiers to maintain maximal sensitivity and specificity. CONCLUSION With multi-classifier and modular design, VirSorter2 demonstrates higher overall accuracy across major viral groups and will advance our knowledge of virus evolution, diversity, and virus-microbe interaction in various ecosystems. Source code of VirSorter2 is freely available ( https://bitbucket.org/MAVERICLab/virsorter2 ), and VirSorter2 is also available both on bioconda and as an iVirus app on CyVerse ( https://de.cyverse.org/de ). Video abstract.
Collapse
Affiliation(s)
- Jiarong Guo
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
| | - Ben Bolduc
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
| | - Ahmed A Zayed
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7701, South Africa
| | | | - Tom O Delmont
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | | | | | - Dean Vik
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
| | - Matthew B Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA.
- Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, 43210, USA.
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA.
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
119
|
Virome of Bat Guano from Nine Northern California Roosts. J Virol 2021; 95:JVI.01713-20. [PMID: 33115864 DOI: 10.1128/jvi.01713-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022] Open
Abstract
Bats are hosts to a large variety of viruses, including many capable of cross-species transmissions to other mammals, including humans. We characterized the virome in guano from five common bat species in 9 Northern California roosts and from a pool of 5 individual bats. Genomes belonging to 14 viral families known to infect mammals and 17 viral families infecting insects or of unknown tropism were detected. Nearly complete or complete genomes of a novel parvovirus, astrovirus, nodavirus, circular Rep-encoding single-stranded DNA (CRESS-DNA) viruses, and densoviruses, and more partial genomes of a novel alphacoronavirus and a bunyavirus were characterized. Lower numbers of reads with >90% amino acid identity to previously described calicivirus, circovirus, adenoviruses, hepatovirus, bocaparvoviruses, and polyomavirus in other bat species were also found, likely reflecting their wide distribution among different bats. Unexpectedly, a few sequence reads of canine parvovirus 2 and the recently described mouse kidney parvovirus were also detected and their presence confirmed by PCR; these possibly originated from guano contamination by carnivores and rodents. The majority of eukaryotic viral reads were highly divergent, indicating that numerous viruses still remain to be characterized, even from such a heavily investigated order as Chiroptera.IMPORTANCE Characterizing the bat virome is important for understanding viral diversity and detecting viral spillover between animal species. Using an unbiased metagenomics method, we characterize the virome in guano collected from multiple roosts of common Northern California bat species. We describe several novel viral genomes and report the detection of viruses with close relatives reported in other bat species, likely reflecting cross-species transmissions. Viral sequences from well-known carnivore and rodent parvoviruses were also detected, whose presence are likely the result of contamination from defecation and urination atop guano and which reflect the close interaction of these mammals in the wild.
Collapse
|
120
|
Cibulski S, Alves de Lima D, Fernandes Dos Santos H, Teixeira TF, Tochetto C, Mayer FQ, Roehe PM. A plate of viruses: Viral metagenomics of supermarket chicken, pork and beef from Brazil. Virology 2021; 552:1-9. [PMID: 33032031 PMCID: PMC7521440 DOI: 10.1016/j.virol.2020.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 02/08/2023]
Abstract
A viral metagenomics study was conducted in beef, pork, and chicken sold in supermarkets from Southern Brazil. From chicken, six distinct gyroviruses (GyV) were detected, including GyV3 and GyV6, which for the first time were detected in samples from avian species, plus a novel smacovirus species and two highly divergent circular Rep-encoding ssDNA (CRESS-DNA) viruses. From pork, genomes of numerous anelloviruses, porcine parvovirus 5 (PPV5) and 6 (PPV6), two new genomoviruses and two new CRESS-DNA viruses were found. Finally, two new CRESS-DNA genomes were recovered from beef. Although none of these viruses have history of transmission to humans, the findings reported here reveal that such agents are inevitably consumed in diets that include these types of meat.
Collapse
Affiliation(s)
- Samuel Cibulski
- Centro de Biotecnologia - CBiotec, Laboratório de Biotecnologia Celular e Molecular, Universidade Federal da Paraíba - UFPB, João Pessoa, Paraíba, Brazil.
| | - Diane Alves de Lima
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Centro Universitário da Serra Gaúcha - FSG, Caxias do Sul, Grande do Sul, Brazil
| | - Helton Fernandes Dos Santos
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria - UFSM, Santa Maria, Rio Grande do Sul, Brazil
| | - Thais Fumaco Teixeira
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, RS, Brazil
| | - Caroline Tochetto
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabiana Quoos Mayer
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, RS, Brazil
| | - Paulo Michel Roehe
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
121
|
Khalifeh A, Blumstein DT, Fontenele RS, Schmidlin K, Richet C, Kraberger S, Varsani A. Diverse cressdnaviruses and an anellovirus identified in the fecal samples of yellow-bellied marmots. Virology 2020; 554:89-96. [PMID: 33388542 DOI: 10.1016/j.virol.2020.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 10/22/2022]
Abstract
Over that last decade, coupling multiple strand displacement approaches with high throughput sequencing have resulted in the identification of genomes of diverse groups of small circular DNA viruses. Using a similar approach but with recovery of complete genomes by PCR, we identified a diverse group of single-stranded viruses in yellow-bellied marmot (Marmota flaviventer) fecal samples. From 13 fecal samples we identified viruses in the family Genomoviridae (n = 7) and Anelloviridae (n = 1), and several others that ware part of the larger Cressdnaviricota phylum but not within established families (n = 19). There were also circular DNA molecules identified (n = 4) that appear to encode one viral-like gene and have genomes of <1545 nts. This study gives a snapshot of viruses associated with marmots based on fecal sampling.
Collapse
Affiliation(s)
- Anthony Khalifeh
- The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA
| | - Daniel T Blumstein
- Department of Ecology & Evolutionary Biology, Institute of the Environment & Sustainability, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Rafaela S Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA
| | - Kara Schmidlin
- The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA
| | - Cécile Richet
- The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA; Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, 7925, Cape Town, South Africa.
| |
Collapse
|
122
|
Lal A, Vo TTB, Sanjaya IGNPW, Ho PT, Kim JK, Kil EJ, Lee S. Nanovirus Disease Complexes: An Emerging Threat in the Modern Era. FRONTIERS IN PLANT SCIENCE 2020; 11:558403. [PMID: 33329624 PMCID: PMC7710663 DOI: 10.3389/fpls.2020.558403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Multipartite viruses package their genomic segments independently and mainly infect plants; few target animals. Nanoviridae is a family of multipartite single-stranded DNA plant viruses that individually encapsidate single-stranded DNAs of approximately 1 kb and transmit them through aphids without replication in the aphid vectors, thereby causing important diseases of leguminous crops and banana. Significant findings regarding nanoviruses have recently been made on important features, such as their multicellular way of life, the transmission of distinct encapsidated genome segments through the vector body, evolutionary ambiguities, mode of infection, host range and geographical distribution. This review deals with all the above-mentioned features in view of recent advances with special emphasis on the emergence of new species and recognition of new host range of nanoviruses and aims to shed light on the evolutionary linkages, the potentially devastating impact on the world economy, and the future challenges imposed by nanoviruses.
Collapse
Affiliation(s)
- Aamir Lal
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Thuy Thi Bich Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | | | - Phuong Thi Ho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Ji-Kwang Kim
- Research and Development Bureau, Chungcheongnam-do Agricultural Research and Extension Services, Yesan, South Korea
| | - Eui-Joon Kil
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
123
|
A novel circular ssDNA virus of the phylum Cressdnaviricota discovered in metagenomic data from otter clams (Lutraria rhynchaena). Arch Virol 2020; 165:2921-2926. [PMID: 32989573 DOI: 10.1007/s00705-020-04819-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
In this study, we present an analysis of metagenome sequences obtained from a filtrate of a siphon tissue homogenate of otter clams (Lutraria rhynchaena) with swollen-siphon disease. The viral signal was mined from the metagenomic data, and a novel circular ssDNA virus was identified. Genomic features and phylogenetic analysis showed that the virus belongs to the phylum Cressdnaviricota, which consists of viruses with circular, single-stranded DNA (ssDNA) genomes. Members of this phylum have been identified in various species and in environmental samples. The newly found virus is distantly related to the currently known members of the phylum Cressdnaviricota.
Collapse
|
124
|
Morozov SY, Solovyev AG. Small hydrophobic viral proteins involved in intercellular movement of diverse plant virus genomes. AIMS Microbiol 2020; 6:305-329. [PMID: 33134746 PMCID: PMC7595835 DOI: 10.3934/microbiol.2020019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
Most plant viruses code for movement proteins (MPs) targeting plasmodesmata to enable cell-to-cell and systemic spread in infected plants. Small membrane-embedded MPs have been first identified in two viral transport gene modules, triple gene block (TGB) coding for an RNA-binding helicase TGB1 and two small hydrophobic proteins TGB2 and TGB3 and double gene block (DGB) encoding two small polypeptides representing an RNA-binding protein and a membrane protein. These findings indicated that movement gene modules composed of two or more cistrons may encode the nucleic acid-binding protein and at least one membrane-bound movement protein. The same rule was revealed for small DNA-containing plant viruses, namely, viruses belonging to genus Mastrevirus (family Geminiviridae) and the family Nanoviridae. In multi-component transport modules the nucleic acid-binding MP can be viral capsid protein(s), as in RNA-containing viruses of the families Closteroviridae and Potyviridae. However, membrane proteins are always found among MPs of these multicomponent viral transport systems. Moreover, it was found that small membrane MPs encoded by many viruses can be involved in coupling viral replication and cell-to-cell movement. Currently, the studies of evolutionary origin and functioning of small membrane MPs is regarded as an important pre-requisite for understanding of the evolution of the existing plant virus transport systems. This paper represents the first comprehensive review which describes the whole diversity of small membrane MPs and presents the current views on their role in plant virus movement.
Collapse
Affiliation(s)
- Sergey Y Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.,Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia
| | - Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.,Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
125
|
Identification and Distribution of Novel Cressdnaviruses and Circular molecules in Four Penguin Species in South Georgia and the Antarctic Peninsula. Viruses 2020; 12:v12091029. [PMID: 32947826 PMCID: PMC7551938 DOI: 10.3390/v12091029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/26/2022] Open
Abstract
There is growing interest in uncovering the viral diversity present in wild animal species. The remote Antarctic region is home to a wealth of uncovered microbial diversity, some of which is associated with its megafauna, including penguin species, the dominant avian biota. Penguins interface with a number of other biota in their roles as marine mesopredators and several species overlap in their ranges and habitats. To characterize the circular single-stranded viruses related to those in the phylum Cressdnaviricota from these environmental sentinel species, cloacal swabs (n = 95) were obtained from King Penguins in South Georgia, and congeneric Adélie Penguins, Chinstrap Penguins, and Gentoo Penguins across the South Shetland Islands and Antarctic Peninsula. Using a combination of high-throughput sequencing, abutting primers-based PCR recovery of circular genomic elements, cloning, and Sanger sequencing, we detected 97 novel sequences comprising 40 ssDNA viral genomes and 57 viral-like circular molecules from 45 individual penguins. We present their detection patterns, with Chinstrap Penguins harboring the highest number of new sequences. The novel Antarctic viruses identified appear to be host-specific, while one circular molecule was shared between sympatric Chinstrap and Gentoo Penguins. We also report viral genotype sharing between three adult-chick pairs, one in each Pygoscelid species. Sequence similarity network approaches coupled with Maximum likelihood phylogenies of the clusters indicate the 40 novel viral genomes do not fall within any known viral families and likely fall within the recently established phylum Cressdnaviricota based on their replication-associated protein sequences. Similarly, 83 capsid protein sequences encoded by the viruses or viral-like circular molecules identified in this study do not cluster with any of those encoded by classified viral groups. Further research is warranted to expand knowledge of the Antarctic virome and would help elucidate the importance of viral-like molecules in vertebrate host evolution.
Collapse
|
126
|
Payne N, Kraberger S, Fontenele RS, Schmidlin K, Bergeman MH, Cassaigne I, Culver M, Varsani A, Van Doorslaer K. Novel Circoviruses Detected in Feces of Sonoran Felids. Viruses 2020; 12:v12091027. [PMID: 32942563 PMCID: PMC7551060 DOI: 10.3390/v12091027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 01/22/2023] Open
Abstract
Sonoran felids are threatened by drought and habitat fragmentation. Vector range expansion and anthropogenic factors such as habitat encroachment and climate change are altering viral evolutionary dynamics and exposure. However, little is known about the diversity of viruses present in these populations. Small felid populations with lower genetic diversity are likely to be most threatened with extinction by emerging diseases, as with other selective pressures, due to having less adaptive potential. We used a metagenomic approach to identify novel circoviruses, which may have a negative impact on the population viability, from confirmed bobcat (Lynx rufus) and puma (Puma concolor) scats collected in Sonora, Mexico. Given some circoviruses are known to cause disease in their hosts, such as porcine and avian circoviruses, we took a non-invasive approach using scat to identify circoviruses in free-roaming bobcats and puma. Three circovirus genomes were determined, and, based on the current species demarcation, they represent two novel species. Phylogenetic analyses reveal that one circovirus species is more closely related to rodent associated circoviruses and the other to bat associated circoviruses, sharing highest genome-wide pairwise identity of approximately 70% and 63%, respectively. At this time, it is unknown whether these scat-derived circoviruses infect felids, their prey, or another organism that might have had contact with the scat in the environment. Further studies should be conducted to elucidate the host of these viruses and assess health impacts in felids.
Collapse
Affiliation(s)
- Natalie Payne
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85719, USA;
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA; (S.K.); (R.S.F.); (K.S.)
| | - Rafaela S Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA; (S.K.); (R.S.F.); (K.S.)
| | - Kara Schmidlin
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA; (S.K.); (R.S.F.); (K.S.)
| | - Melissa H Bergeman
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA;
| | | | - Melanie Culver
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85719, USA;
- U.S. Geological Survey, Arizona Cooperative Fish and Wildlife Research Unit, University of Arizona, Tucson, AZ 85721, USA;
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA; (S.K.); (R.S.F.); (K.S.)
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town 7701, South Africa
- Correspondence: (A.V.); (K.V.D.)
| | - Koenraad Van Doorslaer
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85719, USA;
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA;
- The BIO5 Institute, Department of Immunobiology, Cancer Biology Graduate Interdisciplinary Program, UA Cancer Center, University of Arizona Tucson, Tucson, AZ 85724, USA
- Correspondence: (A.V.); (K.V.D.)
| |
Collapse
|
127
|
Abstract
Viruses are the most abundant biological entities on Earth. In addition to their impact on animal and plant health, viruses have important roles in ecosystem dynamics as well as in the evolution of the biosphere. Circular Rep-encoding single-stranded (CRESS) DNA viruses are ubiquitous in nature, many are agriculturally important, and they appear to have multiple origins from prokaryotic plasmids. A subset of CRESS-DNA viruses, the cruciviruses, have homologues of capsid proteins encoded by RNA viruses. The genetic structure of cruciviruses attests to the transfer of capsid genes between disparate groups of viruses. However, the evolutionary history of cruciviruses is still unclear. By collecting and analyzing cruciviral sequence data, we provide a deeper insight into the evolutionary intricacies of cruciviruses. Our results reveal an unexpected diversity of this virus group, with frequent recombination as an important determinant of variability. The discovery of cruciviruses revealed the most explicit example of a common protein homologue between DNA and RNA viruses to date. Cruciviruses are a novel group of circular Rep-encoding single-stranded DNA (ssDNA) (CRESS-DNA) viruses that encode capsid proteins that are most closely related to those encoded by RNA viruses in the family Tombusviridae. The apparent chimeric nature of the two core proteins encoded by crucivirus genomes suggests horizontal gene transfer of capsid genes between DNA and RNA viruses. Here, we identified and characterized 451 new crucivirus genomes and 10 capsid-encoding circular genetic elements through de novo assembly and mining of metagenomic data. These genomes are highly diverse, as demonstrated by sequence comparisons and phylogenetic analysis of subsets of the protein sequences they encode. Most of the variation is reflected in the replication-associated protein (Rep) sequences, and much of the sequence diversity appears to be due to recombination. Our results suggest that recombination tends to occur more frequently among groups of cruciviruses with relatively similar capsid proteins and that the exchange of Rep protein domains between cruciviruses is rarer than intergenic recombination. Additionally, we suggest members of the stramenopiles/alveolates/Rhizaria supergroup as possible crucivirus hosts. Altogether, we provide a comprehensive and descriptive characterization of cruciviruses.
Collapse
|
128
|
Dolja VV, Krupovic M, Koonin EV. Deep Roots and Splendid Boughs of the Global Plant Virome. ANNUAL REVIEW OF PHYTOPATHOLOGY 2020; 58:23-53. [PMID: 32459570 DOI: 10.1146/annurev-phyto-030320-041346] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Land plants host a vast and diverse virome that is dominated by RNA viruses, with major additional contributions from reverse-transcribing and single-stranded (ss) DNA viruses. Here, we introduce the recently adopted comprehensive taxonomy of viruses based on phylogenomic analyses, as applied to the plant virome. We further trace the evolutionary ancestry of distinct plant virus lineages to primordial genetic mobile elements. We discuss the growing evidence of the pivotal role of horizontal virus transfer from invertebrates to plants during the terrestrialization of these organisms, which was enabled by the evolution of close ecological associations between these diverse organisms. It is our hope that the emerging big picture of the formation and global architecture of the plant virome will be of broad interest to plant biologists and virologists alike and will stimulate ever deeper inquiry into the fascinating field of virus-plant coevolution.
Collapse
Affiliation(s)
- Valerian V Dolja
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331-2902, USA;
| | - Mart Krupovic
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, 75015 Paris, France
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|