101
|
Menachery VD, Yount BL, Debbink K, Agnihothram S, Gralinski LE, Plante JA, Graham RL, Scobey T, Ge XY, Donaldson EF, Randell SH, Lanzavecchia A, Marasco WA, Shi ZL, Baric RS. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat Med 2015; 21:1508-13. [PMID: 26552008 PMCID: PMC4797993 DOI: 10.1038/nm.3985] [Citation(s) in RCA: 672] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/08/2015] [Indexed: 12/25/2022]
Abstract
Ralph Baric, Vineet Menachery and colleagues characterize a SARS-like coronavirus circulating in Chinese horseshoe bats to determine its potential to infect primary human airway epithelial cells, cause disease in mice and respond to available therapeutics. The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome (MERS)-CoV underscores the threat of cross-species transmission events leading to outbreaks in humans. Here we examine the disease potential of a SARS-like virus, SHC014-CoV, which is currently circulating in Chinese horseshoe bat populations1. Using the SARS-CoV reverse genetics system2, we generated and characterized a chimeric virus expressing the spike of bat coronavirus SHC014 in a mouse-adapted SARS-CoV backbone. The results indicate that group 2b viruses encoding the SHC014 spike in a wild-type backbone can efficiently use multiple orthologs of the SARS receptor human angiotensin converting enzyme II (ACE2), replicate efficiently in primary human airway cells and achieve in vitro titers equivalent to epidemic strains of SARS-CoV. Additionally, in vivo experiments demonstrate replication of the chimeric virus in mouse lung with notable pathogenesis. Evaluation of available SARS-based immune-therapeutic and prophylactic modalities revealed poor efficacy; both monoclonal antibody and vaccine approaches failed to neutralize and protect from infection with CoVs using the novel spike protein. On the basis of these findings, we synthetically re-derived an infectious full-length SHC014 recombinant virus and demonstrate robust viral replication both in vitro and in vivo. Our work suggests a potential risk of SARS-CoV re-emergence from viruses currently circulating in bat populations.
Collapse
Affiliation(s)
- Vineet D Menachery
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Boyd L Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kari Debbink
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sudhakar Agnihothram
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, USA
| | - Lisa E Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jessica A Plante
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rachel L Graham
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Trevor Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xing-Yi Ge
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Eric F Donaldson
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Scott H Randell
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Cystic Fibrosis Center, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Bellinzona Institute of Microbiology, Zurich, Switzerland
| | - Wayne A Marasco
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhengli-Li Shi
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
102
|
Wu Z, Yang L, Ren X, Zhang J, Yang F, Zhang S, Jin Q. ORF8-Related Genetic Evidence for Chinese Horseshoe Bats as the Source of Human Severe Acute Respiratory Syndrome Coronavirus. J Infect Dis 2015; 213:579-83. [PMID: 26433221 PMCID: PMC7107392 DOI: 10.1093/infdis/jiv476] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/24/2015] [Indexed: 12/22/2022] Open
Abstract
Several lineage B betacoronaviruses termed severe acute respiratory syndrome (SARS)–like CoVs (SL-CoVs) were identified from Rhinolophus bats in China. These viruses are characterized by a set of unique accessory open reading frames (ORFs) that are located between the M and N genes. Among unique accessory ORFs, ORF8 is most hypervariable. In this study, the ORF8s of all SL-CoVs were classified into 3 types, and, for the first time, it was found that very few SL-CoVs from Rhinolophus sinicus have ORF8s that are identical to that of human SARS-CoV. This finding provides new genetic evidence for Chinese horseshoe bats as the source of human SARS-CoV.
Collapse
Affiliation(s)
- Zhiqiang Wu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Li Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Xianwen Ren
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Junpeng Zhang
- State Key Laboratory of Estuarine and Coastal Research, Institute of Estuarine and Coastal Research, East China Normal University, Shanghai
| | - Fan Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, People's Republic of China
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou
| |
Collapse
|
103
|
Severe Acute Respiratory Syndrome (SARS) Coronavirus ORF8 Protein Is Acquired from SARS-Related Coronavirus from Greater Horseshoe Bats through Recombination. J Virol 2015; 89:10532-47. [PMID: 26269185 DOI: 10.1128/jvi.01048-15] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 08/01/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Despite the identification of horseshoe bats as the reservoir of severe acute respiratory syndrome (SARS)-related coronaviruses (SARSr-CoVs), the origin of SARS-CoV ORF8, which contains the 29-nucleotide signature deletion among human strains, remains obscure. Although two SARS-related Rhinolophus sinicus bat CoVs (SARSr-Rs-BatCoVs) previously detected in Chinese horseshoe bats (Rhinolophus sinicus) in Yunnan, RsSHC014 and Rs3367, possessed 95% genome identities to human and civet SARSr-CoVs, their ORF8 protein exhibited only 32.2 to 33% amino acid identities to that of human/civet SARSr-CoVs. To elucidate the origin of SARS-CoV ORF8, we sampled 348 bats of various species in Yunnan, among which diverse alphacoronaviruses and betacoronaviruses, including potentially novel CoVs, were identified, with some showing potential interspecies transmission. The genomes of two betacoronaviruses, SARSr-Rf-BatCoV YNLF_31C and YNLF_34C, from greater horseshoe bats (Rhinolophus ferrumequinum), possessed 93% nucleotide identities to human/civet SARSr-CoV genomes. Although these two betacoronaviruses displayed lower similarities than SARSr-Rs-BatCoV RsSHC014 and Rs3367 in S protein to civet SARSr-CoVs, their ORF8 proteins demonstrated exceptionally high (80.4 to 81.3%) amino acid identities to that of human/civet SARSr-CoVs, compared to SARSr-BatCoVs from other horseshoe bats (23.2 to 37.3%). Potential recombination events were identified around ORF8 between SARSr-Rf-BatCoVs and SARSr-Rs-BatCoVs, leading to the generation of civet SARSr-CoVs. The expression of ORF8 subgenomic mRNA suggested that the ORF8 protein may be functional in SARSr-Rf-BatCoVs. The high Ka/Ks ratio among human SARS-CoVs compared to that among SARSr-BatCoVs supported that ORF8 is under strong positive selection during animal-to-human transmission. Molecular clock analysis using ORF1ab showed that SARSr-Rf-BatCoV YNLF_31C and YNLF_34C diverged from civet/human SARSr-CoVs in approximately 1990. SARS-CoV ORF8 originated from SARSr-CoVs of greater horseshoe bats through recombination, which may be important for animal-to-human transmission. IMPORTANCE Although horseshoe bats are the primary reservoir of SARS-related coronaviruses (SARSr-CoVs), it is still unclear how these bat viruses have evolved to cross the species barrier to infect civets and humans. Most human SARS-CoV epidemic strains contain a signature 29-nucleotide deletion in ORF8, compared to civet SARSr-CoVs, suggesting that ORF8 may be important for interspecies transmission. However, the origin of SARS-CoV ORF8 remains obscure. In particular, SARSr-Rs-BatCoVs from Chinese horseshoe bats (Rhinolophus sinicus) exhibited <40% amino acid identities to human/civet SARS-CoV in the ORF8 protein. We detected diverse alphacoronaviruses and betacoronaviruses among various bat species in Yunnan, China, including two SARSr-Rf-BatCoVs from greater horseshoe bats that possessed ORF8 proteins with exceptionally high amino acid identities to that of human/civet SARSr-CoVs. We demonstrated recombination events around ORF8 between SARSr-Rf-BatCoVs and SARSr-Rs-BatCoVs, leading to the generation of civet SARSr-CoVs. Our findings offer insight into the evolutionary origin of SARS-CoV ORF8 protein, which was likely acquired from SARSr-CoVs of greater horseshoe bats through recombination.
Collapse
|
104
|
Wu Z, Yang L, Ren X, He G, Zhang J, Yang J, Qian Z, Dong J, Sun L, Zhu Y, Du J, Yang F, Zhang S, Jin Q. Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases. ISME JOURNAL 2015; 10:609-20. [PMID: 26262818 PMCID: PMC4817686 DOI: 10.1038/ismej.2015.138] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/06/2015] [Accepted: 07/08/2015] [Indexed: 12/26/2022]
Abstract
Studies have demonstrated that ~60%–80% of emerging infectious diseases (EIDs) in humans originated from wild life. Bats are natural reservoirs of a large variety of viruses, including many important zoonotic viruses that cause severe diseases in humans and domestic animals. However, the understanding of the viral population and the ecological diversity residing in bat populations is unclear, which complicates the determination of the origins of certain EIDs. Here, using bats as a typical wildlife reservoir model, virome analysis was conducted based on pharyngeal and anal swab samples of 4440 bat individuals of 40 major bat species throughout China. The purpose of this study was to survey the ecological and biological diversities of viruses residing in these bat species, to investigate the presence of potential bat-borne zoonotic viruses and to evaluate the impacts of these viruses on public health. The data obtained in this study revealed an overview of the viral community present in these bat samples. Many novel bat viruses were reported for the first time and some bat viruses closely related to known human or animal pathogens were identified. This genetic evidence provides new clues in the search for the origin or evolution pattern of certain viruses, such as coronaviruses and noroviruses. These data offer meaningful ecological information for predicting and tracing wildlife-originated EIDs.
Collapse
Affiliation(s)
- Zhiqiang Wu
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Yang
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianwen Ren
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guimei He
- State Key Laboratory of Estuarine and Coastal Research, Institute of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Junpeng Zhang
- State Key Laboratory of Estuarine and Coastal Research, Institute of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Jian Yang
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhaohui Qian
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Dong
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lilian Sun
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yafang Zhu
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiang Du
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fan Yang
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuyi Zhang
- State Key Laboratory of Estuarine and Coastal Research, Institute of Estuarine and Coastal Research, East China Normal University, Shanghai, China.,College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Qi Jin
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
105
|
Isolation and characterization of porcine deltacoronavirus from pigs with diarrhea in the United States. J Clin Microbiol 2015; 53:1537-48. [PMID: 25740769 DOI: 10.1128/jcm.00031-15] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/20/2015] [Indexed: 01/09/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is a novel coronavirus that causes diarrhea in nursing piglets. Following its first detection in the United States in February 2014, additional PDCoV strains have been identified in the United States and Canada. Currently, no treatments or vaccines for PDCoV are available. In this study, U.S. PDCoV strain OH-FD22 from intestinal contents of a diarrheic pig from Ohio was isolated in swine testicular (ST) and LLC porcine kidney (LLC-PK) cell cultures by using various medium additives. We also isolated PDCoV [OH-FD22(DC44) strain] in LLC-PK cells from intestinal contents of PDCoV OH-FD22 strain-inoculated gnotobiotic (Gn) pigs. Cell culture isolation and propagation were optimized, and the isolates were serially propagated in cell culture for >20 passages. The full-length S and N genes were sequenced to study PDCoV genetic changes after passage in Gn pigs and cell culture (passage 11 [P11] and P20). Genetically, the S and N genes of the PDCoV isolates were relatively stable during the first 20 passages in cell culture, with only 5 nucleotide changes, each corresponding to an amino acid change. The S and N genes of our sequenced strains were genetically closely related to each other and to other U.S. PDCoV strains, with the highest sequence similarity to South Korean strain KNU14-04. This is the first report describing cell culture isolation, serial propagation, and biological and genetic characterization of cell-adapted PDCoV strains. The information presented in this study is important for the development of diagnostic reagents, assays, and potential vaccines against emergent PDCoV strains.
Collapse
|
106
|
Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2015. [PMID: 25720466 DOI: 10.1007/978‐1‐4939‐2438‐7_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Coronaviruses (CoVs), enveloped positive-sense RNA viruses, are characterized by club-like spikes that project from their surface, an unusually large RNA genome, and a unique replication strategy. Coronaviruses cause a variety of diseases in mammals and birds ranging from enteritis in cows and pigs and upper respiratory disease in chickens to potentially lethal human respiratory infections. Here we provide a brief introduction to coronaviruses discussing their replication and pathogenicity, and current prevention and treatment strategies. We also discuss the outbreaks of the highly pathogenic Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the recently identified Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV).
Collapse
Affiliation(s)
- Anthony R Fehr
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | | |
Collapse
|
107
|
Furuta RA, Sakamoto H, Kuroishi A, Yasiui K, Matsukura H, Hirayama F. Metagenomic profiling of the viromes of plasma collected from blood donors with elevated serum alanine aminotransferase levels. Transfusion 2015; 55:1889-99. [DOI: 10.1111/trf.13057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 12/10/2014] [Accepted: 01/17/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Rika A. Furuta
- Japanese Red Cross Kinki Block Blood Center; Osaka Japan
| | | | - Ayumu Kuroishi
- Japanese Red Cross Kinki Block Blood Center; Osaka Japan
| | - Kazuta Yasiui
- Japanese Red Cross Kinki Block Blood Center; Osaka Japan
| | | | | |
Collapse
|
108
|
Abstract
Coronaviruses (CoVs), enveloped positive-sense RNA viruses, are characterized by club-like spikes that project from their surface, an unusually large RNA genome, and a unique replication strategy. Coronaviruses cause a variety of diseases in mammals and birds ranging from enteritis in cows and pigs and upper respiratory disease in chickens to potentially lethal human respiratory infections. Here we provide a brief introduction to coronaviruses discussing their replication and pathogenicity, and current prevention and treatment strategies. We also discuss the outbreaks of the highly pathogenic Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the recently identified Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV).
Collapse
Affiliation(s)
- Helena Jane Maier
- grid.63622.330000000403887540The Pirbright Institute, Compton, United Kingdom
| | - Erica Bickerton
- grid.63622.330000000403887540The Pirbright Institute, Compton, United Kingdom
| | - Paul Britton
- grid.63622.330000000403887540The Pirbright Institute, Compton, United Kingdom
| |
Collapse
|
109
|
Menachery VD, Debbink K, Baric RS. Coronavirus non-structural protein 16: evasion, attenuation, and possible treatments. Virus Res 2014; 194:191-9. [PMID: 25278144 PMCID: PMC4260984 DOI: 10.1016/j.virusres.2014.09.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 12/15/2022]
Abstract
Identifies components required for CoV 2′O-MTase activity including structural motifs and interaction partners. Demonstrates attenuation of NSP16 mutants in multiple CoV strains. Defines innate immune components including MDA5 and IFIT proteins that mediate the attenuation of 2′O-MTase CoV mutants. Provides approaches to exploit 2′O-MTase pathways for antiviral treatment of CoVs and other viruses.
The recent emergence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV), nearly a decade after the Severe Acute Respiratory Syndrome (SARS) CoV, highlights the importance of understanding and developing therapeutic treatment for current and emergent CoVs. This manuscript explores the role of NSP16, a 2′O-methyl-transferase (2′O-MTase), in CoV infection and the host immune response. The review highlights conserved motifs, required interaction partners, as well as the attenuation of NSP16 mutants, and restoration of these mutants in specific immune knockouts. Importantly, the work also identifies a number of approaches to exploit this understanding for therapeutic treatment and the data clearly illustrate the importance of NSP16 2′O-MTase activity for CoV infection and pathogenesis.
Collapse
Affiliation(s)
- Vineet D Menachery
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Kari Debbink
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|