101
|
Kawabata K, Sakurai F, Koizumi N, Hayakawa T, Mizuguchi H. Adenovirus vector-mediated gene transfer into stem cells. Mol Pharm 2006; 3:95-103. [PMID: 16579638 DOI: 10.1021/mp0500925] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stem cells, including embryonic stem (ES) cells, mesenchymal stem cells (MSCs), and hematopoietic stem cells (HSCs), are defined by their capacity for self-renewal and multilineage differentiation. Efficient gene transfer into stem cells is essential for the basic research in developmental biology and for therapeutic applications in gene-modified regenerative medicine. Adenovirus (Ad) vectors, based on Ad type 5, can efficiently and transiently introduce the exogenous gene into many cell types via the primary receptor, coxsackievirus, and adenovirus receptor (CAR). However, some kinds of stem cells, such as MSCs and HSCs, cannot be efficiently transduced with conventional Ad vectors based on Ad serotype 5 (Ad5), because of the lack of CAR expression. To overcome this problem, fiber-modified Ad vectors and an Ad vector based on another serotype of Ad have been developed. Here, we review the advances in the development of Ad vectors suitable for stem cells and discuss their application in basic biology and clinical medicine.
Collapse
Affiliation(s)
- Kenji Kawabata
- Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Osaka 567-0085, Japan
| | | | | | | | | |
Collapse
|
102
|
Hedley SJ, Auf der Maur A, Hohn S, Escher D, Barberis A, Glasgow JN, Douglas JT, Korokhov N, Curiel DT. An adenovirus vector with a chimeric fiber incorporating stabilized single chain antibody achieves targeted gene delivery. Gene Ther 2006; 13:88-94. [PMID: 16107860 DOI: 10.1038/sj.gt.3302603] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adenovirus (Ad) vectors are of utility for many therapeutic applications. Strategies have been developed to alter adenoviral tropism to achieve a cell-specific gene delivery capacity employing fiber modifications allowing genetic incorporation of targeting motifs. In this regard, single chain antibodies (scFv) represent potentially useful agents to achieve targeted gene transfer. However, the distinct biosynthetic pathways that scFv and Ad capsid proteins are normally routed through have thus far been problematic with respect to scFv incorporation into the Ad capsid. Utilization of stable scFv, which also maintain correct folding and thus functionality under intracellular reducing conditions, could overcome this restriction. We genetically incorporated a stable scFv into a de-knobbed, fibritin-foldon trimerized Ad fiber and demonstrated selective targeting to the cognate epitope expressed on the membrane surface of cells. We have shown that the scFv employed in this study retains functionality and that stabilizing the targeting molecule, per se, is critical to allow retention of antigen recognition in the adenovirus capsid-incorporated context.
Collapse
|
103
|
Tsuda H, Wada T, Yamashita T, Hamada H. Enhanced osteoinduction by mesenchymal stem cells transfected with a fiber-mutant adenoviral BMP2 gene. J Gene Med 2006; 7:1322-34. [PMID: 15926193 DOI: 10.1002/jgm.777] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Bone regeneration therapy using mesenchymal stem cells (MSCs) is beginning to come into clinical use. To overcome the difficulty of healing large bone defects, we previously reported the efficacy of using rat mesenchymal stem cells (rMSCs) carrying a modified adenoviral vector (Adv-F/RGD) with an RGD-containing peptide in the HI loop of the fiber knob domain of adenovirus type 5 (Ad5). METHODS Firstly, we evaluated the transduction efficiency of Adv-F/RGD into bone-marrow-derived human MSCs (hMSCs) using a beta-galactosidase chemiluminescent assay. Next, we evaluated whether the vector AxCAhBMP2-F/RGD carrying the human bone morphogenetic protein 2 (BMP2) gene could enhance the osteogenic activity of hMSCs in vitro and in vivo (in an ectopic model). In the ectopic model, transduced hMSCs, hMSCs in the presence of recombinant human BMP2 (rhBMP2) or hMSCs alone were implanted into a subcutaneous site of nude mice. We also applied this vector system to an orthotopic model (large bone defect model) using rMSCs. RESULTS The transduction efficiency of Adv-F/RGD into hMSCs was increased 10-fold over the vector containing the wild-type fiber (Adv-F/wt), as assessed by a beta-galactosidase chemiluminescent assay. AxCAhBMP2-F/RGD increased the osteogenic activity of hMSCs in vitro. In the ectopic model, AxCAhBMP2-F/RGD-transduced hMSCs were found to induce new bone at 1 week after transplantation, and a greater quantity of new bone was formed than in other groups. Similarly, AxCAhBMP2-F/RGD-transduced rMSCs induced a greater quantity of new bone than other groups (AxCAhBMP2-F/wt-transduced rMSCs, rMSCs in the presence of rhBMP2, rMSCs alone, or scaffolds alone) in the orthotopic model. CONCLUSIONS These data suggest that Adv-F/RGD is useful for introducing foreign genes into MSCs and that it will be a powerful gene therapy tool for bone regeneration and other tissue-engineering applications.
Collapse
Affiliation(s)
- Hajime Tsuda
- Department of Molecular Medicine, Sapporo Medical University, S1 W17 Chuo-ku, Sapporo 060-8556, Japan
| | | | | | | |
Collapse
|
104
|
Majhen D, Ambriović-Ristov A. Adenoviral vectors--how to use them in cancer gene therapy? Virus Res 2006; 119:121-33. [PMID: 16533542 DOI: 10.1016/j.virusres.2006.02.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 02/01/2006] [Accepted: 02/01/2006] [Indexed: 01/02/2023]
Abstract
Gene therapy is most often described as a technique for introducing the foreign genetic material into cells with a correction of a dysfunctional gene as its final goal. Today, it is well known that cancer is one of the leading causes of mortality in the world. Besides classical methods for cancer treatment new strategies against cancer are needed. Although originally being designed as a treatment for monogenetic illness, soon after, gene therapy appeared as a potential new strategy in cancer therapy. One of the widely used vectors for cancer gene therapy is adenovirus. In this review we have described molecular biology of adenoviruses and basis for construction of adenoviral vectors. We have also described concepts for cancer gene therapy including their in vitro and in vivo application. Special attention is drawn toward retargeting of adenovirus as a new approach in vector design for cancer gene therapy, in order to restrict transgene expression in tumor tissue. This approach uses biophysical as well as genetic characteristics of tumor itself and its supporting tissue, allowing new "bypass" in cancer gene therapy.
Collapse
Affiliation(s)
- Dragomira Majhen
- Laboratory for Genotoxic Agents, Division of Molecular Biology, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia.
| | | |
Collapse
|
105
|
Schagen FHE, Wensveen FM, Carette JE, Dermody TS, Gerritsen WR, van Beusechem VW. Genetic targeting of adenovirus vectors using a reovirus sigma1-based attachment protein. Mol Ther 2006; 13:997-1005. [PMID: 16515889 DOI: 10.1016/j.ymthe.2005.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 11/16/2005] [Accepted: 11/21/2005] [Indexed: 11/27/2022] Open
Abstract
Targeting adenovirus vectors (AdV's) for selective transduction of specific cell types requires ablation of native adenovirus tropism and introduction of a unique target-binding moiety. To bring these requirements within reach, we developed a novel strategy to target AdV's genetically that relies on replacement of the entire adenovirus fiber protein with a fusion molecule comprising the virion-anchoring domain of fiber and the oligomerization domain of reovirus attachment protein sigma1. The chimeric molecule forms trimers, is transported to the nucleus, and assembles onto the adenovirus capsid. In contrast to previously reported genetically targeted vectors, the AdV presented herein propagates efficiently without a requirement for complementing fiber. Due to ablation of the native adenovirus tropism, the infectivity of this AdV was at least 35-fold reduced on 293 cells. Importantly, a His tag incorporated into the chimeric attachment protein conferred His-tag-dependent tropism to the AdV, which resulted in a 12- to 40-fold greater transduction efficiency on two different cell lines expressing a His-tag-binding receptor. In addition, the infection efficiency was strongly reduced by preincubation with a His-tag-specific Ab. Thus, this sigma1-based chimeric attachment molecule provides a promising new platform for the generation of truly targeted AdV's.
Collapse
Affiliation(s)
- Frederik H E Schagen
- Division of Gene Therapy, Department of Medical Oncology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
106
|
Nakayama M, Both GW, Banizs B, Tsuruta Y, Yamamoto S, Kawakami Y, Douglas JT, Tani K, Curiel DT, Glasgow JN. An adenovirus serotype 5 vector with fibers derived from ovine atadenovirus demonstrates CAR-independent tropism and unique biodistribution in mice. Virology 2006; 350:103-15. [PMID: 16516257 DOI: 10.1016/j.virol.2006.01.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 12/23/2005] [Accepted: 01/26/2006] [Indexed: 01/09/2023]
Abstract
Many clinically important tissues are refractory to adenovirus (Ad) infection due to negligible levels of the primary Ad5 receptor the coxsackie and adenovirus receptor CAR. Thus, development of novel CAR-independent Ad vectors should lead to therapeutic gain. Ovine atadenovirus type 7, the prototype member of genus Atadenovirus, efficiently transduces CAR-deficient human cells in vitro, and systemic administration of OAdV is not associated with liver sequestration in mice. The penton base of OAdV7 does not contain an RGD motif, implicating the long-shafted fiber molecule as a major structural dictate of OAdV tropism. We hypothesized that replacement of the Ad5 fiber with the OAdV7 fiber would result in an Ad5 vector with CAR-independent tropism in vitro and liver "detargeting" in vivo. An Ad5 vector displaying the OAdV7 fiber was constructed (Ad5Luc1-OvF) and displayed CAR-independent, enhanced transduction of CAR-deficient human cells. When administered systemically to C57BL/6 mice, Ad5Luc1-OvF reporter gene expression was reduced by 80% in the liver compared to Ad5 and exhibited 50-fold higher gene expression in the kidney than the control vector. To our knowledge, this is the first report of a fiber-pseudotyped Ad vector that simultaneously displays decreased liver uptake and a distinct organ tropism in vivo. This vector may have future utility in murine models of renal disease.
Collapse
Affiliation(s)
- Masaharu Nakayama
- Division of Human Gene Therapy, Department of Medicine, University of Alabama at Birmingham, 901 19th Street South BMR2-572, Birmingham, AL 35294-2180, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Mahasreshti PJ, Kataram M, Wu H, Yalavarthy LP, Carey D, Fisher PB, Chada S, Alvarez RD, Haisma HJ, Dent P, Curiel DT. Ovarian cancer targeted adenoviral-mediated mda-7/IL-24 gene therapy. Gynecol Oncol 2006; 100:521-32. [PMID: 16225913 DOI: 10.1016/j.ygyno.2005.08.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2005] [Revised: 08/19/2005] [Accepted: 08/30/2005] [Indexed: 11/23/2022]
Abstract
OBJECTIVE We have previously shown that adenoviral-mediated melanoma differentiation-associated gene-7 (Ad.mda-7) therapy induces apoptosis in ovarian cancer cells. However, the apoptosis induction was low and directly correlated with infectivity of Ad.mda-7. The objective of this study was to derive ovarian cancer targeted infectivity-enhanced adenoviral vectors encoding mda-7 and evaluate their enhancement in therapeutic efficacy for ovarian carcinoma. METHODS Infectivity-enhanced adenoviral vectors encoding mda-7 Ad.RGD.mda-7 and Ad.RGD.pK7.mda-7 were derived by incorporation of RGD and or RGD and Pk7 motifs in the fiber knobs by genetic modification. Viruses were validated by PCR for presence of mda-7 and by Western blot for expression of MDA-7 protein. To test the enhancement of therapeutic efficacy of these viruses, a panel of human ovarian carcinoma cells, OV-4, HEY, SKOV3, SKOV3.ip1, were infected by either Ad.mda-7 or Ad.RGD.mda-7 and Ad.RGD.pK7.mda-7 or their respective control viruses and the cell killing was evaluated by crystal violet staining in vitro. Further, therapeutic efficacy was evaluated in vivo using human ovarian cancer xenograft mouse models. RESULTS Both Ad.RGD.pK7.mda-7 and Ad.RGD.mda-7 showed significant increase in cell killing in vitro compared to unmodified Ad.mda-7 with Ad.RGD.pK7.mda-7 showing highest cell killing. Further, Ad.RGD.pK7.mda-7 showed a significant increase in survival of mice bearing human ovarian cancer xenografts compared to Ad.mda-7 and other control groups. CONCLUSION Infectivity-enhanced Ad.RGD.mda-7 and Ad.RGD.pK7.mda-7 viruses significantly enhanced ovarian cancer tumor cell killing in vitro. Significant prolongation of survival by Ad.RGD.pK7.mda-7 in murine ovarian cancer models demonstrates the high clinical translational potential of these viruses for ovarian cancer therapy.
Collapse
Affiliation(s)
- Parameshwar J Mahasreshti
- Division of Human Gene Therapy, Department of Medicine, University of Alabama at Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Verheije MH, Würdinger T, van Beusechem VW, de Haan CAM, Gerritsen WR, Rottier PJM. Redirecting coronavirus to a nonnative receptor through a virus-encoded targeting adapter. J Virol 2006; 80:1250-60. [PMID: 16415002 PMCID: PMC1346946 DOI: 10.1128/jvi.80.3.1250-1260.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine hepatitis coronavirus (MHV)-A59 infection depends on the interaction of its spike (S) protein with the cellular receptor mCEACAM1a present on murine cells. Human cells lack this receptor and are therefore not susceptible to MHV. Specific alleviation of the tropism barrier by redirecting MHV to a tumor-specific receptor could lead to a virus with appealing properties for tumor therapy. To demonstrate that MHV can be retargeted to a nonnative receptor on human cells, we produced bispecific adapter proteins composed of the N-terminal D1 domain of mCEACAM1a linked to a short targeting peptide, the six-amino-acid His tag. Preincubation of MHV with the adapter proteins and subsequent inoculation of human cells expressing an artificial His receptor resulted in infection of these otherwise nonsusceptible cells and led to subsequent production of progeny virus. To generate a self-targeted virus able to establish multiround infection of the target cells, we subsequently incorporated the gene encoding the bispecific adapter protein as an additional expression cassette into the MHV genome through targeted RNA recombination. When inoculated onto murine LR7 cells, the resulting recombinant virus indeed expressed the adapter protein. Furthermore, inoculation of human target cells with the virus resulted in a His receptor-specific infection that was multiround. Extensive cell-cell fusion and rapid cell killing of infected target cells was observed. Our results show that MHV can be genetically redirected via adapters composed of the S protein binding part of mCEACAM1a and a targeting peptide recognizing a nonnative receptor expressed on human cells, consequently leading to rapid cell death. The results provide interesting leads for further investigations of the use of coronaviruses as antitumor agents.
Collapse
Affiliation(s)
- M H Verheije
- Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, 3584 CL Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
109
|
Glasgow JN, Everts M, Curiel DT. Transductional targeting of adenovirus vectors for gene therapy. Cancer Gene Ther 2006; 13:830-44. [PMID: 16439993 PMCID: PMC1781516 DOI: 10.1038/sj.cgt.7700928] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer gene therapy approaches will derive considerable benefit from adenovirus (Ad) vectors capable of self-directed localization to neoplastic disease or immunomodulatory targets in vivo. The ablation of native Ad tropism coupled with active targeting modalities has demonstrated that innate gene delivery efficiency may be retained while circumventing Ad dependence on its primary cellular receptor, the coxsackie and Ad receptor. Herein, we describe advances in Ad targeting that are predicated on a fundamental understanding of vector/cell interplay. Further, we propose strategies by which existing paradigms, such as nanotechnology, may be combined with Ad vectors to form advanced delivery vehicles with multiple functions.
Collapse
Affiliation(s)
- JN Glasgow
- Division of Human Gene Therapy, Departments of Medicine, Pathology and Surgery, Birmingham, AL, USA
| | - M Everts
- Division of Human Gene Therapy, Departments of Medicine, Pathology and Surgery, Birmingham, AL, USA
- Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - DT Curiel
- Division of Human Gene Therapy, Departments of Medicine, Pathology and Surgery, Birmingham, AL, USA
- Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
110
|
Ono HA, Le LP, Davydova JG, Gavrikova T, Yamamoto M. Noninvasive visualization of adenovirus replication with a fluorescent reporter in the E3 region. Cancer Res 2006; 65:10154-8. [PMID: 16287998 DOI: 10.1158/0008-5472.can-05-1871] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To overcome the inefficacy and undesirable side effects of current cancer treatment strategies, conditionally replicative adenoviruses have been developed to exploit the unique mechanism of oncolysis afforded by tumor-specific viral replication. Despite rapid translation into clinical trials and the established safety of oncolytic adenoviruses, the in vivo function of these agents is not well understood due to lack of a noninvasive detection system for adenovirus replication. To address this issue, we propose the expression of a reporter from the adenovirus E3 region as a means to monitor replication. Adenovirus replication reporter vectors were constructed with the enhanced green fluorescent protein (EGFP) gene placed in the deleted E3 region under the control of the adenoviral major late promoter while retaining expression of the adenovirus death protein to conserve the native oncolytic capability of the virus. Strong EGFP fluorescence was detected from these vectors in a replication-dependent manner, which correlated with viral DNA replication. Fluorescence imaging in vivo confirmed the ability to noninvasively detect fluorescent signal during replication, which generally corresponded with the underlying level of viral DNA replication. EGFP representation of viral replication was further confirmed by Western blot comparison with the viral DNA content in the tumors. Imaging reporter expression controlled by the adenoviral major late promoter provides a viable approach to noninvasively monitor adenovirus replication in preclinical studies and has the potential for human application with clinically relevant imaging reporters.
Collapse
Affiliation(s)
- Hidetaka A Ono
- Division of Human Gene Therapy, Department of Medicine, and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | |
Collapse
|
111
|
Koizumi N, Mizuguchi H, Kondoh M, Fujii M, Nakanishi T, Utoguchi N, Watanabe Y. Efficient Gene Transfer into Differentiated Human Trophoblast Cells with Adenovirus Vector Containing RGD Motif in the Fiber Protein. Biol Pharm Bull 2006; 29:1297-9. [PMID: 16755039 DOI: 10.1248/bpb.29.1297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously we reported fiber-modified adenovirus (Ad) vectors containing the Arg-Gly-Asp (RGD) motif on the HI loop of the fiber knob (Ad-RGD vectors) have high gene transfer efficacy into some human trophoblast cell lines. In the current study, we investigate transgene activity of Ad-RGD during differentiation of human cytotrophoblast BeWo cells into syncytiotrophoblast-like cells. Although cellular differentiation into syncytiotrophoblast cells was followed by a decrease in the coxsackievirus and adenovirus receptor levels on the cell membrane, the alphaVbeta3 and alphaVbeta5 integrin levels did not change. Conventional adenovirus vector had lower transduction activity in the differentiated cells than non-differentiated cells. In contrast, Ad-RGD vector had no influence on differentiation and had a ca. 2-5 fold higher transduction activity than that of the conventional Ad vector. Thus, Ad-RGD vector can be a powerful tool for gene transfer experiments in syncytiotrophoblast cells.
Collapse
Affiliation(s)
- Naoya Koizumi
- Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
112
|
Mathis JM, Stoff-Khalili MA, Curiel DT. Oncolytic adenoviruses - selective retargeting to tumor cells. Oncogene 2005; 24:7775-91. [PMID: 16299537 DOI: 10.1038/sj.onc.1209044] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Virotherapy is an approach for the treatment of cancer, in which the replicating virus itself is the anticancer agent. Virotherapy exploits the lytic property of virus replication to kill tumor cells. As this approach relies on viral replication, the virus can self-amplify and spread in the tumor from an initial infection of only a few cells. The success of this approach is fundamentally based on the ability to deliver the replication-competent viral genome to target cells with a requisite level of efficiency. With virotherapy, while a number of transcriptional retargeting strategies have been utilized to restrict viral replication to tumor cells, this review will focus primarily on transductional retargeting strategies, whereby oncolytic viruses can be designed to selectively infect tumor cells. Using the adenoviral vector paradigm, there are three broad strategies useful for viral retargeting. One strategy uses heterologous retargeting ligands that are bispecific in that they bind both to the viral vector as well as to a cell surface target. A second strategy uses genetically modified viral vectors in which a cellular retargeting ligand is incorporated. A third strategy involves the construction of chimeric recombinant vectors, in which a capsid protein from one virus is exchanged for that of another. These transductional retargeting strategies have the potential for reducing deleterious side effects, and increasing the therapeutic index of virotherapeutic agents.
Collapse
Affiliation(s)
- J Michael Mathis
- Gene Therapy Program, Department of Cellular Biology and Anatomy, LSU Health Sciences Center, Shreveport, LA 71130, USA
| | | | | |
Collapse
|
113
|
Zharov VP, Kim JW, Curiel DT, Everts M. Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2005; 1:326-45. [PMID: 17292107 DOI: 10.1016/j.nano.2005.10.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 10/10/2005] [Indexed: 11/17/2022]
Abstract
Nanotechnologies represent an unprecedented recent advance that may revolutionize many areas of medicine and biology, including cancer diagnostics and treatment. Nanoparticle-based technologies have demonstrated especially high potential for medical purposes, ranging from diagnosing diseases to providing novel therapies. However, to be clinically relevant, the existing nanoparticle-based technologies must overcome several challenges, including selective nanoparticle delivery, potential cytotoxicity, imaging of nanoparticles, and real-time assessment of their therapeutic efficacy. This review addresses these issues by summarizing the recent advances in medical diagnostics and therapy with a focus on the self-assembly of gold nanoparticles into nanoclusters in live cells, in combination with their detection using photothermal (PT) techniques.
Collapse
Affiliation(s)
- Vladimir P Zharov
- Philips Classic Laser Laboratories, the Arkansas Cancer Research Center, the University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| | | | | | | |
Collapse
|
114
|
Bangma CH, Mongiat P, Kraaij R, Schenk-Braat E. Gene therapy in urology: strategies to translate theory into practice. BJU Int 2005; 96:1163-70. [PMID: 16285874 DOI: 10.1111/j.1464-410x.2005.05929.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Chris H Bangma
- Department of Urology, Erasmus MC, Rotterdam, the Netherlands.
| | | | | | | |
Collapse
|
115
|
Noureddini SC, Krendelshchikov A, Simonenko V, Hedley SJ, Douglas JT, Curiel DT, Korokhov N. Generation and selection of targeted adenoviruses embodying optimized vector properties. Virus Res 2005; 116:185-95. [PMID: 16293334 DOI: 10.1016/j.virusres.2005.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 10/11/2005] [Accepted: 10/11/2005] [Indexed: 11/17/2022]
Abstract
The utility of adenovirus serotype 5 (Ad5)-based vectors for gene therapy applications would be improved by cell-specific targeting. However, strategies to redirect Ad5 vectors to alternate cellular receptors via replacement of the capsid fiber protein have often resulted in structurally unstable vectors. In view of this, we hypothesized that the selection of modified adenoviruses during their rescue and propagation would be a straightforward approach that guarantees the generation of functional, targeted vectors. Based on our first generation fiber-fibritin molecule, several new chimeric fibers containing variable amounts of fibritin and the Ad5 fiber shaft were analyzed via a new scheme for Ad vector selection. Our selected chimera, composed of the entire Ad5 fiber shaft fused to the 12th coiled-coil segment of fibritin, is capable of efficient capsid incorporation and ligand display. Moreover, transduction by the resultant vector is independent of the expression of the native Ad5 receptor. The incorporation of the Fc-binding domain of Staphylococcus aureus protein A at the carboxy terminus of this chimeric fiber facilitates targeting of the vector to a variety of cellular receptors by means of coupling with monoclonal antibodies. In addition, we have concluded that Ad5 vectors incorporating individual targeting ligands require individual optimization of the fiber-fibritin chimera, which may be accomplished by selecting the optimal fiber-fibritin variant at the stage of rescue of the virus in cells of interest, as described herein.
Collapse
Affiliation(s)
- Sam C Noureddini
- VectorLogics, Inc., 550 11th Street South, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
116
|
Abstract
The prognosis of patients with some kinds of cancers whose patients are often found unresectable upon diagnosis is still dismal. In these fields, development of a new therapeutic modality is needed and gene therapy represents one promising strategy. So far, numerous cancer gene therapy clinical trials based on these principles have been carried out and have shown the safety of such modalities, but have fallen short of the initial expectations to cure cancers. In this review, we would like to make a problem-oriented discussion of current status of cancer gene therapy research by using mainly gastrointestinal cancers as an example. In order to overcome obstacles for full realization of cancer gene therapy, numerous researches have been conducted by many researchers. Various cancer-selective and non-selective genes, as well as lytic viruses themselves have been employed for gene therapy. In the context of gene delivery method, different kinds of viral and non-viral strategies have been utilized. In addition, surrogate assays, such as soluble markers and imaging, have been developed for safer and more informative clinical trials. Many experiments and clinical trials to date have figured out current obstacles for the realization of an effective cancer gene therapy modality. Tireless efforts to overcome such hurdles and continuous infusion of novel concepts into this field should lead to break through technologies and the cure of the patients.
Collapse
Affiliation(s)
- Masato Yamamoto
- BMR2-410, 901 19th Street South, Birmingham, AL 35294-2172, USA
| | | |
Collapse
|
117
|
Law LK, Davidson BL. What Does It Take to Bind CAR? Mol Ther 2005; 12:599-609. [PMID: 16109509 DOI: 10.1016/j.ymthe.2005.05.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 04/26/2005] [Accepted: 05/09/2005] [Indexed: 11/27/2022] Open
Abstract
Recombinant adenoviruses (Ads) have been used as reagents for biological studies and therapeutic protocols for the treatment of human patients. The two most commonly used Ads, Ad2 and Ad5, infect a broad range of tissues through interaction with the coxsackie and adenovirus receptor CAR. Both mutational analyses and crystal structure data have established residues in the fiber knob and shaft critical for Ad-CAR binding. In this report we review the contributions of various residues to Ad-CAR binding, taking into consideration the documented cellular tropism of other Ad serotypes.
Collapse
Affiliation(s)
- Lane K Law
- Program in Gene Therapy, Genetics Ph.D. Program, University of Iowa, Iowa City, 52242, USA
| | | |
Collapse
|
118
|
Ugai H, Inabe K, Yamasaki T, Murata T, Obata Y, Hamada H, Yokoyama KK. Accumulation of infectious mutants in stocks during the propagation of fiber-modified recombinant adenoviruses. Biochem Biophys Res Commun 2005; 337:806-14. [PMID: 16214112 DOI: 10.1016/j.bbrc.2005.09.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 09/16/2005] [Indexed: 11/21/2022]
Abstract
In infected cells, replication errors during viral proliferation generate mutations in adenoviruses (Ads), and the mutant Ads proliferate and evolve in the intracellular environment. Genetically fiber-modified recombinant Ads (rAd variants) were generated, by modification of the fiber gene, for therapeutic applications in host cells that lack or express reduced levels of the Coxsackievirus and adenovirus receptor. To assess the genetic modifications of rAd variants that might induce the instability of Ad virions, we examined the frequencies of mutants that accumulated in propagated stocks. Seven of 41 lines of Ad variants generated mutants in the stocks and all mutants were infectious. Moreover, all the mutations occurred in the modified region that had been added at the 3' end of the fiber gene. Our results show that some genetic modifications at the carboxyl terminus of Ad fiber protein lead to the instability of Ad virions.
Collapse
Affiliation(s)
- Hideyo Ugai
- Gene Engineering Division, Department of Biological Systems, BioResource Center, Tsukuba Institute, RIKEN The Institute of Physical and Chemical Research, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | | | |
Collapse
|
119
|
Abstract
Adenovirus serotype 5 (Ad5) continues to be regarded as a gene delivery vehicle of high utility for a variety of clinical applications. However, targeting of the virus to alternate, non-native receptors has become a mandate for many gene therapy approaches, as inefficient viral transduction of target tissues has proven detrimental to the utility of Ad5. Thus, various targeting strategies have been endeavored to the end of highly specific cellular transduction, including that of genetic manipulation of the viral capsid. Modification of the tropism-determining fiber protein and other capsid locales has allowed vectorologists to develop vectors that are highly superior to the first-generation adenoviruses employed for gene therapy. Herein, the various genetic targeting strategies for Ad5 are reviewed, and the various schemas in which targeted transduction has been achieved with tropism-modified vectors are outlined.
Collapse
Affiliation(s)
- Sam C Noureddini
- VectorLogics, Inc., 550 11th Street South, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
120
|
Borovjagin AV, Krendelchtchikov A, Ramesh N, Yu DC, Douglas JT, Curiel DT. Complex mosaicism is a novel approach to infectivity enhancement of adenovirus type 5-based vectors. Cancer Gene Ther 2005; 12:475-86. [PMID: 15706356 DOI: 10.1038/sj.cgt.7700806] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The use of adenovirus type 5 (Ad5) for cancer therapy is limited by deficiency of its primary cell attachment receptor, coxsackie and adenovirus receptor (CAR), on cancer cells. Ad5 retargeting to alternate receptors through fiber genetic modification can be used to circumvent CAR dependence of its tropism, and thereby achieve infectivity enhancement. Here we propose and test a novel "complex mosaicism" approach for fiber modification, which combines serotype chimerism with peptide ligand(s) incorporation in a single-fiber molecule. We incorporated integrin-binding peptide RGD-4C in the HI-loop, at the carboxy (C)-terminus, or both locales of the Ad3 knob, in the context of Ad5/3 chimera fiber in order to retarget simultaneously the Ad vector to integrins and Ad3 receptors. The infectivity enhancement of the fiber modifications was assessed in various cancer cell lines as cancer-targeting models. Replication-defective complex mosaic Ad-luc vectors bearing chimeric fiber (F.5/3), with or without C-terminal RGD-modification of Ad3 knob, demonstrated up to 55-fold gene transfer increase in bladder cancer cell lines. Although this augmentation was primarily due to Ad3 receptor targeting, some contribution of RGD-mediated integrin-targeting was also observed, suggesting that complex mosaic modification can function in a dual-receptor targeting via a single Ad3 fiber knob.
Collapse
Affiliation(s)
- Anton V Borovjagin
- VectorLogics Inc., 550 South 11th Street, CRC-122A, Birmingham, AL 35294, USA.
| | | | | | | | | | | |
Collapse
|
121
|
Mizuguchi H, Sasaki T, Kawabata K, Sakurai F, Hayakawa T. Fiber-modified adenovirus vectors mediate efficient gene transfer into undifferentiated and adipogenic-differentiated human mesenchymal stem cells. Biochem Biophys Res Commun 2005; 332:1101-6. [PMID: 15922299 DOI: 10.1016/j.bbrc.2005.05.055] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 05/11/2005] [Indexed: 11/18/2022]
Abstract
Human mesenchymal stem cells (hMSCs) are considered a source of cells for regenerative medicine, and cell and gene therapy. Efficient gene transfer into hMSCs is essential for basic investigations into cellular differentiation and developmental biology, and for therapeutic applications in gene-modified regenerative medicine. In the present study, we optimized the transduction of hMSCs by means of fiber-modified adenovirus (Ad) vectors. Among the various types of Ad vectors tested, the polylysine modification of the C-terminal of the fiber knob most markedly improved the efficiency of hMSC transduction. At 300 vector particles per cell of polylysine-modified Ad vectors, more than 95% of the hMSCs expressed transgene. In this condition, polylysine-modified Ad vectors mediated 460-fold more transgene activity than the conventional Ad vectors. Ad vectors containing the Ad type 35 fiber or an Arg-Gly-Asp (RGD) peptide in the fiber knob mediated 130 or 16 times, respectively, the transgene activity mediated by the conventional Ad vectors. We also examined the efficiency of transduction into adipogenic-differentiated hMSCs. In this latter case, only Ad vectors containing the Ad type 35 fiber showed efficient gene expression. These results showed that fiber-modified Ad vectors could become a potent tool for basic research into, and the therapeutic application of, hMSCs and adipogenic-differentiated hMSCs.
Collapse
Affiliation(s)
- Hiroyuki Mizuguchi
- Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Osaka 567-0085, Japan.
| | | | | | | | | |
Collapse
|
122
|
Kreppel F, Gackowski J, Schmidt E, Kochanek S. Combined Genetic and Chemical Capsid Modifications Enable Flexible and Efficient De- and Retargeting of Adenovirus Vectors. Mol Ther 2005; 12:107-17. [PMID: 15963926 DOI: 10.1016/j.ymthe.2005.03.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 02/19/2005] [Accepted: 03/07/2005] [Indexed: 10/25/2022] Open
Abstract
Numerous attempts to target viral gene therapy vectors to specific cells have met with limited success. Here we describe a novel virus vector-targeting platform based on a unique combination of genetic and chemical vector particle modifications to overcome typical restrictions in virus vector targeting. We genetically introduced cysteines at solvent-exposed positions of the adenovirus capsid. The corresponding thiol groups were highly reactive, and we established procedures for controlled covalent coupling to them of protein and nonprotein ligands. After the coupling of transferrin, the particles were efficiently targeted to the transferrin receptor pathway. Depending on the chemistry used, ligands could be coupled under the formation of thioether or disulfide bonds, the latter allowing for separation of ligand and particle after cell entry in the endosome. Furthermore, this technology could be efficiently combined with vector shielding for true retargeting: after amino-PEGylation of the vector particles the genetically introduced thiols were still accessible for ligand coupling, and particles could be retargeted to the transferrin receptor. Since this platform is robust, can be scaled, is compatible with industrial standards, and can integrate chemically diverse molecules as ligands, it may be used for clinical gene therapy and, potentially, also for vaccination.
Collapse
Affiliation(s)
- Florian Kreppel
- Division of Gene Therapy, University of Ulm, Helmholtzstrasse 8/1, D-89081 Ulm, Germany.
| | | | | | | |
Collapse
|
123
|
Taki M, Kagawa S, Nishizaki M, Mizuguchi H, Hayakawa T, Kyo S, Nagai K, Urata Y, Tanaka N, Fujiwara T. Enhanced oncolysis by a tropism-modified telomerase-specific replication-selective adenoviral agent OBP-405 ('Telomelysin-RGD'). Oncogene 2005; 24:3130-40. [PMID: 15735729 DOI: 10.1038/sj.onc.1208460] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Replication-competent oncolytic viruses are being developed for human cancer therapy. We previously reported that an attenuated adenovirus (OBP-301, 'Telomelysin'), in which the hTERT promoter element drives expression of E1A and E1B genes linked with an IRES, could replicate in cancer cells, and causes selective lysis of cancer cells. We further constructed OBP-405 ('Telomelysin-RGD') that contains an RGD motif in the HI loop of the fiber knob. We examined whether OBP-405 could be effective in overcoming the limitations of OBP-301, specifically their inefficient infection into cells lacking the primary receptor, the coxsackievirus and adenovirus receptor (CAR). By flow cytometric analysis, H1299 (lung) and SW620 (colorectal) tumor cells showed high levels of CAR expression, whereas LN444 (glioblastoma), LNZ308 (glioblastoma), and H1299-R5 (lung) tumor cells were negative for CAR expression. A quantitative real-time PCR analysis demonstrated that fiber-modified OBP-405 infected more efficiently than OBP-301, although the intracellular replication rate of both viruses was consistent. The comparative antitumor effect of fiber-modified OBP-405 and unmodified OBP-301 for human cancer cells was evaluated in vitro by XTT assay as well as in vivo by using athymic mice carrying xenografts. OBP-405 had a profound oncolytic effect on human cancer cell lines compared to OBP-301, in particular on cells with low CAR expression. Intratumoral injection of 10(7) plaque-forming units of OBP-405 into CAR-negative H1299-R5 lung tumor xenografts in nu/nu mice resulted in a significant inhibition of tumor growth and long-term survival in all treated mice. Moreover, selective replication of OBP-405 in the distant, uninjected H1299-R5 tumors was demonstrated. Our results suggest that fiber-modified replication-competent adenovirus OBP-405 exhibits a broad target range by increasing infection efficiency, an outcome that has important implications for the treatment of human cancers.
Collapse
Affiliation(s)
- Masaki Taki
- Division of Surgical Oncology, Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Marsman WA, Buskens CJ, Wesseling JG, Van Lanschot JJB, Bosma PJ. Gene therapy for barrett's esophagus: adenoviral gene transfer in different intestinal models. Cancer Gene Ther 2005; 12:778-86. [PMID: 15877083 DOI: 10.1038/sj.cgt.7700841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adenoviral gene therapy could potentially be used for treatment of patients with a Barrett's esophagus. In order to study the feasibility of this approach it is important to study adenoviral intestinal transduction both in vitro and in vivo. In the present study, we used differentiating Caco-2 cells, closed intestinal loops and a Barrett's esophagus rat model to test transduction of adenoviruses expressing green fluorescent protein. We observed a decreased adenoviral transduction from 18.6 to 2.3% in undifferentiated and differentiated Caco-2 cells, respectively. This could be improved by the use of the mucolytic agent N-acetylcysteine (NAC) and the polycation diethylaminoethyl-dextran (DEAE-dextran), which improved transduction in differentiated cells five- and ten-fold, respectively. Also an RGD-retargeted adenovirus showed an improved transduction in differentiated cells. In closed intestinal loops adenoviral transduction was limited and the use of NAC and DEAE-dextran or RGD targeting had little effect. The Barrett's esophagus rat model consisted of an esophagojejunostomy, which results in a Barrett's esophagus and esophageal tumors within 6 months. Adenoviral transduction in this model was limited and mainly localized in the basal layer of normal esophagus and stromal tissue of a Barrett's segment. We conclude that although the adenovirus shows promising results in vitro, the current adenoviral vectors are probably not suitable for patients with Barrett's esophagus.
Collapse
Affiliation(s)
- Willem A Marsman
- AMC Liver Center, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
125
|
Abstract
Recombinant adenovirus (Ad) vectors continue to be the preferred vectors for gene therapy and the study of gene function because they are relatively easy to construct, can be produced at high titer, and have high transduction efficiency. However, in some applications gene transfer with Ad vectors is less efficient because the target cells lack expression of the primary receptor, coxsackievirus and adenovirus receptor (CAR). Another problem is the wide biodistribution of vector in tissue following in vivo gene transfer because of the relatively broad tissue expression of CAR. To overcome these limitations, various approaches have been developed to modify Ad tropism. In one approach, the capsid proteins of Ad are modified, such as with the addition of foreign ligands or the substitution of the fiber with other types of Ad fiber, in combination with the ablation of native tropism. In other approaches, Ad vectors are conjugated with adaptor molecules, such as antibody and fusion protein containing an anti-Ad single-chain antibody (scFv) or the extracellular domain of CAR with the targeting ligands, or chemically modified with polymers containing the targeting ligands. In this paper, we review advances in the development of targeted Ad vectors.
Collapse
Affiliation(s)
- Hiroyuki Mizuguchi
- Project III, National Institute of Health Sciences, Osaka Branch, Fundamental Research Laboratories for Development of Medicine, Osaka 567-0085, Japan.
| | | |
Collapse
|
126
|
Xu ZL, Mizuguchi H, Sakurai F, Koizumi N, Hosono T, Kawabata K, Watanabe Y, Yamaguchi T, Hayakawa T. Approaches to improving the kinetics of adenovirus-delivered genes and gene products. Adv Drug Deliv Rev 2005; 57:781-802. [PMID: 15757761 DOI: 10.1016/j.addr.2004.12.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2003] [Accepted: 12/18/2004] [Indexed: 12/12/2022]
Abstract
Adenovirus (Ad) vectors have been expected to play a great role in gene therapy because of their extremely high transduction efficiency and wide tropism. However, due to the intrinsic deficiency of their immunogenic toxicities, Ad vectors are rapidly cleared from the host, transgene expression is transient, and readministration of the same serotype Ad vectors is problematic. As a result, Ad vectors are continually undergoing refinement to realize their potential for gene therapy application. Even after 1999, when a patient fatally succumbed to the toxicity associated with Ad vector administration at a University of Pennsylvania (U.S.) experimental clinic, enthusiasm of gene therapists for Ad vectors has not waned. With great efforts from various research groups, significant advances have been achieved through comprehensive approaches to improving the kinetics of Ad vector-delivered genes and gene products.
Collapse
Affiliation(s)
- Zhi-Li Xu
- Division of Cellular and Gene Therapy Products, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Pereboeva L, Komarova S, Mahasreshti PJ, Curiel DT. Fiber-mosaic adenovirus as a novel approach to design genetically modified adenoviral vectors. Virus Res 2005; 105:35-46. [PMID: 15325079 DOI: 10.1016/j.virusres.2004.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Revised: 04/05/2004] [Accepted: 04/22/2004] [Indexed: 11/22/2022]
Abstract
Genetic modification of the adenovirus (Ad) capsid is one of the successful strategies to achieve viral retargeting. However, it has been widely recognized that structural constraints imposed by viral proteins limit the number and nature of incorporated targeting ligands and often hamper viral propagation. To address this issue, we propose a genetic fiber-mosaic virus (having two distinct fibers in one viral particle) as a means to facilitate fiber modifications. Fiber-mosaic virus having tandem fibers: a wild type (wt) fiber and second adjunctive fiber, will utilize natural viral entry for the conventional propagation of the vectors whereas, adjunctive fiber will serve multiple potential purposes such as targeting, purification, or imaging of viral particles via genetic incorporation of the corresponding functional moieties. We generated the mosaic adenovirus vector encoding two fibers: wild-type and adjunctive fiber--Fiber-Fibritin (FF) and confirmed incorporation of FF in the mosaic viral particles. We investigated binding specificity of the mosaic virus and the possible interference of the two fibers during virus life cycle. Fiber-mosaic Ad attained new binding properties provided by the second fiber, while preserving the binding ability attributed to the wt fiber. Our results suggest that the two fibers being presented and structurally separated on the viral particle may also function separately as binding counterparts for virus attachment. Therefore, the mosaic setting will allow more flexibility in Ad retargeting approaches.
Collapse
Affiliation(s)
- Larisa Pereboeva
- Division of Human Gene Therapy, Department of Medicine, The Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Al 35294, USA
| | | | | | | |
Collapse
|
128
|
|
129
|
Kraaij R, van Rijswijk ALCT, Oomen MHA, Haisma HJ, Bangma CH. Prostate specific membrane antigen (PSMA) is a tissue-specific target for adenoviral transduction of prostate cancer in vitro. Prostate 2005; 62:253-9. [PMID: 15389777 DOI: 10.1002/pros.20150] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Adenovirus binds to the coxsackievirus and adenovirus receptor (CAR) as a first step in the process of cellular infection. This dependence on CAR potentially limits the use of adenovirus in gene therapy, since CAR is expressed in many tissues of the body, and expression of CAR may be low or lost upon progression of certain tumors. These limitations may be overcome by transductional targeting of adenovirus towards other cell surface molecules. We have evaluated the pantumoral epithelial cell adhesion molecule (EpCAM) and prostate specific membrane antigen (PSMA) as possible targets for adenoviral transduction of prostate cancer cells. METHODS Bispecific antibodies, constructed as conjugates between an anti-adenovirus fiber knob Fab' fragment and anti-EpCAM or anti-PSMA monoclonal antibodies, were incubated with an eGFP-expressing adenovirus to retarget this vector. A cell panel, that includes two prostate cancer cell lines and four non-prostate control lines, were infected with serial dilutions of the retargeted vector and specificity of infection was determined. RESULTS Receptor-specific transduction was obtained for both EpCAM and PSMA. PSMA-retargeting was shown to be selective for the prostate cancer cell lines. CONCLUSIONS PSMA serves as a tissue-specific target for adenoviral vectors and may be applicable for gene therapeutical treatment of prostate cancer.
Collapse
Affiliation(s)
- R Kraaij
- Department of Urology, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
130
|
Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Ishii K, Kobune M, Hirai S, Uchida H, Sasaki K, Ito Y, Kato K, Honmou O, Houkin K, Date I, Hamada H. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther 2005; 11:96-104. [PMID: 15585410 DOI: 10.1016/j.ymthe.2004.09.020] [Citation(s) in RCA: 299] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Accepted: 09/28/2004] [Indexed: 11/29/2022] Open
Abstract
Mesenchymal stem cells (MSC) were reported to ameliorate functional deficits after stroke in rats, with some of this improvement possibly resulting from the action of cytokines secreted by these cells. To enhance such cytokine effects, we previously transfected the telomerized human MSC with the BDNF gene using a fiber-mutant adenovirus vector and reported that such treatment contributed to improved ischemic recovery in a rat transient middle cerebral artery occlusion (MCAO) model. In the present study, we investigated whether other cytokines in addition to BDNF, i.e., GDNF, CNTF, or NT3, might have a similar or greater effect in this model. Rats that received MSC-BDNF (P < 0.05) or MSC-GDNF (P < 0.05) showed significantly more functional recovery as demonstrated by improved behavioral test results and reduced ischemic damage on MRI than did control rats 7 and 14 days following MCAO. On the other hand, rats that received MSC-CNTF or MSC-NT3 showed neither functional recovery nor ischemic damage reduction compared to control rats. Thus, MSC transfected with the BDNF or GDNF gene resulted in improved function and reduced ischemic damage in a rat model of MCAO. These data suggest that gene-modified cell therapy may be a useful approach for the treatment of stroke.
Collapse
Affiliation(s)
- Kazuhiko Kurozumi
- Department of Molecular Medicine, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo 060-8556, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Lupold SE, Rodriguez R. Adenoviral gene therapy, radiation, and prostate cancer. Rev Urol 2005; 7:193-202. [PMID: 16985830 PMCID: PMC1550784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Viral gene therapy has exceptional potential as a specifically tailored cancer treatment. However, enthusiasm for cancer gene therapy has varied over the years, partly owing to safety concerns after the death of a young volunteer in a clinical trial for a genetic disease. Since this singular tragedy, results from numerous clinical trials over the past 10 years have restored the excellent safety profile of adenoviral vectors. These vectors have been extensively studied in phase I and II trials as intraprostatically administered agents for patients with locally recurrent and high-risk local prostate cancer. Promising therapeutic responses have been reported in several studies with both oncolytic and suicide gene therapy strategies. The additional benefit of combining gene therapy with radiation therapy has also been realized; replicating adenoviruses inhibit DNA repair pathways, resulting in a synergistic sensitization to radiation. Other, nonreplicating suicide gene therapy strategies are also significantly enhanced with radiation. Combined radiation/gene therapy is currently being studied in phase I and II clinical trials and will likely be the first adenoviral gene therapy mechanism to become available to urologists in the clinic. Systemic gene therapy for metastatic disease is also a major goal of the field, and clinical trials are currently under way for hormone-resistant metastatic prostate cancer. Second- and third-generation "re-targeted" viral vectors, currently being developed in the laboratory, are likely to further improve these systemic trials.
Collapse
|
132
|
Abstract
Most cases of cancer, when detected at an advanced stage, cannot be cured with conventional therapeutic modalities. Therefore, novel targeted approaches such as gene therapy are needed. Nevertheless, while the safety record of gene therapy for cancer has been excellent with more than a thousand patients treated without mortality related to the therapy, clinical efficacy has so far been limited. Moreover, it has become evident that clinical efficacy is partly determined by efficacy of gene delivery. Most adenoviruses used for gene therapy have been based on serotype 5 (Ad5). Unfortunately, recent data suggest that the primary receptor, the coxsackie-adenovirus receptor (CAR) expression in tumors may be highly variable resulting in resistance to adenovirus infection. Consequently, various strategies have been evaluated to modify adenovirus tropism in order to circumvent CAR deficiency, including retargeting complexes or genetic capsid modifications. To further improve tumor penetration and local amplification of the anti-tumor effect, selectively oncolytic agents, e.g. conditionally replicating adenoviruses (CRAds), have been constructed. Infection of tumor cells results in replication, oncolysis, and subsequent release of the virus progeny. Normal tissue is spared due to lack of replication. This review will focus on a discussion of various modifications of adenovirus to achieve efficient anti-tumor effect, and special emphasis will be placed on CRAds in multimodality treatments.
Collapse
Affiliation(s)
- Anna Kanerva
- Cancer Gene Therapy Group, Rational Drug Design, Biomedicum Helsinki, University of Helsinki, Finland
| | | |
Collapse
|
133
|
Marsman WA, Buskens CJ, Wesseling JG, Offerhaus GJA, Bergman JJGHM, Tytgat GNJ, van Lanschot JJB, Bosma PJ. Gene therapy for esophageal carcinoma: the use of an explant model to test adenoviral vectors ex vivo. Cancer Gene Ther 2004; 11:289-96. [PMID: 14765131 DOI: 10.1038/sj.cgt.7700680] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adenoviral gene therapy might be a promising therapeutic strategy for esophageal carcinoma. However, adenoviral transduction efficacy in vivo is still limited. This efficacy can be improved by the insertion of an Arg-Gly-Asp (RGD) peptide in the HI-loop of the viral fiber knob. Indeed in established esophageal cell lines, we observed an up to six-fold improved transduction using the RGD-targeted adenovirus. Established cell lines, however, are easily transformed and do not represent the more complex in vivo histology and anatomy. Therefore, we set up an esophageal explant model using esophageal biopsies from patients. Viability is a limiting factor for this system. Cultured squamous epithelium, intestinal metaplasia and squamous cell carcinoma had a sufficient viability to study adenoviral transduction. Viability of the cultured adenocarcinoma biopsies was poor. Adenoviral transduction in the explant model was poor and was localized in particular cells. The transduction of the nontargeted and RGD-targeted adenovirus was similar in localization and efficacy. In conclusion, we established an esophageal explant system to test the transduction of adenoviral vectors ex vivo. The transduction was limited and localized in specific cells. RGD-targeted adenovirus did not show an improved transduction in this system.
Collapse
Affiliation(s)
- Willem A Marsman
- Department of Experimental Hepatology, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Mizuguchi H, Hayakawa T. Targeted Adenovirus Vectors. Hum Gene Ther 2004. [DOI: 10.1089/hum.2004.15.ft-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
135
|
Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Kobune M, Hirai S, Uchida H, Sasaki K, Ito Y, Kato K, Honmou O, Houkin K, Date I, Hamada H. BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther 2004; 9:189-97. [PMID: 14759803 DOI: 10.1016/j.ymthe.2003.10.012] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Accepted: 10/29/2003] [Indexed: 10/26/2022] Open
Abstract
Examination of the clinical therapeutic efficacy of using bone marrow stromal cells, including mesenchymal stem cells (MSC), has recently been the focus of much investigation. MSC were reported to ameliorate functional deficits after stroke in rats, with some of this improvement possibly resulting from the action of cytokines secreted by these cells. To enhance such cytokine effects, we transfected telomerized human MSC with the BDNF gene using a fiber-mutant F/RGD adenovirus vector and investigated whether these cells contributed to improved functional recovery in a rat transient middle cerebral artery occlusion (MCAO) model. BDNF production by MSC-BDNF cells was 23-fold greater than that seen in uninfected MSC. Rats that received MSC-BDNF showed significantly more functional recovery than did control rats following MCAO. Specifically, MRI analysis revealed that the rats in the MSC-BDNF group exhibited more significant recovery from ischemia after 7 and 14 days. The number of TUNEL-positive cells in the ischemic boundary zone was significantly smaller in animals treated with MSC-BDNF compared to animals in the control group. These data suggest that MSC transfected with the BDNF gene may be useful in the treatment of cerebral ischemia and may represent a new strategy for the treatment of stroke.
Collapse
Affiliation(s)
- Kazuhiko Kurozumi
- Department of Molecular Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Rein DT, Breidenbach M, Wu H, Han T, Haviv YS, Wang M, Kirby TO, Kawakami Y, Dall P, Alvarez RD, Curiel DT. Gene transfer to cervical cancer with fiber-modified adenoviruses. Int J Cancer 2004; 111:698-704. [PMID: 15252838 DOI: 10.1002/ijc.20295] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Successful adenoviral (Ad) vector-mediated strategies for cancer gene therapy mandate gene-delivery systems that are capable of achieving efficient gene delivery in vivo. In many cancer types, in vivo gene-transfer efficiency remains limited due to the low or highly variable expression of the primary Ad receptor, the coxsackie Ad receptor (CAR). In this study, we evaluated the expression of CAR on cervical cancer cells as well as CAR-independent targeting strategies to integrins (Ad5.RGD), heparan sulfate proteoglycans (Ad5.pK7) or both (Ad5.RGD.pK7). We used a panel of established cervical cancer cell lines and primary cervical cancer cells isolated from patients to quantify the expression of CAR mRNA and to evaluate the gene-transfer efficiency of fiber-modified Ads. Of the fiber-modified vectors, Ad5.pK7 and Ad5.RGD.pK7 displayed significantly enhanced gene-transfer efficiency in vitro. Gene-delivery efficiency in vivo was evaluated using an s.c. cervical cancer mouse model. Ad5.RGD.pK7 significantly improves tumor targeting in vivo, resulting in a significantly improved tumor/liver ratio in mice. Our results suggest that the double-modified Ad5.RGD.pk7 vector enhances gene transfer to clinically relevant cervical cancer substrates, while the infectivity of nontarget cells in the mouse is not increased and comparable to Ad5. The fiber-modified virus described here can help achieve higher clinical efficacy of cervical cancer gene therapy.
Collapse
Affiliation(s)
- Daniel T Rein
- Division of Human Gene Therapy, Departments of Medicine, Surgery and Pathology and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Davydova J, Le LP, Gavrikova T, Wang M, Krasnykh V, Yamamoto M. Infectivity-enhanced cyclooxygenase-2-based conditionally replicative adenoviruses for esophageal adenocarcinoma treatment. Cancer Res 2004; 64:4319-27. [PMID: 15205347 DOI: 10.1158/0008-5472.can-04-0064] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The employment of conditionally replicative adenoviruses (CRAd) constitutes a promising alternative for cancer treatment; however, in the case of esophageal adenocarcinoma (EAC) the lack of an appropriate tumor-specific promoter and relative resistance to adenovirus infection have hampered the construction of CRAds with clinically applicable specificity and efficacy. By combining transcriptional targeting with infectivity enhancement for CRAds, we generated novel cyclooxygenase-2 (Cox-2) promoter-controlled replicative viral agents for the treatment of EAC. We used infectivity enhancement based on incorporation of an RGD-4C motif into the HI loop of the adenoviral (Ad) fiber knob domain as well as replacement of the Ad5 knob with the Ad3 knob. The Cox-2 promoter was highly active in EAC, whereas showing no significant activity in Cox-2-negative cell lines and primary cells isolated from normal mouse esophagus and stomach. Evaluation of infectivity-enhanced vectors revealed that the transduction and virus-cell binding ability of Ad5/Ad3-chimera were significantly more efficient than that of unmodified and Arg-Gly-Asp (RGD)-modified vectors. All of the Cox-2 CRAds demonstrated replication and subsequent oncolysis in EAC cells but not in Cox-2-negative cells in vitro, thus confirming the dependence of their replication on the Cox-2 promoter activity. Ad5/Ad3 CRAds exhibited significantly improved oncolysis and progeny production compared with unmodified and RGD-modified vectors without sacrificing tumor selectivity. Whereas unmodified and RGD-modified CRAds showed insignificant therapeutic effect in vivo, Ad5/Ad3 CRAds remarkably suppressed tumor growth of established xenografts in mice. Thus, our studies have demonstrated that Ad5/Ad3-chimeric Cox-2 promoter-driven CRAds are selective and potent agents for the treatment of EAC.
Collapse
Affiliation(s)
- Julia Davydova
- Division of Human Gene Therapy, Departments of Medicine, Pathology, and Surgery, and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | | | | | | |
Collapse
|
138
|
Glasgow JN, Kremer EJ, Hemminki A, Siegal GP, Douglas JT, Curiel DT. An adenovirus vector with a chimeric fiber derived from canine adenovirus type 2 displays novel tropism. Virology 2004; 324:103-16. [PMID: 15183058 DOI: 10.1016/j.virol.2004.03.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 02/04/2004] [Accepted: 03/24/2004] [Indexed: 12/31/2022]
Abstract
Many clinically relevant tissues are refractory to Ad5 transduction because of negligible levels of the primary Ad5 receptor, the coxsackie and adenovirus receptor (CAR). Thus, development of Ad vectors that display CAR-independent tropism could lead directly to therapeutic gain. The Toronto strain of canine adenovirus type 2 (CAV2) exhibits native tropism that is augmented by, but not fully dependent upon, CAR for cellular transduction. We hypothesized that an Ad5 vector containing the nonhuman CAV2 knob would provide expanded tropism and constructed Ad5Luc1-CK, an E1-deleted Ad5 vector encoding the fiber knob domain from CAV2. Ad5Luc1-CK gene delivery to CAR-deficient cells was augmented up to 30-fold versus the Ad5 control vector, and correlated with increased cell surface binding. Further, we confirmed the importance of cellular integrins to Ad5Luc1-CK transduction. Herein, we present the rationale, design, purification, and characterization of a novel tropism modified, infectivity-enhanced Ad vector.
Collapse
Affiliation(s)
- Joel N Glasgow
- Division of Human Gene Therapy, Department of Medicine, University of Alabama at Birmingham Birmingham, AL 35294-2172, USA
| | | | | | | | | | | |
Collapse
|
139
|
Wu H, Han T, Lam JT, Leath CA, Dmitriev I, Kashentseva E, Barnes MN, Alvarez RD, Curiel DT. Preclinical evaluation of a class of infectivity-enhanced adenoviral vectors in ovarian cancer gene therapy. Gene Ther 2004; 11:874-8. [PMID: 14999229 DOI: 10.1038/sj.gt.3302249] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Ovarian carcinoma cells are often infected inefficiently by adenoviruses (Ad) due to low expression of coxsackie-adenovirus receptors (CAR), hindering the application of adenovirus-mediated gene therapy in ovarian cancer. In this study, we explored a class of infectivity-enhanced Ad vectors, which contain CAR-independent targeting motifs RGD (Ad5.RGD), polylysine (Ad5.pK7), or both (Ad5.RGD.pK7), for their utility in ovarian cancer gene therapy using in vitro and in vivo model systems. We found that these vectors infected established ovarian carcinoma cell lines and primary ovarian cancer cells with significantly enhanced infectivity. Among them, Ad5.RGD.pK7 appeared to be most efficient. Further, we evaluated their gene delivery efficiency using two different ovarian cancer mouse models--subcutaneous and intraperitoneal human ovarian cancer xenografts. All of the modified vectors appeared to be more efficient than the unmodified Ad5 vector in both models, although some of the differences are not statistically significant. Of these, Ad5.RGD.pK7 exhibited the highest efficacy in the subcutaneous tumor model, while Ad5.pK7 worked most efficiently in the intraperitoneal tumor model. These preclinical results suggest that Ad5.RGD.pK7 and Ad5.pK7 may be very useful in ovarian cancer gene therapy.
Collapse
Affiliation(s)
- H Wu
- Division of Human Gene Therapy, Departments of Medicine, Pathology and Surgery, and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Bramson JL, Grinshtein N, Meulenbroek RA, Lunde J, Kottachchi D, Lorimer IA, Jasmin BJ, Parks RJ. Helper-Dependent Adenoviral Vectors Containing Modified Fiber for Improved Transduction of Developing and Mature Muscle Cells. Hum Gene Ther 2004; 15:179-88. [PMID: 14975190 DOI: 10.1089/104303404772679986] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adenoviruses (Ads) have shown great utility as vectors for the delivery of genes to mammalian cells, partly because of their ability to infect a wide range of different cell types independent of the replicative state of the cell. However, Ads do not transduce mature muscle efficiently because of low levels of the natural viral primary receptor, the coxsackie virus and adenovirus receptor, on the surface of adult muscle cells. In this study, we have addressed whether incorporation of polylysine [p(K)] or arginine-glycine-aspartic acid (RGD) placed in the H-I loop of the adenoviral fiber protein can improve helper-dependent Ad vector (hdAd) transduction of mature muscle cells. We show that incorporation of the p(K) motif into the fiber of early region 1 (E1)-deleted Ad results in enhanced transduction of undifferentiated and differentiated C2C12 cells relative to a virus, containing a wild-type fiber (12- and 21-fold enhancement, respectively). Incorporation of the RGD motif resulted in only a 60-70% increase in transduction efficiency in these cells. The two fiber modifications were then incorporated into helper viruses for use in the Cre-lox system for generating hdAd, and the resulting retargeted Ad vectors, which encoded the beta-galactosidase reporter gene (beta-Gal), demonstrated enhanced transduction of C2C12 cells in culture. Although hdAdpK also showed enhanced infection of mature mouse muscle in vivo, hdAdRGD did not. All hdAd vectors elicited only minor anti-Ad immune responses, compared with an E1-deleted control vector, but each vector elicited strong anti-beta-Gal immunoreactivity. Our results demonstrate that hdAd with modified cell tropism can be generated efficiently and, in the case of polylysine-modified hdAd, can lead to improved transduction of adult muscle cells in vivo.
Collapse
Affiliation(s)
- Jonathan L Bramson
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, L8N 325 Canada
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Mohan RM, Golding S, Heaton DA, Danson EJ, Paterson DJ. Targeting neuronal nitric oxide synthase with gene transfer to modulate cardiac autonomic function. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 84:321-44. [PMID: 14769442 DOI: 10.1016/j.pbiomolbio.2003.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microdomains of neuronal nitric oxide synthase (nNOS) are spatially localised within both autonomic neurons innervating the heart and post-junctional myocytes. This review examines the use of gene transfer to investigate the role of nNOS in cardiac autonomic control. Furthermore, it explores techniques that may be used to improve upon gene delivery to the cardiac autonomic nervous system, potentially allowing more specific delivery of genes to the target neurons/myocytes. This may involve modification of the tropism of the adenoviral vector, or the use of alternative viral and non-viral gene delivery mechanisms to minimise potential immune responses in the host. Here we show that adenoviral vectors provide an efficient method of gene delivery to cardiac-neural tissue. Functionally, adenovirus-nNOS can increase cardiac vagal responsiveness by facilitating cholinergic neurotransmission and decrease beta-adrenergic excitability. Whether gene transfer remains the preferred strategy for targeting cardiac autonomic impairment will depend on site-specific promoters eliciting sustained gene expression that results in restoration of physiological function.
Collapse
Affiliation(s)
- R M Mohan
- University Laboratory of Physiology, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | | | | | | | | |
Collapse
|
142
|
Philipson L, Pettersson RF. The Coxsackie-Adenovirus Receptor—A New Receptor in the Immunoglobulin Family Involved in Cell Adhesion. Curr Top Microbiol Immunol 2004; 273:87-111. [PMID: 14674599 DOI: 10.1007/978-3-662-05599-1_3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The physiological and cell biological aspects of the Coxsackie-Adenovirus Receptor (CAR) is discussed in this review. The receptor obviously recognizes the group C adenoviruses in vivo, but also fibers from other groups except group B in vitro. The latter viruses seem to utilize a different receptor. The receptor accumulates at, or close to, the tight junction in polarized epithelial cells and probably functions as a cell-cell adhesion molecule. The cytoplasmic tail of the receptor is not required for virus attachment and uptake. Although there is a correlation between CAR and uptake of adenoviruses in several human tumor cells, evidence of an absolute requirement for integrins has not been forthcoming. The implication of these findings for adenovirus gene therapy is discussed.
Collapse
Affiliation(s)
- L Philipson
- Department of Cell and Molecular Biology, Karolinska Institute, Box 285, 17177 Stockholm, Sweden.
| | | |
Collapse
|
143
|
Shin YC, Folk WR. Formation of polyomavirus-like particles with different VP1 molecules that bind the urokinase plasminogen activator receptor. J Virol 2003; 77:11491-8. [PMID: 14557634 PMCID: PMC229370 DOI: 10.1128/jvi.77.21.11491-11498.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Icosahedral virus-like particles formed by the self-assembly of polyomavirus capsid proteins (Py-VLPs) can serve as useful nanostructures for delivering nucleic acids, proteins, and pharmaceuticals into animal cells and tissues. Four predominant surface-exposed loops in the VP1 structure offer potential sites to display sequences that might contribute new targeting specificities. Introduction into each of these loops of sequences derived from the amino-terminal fragment of urokinase plasminogen activator (uPA) or a related phage display peptide reduced the solubility of VP1 molecules when expressed in insect cells, and insertions into the EF loop reduced VP1 solubility least. Coexpression in insect cells of the uPA-VP1 molecules and VP1 containing a FLAG epitope in the HI loop permitted the formation of heterotypic Py-VLPs containing uPA-VP1 and FLAG-VP1. These heterotypic VLPs bound to uPAR on the surfaces of animal cells. Heterotypic Py-VLPs containing ligands for multiple cell surface receptors should be useful for targeting specific cells and tissues.
Collapse
Affiliation(s)
- Young C Shin
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | |
Collapse
|
144
|
Korokhov N, Mikheeva G, Krendelshchikov A, Belousova N, Simonenko V, Krendelshchikova V, Pereboev A, Kotov A, Kotova O, Triozzi PL, Aldrich WA, Douglas JT, Lo KM, Banerjee PT, Gillies SD, Curiel DT, Krasnykh V. Targeting of adenovirus via genetic modification of the viral capsid combined with a protein bridge. J Virol 2003; 77:12931-40. [PMID: 14645549 PMCID: PMC296051 DOI: 10.1128/jvi.77.24.12931-12940.2003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Accepted: 09/04/2003] [Indexed: 11/20/2022] Open
Abstract
A potential barrier to the development of genetically targeted adenovirus (Ad) vectors for cell-specific delivery of gene therapeutics lies in the fact that several types of targeting protein ligands require posttranslational modifications, such as the formation of disulfide bonds, which are not available to Ad capsid proteins due to their nuclear localization during assembly of the virion. To overcome this problem, we developed a new targeting strategy, which combines genetic modifications of the Ad capsid with a protein bridge approach, resulting in a vector-ligand targeting complex. The components of the complex associate by virtue of genetic modifications to both the Ad capsid and the targeting ligand. One component of this mechanism of association, the Fc-binding domain of Staphylococcus aureus protein A, is genetically incorporated into the Ad fiber protein. The ligand is comprised of a targeting component fused with the Fc domain of immunoglobulin, which serves as a docking moiety to bind to these genetically modified fibers during the formation of the Ad-ligand complex. The modular design of the ligand solves the problem of structural and biosynthetic compatibility with the Ad and thus facilitates targeting of the vector to a variety of cellular receptors. Our study shows that targeting ligands incorporating the Fc domain and either an anti-CD40 single-chain antibody or CD40L form stable complexes with protein A-modified Ad vectors, resulting in significant augmentation of gene delivery to CD40-positive target cells. Since this gene transfer is independent of the expression of the native Ad5 receptor by the target cells, this strategy results in the derivation of truly targeted Ad vectors suitable for tissue-specific gene therapy.
Collapse
|
145
|
Abstract
In spite of its broad host range, adenovirus type 5 (Ad5) transduces a number of clinically relevant tissues and cell types inefficiently, mostly because of low expression of the coxsackievirus-adenovirus receptor (CAR). To improve gene transfer to such cells, we modified the Ad5 fiber knob to recognize novel receptors. We expressed a functional Ad5 fiber knob domain on the capsid of phage lambda and employed this display system to construct a large collection of ligands in the HI loop of the Ad5 knob. Panning this library on the CAR-negative mouse fibroblast cell line NIH 3T3 resulted in the identification of three clones with increased binding to these cells. Adenoviruses incorporating these ligands in the fiber gene transduced NIH 3T3 cells 2 or 3 orders of magnitude better than the parent vector. The same nonnative tropism was revealed in other cell types, independently of CAR expression. These Ad5 derivatives proved capable of transducing mouse and human primary immature dendritic cells with up to 100-fold increased efficiency.
Collapse
Affiliation(s)
- Laura Fontana
- Department of Molecular & Cell Biology, I.R.B.M. P. Angeletti, Pomezia, Rome, Italy
| | | | | | | |
Collapse
|
146
|
Yamamoto M, Davydova J, Wang M, Siegal GP, Krasnykh V, Vickers SM, Curiel DT. Infectivity enhanced, cyclooxygenase-2 promoter-based conditionally replicative adenovirus for pancreatic cancer. Gastroenterology 2003; 125:1203-18. [PMID: 14517802 DOI: 10.1016/s0016-5085(03)01196-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Pancreatic cancer is one of the most aggressive human malignancies. Conditionally replicative adenoviruses (CRAds) have shown some promise in the treatment of cancers. However, to date, their application for pancreatic cancer has met several obstacles: one is lack of a good control element to regulate replication, and the other is relatively low adenoviral infectivity. Thus, we constructed infectivity enhanced cyclooxygenase (COX)-2 promoter-based CRAds to develop a safe and effective therapeutic modality. METHODS The CRAds were designed to achieve COX-2 promoter-controlled E1 expression for regulated replication (COX-2 CRAds). The infectivity-enhanced CRAds also have an RGD-4C motif in the adenoviral fiber-knob region. The selectivity and efficacy of these constructs were analyzed with cell lines in vitro. The in vivo therapeutic effect and viral replication were analyzed with a xenograft model. Pathology of the major organs and E1 RNA levels in the liver were also studied after systemic administration. RESULTS The COX-2 CRAds showed a selective cytocidal effect in vitro in COX-2-positive cells and killed most of the pancreatic cancer cells. In vivo, intratumoral administration of the infectivity-enhanced COX-2 CRAds (10(9) particles) showed a strong antitumor effect comparable to wild-type virus, whereas the COX-2 CRAds without infectivity enhancement showed a limited effect. Viral replication was confirmed in the xenograft tumors. Systemic administration did not cause any detectable toxicity; the E1 RNA level in the liver after COX-2 CRAd administration was minimal. CONCLUSIONS Infectivity-enhanced COX-2 CRAd is a promising agent for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Masato Yamamoto
- Division of Human Gene Therapy, University of Alabama at Birmingham, BMR2-408, 901 19th Street South, Birmingham, Alabama 35294-2172, USA.
| | | | | | | | | | | | | |
Collapse
|
147
|
Abstract
A key factor in the success of gene therapy is the development of gene delivery systems that are capable of efficient gene transfer in a broad variety of tissues, without causing any pathogenic effect. Currently, viral vectors based on many different viruses have been developed, and their performance and pathogenicity has been evaluated in animal models. The results of these studies form the basis for the first clinical trials for correcting genetic disorders using retroviral, adenoviral, and adeno-associated viral vectors. Even though the results of these trials are encouraging, vector development is still required to improve and refine future treatment of hereditary disorders.
Collapse
Affiliation(s)
- Neeltje A Kootstra
- Laboratory of Genetics, The Salk Institute, La Jolla, California 92037-1099, USA.
| | | |
Collapse
|
148
|
Jongmans W, van den Oudenalder K, Tiemessen DM, Molkenboer J, Willemsen R, Mulders PFA, Oosterwijk E. Targeting of adenovirus to human renal cell carcinoma cells. Urology 2003; 62:559-65. [PMID: 12946777 DOI: 10.1016/s0090-4295(03)00378-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The use of recombinant adenoviruses in cancer gene therapy is limited by the widespread expression of the coxsackievirus and adenovirus receptor on normal human cells. Targeting adenoviral vectors to renal cell carcinoma (RCC) cells may improve their potential in cancer gene therapy of patients with metastatic RCC. The G250 protein, also known as the carbonic anhydrase IX protein, is membranously expressed in all cases of clear cell RCC, and clinical studies have demonstrated exceptional tumor targeting with a G250 monoclonal antibody. METHODS A recombinant bispecific single-chain antibody directed against the RCC-associated G250 protein and the adenovirus fiber knob domain was constructed and used to retarget recombinant adenovirus expressing the green fluorescent protein under control of the cytomegalovirus promoter. G250-specific adenoviral transduction of cells was examined by flow cytometric analysis of green fluorescent protein expression. RESULTS G250-positive RCC cells displayed enhanced susceptibility for transduction by the green fluorescent protein recombinant adenovirus complexed with the G250-directed bispecific single-chain antibody when compared with native adenovirus. This enhanced transduction was restricted to G250-positive RCC cells and could be abolished completely in the presence of excess G250 protein. CONCLUSIONS The results of this study demonstrate the feasibility of immunologic retargeting of adenovirus to RCC cells with the highly tumor-specific G250 protein as the target. This strategy may provide the possibility of improving cancer gene therapy for patients with RCC.
Collapse
Affiliation(s)
- Wim Jongmans
- Department of Experimental Urology, Nijmegen Center for Molecular Life Sciences, University Medical Center Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
149
|
Ambriović-Ristov A, Mercier S, Eloit M. Shortening adenovirus type 5 fiber shaft decreases the efficiency of postbinding steps in CAR-expressing and nonexpressing cells. Virology 2003; 312:425-33. [PMID: 12919747 DOI: 10.1016/s0042-6822(03)00238-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The coxsackie B virus and adenovirus receptor (CAR) functions as an attachment receptor for multiple adenovirus serotypes. It has been shown that apart from virus-cellular receptor interactions, the fiber shaft length also influences viral tropism. We therefore generated Ad5FbDelta639 virus with 8beta-repeats in the shaft, instead of the 22beta-repeats present in the wild-type. Here, we show that the extent of attachment of the virus with shortened fiber to CAR-expressing cells was three- to fivefold lower than that of the wild-type. Transduction studies, however, clearly showed that infection of CAR-expressing cells with Ad5FbDelta639 was strongly impaired by comparison with the wild-type virus. Since this impairment was not linked to a proportional reduction in binding to cells, it appeared to be linked to subsequent/later events in infection. A similar decrease in efficacy of postbinding steps was also evidenced in cells that did not express CAR.
Collapse
Affiliation(s)
- Andreja Ambriović-Ristov
- Laboratory for Genotoxic Agents, Department for Molecular Genetics, Ruğer Bosković Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | | | | |
Collapse
|
150
|
Nyanguile O, Dancik C, Blakemore J, Mulgrew K, Kaleko M, Stevenson SC. Synthesis of adenoviral targeting molecules by intein-mediated protein ligation. Gene Ther 2003; 10:1362-9. [PMID: 12883533 DOI: 10.1038/sj.gt.3301989] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adenoviral vectors infect cells through the binding of capsid proteins to cell-surface receptors. The ubiquitous expression of adenoviral receptors in human tissues represents an obstacle toward the development of systemically deliverable vectors for cancer therapy, since effective therapy may require delivery to specific sites. For these reasons, major efforts are directed toward the elimination of the native tropism combined with identification of ligands that bind to tumor-specific cell-surface proteins. Highthroughput technologies have identified potential targeting ligands, which need to be evaluated for their ability to retarget adenovirus to alternative receptors. Here, we present a strategy that permits the routine analysis of adenoviral targeting ligands. We use intein-mediated protein ligation as a means to produce functional biological molecules, that is, adenoviral targeting molecules that function as adapters between cellular receptors and the adenovirus fiber protein. We demonstrate the versatility of the present system by conjugating targeting ligands that differ in size and nature including an apolipoprotein E synthetic peptide, the basic fibroblast growth factor and folic acid. The resulting adenoviral targeting molecules mediate adenoviral gene delivery in cells that express the corresponding receptor.
Collapse
Affiliation(s)
- O Nyanguile
- Genetic Therapy, Inc., A Novartis Company, Gaithersburg, MD 20878, USA
| | | | | | | | | | | |
Collapse
|