101
|
Johnstone O, Deuring R, Bock R, Linder P, Fuller MT, Lasko P. Belle is a Drosophila DEAD-box protein required for viability and in the germ line. Dev Biol 2005; 277:92-101. [PMID: 15572142 DOI: 10.1016/j.ydbio.2004.09.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Revised: 09/03/2004] [Accepted: 09/07/2004] [Indexed: 10/26/2022]
Abstract
DEAD-box proteins are ATP-dependent RNA helicases that function in various stages of RNA processing and in RNP remodeling. Here, we report identification and characterization of the Drosophila protein Belle (Bel), which belongs to a highly conserved subfamily of DEAD-box proteins including yeast Ded1p, Xenopus An3, mouse PL10, human DDX3/DBX, and human DBY. Mutations in DBY are a frequent cause of male infertility in humans. Bel can substitute in vivo for Ded1p, an essential yeast translation factor, suggesting a requirement for Bel in translation initiation. Consistent with an essential cellular function, strong loss of function mutations in bel are recessive lethal with a larval growth defect phenotype. Hypomorphic bel mutants are male-sterile. Bel is also closely related to the Drosophila DEAD-box protein Vasa (Vas), a germ line-specific translational regulator. We find that Bel and Vas colocalize in nuage and at the oocyte posterior during oogenesis, and that bel function is required for female fertility. However, unlike Vas, Bel is not specifically enriched in embryonic pole cells. We conclude that the DEAD-box protein Bel has evolutionarily conserved roles in fertility and development.
Collapse
Affiliation(s)
- Oona Johnstone
- Department of Biology, McGill University, Montréal, Québec, Canada H3A 1B1
| | | | | | | | | | | |
Collapse
|
102
|
Matsuura Y, Stewart M. Structural basis for the assembly of a nuclear export complex. Nature 2005; 432:872-7. [PMID: 15602554 DOI: 10.1038/nature03144] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 11/01/2004] [Indexed: 11/08/2022]
Abstract
The nuclear import and export of macromolecular cargoes through nuclear pore complexes is mediated primarily by carriers such as importin-beta. Importins carry cargoes into the nucleus, whereas exportins carry cargoes to the cytoplasm. Transport is orchestrated by nuclear RanGTP, which dissociates cargoes from importins, but conversely is required for cargo binding to exportins. Here we present the 2.0 A crystal structure of the nuclear export complex formed by exportin Cse1p complexed with its cargo (Kap60p) and RanGTP, thereby providing a structural framework for understanding nuclear protein export and the different functions of RanGTP in export and import. In the complex, Cse1p coils around both RanGTP and Kap60p, stabilizing the RanGTP-state and clamping the Kap60p importin-beta-binding domain, ensuring that only cargo-free Kap60p is exported. Mutagenesis indicated that conformational changes in exportins couple cargo binding to high affinity for RanGTP, generating a spring-loaded molecule to facilitate disassembly of the export complex following GTP hydrolysis in the cytoplasm.
Collapse
|
103
|
Daelemans D, Costes SV, Lockett S, Pavlakis GN. Kinetic and molecular analysis of nuclear export factor CRM1 association with its cargo in vivo. Mol Cell Biol 2005; 25:728-39. [PMID: 15632073 PMCID: PMC543413 DOI: 10.1128/mcb.25.2.728-739.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 10/21/2004] [Indexed: 11/20/2022] Open
Abstract
The nucleocytoplasmic transport receptor CRM1 mediates the export of macromolecules from the nucleus to the cytoplasm by forming a ternary complex with a cargo molecule and RanGTP. The in vivo mechanism of CRM1 export complex formation and its mobility throughout the nucleus have not been fully elucidated. More information is required to fully understand complex formation and the dynamics of CRM1-cargo-RanGTP complexes in space and time. We demonstrate true molecular interaction of CRM1 with its Rev cargo in living cells by using fluorescence resonance energy transfer (FRET). Interestingly, we found that the inhibitory effect of leptomycin B on this CRM1-cargo interaction is Ran dependent. Using fluorescence recovery after photobleaching (FRAP), we show that CRM1 moves at rates similar to that of free green fluorescent protein in the nucleoplasm. A slower mobility was detected on the nuclear membrane, consistent with known CRM1 interactions with nuclear pores. Based on these data, we propose an in vivo model in which CRM1 roams through the nucleus in search of high-affinity binding sites. CRM1 is able to bind Rev cargo in the nucleolus, and upon RanGTP binding a functional export complex is produced that is exported to the cytoplasm.
Collapse
Affiliation(s)
- Dirk Daelemans
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
104
|
Younis I, Green PL. The human T-cell leukemia virus Rex protein. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2005; 10:431-45. [PMID: 15574380 PMCID: PMC2659543 DOI: 10.2741/1539] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A critical step in the life cycle of complex retroviruses, including HTLV-1 and HTLV-2 is the ability of these viruses to adopt a mechanism by which the genome-length unspliced mRNA as well as the partially spliced mRNAs are exported from the nucleus instead of being subjected to splicing or degradation. In HTLV, this is accomplished through the expression of the viral Rex, which recognizes a specific response element on the incompletely spliced mRNAs, stabilizes them, inhibits their splicing, and utilizes the CRM1-dependent cellular pathway for transporting them from the nucleus to the cytoplasm. Rex itself is regulated by phosphorylation, which implies that proper activation of the protein in response to certain cellular cues is an important tool for the virus to ensure that specific viral gene expression is allowed only when the host cell can provide the best conditions for virion production. Having such a critical role in HTLV life cycle, Rex is indispensable for efficient viral replication, infection and spread. Indeed, Rex is considered to regulate the switch between the latent and productive phases of the HTLV life cycle. Without a functional Rex, the virus would still produce regulatory and some accessory gene products; however, structural and enzymatic post-transcriptional gene expression would be severely repressed, essentially leading to non-productive viral replication. More detailed understanding of the exact molecular mechanism of action of Rex will thus allow for better design of therapeutic drugs against Rex function and ultimately HTLV replication. Herein we summarize the progress made towards understanding Rex function and its role in the HTLV life cycle.
Collapse
Affiliation(s)
- Ihab Younis
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210
| | - Patrick L. Green
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
105
|
Petosa C, Schoehn G, Askjaer P, Bauer U, Moulin M, Steuerwald U, Soler-López M, Baudin F, Mattaj IW, Müller CW. Architecture of CRM1/Exportin1 suggests how cooperativity is achieved during formation of a nuclear export complex. Mol Cell 2004; 16:761-75. [PMID: 15574331 DOI: 10.1016/j.molcel.2004.11.018] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 10/04/2004] [Accepted: 10/19/2004] [Indexed: 11/22/2022]
Abstract
CRM1/Exportin1 mediates the nuclear export of proteins bearing a leucine-rich nuclear export signal (NES) by forming a cooperative ternary complex with the NES-bearing substrate and the small GTPase Ran. We present a structural model of human CRM1 based on a combination of X-ray crystallography, homology modeling, and electron microscopy. The architecture of CRM1 resembles that of the import receptor transportin1, with 19 HEAT repeats and a large loop implicated in Ran binding. Residues critical for NES recognition are identified adjacent to the cysteine residue targeted by leptomycin B (LMB), a specific CRM1 inhibitor. We present evidence that a conformational change of the Ran binding loop accounts for the cooperativity of Ran- and substrate binding and for the selective enhancement of CRM1-mediated export by the cofactor RanBP3. Our findings indicate that a single architectural and mechanistic framework can explain the divergent effects of RanGTP on substrate binding by many import and export receptors.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Amino Acid Sequence
- Binding Sites
- Cell Nucleus/metabolism
- Crystallography, X-Ray
- Dose-Response Relationship, Drug
- Fatty Acids, Unsaturated/pharmacology
- GTP Phosphohydrolases/metabolism
- Guanosine Triphosphate/chemistry
- Humans
- Image Processing, Computer-Assisted
- Karyopherins/chemistry
- Karyopherins/metabolism
- Leucine/chemistry
- Microscopy, Electron
- Models, Biological
- Models, Molecular
- Molecular Sequence Data
- Protein Binding
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/metabolism
- Sequence Homology, Amino Acid
- beta Karyopherins/chemistry
- ran GTP-Binding Protein/metabolism
- Exportin 1 Protein
Collapse
Affiliation(s)
- Carlo Petosa
- European Molecular Biology Laboratory, Grenoble Outstation, B.P. 181, 38042 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Yedavalli VSRK, Neuveut C, Chi YH, Kleiman L, Jeang KT. Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. Cell 2004; 119:381-92. [PMID: 15507209 DOI: 10.1016/j.cell.2004.09.029] [Citation(s) in RCA: 436] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 08/18/2004] [Accepted: 08/23/2004] [Indexed: 01/19/2023]
Abstract
A single transcript in its unspliced and spliced forms directs the synthesis of all HIV-1 proteins. Although nuclear export of intron-containing cellular transcripts is restricted in mammalian cells, HIV-1 has evolved the viral Rev protein to overcome this restriction for viral transcripts. Previously, CRM1 was identified as a cellular cofactor for Rev-dependent export of intron-containing HIV-1 RNA. Here, we present evidence that Rev/CRM1 activity utilizes the ATP-dependent DEAD box RNA helicase, DDX3. We show that DDX3 is a nucleo-cytoplasmic shuttling protein, which binds CRM1 and localizes to nuclear membrane pores. Knockdown of DDX3 using either antisense vector or dominant-negative mutants suppressed Rev-RRE-function in the export of incompletely spliced HIV-1 RNAs. Plausibly, DDX3 is the human RNA helicase which functions in the CRM1 RNA export pathway analogously to the postulated role for Dbp5p in yeast mRNA export.
Collapse
Affiliation(s)
- Venkat S R K Yedavalli
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institutes of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
107
|
Sekiguchi T, Iida H, Fukumura J, Nishimoto T. Human DDX3Y, the Y-encoded isoform of RNA helicase DDX3, rescues a hamster temperature-sensitive ET24 mutant cell line with a DDX3X mutation. Exp Cell Res 2004; 300:213-22. [PMID: 15383328 DOI: 10.1016/j.yexcr.2004.07.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 07/02/2004] [Indexed: 11/15/2022]
Abstract
We investigated the function of DDX3Y, the Y chromosome AZFa region encoding a putative DEAD-box RNA helicase protein, the loss of which results in oligozoospermia or azoospermia in humans. The human DDX3Y amino acid sequence is similar to that of the X chromosome gene DDX3X (91.7% homology). Here we report that human Y- and X-encoded DEAD box RNA helicase proteins DDX3Y and DDX3X are interchangeable and have an essential function: both proteins rescued a temperature-sensitive mutant hamster cell line (tsET24) that was otherwise incapable of growth at a nonpermissive temperature. Mouse homologues Ddx3y and D1Pas1-PL10 also rescued the mutant cell line at a nonpermissive temperature. In situ hybridization revealed that Ddx3x mRNA was expressed in almost every cell in mouse testis, suggesting that Ddx3x is involved in spermatogenesis. A comparative study of DDX3X and DDX3Y was performed to determine the significance of DDX3Y for cell growth and spermatogenesis. Both DDX3X and DDX3Y promoter DNAs produced a similar degree of transcription in vivo, whereas deletion studies of the promoter DNAs indicated that these genes are differentially regulated. DDX3Y, similar to DDX3X, shuttles between the nucleus and cytoplasm in a crm1-dependent manner.
Collapse
Affiliation(s)
- Takeshi Sekiguchi
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | |
Collapse
|
108
|
Engelsma D, Bernad R, Calafat J, Fornerod M. Supraphysiological nuclear export signals bind CRM1 independently of RanGTP and arrest at Nup358. EMBO J 2004; 23:3643-52. [PMID: 15329671 PMCID: PMC517610 DOI: 10.1038/sj.emboj.7600370] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 07/23/2004] [Indexed: 11/09/2022] Open
Abstract
Leucine-rich nuclear export signals (NESs) mediate rapid nuclear export of proteins via interaction with CRM1. This interaction is stimulated by RanGTP but remains of a relatively low affinity. In order to identify strong signals, we screened a 15-mer random peptide library for CRM1 binding, both in the presence and absence of RanGTP. Under each condition, strikingly similar signals were enriched, conforming to the NES consensus sequence. A derivative of an NES selected in the absence of RanGTP exhibits very high affinity for CRM1 in vitro and stably binds without the requirement of RanGTP. Localisation studies and RNA interference demonstrate inefficient CRM1-mediated export and accumulation of CRM1 complexed with the high-affinity NES at nucleoporin Nup358. These results provide in vivo evidence for a nuclear export reaction intermediate. They suggest that NESs have evolved to maintain low affinity for CRM1 to allow efficient export complex disassembly and release from Nup358.
Collapse
Affiliation(s)
- Dieuwke Engelsma
- Department of Tumor Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rafael Bernad
- Department of Tumor Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jero Calafat
- Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maarten Fornerod
- Department of Tumor Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
109
|
Saito S, Miyaji-Yamaguchi M, Nagata K. Aberrant intracellular localization of SET-CAN fusion protein, associated with a leukemia, disorganizes nuclear export. Int J Cancer 2004; 111:501-7. [PMID: 15239126 DOI: 10.1002/ijc.20296] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The SET-CAN fusion gene is the product of a chromosomal rearrangement found on 9q34 associated with an acute undifferentiated leukemia. SET-CAN encodes an almost complete SET protein fused to the C-terminal two-thirds of CAN. SET is also known as TAF-Ibeta, a histone chaperone and intracellular inhibitor of protein phosphatase 2A, whereas CAN is identical to Nup214, a nucleoporin protein. To obtain insight into the leukemogenic function of SET/TAF-Ibeta-CAN/Nup214, we have examined its subcellular localization. Immunofluorescence analyses showed that SET/TAF-Ibeta and CAN/Nup214 are found in the nucleus and the nuclear envelope, respectively, whereas the majority of SET/TAF-Ibeta-CAN/Nup214 is localized in the nucleus. SET/TAF-Ibeta-CAN/Nup214 interacted with hCRM1, one of the nuclear export factors, and caused aberrant intracellular localization of hCRM1. In cells expressing SET/TAF-Ibeta-CAN/Nup214, a protein containing a nuclear export signal accumulated in the nucleus. The export of this protein was partially restored by overexpression of hCRM1. These results suggest that aberrantly localized molecules associated with SET/TAF-Ibeta-CAN/Nup214 may be involved in oncogenesis.
Collapse
Affiliation(s)
- Shoko Saito
- Department of Infection Biology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | | | | |
Collapse
|
110
|
Zhao J, Jin SB, Wieslander L. CRM1 and Ran are present but a NES-CRM1-RanGTP complex is not required in Balbiani ring mRNP particles from the gene to the cytoplasm. J Cell Sci 2004; 117:1553-66. [PMID: 15020682 DOI: 10.1242/jcs.00992] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Messenger RNA is formed from precursors known as pre-mRNA. These precursors associate with proteins to form pre-mRNA-protein (pre-mRNP) complexes. Processing machines cap, splice and polyadenylate the pre-mRNP and in this way build the mRNP. These processing machines also affect the export of the mRNP complexes from the nucleus to the cytoplasm. Export to the cytoplasm takes place through a structure in the nuclear membrane called the nuclear pore complex (NPC). Export involves adapter proteins in the mRNP and receptor proteins that bind to the adapter proteins and to components of the NPC. We show that the export receptor chromosomal region maintenance protein 1 (CRM1), belonging to a family of proteins known as importin-beta-like proteins, binds to gene-specific Balbiani ring (BR) pre-mRNP while transcription takes place. We also show that the GTPase known as Ran binds to BR pre-mRNP, and that it binds mainly in the interchromatin. However, we also show using leptomycin B treatment that a NES-CRM1-RanGTP complex is not essential for export, even though both CRM1 and Ran accompany the BR mRNP through the NPC. Our results therefore suggest that several export receptors associate with BR mRNP and that these receptors have redundant functions in the nuclear export of BR mRNP.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | |
Collapse
|
111
|
Bernad R, van der Velde H, Fornerod M, Pickersgill H. Nup358/RanBP2 attaches to the nuclear pore complex via association with Nup88 and Nup214/CAN and plays a supporting role in CRM1-mediated nuclear protein export. Mol Cell Biol 2004; 24:2373-84. [PMID: 14993277 PMCID: PMC355853 DOI: 10.1128/mcb.24.6.2373-2384.2004] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Revised: 12/08/2003] [Accepted: 12/16/2003] [Indexed: 11/20/2022] Open
Abstract
Nuclear pore complexes (NPCs) traverse the nuclear envelope (NE), providing a channel through which nucleocytoplasmic transport occurs. Nup358/RanBP2, Nup214/CAN, and Nup88 are components of the cytoplasmic face of the NPC. Here we show that Nup88 localizes midway between Nup358 and Nup214 and physically interacts with them. RNA interference of either Nup88 or Nup214 in human cells caused a strong reduction of Nup358 at the NE. Nup88 and Nup214 showed an interdependence at the NPC and were not affected by the absence of Nup358. These data indicate that Nup88 and Nup214 mediate the attachment of Nup358 to the NPC. We show that localization of the export receptor CRM1 at the cytoplasmic face of the NE is Nup358 dependent and represents its empty state. Also, removal of Nup358 causes a distinct reduction in nuclear export signal-dependent nuclear export. We propose that Nup358 provides both a platform for rapid disassembly of CRM1 export complexes and a binding site for empty CRM1 recycling into the nucleus.
Collapse
Affiliation(s)
- Rafael Bernad
- The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
112
|
Whitehurst AW, Robinson FL, Moore MS, Cobb MH. The Death Effector Domain Protein PEA-15 Prevents Nuclear Entry of ERK2 by Inhibiting Required Interactions. J Biol Chem 2004; 279:12840-7. [PMID: 14707138 DOI: 10.1074/jbc.m310031200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ERK2 nuclear-cytoplasmic distribution is regulated in response to hormones and cellular state without the requirement for karyopherin-mediated nuclear import. One proposed mechanism for the movement of ERK2 into the nucleus is through a direct interaction between ERK2 and nucleoporins present in the nuclear pore complex. Previous reports have attributed regulation of ERK2 localization to proteins that activate or deactivate ERK2, such as the mitogen-activated protein (MAP) kinase kinase MEK1 and MAP kinase phosphatases. Recently, a small non-catalytic protein, PEA-15, has also been demonstrated to promote a cytoplasmic ERK2 localization. We found that the MAP kinase insert in ERK2 is required for its interaction with PEA-15. Consistent with its recognition of the MAP kinase insert, PEA-15 blocked activation of ERK2 by MEK1, which also requires the MAP kinase insert to interact productively with ERK2. To determine how PEA-15 influences the localization of ERK2, we used a permeabilized cell system to examine the effect of PEA-15 on the localization of ERK2 and mutants that have lost the ability to bind PEA-15. Wild type ERK2 was unable to enter the nucleus in the presence of an excess of PEA-15; however, ERK2 lacking the MAP kinase insert largely retained the ability to enter the nucleus. Binding assays demonstrated that PEA-15 interfered with the ability of ERK2 to bind to nucleoporins. These results suggest that PEA-15 sequesters ERK2 in the cytoplasm at least in part by interfering with its ability to interact with nucleoporins, presenting a potential paradigm for regulation of ERK2 localization.
Collapse
Affiliation(s)
- Angelique W Whitehurst
- Department of Pharmacology, the University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9041, USA
| | | | | | | |
Collapse
|
113
|
Wiechens N, Heinle K, Englmeier L, Schohl A, Fagotto F. Nucleo-cytoplasmic shuttling of Axin, a negative regulator of the Wnt-beta-catenin Pathway. J Biol Chem 2004; 279:5263-7. [PMID: 14630927 DOI: 10.1074/jbc.m307253200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Axin is a negative regulator of the Wnt pathway essential for down-regulation of beta-catenin. Axin has been considered so far as a cytoplasmic protein. Here we show that, although cytoplasmic at steady state, Axin shuttles in fact in and out of the nucleus; Axin accumulates in the nucleus of cells treated with leptomycin B, a specific inhibitor of the CRM1-mediated nuclear export pathway and is efficiently exported from Xenopus oocyte nuclei in a RanGTP- and CRM1-dependent manner. We have characterized the sequence requirement for export and identified two export domains, which do not contain classical nuclear export consensus sequences, and we show that Axin binds directly to the export factor CRM1 in the presence of RanGTP.
Collapse
Affiliation(s)
- Nicola Wiechens
- Max-Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
114
|
Almholt DLC, Loechel F, Nielsen SJ, Krog-Jensen C, Terry R, Bjørn SP, Pedersen HC, Praestegaard M, Møller S, Heide M, Pagliaro L, Mason AJ, Butcher S, Dahl SW. Nuclear Export Inhibitors and Kinase Inhibitors Identified Using a MAPK-Activated Protein Kinase 2 Redistribution®Screen. Assay Drug Dev Technol 2004; 2:7-20. [PMID: 15090206 DOI: 10.1089/154065804322966270] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Redistribution (BioImage) A/S, Søborg, Denmark) is a novel high-throughput screening technology that monitors translocation of specific protein components of intracellular signaling pathways within intact mammalian cells, using green fluorescent protein as a tag. A single Redistribution assay can be used to identify multiple classes of compounds that act at, or upstream of, the level of the protein target used in the primary screening assay. Such compounds may include both conventional and allosteric enzyme inhibitors, as well as protein-protein interaction modulators. We have developed a series of Redistribution assays to discover and characterize compounds that inhibit tumor necrosis factor-alpha biosynthesis via modulation of the p38 mitogen-activated protein kinase (MAPK) pathway. A primary assay was designed to identify low-molecular-weight compounds that inhibit the activation-dependent nuclear export of the p38 kinase substrate MAPK-activated protein kinase 2 (MK2). Hits from the primary screen were categorized, using secondary assays, either as direct inhibitors of MK2 nuclear export, or as inhibitors of the upstream p38 MAPK pathway. Activity profiles are presented for a nuclear export inhibitor, and a compound that structurally and functionally resembles a known p38 kinase inhibitor. These results demonstrate the utility of Redistribution technology as a pathway screening method for the identification of diverse and novel compounds that are active within therapeutically important signaling pathways.
Collapse
|
115
|
Alavian CN, Politz JCR, Lewandowski LB, Powers CM, Pederson T. Nuclear export of signal recognition particle RNA in mammalian cells. Biochem Biophys Res Commun 2004; 313:351-5. [PMID: 14684167 DOI: 10.1016/j.bbrc.2003.11.126] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In mammalian cells the signal recognition particle (SRP) consists of a approximately 300 nucleotide RNA and six proteins. Although the molecular structure and functional cycle of the SRP are both very well understood, far less is known about how the SRP is first assembled in the cell. Recent work has suggested that SRP assembly begins in the nucleoli. When NRK (rat fibroblast) cells were treated with leptomycin B (LMB), a specific inhibitor of the CRM1 nuclear export receptor, the level of SRP RNA increased in the nucleoli, as did the level of nucleolar 28S ribosomal RNA. Moreover, when a hamster cell line carrying a temperature-sensitive mutation in the guanine nucleotide exchange factor of the GTPase Ran (Ran-GEF) was shifted to the non-permissive temperature, the nucleolar level of SRP RNA increased. These results indicate that the steady-state concentration of SRP RNA in the nucleolus is sensitive to perturbations in nuclear import/export pathways.
Collapse
Affiliation(s)
- Christina N Alavian
- Department of Biochemistry and Molecular Pharmacology and Program in Cell Dynamics, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
116
|
Hakata Y, Yamada M, Shida H. A multifunctional domain in human CRM1 (exportin 1) mediates RanBP3 binding and multimerization of human T-cell leukemia virus type 1 Rex protein. Mol Cell Biol 2003; 23:8751-61. [PMID: 14612415 PMCID: PMC262658 DOI: 10.1128/mcb.23.23.8751-8761.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2003] [Revised: 05/19/2003] [Accepted: 08/29/2003] [Indexed: 11/20/2022] Open
Abstract
Human CRM1 (hCRM1) functions in the Rex-mediated mRNA export of human T-cell leukemia virus type 1 (HTLV-1) as an export receptor and as an inducing factor for Rex multimerization on its cognate RNA. Although there are only 24 amino acid differences between hCRM1 and rat CRM1 (rCRM1), rCRM1 can hardly support Rex activity, suggesting a role for rCRM1 as a determinant restricting the host range of HTLV-1. Here, we used a series of mutants, which were generated by interchanging residues of these CRM1s, to examine the relationship of hCRM1 functions. The functions for Rex multimerization and binding to nuclear export signals are mapped to different amino acid residues, and these are separable, suggesting that CRM1 not only functions as an export receptor but also participates in the formation of the RNA export complex through higher-ordered interaction with Rex. The region for the interaction with RanBP3, comprising four residues (amino acids [aa] 411, 414, 474, and 481), and the region for Rex multimerization, including two residues (aa 411 and 414), form an overlapped domain. Our results provide the molecular basis underlying the species-specific ability of HTLV-1 to propagate in human cells.
Collapse
Affiliation(s)
- Yoshiyuki Hakata
- Institute for Genetic Medicine, Hokkaido University, Kita-ku, Sapporo 060-0815, Japan
| | | | | |
Collapse
|
117
|
Kiss A, Li L, Gettemeier T, Venkatesh LK. Functional analysis of the interaction of the human immunodeficiency virus type 1 Rev nuclear export signal with its cofactors. Virology 2003; 314:591-600. [PMID: 14554087 DOI: 10.1016/s0042-6822(03)00531-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) Rev-mediated nuclear export of viral RNAs involves the interaction of its leucine-rich nuclear export sequence (NES) with nuclear cofactors. In yeast two-hybrid screens of a human lymph node derived cDNA expression library, we identified the human nucleoporin Nup98 as a highly specific and potent interactor of the Rev NES. Using an extensive panel of nuclear export positive and negative mutants of the functionally homologous NESs of the HIV-1 Rev, human T cell leukemia virus type 1 (HTLV-1) Rex, and equine infectious anemia virus (EIAV) Rev proteins, physiologically significant interaction of hNup98 with the various NESs was demonstrated. Missense mutations in the yeast nuclear export factor Crm1p that abrogated Rev NES interaction with the XXFG repeat-containing nucleoporin, Rab/hRIP, had minimal effects on the interaction of GLFG repeat-containing hNup98. Functional analysis of Nup98 domains required for nuclear localization demonstrated that the entire ORF was required for efficient incorporation into the nuclear envelope. A putative nuclear localization signal was identified downstream of the GLFG repeat region. Whereas overexpression of both full-length Nup98 and the amino-terminal GLFG repeat region, but not the unique carboxy-terminal region, induced significant suppression of HIV unspliced RNA export, lower levels of exogenous Nup98 expression resulted in a relatively modest increase in unspliced RNA export. These results suggest a physiological role for hNup98 in modulating Rev-dependent RNA export during HIV infection.
Collapse
Affiliation(s)
- A Kiss
- Institute for Molecular Virology, Saint Louis University School of Medicine, 3681 Park Avenue, Saint Louis, MO 63108, USA
| | | | | | | |
Collapse
|
118
|
Cushman I, Stenoien D, Moore MS. The dynamic association of RCC1 with chromatin is modulated by Ran-dependent nuclear transport. Mol Biol Cell 2003; 15:245-55. [PMID: 14565978 PMCID: PMC307544 DOI: 10.1091/mbc.e03-06-0409] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Regulator of chromosome condensation (RCC1) binding to chromatin is highly dynamic, as determined by fluorescence recovery after photobleaching analysis of GFP-RCC1 in stably transfected tsBN2 cells. Microinjection of wild-type or Q69L Ran markedly slowed the mobility of GFP-RCC1, whereas T24N Ran (defective in nucleotide loading) decreased it further still. We found significant alterations in the mobility of intranuclear GFP-RCC1 after treatment with agents that disrupt different Ran-dependent nuclear export pathways. Leptomycin B, which inhibits Crm1/RanGTP-dependent nuclear export, significantly increased the mobility of RCC1 as did high levels of actinomycin D (to inhibit RNA polymerases I, II, and III) or alpha-amanitin (to inhibit RNA polymerases II and III) as well as energy depletion. Inhibition of just mRNA transcription, however, had no affect on GFP-RCC1 mobility consistent with mRNA export being a Ran-independent process. In permeabilized cells, cytosol and GTP were required for the efficient release of GFP-RCC1 from chromatin. Recombinant Ran would not substitute for cytosol, and high levels of supplemental Ran inhibited the cytosol-stimulated release. Thus, RCC1 release from chromatin in vitro requires a factor(s) distinct from, or in addition to, Ran and seems linked in vivo to the availability of Ran-dependent transport cargo.
Collapse
Affiliation(s)
- Ian Cushman
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
119
|
Bonaldi T, Talamo F, Scaffidi P, Ferrera D, Porto A, Bachi A, Rubartelli A, Agresti A, Bianchi ME. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J 2003; 22:5551-60. [PMID: 14532127 PMCID: PMC213771 DOI: 10.1093/emboj/cdg516] [Citation(s) in RCA: 1001] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2003] [Revised: 08/11/2003] [Accepted: 08/15/2003] [Indexed: 12/29/2022] Open
Abstract
High Mobility Group 1 protein (HMGB1) is a chromatin component that, when leaked out by necrotic cells, triggers inflammation. HMGB1 can also be secreted by activated monocytes and macrophages, and functions as a late mediator of inflammation. Secretion of a nuclear protein requires a tightly controlled relocation program. We show here that in all cells HMGB1 shuttles actively between the nucleus and cytoplasm. Monocytes and macrophages acetylate HMGB1 extensively upon activation with lipopolysaccharide; moreover, forced hyperacetylation of HMGB1 in resting macrophages causes its relocalization to the cytosol. Cytosolic HMGB1 is then concentrated by default into secretory lysosomes, and secreted when monocytic cells receive an appropriate second signal.
Collapse
Affiliation(s)
- Tiziana Bonaldi
- DIBIT, San Raffaele Scientific Institute, San Raffaele University, via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Venkatesh LK, Gettemeier T, Chinnadurai G. A nuclear kinesin-like protein interacts with and stimulates the activity of the leucine-rich nuclear export signal of the human immunodeficiency virus type 1 rev protein. J Virol 2003; 77:7236-43. [PMID: 12805422 PMCID: PMC164832 DOI: 10.1128/jvi.77.13.7236-7243.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Rev protein of human immunodeficiency virus type 1 (HIV-1) is essential for the nucleocytoplasmic transport of unspliced and partially spliced HIV mRNAs containing the Rev response element (RRE). In a yeast two-hybrid screen of a HeLa cell-derived cDNA expression library for human factors interacting with the Rev leucine-rich nuclear export sequence (NES), we identified a kinesin-like protein, REBP (Rev/Rex effector binding protein), highly homologous to Kid, the carboxy-terminal 75-residue region of which interacts specifically with the NESs of HIV-1 Rev, human T-cell leukemia virus type 1 Rex, and equine infectious anemia virus Rev but not with functionally inactive mutants thereof. REBP is a nuclear protein that colocalizes with Rev in the nucleoplasm and nuclear periphery of transfected cells. Specific, albeit weak, interaction between REBP and Rev could be demonstrated in coimmunoprecipitation assays in BSC-40 cells. REBP can modestly enhance Rev-dependent RRE-linked reporter gene expression both independently and in cooperation with the nucleoporin cofactor Rab/hRIP. Thus, REBP displays the characteristics expected of an authentic mediator of Rev NES function and may play a role in RRE RNA transport during HIV infection.
Collapse
Affiliation(s)
- L K Venkatesh
- Institute for Molecular Virology, Saint Louis University School of Medicine, Saint Louis, Missouri 63108, USA.
| | | | | |
Collapse
|
121
|
Köster M, Lykke-Andersen S, Elnakady YA, Gerth K, Washausen P, Höfle G, Sasse F, Kjems J, Hauser H. Ratjadones inhibit nuclear export by blocking CRM1/exportin 1. Exp Cell Res 2003; 286:321-31. [PMID: 12749860 DOI: 10.1016/s0014-4827(03)00100-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In addition to previously isolated ratjadone A we describe three new members of this family, ratjadones B, C, and D, from another strain of the myxobacterium Sorangium cellulosum. We have investigated the properties of these ratjadones with respect to their activity on mammalian cell lines. We found IC(50) values in the picomolar range and a significant increase in the size of nuclei. A further examination showed that they inhibit the export of the leucine-rich nuclear export signal (LR-NES) containing proteins in different cell lines. Ratjadones are able to inhibit the formation of the nuclear export complex composed of the CRM1, RanGTP, and the cargo protein, as shown by two different in vitro assays. Finally, the binding of ratjadone C to CRM1 was demonstrated. These ratjadone activities are in the same concentration range as described for the polyketide leptomycin B (LMB) from Streptomyces sp. Like LMB, it seems that the ratjadones covalently bind to CRM1, inhibit cargo protein binding via LR-NES, and thereby block nuclear export. Thus, the ratjadones represent a new class of natural compounds which inhibit proliferation in eukaryotes by blocking nuclear export.
Collapse
Affiliation(s)
- Mario Köster
- Department of Gene Regulation and Differentiation, GBF-German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Trotta CR, Lund E, Kahan L, Johnson AW, Dahlberg JE. Coordinated nuclear export of 60S ribosomal subunits and NMD3 in vertebrates. EMBO J 2003; 22:2841-51. [PMID: 12773398 PMCID: PMC156746 DOI: 10.1093/emboj/cdg249] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2002] [Revised: 03/26/2003] [Accepted: 03/26/2003] [Indexed: 11/14/2022] Open
Abstract
60S and 40S ribosomal subunits are assembled in the nucleolus and exported from the nucleus to the cytoplasm independently of each other. We show that in vertebrate cells, transport of both subunits requires the export receptor CRM1 and Ran.GTP. Export of 60S subunits is coupled with that of the nucleo- cytoplasmic shuttling protein NMD3. Human NMD3 (hNMD3) contains a CRM-1-dependent leucine-rich nuclear export signal (NES) and a complex, dispersed nuclear localization signal (NLS), the basic region of which is also required for nucleolar accumulation. When present in Xenopus oocytes, both wild-type and export-defective mutant hNMD3 proteins bind to newly made nuclear 60S pre-export particles at a late step of subunit maturation. The export-defective hNMD3, but not the wild-type protein, inhibits export of 60S subunits from oocyte nuclei. These results indicate that the NES mutant protein competes with endogenous wild-type frog NMD3 for binding to nascent 60S subunits, thereby preventing their export. We propose that NMD3 acts as an adaptor for CRM1-Ran.GTP-mediated 60S subunit export, by a mechanism that is conserved from vertebrates to yeast.
Collapse
Affiliation(s)
- Christopher R Trotta
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, 1300 University Avenue, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
123
|
Abstract
Nucleocytoplasmic transport is mediated by shuttling receptors that recognize specific signals on protein or RNA cargoes and translocate the cargoes through the nuclear pore complex. Transport receptors appear to move through the nuclear pore complex by facilitated diffusion, involving repeated cycles of binding to and dissociation from nucleoporins with phenylalanine-glycine motifs. We discuss recent experimental approaches and results that have begun to provide molecular insight into the mechanisms by which transport complexes traverse the nuclear pore complex, and point out the significant gaps in understanding that remain.
Collapse
Affiliation(s)
- Janna Bednenko
- Department of Cell, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
124
|
Becskei A, Mattaj IW. The strategy for coupling the RanGTP gradient to nuclear protein export. Proc Natl Acad Sci U S A 2003; 100:1717-22. [PMID: 12563037 PMCID: PMC149899 DOI: 10.1073/pnas.252766999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Ran GTPase plays critical roles in both providing energy for and determining the directionality of nucleocytoplasmic transport. The mechanism that couples the RanGTP gradient to nuclear protein export will determine the rate of and limits to accumulation of export cargoes in the cytoplasm, but is presently unknown. We reasoned that plausible coupling mechanisms could be distinguished by comparing the rates of reverse motion of export cargoes through the nuclear pore complex (NPC) with the predictions of a mathematical model. Measurement of reverse export rates in Xenopus oocytes revealed that nuclear export signals can facilitate RanGTP-dependent cargo movement into the nucleus against the RanGTP gradient at rates comparable to export rates. Although export cargoes with high affinity for their receptor are exported faster than those with low affinity, their reverse transport is also greater. The ratio of the rates of reverse and forward export of a cargo is proportional to its rate of diffusion through the NPC, i.e., to the ability of the cargo to penetrate the NPC permeability barrier. The data substantiate a diffusional mechanism of coupling and suggest the existence of a high concentration of RanGTP-receptor complexes within the NPC that decreases sharply at the cytoplasmic boundary of the NPC permeability barrier.
Collapse
Affiliation(s)
- Attila Becskei
- Gene Expression Programme, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | | |
Collapse
|
125
|
Kilstrup-Nielsen C, Alessio M, Zappavigna V. PBX1 nuclear export is regulated independently of PBX-MEINOX interaction by PKA phosphorylation of the PBC-B domain. EMBO J 2003; 22:89-99. [PMID: 12505987 PMCID: PMC140055 DOI: 10.1093/emboj/cdg010] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2002] [Revised: 10/31/2002] [Accepted: 11/05/2002] [Indexed: 12/14/2022] Open
Abstract
The regulation of PBC protein function through subcellular distribution is a crucial evolutionarily conserved mechanism for appendage patterning. We investigated the processes controlling PBX1 nuclear export. Here we show that in the absence of MEINOX proteins nuclear export is not a default pathway for PBX1 subcellular localization. In different cell backgrounds, PBX1 can be imported or exported from the nucleus independently of its capacity to interact with MEINOX proteins. The cell context-specific balance between nuclear export and import of PBX1 is controlled by the PBC-B domain, which contains several conserved serine residues corresponding to phosphorylation sites for Ser/Thr kinases. PBX1 subcellular localization correlates with the phosphorylation state of these residues whose dephosphorylation induces nuclear export. Protein kinase A (PKA) specifically phosphorylates PBX1 at these serines, and stimulation of endogenous PKA activity in vivo blocks PBX1 nuclear export in distal limb mesenchymal cells. Our results reveal a novel mechanism for the control of PBX1 nuclear export in addition to the absence of MEINOX protein, which involves the inhibition of PKA-mediated phosphorylation at specific sites within the PBC-B domain.
Collapse
Affiliation(s)
- Charlotte Kilstrup-Nielsen
- Transcriptional Regulation in Development, Proteomics Laboratory, DIBIT H San Raffaele, Via Olgettina 58, 20132 Milan and Department of Animal Biology, University of Modena and Reggio Emilia, Via Campi 213/d, Modena 41100, Italy Present address: Dipartimento di Biologia Strutturale e Funzionale, Università degli Studi dell’Insubria, 21052 Busto Arsizio (Va), Italy Corresponding author e-mail:
| | - Massimo Alessio
- Transcriptional Regulation in Development, Proteomics Laboratory, DIBIT H San Raffaele, Via Olgettina 58, 20132 Milan and Department of Animal Biology, University of Modena and Reggio Emilia, Via Campi 213/d, Modena 41100, Italy Present address: Dipartimento di Biologia Strutturale e Funzionale, Università degli Studi dell’Insubria, 21052 Busto Arsizio (Va), Italy Corresponding author e-mail:
| | - Vincenzo Zappavigna
- Transcriptional Regulation in Development, Proteomics Laboratory, DIBIT H San Raffaele, Via Olgettina 58, 20132 Milan and Department of Animal Biology, University of Modena and Reggio Emilia, Via Campi 213/d, Modena 41100, Italy Present address: Dipartimento di Biologia Strutturale e Funzionale, Università degli Studi dell’Insubria, 21052 Busto Arsizio (Va), Italy Corresponding author e-mail:
| |
Collapse
|
126
|
Connor MK, Kotchetkov R, Cariou S, Resch A, Lupetti R, Beniston RG, Melchior F, Hengst L, Slingerland JM. CRM1/Ran-mediated nuclear export of p27(Kip1) involves a nuclear export signal and links p27 export and proteolysis. Mol Biol Cell 2003; 14:201-13. [PMID: 12529437 PMCID: PMC140238 DOI: 10.1091/mbc.e02-06-0319] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2002] [Revised: 09/27/2002] [Accepted: 10/03/2002] [Indexed: 12/18/2022] Open
Abstract
We show that p27 localization is cell cycle regulated and we suggest that active CRM1/RanGTP-mediated nuclear export of p27 may be linked to cytoplasmic p27 proteolysis in early G1. p27 is nuclear in G0 and early G1 and appears transiently in the cytoplasm at the G1/S transition. Association of p27 with the exportin CRM1 was minimal in G0 and increased markedly during G1-to-S phase progression. Proteasome inhibition in mid-G1 did not impair nuclear import of p27, but led to accumulation of p27 in the cytoplasm, suggesting that export precedes degradation for at least part of the cellular p27 pool. p27-CRM1 binding and nuclear export were inhibited by S10A mutation but not by T187A mutation. A putative nuclear export sequence in p27 is identified whose mutation reduced p27-CRM1 interaction, nuclear export, and p27 degradation. Leptomycin B (LMB) did not inhibit p27-CRM1 binding, nor did it prevent p27 export in vitro or in heterokaryon assays. Prebinding of CRM1 to the HIV-1 Rev nuclear export sequence did not inhibit p27-CRM1 interaction, suggesting that p27 binds CRM1 at a non-LMB-sensitive motif. LMB increased total cellular p27 and may do so indirectly, through effects on other p27 regulatory proteins. These data suggest a model in which p27 undergoes active, CRM1-dependent nuclear export and cytoplasmic degradation in early G1. This would permit the incremental activation of cyclin E-Cdk2 leading to cyclin E-Cdk2-mediated T187 phosphorylation and p27 proteolysis in late G1 and S phase.
Collapse
Affiliation(s)
- Michael K Connor
- Molecular and Cell Biology, Sunnybrook & Women's College Health Science Centre, 2075 Bayview Ave, Toronto, Ontario, Canada, M4N 3M5
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Allen NPC, Patel SS, Huang L, Chalkley RJ, Burlingame A, Lutzmann M, Hurt EC, Rexach M. Deciphering networks of protein interactions at the nuclear pore complex. Mol Cell Proteomics 2002; 1:930-46. [PMID: 12543930 DOI: 10.1074/mcp.t200012-mcp200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclear pore complex (NPC) gates the only known conduit for molecular exchange between the nucleus and cytoplasm of eukaryotic cells. Macromolecular transport across the NPC is mediated by nucleocytoplasmic shuttling receptors termed karyopherins (Kaps). Kaps interact with NPC proteins (nucleoporins) that contain FG peptide repeats (FG Nups) and altogether carry hundreds of different cargoes across the NPC. Previously we described a biochemical strategy to identify proteins that interact with individual components of the nucleocytoplasmic transport machinery. We used bacterially expressed fusions of glutathione S-transferase with nucleoporins or karyopherins as bait to capture interacting proteins from yeast extracts. Forty-five distinct proteins were identified as binding to one or several FG Nups and Kaps. Most of the detected interactions were expected, such as Kap-Nup interactions, but others were unexpected, such as the interactions of the multisubunit Nup84p complex with several of the FG Nups. Also unexpected were the interactions of various FG Nups with the nucleoporins Nup2p and Nup133p, the Gsp1p-GTPase-activating protein Rna1p, and the mRNA-binding protein Pab1p. Here we resolve how these interactions occur. We show that Pab1p associates nonspecifically with immobilized baits via RNA. More interestingly, we demonstrate that the Nup84p complex contains Nup133p as a subunit and binds to the FG repeat regions of Nups directly via the Nup85p subunit. Binding of Nup85p to the GLFG region of Nup116p was quantified in vitro (K(D) = 1.5 micro M) and was confirmed in vivo using the yeast two-hybrid assay. We also demonstrate that Nup2p and Rna1p can be tethered directly to FG Nups via the importin Kap95p-Kap60p and the exportin Crm1p, respectively. We discuss possible roles of these novel interactions in the mechanisms of nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Nadia P C Allen
- Department of Biological Sciences, Stanford University, Stanford, California 94305-0155, USA
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Askjaer P, Galy V, Hannak E, Mattaj IW. Ran GTPase cycle and importins alpha and beta are essential for spindle formation and nuclear envelope assembly in living Caenorhabditis elegans embryos. Mol Biol Cell 2002; 13:4355-70. [PMID: 12475958 PMCID: PMC138639 DOI: 10.1091/mbc.e02-06-0346] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The small GTPase Ran has been found to play pivotal roles in several aspects of cell function. We have investigated the role of the Ran GTPase cycle in spindle formation and nuclear envelope assembly in dividing Caenorhabditis elegans embryos in real time. We found that Ran and its cofactors RanBP2, RanGAP, and RCC1 are all essential for reformation of the nuclear envelope after cell division. Reducing the expression of any of these components of the Ran GTPase cycle by RNAi leads to strong extranuclear clustering of integral nuclear envelope proteins and nucleoporins. Ran, RanBP2, and RanGAP are also required for building a mitotic spindle, whereas astral microtubules are normal in the absence of these proteins. RCC1(RNAi) embryos have similar abnormalities in the initial phase of spindle formation but eventually recover to form a bipolar spindle. Irregular chromatin structures and chromatin bridges due to spindle failure were frequently observed in embryos where the Ran cycle was perturbed. In addition, connection between the centrosomes and the male pronucleus, and thus centrosome positioning, depends upon the Ran cycle components. Finally, we have demonstrated that both IMA-2 and IMB-1, the homologues of vertebrate importin alpha and beta, are essential for both spindle assembly and nuclear formation in early embryos.
Collapse
Affiliation(s)
- Peter Askjaer
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
129
|
Shamsher MK, Ploski J, Radu A. Karyopherin beta 2B participates in mRNA export from the nucleus. Proc Natl Acad Sci U S A 2002; 99:14195-9. [PMID: 12384575 PMCID: PMC137860 DOI: 10.1073/pnas.212518199] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transport of macromolecules between the cell nucleus and cytoplasm occurs through the nuclear pores and is mediated by soluble carriers known as karyopherins (Kaps), transportins, importins, or exportins. We report that Kap beta2B (transportin-2) forms complexes with the mRNA export factor TAP in the presence of RanGTP, as shown by coimmunoprecipitation from HeLa cells. The interaction strictly depends on the presence of RanGTP. In digitonin-permeabilized cells, Kap beta2B mediates TAP-GFP export from the nuclei in the presence of RanGTP. A TAP mutant that does not coimmunoprecipitate with Kap beta2B is also not exported by Kap beta2B. In the permeabilized cells assay, TAP is also exported independently of Kap beta2B by direct interaction with nucleoporins, in agreement with previous reports. The export rate is, however, significantly lower than the Kap beta2B-mediated pathway. Both Kap beta2B and TAP are present and enriched in the poly(A)(+) RNA complexes isolated from HeLa cell nuclear lysates. Poly(A)(+) RNA strongly accumulates in the nuclei of HeLa cells treated with Kap beta2B short interfering RNA, indicating that Kap beta2B is involved in the export of at least a large proportion of the mRNA species. The export of beta-actin and GAPDH mRNA is also inhibited, whereas 28S RNA is not affected. The data support the conclusion that Kap beta2B participates directly in the export of a large proportion of cellular mRNAs, and TAP connects Kap beta2B to the mRNAs to be exported.
Collapse
Affiliation(s)
- Monee K Shamsher
- The Carl C. Icahn Institute for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, Box 1496, 1425 Madison Avenue, New York, NY 10029, USA
| | | | | |
Collapse
|
130
|
Daelemans D, Afonina E, Nilsson J, Werner G, Kjems J, De Clercq E, Pavlakis GN, Vandamme AM. A synthetic HIV-1 Rev inhibitor interfering with the CRM1-mediated nuclear export. Proc Natl Acad Sci U S A 2002; 99:14440-5. [PMID: 12374846 PMCID: PMC137902 DOI: 10.1073/pnas.212285299] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2002] [Indexed: 11/18/2022] Open
Abstract
The HIV-1 Rev protein is an essential regulator of the HIV-1 mRNA expression that promotes the export of unspliced and partially spliced mRNA. The export receptor for the leucine-rich nuclear export signal (NES) of Rev has recently been recognized as CRM1. We identified a low molecular weight compound PKF050-638 as an inhibitor of HIV-1 Rev. This drug inhibits in a dose-dependent fashion Rev-dependent mRNA expression in a cellular assay for Rev function. We show that PKF050-638 is an inhibitor of the CRM1-mediated Rev nuclear export. By using a quantitative in vitro CRM1-NES cargo-binding assay, we could demonstrate that PKF050-638 disrupts CRM1-NES interaction. This mode of action is confirmed in cell culture because the drug reversibly interferes with the colocalization of CRM1 and Rev in the nucleolus of the cell. In addition, we prove that the inhibition is through direct interaction of the compound with Cys-539 of CRM1. These effects are similar to those of the known CRM1 inhibitor leptomycin B and suggest that the inhibitory effect of the compound is caused by binding to CRM1 at a similar site. The compound displayed strict structural requirements for its activity, as its enantiomer was inactive in all assays tested. These results show that we identified a drug that interferes with the CRM1-mediated nuclear export of Rev through inhibition of the CRM1-NES complex formation. The reversibility of its binding to CRM1 and its availability through chemical synthesis could make it useful for studying CRM1-mediated export pathways.
Collapse
Affiliation(s)
- Dirk Daelemans
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Fornerod M, Ohno M. Exportin-mediated nuclear export of proteins and ribonucleoproteins. Results Probl Cell Differ 2002; 35:67-91. [PMID: 11791409 DOI: 10.1007/978-3-540-44603-3_4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Maarten Fornerod
- EMBL, Gene Expression Programme, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
132
|
Murdoch K, Loop S, Rudt F, Pieler T. Nuclear export of 5S rRNA-containing ribonucleoprotein complexes requires CRM1 and the RanGTPase cycle. Eur J Cell Biol 2002; 81:549-56. [PMID: 12437189 DOI: 10.1078/0171-9335-00271] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In Xenopus oocytes, 5S rRNA is exported out of the nucleus in the context of two ribonucleoprotein complexes (RNPs): complexed with transcription factor IIIA as the 7S RNP or as the 5S RNP with ribosomal protein L5. 5S rRNA-containing RNP export takes place at a slow rate in comparison to that of nuclear export signal-containing proteins and the U1 snRNP. Using oocyte microinjection assays we found that the export of 5S RNPs requires nuclear RanGTP and RanGTP hydrolysis and is leptomycin B-sensitive, indicating the process is mediated by the export receptor CRM1. A novel nuclear export signal motif is characterised in a region of L5 also possessing a nuclear import signal, thus identifying a shuttling domain for this protein. This same motif in L5 is found to be required for interaction with CRM1 in vitro and for export in vivo.
Collapse
Affiliation(s)
- Kirstie Murdoch
- Institut für Biochemie und Molekulare Zellbiologie, Georg-August-Universität, Göttingen, Germany
| | | | | | | |
Collapse
|
133
|
Eichwald V, Daeffler L, Klein M, Rommelaere J, Salomé N. The NS2 proteins of parvovirus minute virus of mice are required for efficient nuclear egress of progeny virions in mouse cells. J Virol 2002; 76:10307-19. [PMID: 12239307 PMCID: PMC136550 DOI: 10.1128/jvi.76.20.10307-10319.2002] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2002] [Accepted: 07/17/2002] [Indexed: 01/06/2023] Open
Abstract
The small nonstructural NS2 proteins of parvovirus minute virus of mice (MVMp) were previously shown to interact with the nuclear export receptor Crm1. We report here the analysis of two MVM mutant genomic clones generating NS2 proteins that are unable to interact with Crm1 as a result of amino acid substitutions within their nuclear export signal (NES) sequences. Upon transfection of human and mouse cells, the MVM-NES21 and MVM-NES22 mutant genomic clones were proficient in synthesis of the four virus-encoded proteins. While the MVM-NES22 clone was further able to produce infectious mutant virions, no virus could be recovered from cells transfected with the MVM-NES21 clone. Whereas the defect of MVM-NES21 appeared to be complex, the phenotype of MVM-NES22 could be traced back to a novel distinct NS2 function. Infection of mouse cells with the MVM-NES22 mutant led to stronger nuclear retention not only of the NS2 proteins but also of infectious progeny MVM particles. This nuclear sequestration correlated with a severe delay in the release of mutant virions in the medium and with prolonged survival of the infected cell populations compared with wild-type virus-treated cultures. This defect could explain, at least in part, the small size of the plaques generated by the MVM-NES22 mutant when assayed on mouse indicator cells. Altogether, our data indicate that the interaction of MVMp NS2 proteins with the nuclear export receptor Crm1 plays a critical role at a late stage of the parvovirus life cycle involved in release of progeny viruses.
Collapse
Affiliation(s)
- Virginie Eichwald
- Department of Applied Tumor Virology, INSERM U375-Abteilung F0100, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
134
|
Siebrasse JP, Coutavas E, Peters R. Reconstitution of nuclear protein export in isolated nuclear envelopes. J Cell Biol 2002; 158:849-54. [PMID: 12196506 PMCID: PMC2173161 DOI: 10.1083/jcb.200201130] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2002] [Revised: 07/16/2002] [Accepted: 07/17/2002] [Indexed: 11/22/2022] Open
Abstract
Signal-dependent nuclear protein export was studied in perforated nuclei and isolated nuclear envelopes of Xenopus oocytes by optical single transporter recording. Manually isolated and purified oocyte nuclei were attached to isoporous filters and made permeable for macromolecules by perforation. Export of a recombinant protein (GG-NES) containing the nuclear export signal (NES) of the protein kinase A inhibitor through nuclear envelope patches spanning filter pores could be induced by the addition of GTP alone. Export continued against a concentration gradient, and was NES dependent and inhibited by leptomycin B and GTPgammaS, a nonhydrolyzable GTP analogue. Addition of recombinant RanBP3, a potential cofactor of CRM1-dependent export, did not promote GG-NES export at stoichiometric concentration but gradually inhibited export at higher concentrations. In isolated filter-attached nuclear envelopes, export of GG-NES was virtually abolished in the presence of GTP alone. However, a preformed export complex consisting of GG-NES, recombinant human CRM1, and RanGTP was rapidly exported. Unexpectedly, export was strongly reduced when the export complex contained RanGTPgammaS or RanG19V/Q69L-GTP, a GTPase-deficient Ran mutant. This paper shows that nuclear transport, previously studied in intact and permeabilized cells only, can be quantitatively analyzed in perforated nuclei and isolated nuclear envelopes.
Collapse
Affiliation(s)
- Jan Peter Siebrasse
- Institut für Medizinische Physik und Biophysik, Universität Münster, 48149 Münster, Germany
| | | | | |
Collapse
|
135
|
Plafker K, Macara IG. Fluorescence resonance energy transfer biosensors that detect Ran conformational changes and a Ran x GDP-importin-beta -RanBP1 complex in vitro and in intact cells. J Biol Chem 2002; 277:30121-7. [PMID: 12034733 DOI: 10.1074/jbc.m203006200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ran GTPase plays a central role in nucleocytoplasmic transport. Association of Ran x GTP with transport carriers (karyopherins) triggers the loading/unloading of export or import cargo, respectively. The C-terminal tail of Ran x GTP is deployed in an extended conformation when associated with a Ran binding domain or importins. To monitor tail orientation, a Ran-GFP fusion was labeled with the fluorophore Alexa546. Fluorescence resonance energy transfer (FRET) occurs efficiently between the green fluorescent protein (GFP) and Alexa546 for Ran x GDP and Ran x GTP, suggesting that the tail is tethered in both states. However, Ran x GTP complexes with importin-beta, RanBP1, and Crm1 all show reduced FRET consistent with tail extension. Displacement of the C-terminal tail of Ran by karyopherins may be a general mechanism to facilitate RanBP1 binding. A Ran x GDP-RanBP1-importin-beta complex also displayed a low FRET signal. To detect this complex in vivo, a bipartite biosensor consisting of Ran-Alexa546 plus GST-GFP-RanBP1, was co-injected into the cytoplasm of cells. The Ran redistributed predominantly to the nucleus, and RanBP1 remained cytoplasmic. Nonetheless, a robust cytoplasmic FRET signal was detectable, which suggests that a significant fraction of cytoplasmic Ran.GDP may exist in a ternary complex with RanBP1 and importins.
Collapse
Affiliation(s)
- Kendra Plafker
- Center for Cell Signaling and the Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908-0577, USA
| | | |
Collapse
|
136
|
Kuersten S, Arts GJ, Walther TC, Englmeier L, Mattaj IW. Steady-state nuclear localization of exportin-t involves RanGTP binding and two distinct nuclear pore complex interaction domains. Mol Cell Biol 2002; 22:5708-20. [PMID: 12138183 PMCID: PMC133969 DOI: 10.1128/mcb.22.16.5708-5720.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vertebrate tRNA export receptor exportin-t (Xpo-t) binds to RanGTP and mature tRNAs cooperatively to form a nuclear export complex. Xpo-t shuttles bidirectionally through nuclear pore complexes (NPCs) but is mainly nuclear at steady state. The steady-state distribution of Xpo-t is shown to depend on its interaction with RanGTP. Two distinct Xpo-t NPC interaction domains that bind differentially to peripherally localized nucleoporins in vitro are identified. The N terminus binds to both Nup153 and RanBP2/Nup358 in a RanGTP-dependent manner, while the C terminus binds to CAN/Nup214 independently of Ran. We propose that these interactions increase the concentration of tRNA export complexes and of empty Xpo-t in the vicinity of NPCs and thus increase the efficiency of the Xpo-t transport cycle.
Collapse
Affiliation(s)
- Scott Kuersten
- Gene Expression Programme, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
137
|
Walther TC, Pickersgill HS, Cordes VC, Goldberg MW, Allen TD, Mattaj IW, Fornerod M. The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import. J Cell Biol 2002; 158:63-77. [PMID: 12105182 PMCID: PMC2173022 DOI: 10.1083/jcb.200202088] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nuclear pore complex (NPC) mediates bidirectional macromolecular traffic between the nucleus and cytoplasm in eukaryotic cells. Eight filaments project from the NPC into the cytoplasm and are proposed to function in nuclear import. We investigated the localization and function of two nucleoporins on the cytoplasmic face of the NPC, CAN/Nup214 and RanBP2/Nup358. Consistent with previous data, RanBP2 was localized at the cytoplasmic filaments. In contrast, CAN was localized near the cytoplasmic coaxial ring. Unexpectedly, extensive blocking of RanBP2 with gold-conjugated antibodies failed to inhibit nuclear import. Therefore, RanBP2-deficient NPCs were generated by in vitro nuclear assembly in RanBP2-depleted Xenopus egg extracts. NPCs were formed that lacked cytoplasmic filaments, but that retained CAN. These nuclei efficiently imported nuclear localization sequence (NLS) or M9 substrates. NPCs lacking CAN retained RanBP2 and cytoplasmic filaments, and showed a minor NLS import defect. NPCs deficient in both CAN and RanBP2 displayed no cytoplasmic filaments and had a strikingly immature cytoplasmic appearance. However, they showed only a slight reduction in NLS-mediated import, no change in M9-mediated import, and were normal in growth and DNA replication. We conclude that RanBP2 is the major nucleoporin component of the cytoplasmic filaments of the NPC, and that these filaments do not have an essential role in importin alpha/beta- or transportin-dependent import.
Collapse
|
138
|
Nilsson J, Weis K, Kjems J. The C-terminal extension of the small GTPase Ran is essential for defining the GDP-bound form. J Mol Biol 2002; 318:583-93. [PMID: 12051861 DOI: 10.1016/s0022-2836(02)00040-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The small GTPase Ran controls cellular processes by interacting with members of the importin beta family that bind specifically to the GTP-bound form of Ran, and this regulates the interaction between importin beta-like proteins and cellular factors. The structures of RanGDP and RanGTP are markedly different, and major structural changes are found in the switch I and switch II regions and in the C-terminal extension of Ran. Here, we show that a deletion mutant of Ran, lacking the entire C-terminal extension, termed Ran Core, can bind to importin beta in its GDP-bound form with high affinity. The ability of Ran CoreGDP to dissociate cargo from importin beta results in an import block in digitonin-permeabilized cells and leads to microtubule aster formation in mitotic Xenopus egg extract. As for importin beta, also transportin, importin 7 and exportin-t can no longer discriminate efficiently between the two nucleotide-bound forms of Ran Core. In contrast, a significant reduction in affinity of the RanGDP-binding protein NTF2 for Ran CoreGDP is observed, indicating that the switch regions have changed conformation in the Ran Core mutant. Our results demonstrate that the C terminus of Ran is a major determinant of the state of Ran, and that removal of this allows the GDP-bound form to adopt a GTP-like conformation, thereby creating a constitutively active protein.
Collapse
Affiliation(s)
- Jakob Nilsson
- Department of Molecular and Structural Biology, University of Aarhus, C.F. Møllers Alle, Building 130, DK-8000 Arhus C, Denmark
| | | | | |
Collapse
|
139
|
Miller CL, Pintel DJ. Interaction between parvovirus NS2 protein and nuclear export factor Crm1 is important for viral egress from the nucleus of murine cells. J Virol 2002; 76:3257-66. [PMID: 11884550 PMCID: PMC136031 DOI: 10.1128/jvi.76.7.3257-3266.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2001] [Accepted: 01/07/2002] [Indexed: 11/20/2022] Open
Abstract
A mutation that disrupts the interaction between the NS2 protein of minute virus of mice and the nuclear export factor Crm1 results in a block to egress of mutant-generated full virions from the nucleus of infected murine cells. These mutants produce wild-type levels of monomer and dimer replicative DNA forms but are impaired in their ability to generate progeny single-stranded DNA in restrictive murine cells in the first round of infection. The NS2-Crm1 interaction mutant can be distinguished phenotypically from an NS2-null mutant and reveals a role for the Crm1-mediated export pathway at a late step in viral infection.
Collapse
Affiliation(s)
- Cathy L Miller
- School of Medicine, University of Missouri--Columbia, 65212, USA
| | | |
Collapse
|
140
|
Phillips RS, Ramos SBV, Blackshear PJ. Members of the tristetraprolin family of tandem CCCH zinc finger proteins exhibit CRM1-dependent nucleocytoplasmic shuttling. J Biol Chem 2002; 277:11606-13. [PMID: 11796723 DOI: 10.1074/jbc.m111457200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the tristetraprolin (TTP) family of CCCH tandem zinc finger proteins can bind directly to certain types of AU-rich elements (AREs) in mRNA. Experiments in TTP-deficient mice have shown that TTP is involved in the physiological destabilization of at least two cytokine mRNAs, those encoding tumor necrosis factor alpha and granulocyte-macrophage colony-stimulating factor. The two other known mammalian members of the TTP family, CMG1 and TIS11D, also contain ARE-binding CCCH tandem zinc finger domains and can also destabilize ARE-containing mRNAs. To investigate the effects of primary sequence on the subcellular localization of these proteins, we constructed green fluorescent protein fusions with TTP, CMG1, and TIS11D; these were predominantly cytoplasmic when expressed in 293 or HeLa cells. Deletion and mutation analyses revealed functional nuclear export signals in the amino terminus of TTP and in the carboxyl termini of CMG1 and TIS11D. This type of leucine-rich nuclear export signal interacts with the nuclear export receptor CRM1; abrogation of CRM1 activity resulted in nuclear accumulation of TTP, CMG1, and TIS11D. These proteins are thus nucleocytoplasmic shuttling proteins and rely on CRM1 for their export from the nucleus. Although TTP, CMG1, and TIS11D lack known nuclear import sequences, mapping experiments revealed that their nuclear accumulation required an intact tandem zinc finger domain but did not require RNA binding ability. These findings suggest possible roles for nuclear import and export in the regulation of cellular TTP, CMG1, and TIS11D activity.
Collapse
Affiliation(s)
- Ruth S Phillips
- Department of Pharmacology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
141
|
Schmitt I, Gerace L. In vitro analysis of nuclear transport mediated by the C-terminal shuttle domain of Tap. J Biol Chem 2001; 276:42355-63. [PMID: 11551912 DOI: 10.1074/jbc.m103916200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Tap protein of higher eukaryotes is implicated in the nuclear export of type D retroviral mRNA and some cellular mRNAs. Here we have developed an in vitro assay to study nuclear export mediated by the C-terminal shuttle domain of Tap involving the rapamycin-induced attachment of this transport domain to a nuclear green fluorescent protein-containing reporter. We found that export by the Tap transport domain does not involve cytosolic transport factors including the GTPase Ran. The transport domain directly binds to several nucleoporins positioned in different regions of the nuclear pore complex. These results argue that a direct interaction of the Tap transport domain with nucleoporins is responsible for its nucleocytoplasmic translocation. We found that the karyopherin beta-related export receptor CRM1 competes with the Tap transport domain for binding to Nup214 but not for binding to Nup62 or Nup153, suggesting that the Tap and CRM1 nuclear export pathways converge at the cytoplasmic periphery of the nuclear pore complex. Because the rates of in vitro nuclear import and export by the Tap transport domain are very similar, the directionality of mRNA export mediated by Tap probably is determined by mechanisms other than simple binding of the Tap transport domain to nucleoporins.
Collapse
Affiliation(s)
- I Schmitt
- Department of Cell, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
142
|
Poulsen H, Nilsson J, Damgaard CK, Egebjerg J, Kjems J. CRM1 mediates the export of ADAR1 through a nuclear export signal within the Z-DNA binding domain. Mol Cell Biol 2001; 21:7862-71. [PMID: 11604520 PMCID: PMC99958 DOI: 10.1128/mcb.21.22.7862-7871.2001] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2001] [Accepted: 08/21/2001] [Indexed: 11/20/2022] Open
Abstract
RNA editing of specific residues by adenosine deamination is a nuclear process catalyzed by adenosine deaminases acting on RNA (ADAR). Different promoters in the ADAR1 gene give rise to two forms of the protein: a constitutive promoter expresses a transcript encoding (c)ADAR1, and an interferon-induced promoter expresses a transcript encoding an N-terminally extended form, (i)ADAR1. Here we show that (c)ADAR1 is primarily nuclear whereas (i)ADAR1 encompasses a functional nuclear export signal in the N-terminal part and is a nucleocytoplasmic shuttle protein. Mutation of the nuclear export signal or treatment with the CRM1-specific drug leptomycin B induces nuclear accumulation of (i)ADAR1 fused to the green fluorescent protein and increases the nuclear editing activity. In concurrence, CRM1 and RanGTP interact specifically with the (i)ADAR1 nuclear export signal to form a tripartite export complex in vitro. Furthermore, our data imply that nuclear import of (i)ADAR1 is mediated by at least two nuclear localization sequences. These results suggest that the nuclear editing activity of (i)ADAR1 is modulated by nuclear export.
Collapse
Affiliation(s)
- H Poulsen
- Department of Molecular and Structural Biology, University of Aarhus, Denmark
| | | | | | | | | |
Collapse
|
143
|
Abstract
The evolution of the nucleus imposed on eukaryotic cells the necessity to strictly control exchange of molecules between the nucleus and the remainder of the cell, not only to protect and correctly transmit genetic information, but also to coordinate nuclear and cytoplasmic functions. Studies over the past 10 years have provided major insights into the molecular mechanisms responsible for transport of molecules between the nucleus and the cytoplasm. In addition, regulation of the nucleocytoplasmic distribution of diverse cellular factors has emerged as one of the most efficient mechanism to adapt gene expression to the cell environment, for example by controlling the access of transcriptional regulators to their target genes. In this review, we focus on the molecular basis of protein nuclear export that relies on interactions between targeting sequences present on the cargoes, specific export receptors or exportins and nuclear pore proteins, with special emphasis on the role of the Ran GTPase and associated proteins in this process.
Collapse
Affiliation(s)
- B Ossareh-Nazari
- Institut Jacques Monod, UMR 7592, CNRS, Université Paris VI, Université Paris VII, 2 Place Jussieu, 75251 Paris, France
| | | | | |
Collapse
|
144
|
Englmeier L, Fornerod M, Bischoff FR, Petosa C, Mattaj IW, Kutay U. RanBP3 influences interactions between CRM1 and its nuclear protein export substrates. EMBO Rep 2001; 2:926-32. [PMID: 11571268 PMCID: PMC1084078 DOI: 10.1093/embo-reports/kve200] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2001] [Revised: 08/21/2001] [Accepted: 08/22/2001] [Indexed: 11/15/2022] Open
Abstract
We investigated the role of RanBP3, a nuclear member of the Ran-binding protein 1 family, in CRM1-mediated protein export in higher eukaryotes. RanBP3 interacts directly with CRM1 and also forms a trimeric complex with CRM1 and RanGTP. However, RanBP3 does not bind to CRM1 like an export substrate. Instead, it can stabilize CRM1-export substrate interaction. Nuclear RanBP3 stimulates CRM1-dependent protein export in permeabilized cells. These data indicate that RanBP3 functions by a novel mechanism as a cofactor in recognition and export of certain CRM1 substrates. In vitro, RanBP3 binding to CRM1 affects the relative affinity of CRM1 for different substrates.
Collapse
Affiliation(s)
- L Englmeier
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
145
|
Paragas J, Talon J, O'Neill RE, Anderson DK, García-Sastre A, Palese P. Influenza B and C virus NEP (NS2) proteins possess nuclear export activities. J Virol 2001; 75:7375-83. [PMID: 11462009 PMCID: PMC114972 DOI: 10.1128/jvi.75.16.7375-7383.2001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2001] [Accepted: 05/16/2001] [Indexed: 11/20/2022] Open
Abstract
Nucleocytoplasmic transport of viral ribonucleoproteins (vRNPs) is an essential aspect of the replication cycle for influenza A, B, and C viruses. These viruses replicate and transcribe their genomes in the nuclei of infected cells. During the late stages of infection, vRNPs must be exported from the nucleus to the cytoplasm prior to transport to viral assembly sites on the cellular plasma membrane. Previously, we demonstrated that the influenza A virus nuclear export protein (NEP, formerly referred to as the NS2 protein) mediates the export of vRNPs. In this report, we suggest that for influenza B and C viruses the nuclear export function is also performed by the orthologous NEP proteins (formerly referred to as the NS2 protein). The influenza virus B and C NEP proteins interact in the yeast two-hybrid assay with a subset of nucleoporins and with the Crm1 nuclear export factor and can functionally replace the effector domain from the human immunodeficiency virus type 1 Rev protein. We established a plasmid transfection system for the generation of virus-like particles (VLPs) in which a functional viral RNA-like chloramphenicol acetyltransferase (CAT) gene is delivered to a new cell. VLPs generated in the absence of the influenza B virus NEP protein were unable to transfer the viral RNA-like CAT gene to a new cell. From these data, we suggest that the nuclear export of the influenza B and C vRNPs are mediated through interaction between NEP proteins and the cellular nucleocytoplasmic export machinery.
Collapse
Affiliation(s)
- J Paragas
- Department of Microbiology, Mount Sinai School of Medicine, New York University, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
146
|
Heger P, Lohmaier J, Schneider G, Schweimer K, Stauber RH. Qualitative highly divergent nuclear export signals can regulate export by the competition for transport cofactors in vivo. Traffic 2001; 2:544-55. [PMID: 11489212 DOI: 10.1034/j.1600-0854.2001.20804.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nucleo-cytoplasmic transport of proteins is mediated by nuclear export signals, identified in various proteins executing heterologous biological functions. However, the molecular mechanism underlying the orchestration of export is only poorly understood. Using microinjection of defined recombinant export substrates, we now demonstrate that leucine-rich nuclear export signals varied dramatically in determining the kinetics of export in vivo. Thus, nuclear export signals could be kinetically classified which correlated with their affinities for CRM1-containing export complexes in vitro. Strikingly, cotransfection experiments revealed that proteins containing a fast nuclear export signal inhibited export and the biological activity of proteins harboring a slower nuclear export signal in vivo. The affinity for export complexes seems therefore predominantly controlled by the nuclear export signal itself, even in the context of the complete protein in vivo. Overexpression of FG-rich repeats of nucleoporins affected a medium nuclear export signal containing protein to the same extent as a fast nuclear export signal containing protein, indicating that nucleoporins appear not to contribute significantly to nuclear export signal-specific export regulation. Our results imply a novel mode for controlling the biological activity of shuttle proteins already by the composition of the nuclear export signal itself.
Collapse
Affiliation(s)
- P Heger
- Institute for Clinical and Molecular Virology, University of Erlangen-Nürnberg, Schlossgarten 4, D-91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
147
|
Hauber J. Nuclear export mediated by the Rev/Rex class of retroviral Trans-activator proteins. Curr Top Microbiol Immunol 2001; 259:55-76. [PMID: 11417127 DOI: 10.1007/978-3-642-56597-7_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- J Hauber
- Institute for Clinical and Molecular Virology, University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| |
Collapse
|
148
|
Affiliation(s)
- M L Hammarskjöld
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Department of Microbiology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
149
|
Abstract
In vivo studies on the dynamics of the nuclear pore complex (NPC) in yeast suggested that NPCs are highly mobile in the nuclear envelope. However, new evidence indicates that in mammalian cells NPCs are stably attached to a flexible lamina framework, but a peripheral component can exchange rapidly with an intranuclear pool.
Collapse
Affiliation(s)
- S K Lyman
- Departments of Cell and Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | |
Collapse
|
150
|
Lee SH, Hannink M. The N-terminal nuclear export sequence of IkappaBalpha is required for RanGTP-dependent binding to CRM1. J Biol Chem 2001; 276:23599-606. [PMID: 11319224 DOI: 10.1074/jbc.m011197200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear export of IkappaBalpha is mediated by the CRM1 nuclear export receptor. However, the identity of the nuclear export sequences NES(s) in IkappaBalpha that are responsible for binding of IkappaBalpha to CRM1 is controversial. Both a N-terminal NES-like region (amino acids 45-54) and a C-terminal NES-like region (amino acids 265-280) have, in a number of reports from different laboratories, been implicated in CRM1-dependent nuclear export of IkappaBalpha. We now demonstrate that the N-terminal NES-like region, but not the C-terminal NES-like region, is required for RanGTP-dependent binding of IkappaBalpha to CRM1. IkappaBalpha is a relatively weak substrate for CRM1, with an affinity for CRM1 that is 100-fold less than the minute virus of mice NS2 protein, a high affinity cargo protein for CRM1. We also demonstrate that IkappaBalpha functions as a physical adaptor between CRM1 and NFkappaB/Rel proteins. Both free IkappaBalpha and Rel-associated IkappaBalpha have comparable affinities for CRM1, suggesting that CRM1 does not discriminate between free IkappaBalpha and Rel-associated IkappaBalpha. Nuclear export of c-Rel by IkappaBalpha requires the N-terminal NES-like sequence of IkappaBalpha but is not affected by alanine substitutions within the C-terminal NES-like sequence of IkappaBalpha. In contrast, nuclear export of the v-Rel oncoprotein by IkappaBalpha is disrupted by alanine substitutions within either the N-terminal or the C-terminal NES-like sequences. However, alanine substitutions within the C-terminal NES-like sequence significantly reduce the affinity of IkappaBalpha for v-Rel, suggesting that loss of export function for this mutant is secondary to reduced association between IkappaBalpha and v-Rel. Taken together, our results demonstrate that the N-terminal NES-like sequence in IkappaBalpha is required for RanGTP-dependent binding of both free IkappaBalpha and NFkappaB/Rel-associated IkappaBalpha proteins to CRM1.
Collapse
Affiliation(s)
- S H Lee
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65212, USA
| | | |
Collapse
|