101
|
The human PAF1 complex acts in chromatin transcription elongation both independently and cooperatively with SII/TFIIS. Cell 2010; 140:491-503. [PMID: 20178742 DOI: 10.1016/j.cell.2009.12.050] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 07/24/2009] [Accepted: 12/22/2009] [Indexed: 01/12/2023]
Abstract
Genetic and cell-based studies have implicated the PAF1 complex (PAF1C) in transcription-associated events, but there has been no evidence showing a direct role in facilitating transcription of a natural chromatin template. Here, we demonstrate an intrinsic ability of human PAF1C (hPAF1C) to facilitate activator (p53)- and histone acetyltransferase (p300)-dependent transcription elongation from a recombinant chromatin template in a biochemically defined RNA polymerase II transcription system. This represents a PAF1C function distinct from its established role in histone ubiquitylation and methylation. Importantly, we further demonstrate a strong synergy between hPAF1C and elongation factor SII/TFIIS and an underlying mechanism involving direct hPAF1C-SII interactions and cooperative binding to RNA polymerase II. Apart from a distinct PAF1C function, the present observations provide a molecular mechanism for the cooperative function of distinct transcription elongation factors in chromatin transcription.
Collapse
|
102
|
Newey PJ, Bowl MR, Cranston T, Thakker RV. Cell division cycle protein 73 homolog (CDC73) mutations in the hyperparathyroidism-jaw tumor syndrome (HPT-JT) and parathyroid tumors. Hum Mutat 2010; 31:295-307. [DOI: 10.1002/humu.21188] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
103
|
Frequent promoter hypermethylation of the APC and RASSF1A tumour suppressors in parathyroid tumours. PLoS One 2010; 5:e9472. [PMID: 20208994 PMCID: PMC2830427 DOI: 10.1371/journal.pone.0009472] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 02/09/2010] [Indexed: 11/25/2022] Open
Abstract
Background Parathyroid adenomas constitute the most common entity in primary hyperparathyroidism, and although recent advances have been made regarding the underlying genetic cause of these lesions, very little data on epigenetic alterations in this tumour type exists. In this study, we have determined the levels of promoter methylation regarding the four tumour suppressor genes APC, RASSF1A, p16INK4A and RAR-β in parathyroid adenomas. In addition, the levels of global methylation were assessed by analyzing LINE-1 repeats. Methodology/Principal Findings The sample collection consisted of 55 parathyroid tumours with known HRPT2 and/or MEN1 genotypes. Using Pyrosequencing analysis, we demonstrate APC promoter 1A and RASSF1A promoter hypermethylation in the majority of parathyroid tumours (71% and 98%, respectively). Using TaqMan qRT-PCR, all tumours analyzed displayed lower RASSF1A mRNA expression and higher levels of total APC mRNA than normal parathyroid, the latter of which was largely conferred by augmented APC 1B transcription levels. Hypermethylation of p16INK4A was demonstrated in a single adenoma, whereas RAR-β hypermethylation was not observed in any sample. Moreover, based on LINE-1 analyses, parathyroid tumours exhibited global methylation levels within the range of non-neoplastic parathyroid tissues. Conclusions/Significance The results demonstrate that APC and RASSF1A promoter hypermethylation are common events in parathyroid tumours. While RASSF1A mRNA levels were found downregulated in all tumours investigated, APC gene expression was retained through APC 1B mRNA levels. These findings suggest the involvement of the Ras signaling pathway in parathyroid tumorigenesis. Additionally, in contrast to most other human cancers, parathyroid tumours were not characterized by global hypomethylation, as parathyroid tumours exhibited LINE-1 methylation levels similar to that of normal parathyroid tissues.
Collapse
|
104
|
Huen J, Kakihara Y, Ugwu F, Cheung KLY, Ortega J, Houry WA. Rvb1–Rvb2: essential ATP-dependent helicases for critical complexesThis paper is one of a selection of papers published in this special issue entitled 8th International Conference on AAA Proteins and has undergone the Journal's usual peer review process. Biochem Cell Biol 2010; 88:29-40. [DOI: 10.1139/o09-122] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rvb1 and Rvb2 are highly conserved, essential AAA+ helicases found in a wide range of eukaryotes. The versatility of these helicases and their central role in the biology of the cell is evident from their involvement in a wide array of critical cellular complexes. Rvb1 and Rvb2 are components of the chromatin-remodeling complexes INO80, Swr-C, and BAF. They are also members of the histone acetyltransferase Tip60 complex, and the recently identified R2TP complex present in Saccharomyces cerevisiae and Homo sapiens; a complex that is involved in small nucleolar ribonucleoprotein (snoRNP) assembly. Furthermore, in humans, Rvb1 and Rvb2 have been identified in the URI prefoldin-like complex. In Drosophila, the Polycomb Repressive complex 1 contains Rvb2, but not Rvb1, and the Brahma complex contains Rvb1 and not Rvb2. Both of these complexes are involved in the regulation of growth and development genes in Drosophila. Rvbs are therefore crucial factors in various cellular processes. Their importance in chromatin remodeling, transcription regulation, DNA damage repair, telomerase assembly, mitotic spindle formation, and snoRNP biogenesis is discussed in this review.
Collapse
Affiliation(s)
- Jennifer Huen
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Yoshito Kakihara
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Francisca Ugwu
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Kevin L. Y. Cheung
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Joaquin Ortega
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Walid A. Houry
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| |
Collapse
|
105
|
Jaehning JA. The Paf1 complex: platform or player in RNA polymerase II transcription? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:379-88. [PMID: 20060942 DOI: 10.1016/j.bbagrm.2010.01.001] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/31/2009] [Accepted: 01/04/2010] [Indexed: 12/01/2022]
Abstract
The Paf1 complex (Paf1C), composed of the proteins Paf1, Ctr9, Cdc73, Rtf1, and Leo1, accompanies RNA polymerase II (pol II) from the promoter to the 3' end formation site of mRNA and snoRNA encoding genes; it is also found associated with RNA polymerase I (pol I) on rDNA. The Paf1C is found in simple and complex eukaryotes; in human cells hSki8 is also part of the complex. The Paf1C has been linked to a large and growing list of transcription related processes including: communication with transcriptional activators; recruitment and activation of histone modification factors; facilitation of elongation on chromatin templates; and the recruitment of 3' end-processing factors necessary for accurate termination of transcription. Absence of, or mutations in, Paf1C factors result in alterations in gene expression that can result in misregulation of developmental programs and loss of control of cell division leading to cancer in humans. This review considers recent information that may help to resolve whether the Paf1C is primarily a "platform" on pol II that coordinates the association of many critical transcription factors, or if the complex itself plays a more direct role in one or more steps in transcription.
Collapse
Affiliation(s)
- Judith A Jaehning
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
106
|
Chen Y, Yamaguchi Y, Tsugeno Y, Yamamoto J, Yamada T, Nakamura M, Hisatake K, Handa H. DSIF, the Paf1 complex, and Tat-SF1 have nonredundant, cooperative roles in RNA polymerase II elongation. Genes Dev 2009; 23:2765-77. [PMID: 19952111 DOI: 10.1101/gad.1834709] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transcription elongation factor DSIF/Spt4-Spt5 is capable of promoting and inhibiting RNA polymerase II elongation and is involved in the expression of various genes. While it has been known for many years that DSIF inhibits elongation in collaboration with the negative elongation factor NELF, how DSIF promotes elongation is largely unknown. Here, an activity-based biochemical approach was taken to understand the mechanism of elongation activation by DSIF. We show that the Paf1 complex (Paf1C) and Tat-SF1, two factors implicated previously in elongation control, collaborate with DSIF to facilitate efficient elongation. In human cells, these factors are recruited to the FOS gene in a temporally coordinated manner and contribute to its high-level expression. We also show that elongation activation by these factors depends on P-TEFb-mediated phosphorylation of the Spt5 C-terminal region. A clear conclusion emerging from this study is that a set of elongation factors plays nonredundant, cooperative roles in elongation. This study also shows unambiguously that Paf1C, which is generally thought to have chromatin-related functions, is involve directlyd in elongation control.
Collapse
Affiliation(s)
- Yexi Chen
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Yang YJ, Han JW, Youn HD, Cho EJ. The tumor suppressor, parafibromin, mediates histone H3 K9 methylation for cyclin D1 repression. Nucleic Acids Res 2009; 38:382-90. [PMID: 19906718 PMCID: PMC2811029 DOI: 10.1093/nar/gkp991] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Parafibromin, a component of the RNA polymerase II-associated PAF1 complex, is a tumor suppressor linked to hyperparathyroidism-jaw tumor syndrome and sporadic parathyroid carcinoma. Parafibromin induces cell cycle arrest by repressing cyclin D1 via an unknown mechanism. Here, we show that parafibromin interacts with the histone methyltransferase, SUV39H1, and functions as a transcriptional repressor. The central region (128–227 amino acids) of parafibromin is important for both the interaction with SUV39H1 and transcriptional repression. Parafibromin associated with the promoter and coding regions of cyclin D1 and was required for the recruitment of SUV39H1 and the induction of H3 K9 methylation but not H3 K4 methylation. RNA interference analysis showed that SUV39H1 was critical for cyclin D1 repression. These data suggest that parafibromin plays an unexpected role as a repressor in addition to its widely known activity associated with transcriptional activation. Parafibromin as a part of the PAF1 complex might downregulate cyclin D1 expression by integrating repressive H3 K9 methylation during transcription.
Collapse
Affiliation(s)
- Yong-Jin Yang
- College of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | | | | | | |
Collapse
|
108
|
Moniaux N, Nemos C, Deb S, Zhu B, Dornreiter I, Hollingsworth MA, Batra SK. The human RNA polymerase II-associated factor 1 (hPaf1): a new regulator of cell-cycle progression. PLoS One 2009; 4:e7077. [PMID: 19771162 PMCID: PMC2740866 DOI: 10.1371/journal.pone.0007077] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 08/19/2009] [Indexed: 11/18/2022] Open
Abstract
Background The human PAF (hPAF) complex is part of the RNA polymerase II transcription apparatus and regulates multiple steps in gene expression. Further, the yeast homolog of hPaf1 has a role in regulating the expression of a subset of genes involved in the cell-cycle. We therefore investigated the role of hPaf1 during progression of the cell-cycle. Methodology/Findings Herein, we report that the expression of hPaf1, a subunit of the hPAF complex, increases with cell-cycle progression and is regulated in a cell-cycle dependant manner. hPaf1 specifically regulates a subclass of genes directly implicated in cell-cycle progression during G1/S, S/G2, and G2/M. In prophase, hPaf1 aligns in filament-like structures, whereas in metaphase it is present within the pole forming a crown-like structure, surrounding the centrosomes. Moreover, hPaf1 is degraded during the metaphase to anaphase transition. In the nucleus, hPaf1 regulates the expression of cyclins A1, A2, D1, E1, B1, and Cdk1. In addition, expression of hPaf1 delays DNA replication but favors the G2/M transition, in part through microtubule assembly and mitotic spindle formation. Conclusion/Significance Our results identify hPaf1 and the hPAF complex as key regulators of cell-cycle progression. Mutation or loss of stoichiometry of at least one of the members may potentially lead to cancer development.
Collapse
Affiliation(s)
- Nicolas Moniaux
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Christophe Nemos
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Shonali Deb
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Bing Zhu
- Howard Hughes Medical Institute, Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey, United States of America
| | | | - Michael A. Hollingsworth
- Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
109
|
Abstract
Parafibromin is a predominantly nuclear protein with a tumour suppressor role in the development of hereditary and nonhereditary parathyroid carcinomas, and the hyperparathyroidism-jaw tumour syndrome, which is associated with renal and uterine tumours. Parafibromin is a component of the highly conserved PAF1 complex, which regulates transcriptional events and histone modifications. The parafibromin/PAF1 complex regulates genes involved in cell growth and survival, and via these, parafibromin plays a pivotal role in embryonic development and survival of adults.
Collapse
Affiliation(s)
- P J Newey
- The Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford OX3 7LJ, UK
| | | | | |
Collapse
|
110
|
Wilkins BJ, Lewis JS. Non-functional parathyroid carcinoma: a review of the literature and report of a case requiring extensive surgery. Head Neck Pathol 2009; 3:140-9. [PMID: 19644546 PMCID: PMC2715460 DOI: 10.1007/s12105-009-0115-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 04/06/2009] [Indexed: 11/10/2022]
Abstract
Parathyroid carcinoma is a rare malignancy, and only accounts for 0.5-2% of cases of primary hyperparathyroidism. Less than 10% of parathyroid carcinomas are non-functional, and as such, they have been rarely reported in the literature. Importantly, margin status at resection is related to prognosis, and only a handful of case reports of non-functional carcinoma note this important parameter. Here we report the first case of non-functional parathyroid carcinoma with negative margins, and review the literature on this rare entity. Whether functional or non-functional, parathyroid carcinoma can often be difficult to differentiate from benign parathyroid adenoma. While diagnosis has been based on clinical and histological criteria, recent data concerning the molecular underpinnings of parathyroid carcinoma may allow for improved accuracy in distinguishing benign and malignant parathyroid tumors.
Collapse
Affiliation(s)
- Benjamin J. Wilkins
- Head and Neck Pathology Section, Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave., P.O. Box 8118, St. Louis, MO 63110-1093 USA
| | - James S. Lewis
- Head and Neck Pathology Section, Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave., P.O. Box 8118, St. Louis, MO 63110-1093 USA
| |
Collapse
|
111
|
The tumor suppressor Cdc73 functionally associates with CPSF and CstF 3' mRNA processing factors. Proc Natl Acad Sci U S A 2009; 106:755-60. [PMID: 19136632 DOI: 10.1073/pnas.0812023106] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The CDC73 tumor suppressor gene is mutationally inactivated in hereditary and sporadic parathyroid tumors. Its product, the Cdc73 protein, is a component of the RNA polymerase II and chromatin-associated human Paf1 complex (Paf1C). Here, we show that Cdc73 physically associates with the cleavage and polyadenylation specificity factor (CPSF) and cleavage stimulation factor (CstF) complexes that are required for the maturation of mRNA 3' ends in the cell nucleus. Immunodepletion experiments indicate that the Cdc73-CPSF-CstF complex is necessary for 3' mRNA processing in vitro. Microarray analysis of CDC73 siRNA-treated cells revealed INTS6, a gene encoding a subunit of the Integrator complex, as an in vivo Cdc73 target. Cdc73 depletion by siRNA resulted in decreased INTS6 mRNA abundance, and decreased association of CPSF and CstF subunits with the INTS6 locus. Our results suggest that Cdc73 facilitates association of 3' mRNA processing factors with actively-transcribed chromatin and support the importance of links between tumor suppression and mRNA maturation.
Collapse
|
112
|
|
113
|
The parafibromin tumor suppressor protein inhibits cell proliferation by repression of the c-myc proto-oncogene. Proc Natl Acad Sci U S A 2008; 105:17420-5. [PMID: 18987311 DOI: 10.1073/pnas.0710725105] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parafibromin is a tumor suppressor protein encoded by HRPT2, a gene recently implicated in the hereditary hyperparathyroidism-jaw tumor syndrome, parathyroid cancer, and a subset of kindreds with familial isolated hyperparathyroidism. Human parafibromin binds to RNA polymerase II as part of a PAF1 transcriptional regulatory complex. The physiologic targets of parafibromin and the mechanism by which its loss of function can lead to neoplastic transformation are poorly understood. We show here that RNA interference with the expression of parafibromin or Paf1 stimulates cell proliferation and increases levels of the c-myc proto-oncogene product, a DNA-binding protein and established regulator of cell growth. This effect results from both c-myc protein stabilization and activation of the c-myc promoter, without alleviation of the c-myc transcriptional pause. Chromatin immunoprecipitation demonstrates the occupancy of the c-myc promoter by parafibromin and other PAF1 complex subunits in native cells. Knockdown of c-myc blocks the proliferative effect of RNA interference with parafibromin or Paf1 expression. These experiments provide a previously uncharacterized mechanism for the anti-proliferative action of the parafibromin tumor suppressor protein resulting from PAF1 complex-mediated inhibition of the c-myc proto-oncogene.
Collapse
|
114
|
Oh S, Park S, van Nocker S. Genic and global functions for Paf1C in chromatin modification and gene expression in Arabidopsis. PLoS Genet 2008; 4:e1000077. [PMID: 18725930 PMCID: PMC2515192 DOI: 10.1371/journal.pgen.1000077] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 07/14/2008] [Indexed: 12/11/2022] Open
Abstract
In budding yeast, intragenic histone modification is linked with transcriptional elongation through the conserved regulator Paf1C. To investigate Paf1C-related function in higher eukaryotes, we analyzed the effects of loss of Paf1C on histone H3 density and patterns of H3 methylated at K4, K27, and K36 in Arabidopsis genes, and integrated this with existing gene expression data. Loss of Paf1C did not change global abundance of H3K4me3 or H3K36me2 within chromatin, but instead led to a 3' shift in the distribution of H3K4me3 and a 5' shift in the distribution of H3K36me2 within genes. We found that genes regulated by plant Paf1C showed strong enrichment for both H3K4me3 and H3K27me3 and also showed a high degree of tissue-specific expression. At the Paf1C- and PcG-regulated gene FLC, transcriptional silencing and loss of H3K4me3 and H3K36me2 were accompanied by expansion of H3K27me3 into the promoter and transcriptional start regions and further enrichment of H3K27me3 within the transcribed region. These results highlight both genic and global functions for plant Paf1C in histone modification and gene expression, and link transcriptional activity with cellular memory.
Collapse
Affiliation(s)
- Sookyung Oh
- Department of Horticulture, Michigan State University, East Lansing, Michigan, United States of America
| | - Sunchung Park
- Department of Horticulture, Michigan State University, East Lansing, Michigan, United States of America
| | - Steven van Nocker
- Department of Horticulture, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
115
|
Agarwal SK, Simonds WF, Marx SJ. The parafibromin tumor suppressor protein interacts with actin-binding proteins actinin-2 and actinin-3. Mol Cancer 2008; 7:65. [PMID: 18687124 PMCID: PMC2519076 DOI: 10.1186/1476-4598-7-65] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 08/07/2008] [Indexed: 12/27/2022] Open
Abstract
Background Germline and somatic inactivating mutations in the HRPT2 gene occur in the inherited hyperparathyroidism-jaw tumor syndrome, in some cases of parathyroid cancer and in some cases of familial hyperparathyroidism. HRPT2 encodes parafibromin. To identify parafibromin interacting proteins we used the yeast two-hybrid system for screening a heart cDNA library with parafibromin as the bait. Results Fourteen parafibromin interaction positive preys representing 10 independent clones encoding actinin-2 were isolated. Parafibromin interacted with muscle alpha-actinins (actinin-2 and actinin-3), but not with non-muscle alpha-actinins (actinin-1 and actinin-4). The parafibromin-actinin interaction was verified by yeast two-hybrid, GST pull-down, and co-immunoprecipitation. Yeast two-hybrid analysis revealed that the N-terminal region of parafibromin interacted with actinins. In actin sedimentation assays parafibromin did not dissociate skeletal muscle actinins from actin filaments, but interestingly, parafibromin could also bundle/cross-link actin filaments. Parafibromin was predominantly nuclear in undifferentiated proliferating myoblasts (C2C12 cells), but in differentiated C2C12 myotubes parafibromin co-localized with actinins in the cytoplasmic compartment. Conclusion These data support a possible contribution of parafibromin outside the nucleus through its interaction with actinins and actin bundling/cross-linking. These data also suggest that actinins (and actin) participate in sequestering parafibromin in the cytoplasmic compartment.
Collapse
Affiliation(s)
- Sunita K Agarwal
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
116
|
Direct interactions between the Paf1 complex and a cleavage and polyadenylation factor are revealed by dissociation of Paf1 from RNA polymerase II. EUKARYOTIC CELL 2008; 7:1158-67. [PMID: 18469135 DOI: 10.1128/ec.00434-07] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Paf1 complex (Paf1, Ctr9, Cdc73, Rtf1, and Leo1) is normally associated with RNA polymerase II (Pol II) throughout the transcription cycle. However, the loss of either Rtf1 or Cdc73 results in the detachment of the Paf1 complex from Pol II and the chromatin form of actively transcribed genes. Using functionally tagged forms of the Paf1 complex factors, we have determined that, except for the more loosely associated Rtf1, the remaining components stay stably associated with one another in an RNase-resistant complex after dissociation from Pol II and chromatin. The loss of Paf1, Ctr9, or to a lesser extent Cdc73 or Rtf1 results in reduced levels of serine 2 phosphorylation of the Pol II C-terminal domain and in increased read through of the MAK21 polyadenylation site. We found that the cleavage and polyadenylation factor Cft1 requires the Pol II-associated form of the Paf1 complex for full levels of interaction with the serine 5-phosphorylated form of Pol II. When the Paf1 complex is dissociated from Pol II, a direct interaction between Cft1 and the Paf1 complex can be detected. These results are consistent with the Paf1 complex providing a point of contact for recruitment of 3'-end processing factors at an early point in the transcription cycle. The lack of this connection helps to explain the defects in 3'-end formation observed in the absence of Paf1.
Collapse
|
117
|
Cetani F, Pardi E, Banti C, Borsari S, Ambrogini E, Vignali E, Cianferotti L, Viccica G, Pinchera A, Marcocci C. HRPT2 gene analysis and the diagnosis of parathyroid carcinoma. Expert Rev Endocrinol Metab 2008; 3:377-389. [PMID: 30754207 DOI: 10.1586/17446651.3.3.377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Parathyroid carcinoma is an uncommon cause of primary hyperparathyroidism (PHPT) and is usually associated with more severe clinical manifestations than its much more common benign counterpart, the parathyroid adenomas. The histopathological distinction between benign and malignant parathyroid tumors is difficult. Currently, pathological diagnosis of parathyroid carcinoma is restricted to lesions showing unequivocal growth, as evidenced by perineural invasion, full-thickness capsular invasion with growth into adjacent tissues, or metastasis. Major advances in the molecular pathogenesis of parathyroid carcinoma have been made by the cloning of the HRPT2 gene, which encodes parafibromin, a 531-amino acid putative tumor-suppressor protein. Germline mutations of HRPT2 confer susceptibility to the hyperparathyroidism-jaw tumor syndrome (HPT-JT), an autosomal dominant syndrome with high but incomplete penetrance. Somatic inactivating mutations of the HRPT2 gene have been reported in the majority of apparently sporadic parathyroid carcinomas but, unexpectedly, germline HRPT2 mutation have been found in up to 30% of these patients. Several studies have been performed to evaluate whether parafibromin immunostaining might have some diagnostic utility. Loss of parafibromin immunoreactivity has been found in the majority of parathyroid carcinomas, in 50% of equivocal carcinomas and, very rarely, in benign adenomas. On the other hand, with the exception of HPT-JT-related tumors, loss of parafibromin associated with HRPT2 mutations strongly predicts parathyroid malignancy. In clinical practice, parafibromin immunostaining and HRPT2 gene analysis could be particularly useful in the subset of parathyroid tumors with equivocal histology.
Collapse
Affiliation(s)
- Filomena Cetani
- a Department of Endocrinology and Metabolism, Via Paradisa, 2, 56124 Pisa, Italy.
| | - Elena Pardi
- b Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy.
| | - Chiara Banti
- c Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy.
| | - Simona Borsari
- d Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy.
| | - Elena Ambrogini
- e Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy.
| | - Edda Vignali
- f Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy.
| | | | - Giuseppe Viccica
- h Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy.
| | - Aldo Pinchera
- i Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy.
| | - Claudio Marcocci
- j Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy.
| |
Collapse
|
118
|
Multiple yeast genes, including Paf1 complex genes, affect telomere length via telomerase RNA abundance. Mol Cell Biol 2008; 28:4152-61. [PMID: 18411302 DOI: 10.1128/mcb.00512-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Twofold reductions in telomerase RNA levels cause telomere shortening in both humans and the yeast Saccharomyces cerevisiae. To test whether multiple genes that affect telomere length act by modulating telomerase RNA abundance, we used real-time reverse transcription-PCR to screen S. cerevisiae deletion strains reported to maintain shorter or longer telomeres to determine the levels of their telomerase RNA (TLC1) abundance. Of 290 strains screened, 5 had increased TLC1 levels; 4 of these maintained longer telomeres. Twenty strains had decreased TLC1 levels; 18 of these are known to maintain shorter telomeres. Four strains with decreased TLC1 RNA levels contained deletions of subunits of Paf1C (polymerase II-associated factor complex). While Paf1C had been implicated in the transcription of both polyadenylated and nonpolyadenylated RNAs, Paf1C had not been associated previously with the noncoding telomerase RNA. In Paf1C mutant strains, TLC1 overexpression partially rescues telomere length and cell growth defects, suggesting that telomerase RNA is a critical direct or indirect Paf1C target. Other factors newly identified as affecting TLC1 RNA levels include cyclin-dependent kinase, the mediator complex, protein phosphatase 2A, and ribosomal proteins L13B and S16A. This report establishes that a subset of telomere length genes act by modulating telomerase RNA abundance.
Collapse
|
119
|
de Jong RN, Truffault V, Diercks T, Ab E, Daniels MA, Kaptein R, Folkers GE. Structure and DNA binding of the human Rtf1 Plus3 domain. Structure 2008; 16:149-59. [PMID: 18184592 DOI: 10.1016/j.str.2007.10.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 09/17/2007] [Accepted: 10/16/2007] [Indexed: 11/30/2022]
Abstract
The yeast Paf1 complex consists of Paf1, Rtf1, Cdc73, Ctr9, and Leo1 and regulates histone H2B ubiquitination, histone H3 methylation, RNA polymerase II carboxy-terminal domain (CTD) Ser2 phosphorylation, and RNA 3' end processing. We provide structural insight into the Paf1 complex with the NMR structure of the conserved and functionally important Plus3 domain of human Rtf1. A predominantly beta-stranded subdomain displays structural similarity to Dicer/Argonaute PAZ domains and to Tudor domains. We further demonstrate that the highly basic Rtf1 Plus3 domain can interact in vitro with single-stranded DNA via residues on the rim of the beta sheet, reminiscent of siRNA binding by PAZ domains, but did not detect binding to double-stranded DNA or RNA. We discuss the potential role of Rtf1 Plus3 ssDNA binding during transcription elongation.
Collapse
Affiliation(s)
- Rob N de Jong
- Bijvoet Centre for Biomolecular Research, Utrecht University, Faculty of Chemistry, Department NMR Spectroscopy, Padualaan 8, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
120
|
Cell-type-specific function of BCL9 involves a transcriptional activation domain that synergizes with beta-catenin. Mol Cell Biol 2008; 28:3526-37. [PMID: 18347063 DOI: 10.1128/mcb.01986-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional regulation by the canonical Wnt pathway involves the stabilization and nuclear accumulation of beta-catenin, which assembles with LEF1/TCF transcription factors and cofactors to activate Wnt target genes. Recently, the nuclear beta-catenin complex has been shown to contain BCL9, which interacts with beta-catenin and recruits Pygopus as a transcriptional coactivator. However, the presumed general functions of Pygopus and BCL9, which has been proposed to act as a scaffolding protein for Pygopus, have been challenged by the rather specific and modest developmental defects of targeted inactivations of both the Pygo1 and the Pygo2 genes. Here, we analyze the function of BCL9 in transcriptional activation by beta-catenin. We find that BCL9 acts in a cell-type-specific manner and, in part, independent of Pygopus. We show that BCL9 itself contains a transcriptional activation domain in the C terminus, which functionally synergizes in lymphoid cells with the C-terminal transactivation domain of beta-catenin. Finally, we identify amino acids in the transactivation domain of beta-catenin that are important for its function and association with the histone acetyltransferases CBP/p300 and TRRAP/GCN5. Thus, BCL9 may serve to modulate and diversify the transcriptional responses to Wnt signaling in a cell-type-specific manner.
Collapse
|
121
|
Djouder N, Metzler SC, Schmidt A, Wirbelauer C, Gstaiger M, Aebersold R, Hess D, Krek W. S6K1-mediated disassembly of mitochondrial URI/PP1gamma complexes activates a negative feedback program that counters S6K1 survival signaling. Mol Cell 2008; 28:28-40. [PMID: 17936702 DOI: 10.1016/j.molcel.2007.08.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 04/27/2007] [Accepted: 08/13/2007] [Indexed: 12/29/2022]
Abstract
S6 kinase 1 (S6K1) acts to integrate nutrient and growth factor signals to promote cell growth but also cell survival as a mitochondria-tethered protein kinase that phosphorylates and inactivates the proapoptotic molecule BAD. Here we report that the prefoldin chaperone URI represents a mitochondrial substrate of S6K1. In growth factor-deprived or rapamycin-treated cells, URI forms stable complexes with protein phosphatase (PP)1gamma at mitochondria, thereby inhibiting the activity of the bound enzyme. Growth factor stimulation induces disassembly of URI/PP1gamma complexes through S6K1-mediated phosphorylation of URI at serine 371. This activates a PP1gamma-dependent negative feedback program that decreases S6K1 activity and BAD phosphorylation, thereby altering the threshold for apoptosis. These findings establish URI and PP1gamma as integral components of an S6K1-regulated mitochondrial pathway dedicated, in part, to oppose sustained S6K1 survival signaling and to ensure that the mitochondrial threshold for apoptosis is set in accord with nutrient and growth factor availability.
Collapse
Affiliation(s)
- Nabil Djouder
- Institute of Cell Biology, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Parafibromin, a component of the human PAF complex, regulates growth factors and is required for embryonic development and survival in adult mice. Mol Cell Biol 2008; 28:2930-40. [PMID: 18212049 DOI: 10.1128/mcb.00654-07] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Parafibromin, a transcription factor associated with the PAF complex, is encoded by the HRPT2 gene, mutations of which cause the hyperparathyroidism-jaw tumor syndrome (OMIM145001). To elucidate the function of parafibromin, we generated conventional and conditional Hrpt2 knockout mice and found that Hrpt2(-/-) mice were embryonic lethal by embryonic day 6.5 (E6.5). Controlled deletion of Hrpt2 after E8.5 resulted in apoptosis and growth retardation. Deletion of Hrpt2 in adult mice led to severe cachexia and death within 20 days. To explore the mechanism underlying the embryonic lethality and death of adult mice, mouse embryonic fibroblasts (MEFs) were cultured and Hrpt2 was deleted in vitro. Hrpt2(-/-) MEFs underwent apoptosis, while Hrpt2(+/+) and Hrpt2(+/-) MEFs grew normally. To study the mechanism of this apoptosis, Hrpt2(+/+) and Hrpt2(-/-) MEFs were used in cDNA microarray, semiquantitative reverse transcription-PCR, and chromatin immunoprecipitation assays to identify genes regulated by parafibromin. These revealed that Hrpt2 expression and the parafibromin/PAF complex directly regulate genes involved in cell growth and survival, including H19, Igf1, Igf2, Igfbp4, Hmga1, Hmga2, and Hmgcs2. Thus, our results show that expression of Hrpt2 and parafibromin is pivotal in mammalian development and survival in adults and that these functions are likely mediated by the transcriptional regulation of growth factors.
Collapse
|
123
|
Takemaru KI, Ohmitsu M, Li FQ. An oncogenic hub: beta-catenin as a molecular target for cancer therapeutics. Handb Exp Pharmacol 2008:261-284. [PMID: 18491056 DOI: 10.1007/978-3-540-72843-6_11] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The Wnt/beta-catenin signaling pathway plays diverse roles in embryonic development and in maintenance of organs and tissues in adults. Activation of this signaling cascade inhibits degradation of the pivotal component beta-catenin, which in turn stimulates transcription of downstream target genes. Over the past two decades, intensive worldwide investigations have yielded considerable progress toward understanding the cellular and molecular mechanisms of Wnt signaling and its involvement in the pathogenesis of a range of human diseases. Remarkably, beta-catenin signaling is aberrantly activated in greater than 70% of colorectal cancers and to a lesser extent in other tumor types, promoting cancer cell proliferation, survival and migration. Accordingly, beta-catenin has gained recognition as an enticing molecular target for cancer therapeutics. Disruption of protein-protein interactions essential for beta-catenin activity holds immense promise for the development of novel anti-cancer drugs. In this review, we focus on the regulation of beta-catenin-dependent transcriptional activation and discuss potential therapeutic opportunities to block this signaling pathway in cancer.
Collapse
Affiliation(s)
- K-I Takemaru
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.
| | | | | |
Collapse
|
124
|
Zheng HC, Takahashi H, Li XH, Hara T, Masuda S, Guan YF, Takano Y. Downregulated parafibromin expression is a promising marker for pathogenesis, invasion, metastasis and prognosis of gastric carcinomas. Virchows Arch 2007; 452:147-55. [PMID: 18080135 PMCID: PMC2233709 DOI: 10.1007/s00428-007-0551-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 11/09/2007] [Accepted: 11/10/2007] [Indexed: 11/21/2022]
Abstract
Parafibromin is a protein encoded by the hyperparathyroidism 2 oncosuppressor gene and its downregulated expression is involved in pathogenesis of parathyroid carcinomas. To clarify the roles of parafibromin expression in tumourigenesis and progression of gastric carcinomas, it was examined by immunohistochemistry (IHC) on tissue microarray containing gastric carcinomas (n = 508), adenomas (n = 45) and gastritis (n = 49) with a comparison of its expression with clinicopathological parametres of carcinomas. Gastric carcinoma cell lines (MKN28, AGS, MKN45, KATO-III and HGC-27) were studied for parafibromin expression by IHC and western blot. Parafibromin expression was localised in the nucleus of gastric epithelial cells, adenoma, carcinoma cells and cell lines. Its expression was gradually decreased from gastritis to gastric carcinoma, through gastric adenomas (p < 0.05) and inversely correlated with tumour size, depth of invasion, lymphatic invasion, lymph node metastasis and Union Internationale Contre le Cancer (UICC) staging (p < 0.05) but not with sex or venous invasion (p > 0.05). Parafibromin was strongly expressed in older carcinoma patients compared with younger ones (p < 0.05). There was stronger positivity of parafibromin in intestinal-type than diffuse-type carcinomas (p < 0.05). Univariate analysis indicated cumulative survival rate of patients with positive parafibromin expression to be higher than without its expression (p < 0.05). Multivariate analysis showed that age, tumour size, depth of invasion, lymphatic invasion, lymph node metastasis, UICC staging and Lauren’s classification but not sex, venous invasion or parafibromin expression were independent prognostic factors for carcinomas(p < 0.05). Downregulated parafibromin expression possibly contributed to pathogenesis, growth, invasion and metastasis of gastric carcinomas. It was considered as a promising marker to indicate the aggressive behaviours and prognosis of gastric carcinomas.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang, China.
| | | | | | | | | | | | | |
Collapse
|
125
|
Kolfschoten IGM, Regazzi R. Technology Insight: small, noncoding RNA molecules as tools to study and treat endocrine diseases. ACTA ACUST UNITED AC 2007; 3:827-34. [DOI: 10.1038/ncpendmet0674] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Accepted: 09/10/2007] [Indexed: 02/07/2023]
|
126
|
Youn MY, Yoo HS, Kim MJ, Hwang SY, Choi Y, Desiderio SV, Yoo JY. hCTR9, a component of Paf1 complex, participates in the transcription of interleukin 6-responsive genes through regulation of STAT3-DNA interactions. J Biol Chem 2007; 282:34727-34. [PMID: 17911113 DOI: 10.1074/jbc.m705411200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PAF, which is composed of Paf1, Cdc73, Ctr9, Leo1, and Rtf1, is a novel complex with multiple functions in transcription-related activities. The PAF complex interacts with histone-modifying enzymes and RNA polymerase II to regulate transcription. With general transcription regulatory potential in yeast, Hyrax/Cdc73 has been reported to associate with beta-catenin to control Wnt/Wg signal-specific transcription in Drosophila. Here, we present the first evidence of IL-6 signal-specific transcriptional regulation by SH2BP1/CTR9 in mammals. Upon LPS injection of mice, we observed transient induction of the mammalian PAF complex in the liver. Inhibition of CTR9 specifically abrogated expression of IL-6-responsive genes, but had no effect on genes constitutively expressed or induced by interferon-beta, TNFalpha, or IL-1beta. The PAF complex was found in the promoter regions of IL-6-responsive HP and FGGgamma, but not in the promoter region of constitutively active GAPDH. Transcriptional activation by STAT3 was inhibited when CTR9 siRNA was introduced, whereas transcriptional activation was enhanced by mCtr9 overexpression. IL-6-activated Stat3 was found to co-localize and interact with CTR9. In CTR9-depleted cells, decreased STAT3 association with the promoter regions, as well as impaired K4-trimethylation of histone H3 in the coding regions, of target genes was observed. These data suggest that CTR9 participates in the transcription of IL-6-responsive genes through the regulation of DNA association of STAT3 and modification of histone methylation.
Collapse
Affiliation(s)
- Min-Young Youn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
127
|
Porzionato A, Macchi V, Barzon L, Masi G, Iacobone M, Parenti A, Palù G, De Caro R. Immunohistochemical assessment of parafibromin in mouse and human tissues. J Anat 2007; 209:817-27. [PMID: 17118068 PMCID: PMC2048996 DOI: 10.1111/j.1469-7580.2006.00657.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Parafibromin is a protein encoded by the HRPT2 oncosuppressor gene, whose mutation causes the hyperparathyroidism-jaw tumour syndrome, characterized by the occurrence of parathyroid adenoma or carcinoma, fibro-osseous jaw tumours, and renal neoplastic and non-neoplastic abnormalities. Non-morphological techniques, such as Northern and Western blotting and reverse transcriptase-PCR, indicate that parafibromin is ubiquitously expressed, but extensive immunohistochemical studies have not been performed. To increase our knowledge of the distribution and patterns of expression of parafibromin, we examined its expression and location in many different mouse and human organs by immunohistochemistry. There were no substantial differences in parafibromin expression between mouse and human. We found widespread expression of parafibromin, except in connective tissue, smooth muscle, endothelium and some other types of epithelia (colonic, urinary, tubaric, uterine, thyroid). Heterogeneity of positivity intensity and subcellular location (nuclear, nucleocytoplasmic, cytoplasmic) was found between tissues and cell types, suggesting differential functional involvement of parafibromin. Moreover, higher parafibromin expression was found in cell types, such as hepatocytes, cells of the base of gastric glands, renal cortex tubules and the pars intermedia of the hypophysis, which are characterized by different proliferative capacity, thus indicating that the cellular function of parafibromin may not be reduced only to its anti-proliferative effect.
Collapse
Affiliation(s)
- Andrea Porzionato
- Section of Anatomy, Department of Human Anatomy and Physiology, University of PadovaItaly
| | - Veronica Macchi
- Section of Anatomy, Department of Human Anatomy and Physiology, University of PadovaItaly
| | - Luisa Barzon
- Section of Microbiology, Department of Histology, Microbiology and Medical Biotechnologies, University of PadovaItaly
| | - Giulia Masi
- Section of Microbiology, Department of Histology, Microbiology and Medical Biotechnologies, University of PadovaItaly
| | - Maurizio Iacobone
- Section of Endocrine Surgery, Department of Surgical and Gastroenterological Sciences, University of PadovaItaly
| | - Anna Parenti
- Section of Pathologic Anatomy, Department of Oncological and Surgical Sciences, University of PadovaItaly
| | - Giorgio Palù
- Section of Microbiology, Department of Histology, Microbiology and Medical Biotechnologies, University of PadovaItaly
| | - Raffaele De Caro
- Section of Anatomy, Department of Human Anatomy and Physiology, University of PadovaItaly
| |
Collapse
|
128
|
Warner MH, Roinick KL, Arndt KM. Rtf1 is a multifunctional component of the Paf1 complex that regulates gene expression by directing cotranscriptional histone modification. Mol Cell Biol 2007; 27:6103-15. [PMID: 17576814 PMCID: PMC1952162 DOI: 10.1128/mcb.00772-07] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Numerous transcription accessory proteins cause alterations in chromatin structure that promote the progression of RNA polymerase II (Pol II) along open reading frames (ORFs). The Saccharomyces cerevisiae Paf1 complex colocalizes with actively transcribing Pol II and orchestrates modifications to the chromatin template during transcription elongation. To better understand the function of the Rtf1 subunit of the Paf1 complex, we created a series of sequential deletions along the length of the protein. Genetic and biochemical assays were performed on these mutants to identify residues required for the various activities of Rtf1. Our results establish that discrete nonoverlapping segments of Rtf1 are necessary for interaction with the ATP-dependent chromatin-remodeling protein Chd1, promoting covalent modification of histones H2B and H3, recruitment to active ORFs, and association with other Paf1 complex subunits. We observed transcription-related defects when regions of Rtf1 that mediate histone modification or association with active genes were deleted, but disruption of the physical association between Rtf1 and other Paf1 complex subunits caused only subtle mutant phenotypes. Together, our results indicate that Rtf1 influences transcription and chromatin structure through several independent functional domains and that Rtf1 may function independently of its association with other members of the Paf1 complex.
Collapse
Affiliation(s)
- Marcie H Warner
- Department of Biological Sciences, University of Pittsburgh, 269 Crawford Hall, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
129
|
Lin L, Czapiga M, Nini L, Zhang JH, Simonds WF. Nuclear localization of the parafibromin tumor suppressor protein implicated in the hyperparathyroidism-jaw tumor syndrome enhances its proapoptotic function. Mol Cancer Res 2007; 5:183-93. [PMID: 17314275 DOI: 10.1158/1541-7786.mcr-06-0129] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Parafibromin is a tumor suppressor protein encoded by HRPT2, a gene recently implicated in the hereditary hyperparathyroidism-jaw tumor syndrome, parathyroid cancer, and a subset of kindreds with familial isolated hyperparathyroidism. Human parafibromin binds to RNA polymerase II as part of a PAF1 transcriptional regulatory complex. The mechanism by which loss of parafibromin function can lead to neoplastic transformation is poorly understood. Because the subcellular localization of parafibromin is likely to be critical for its function with the nuclear PAF1 complex, we sought to experimentally define the nuclear localization signal (NLS) of parafibromin and examine its potential role in parafibromin function. Using site-directed mutagenesis, we define a dominant bipartite NLS and a secondary NLS, both in the NH(2)-terminal region of parafibromin whose combined mutation nearly abolishes nuclear targeting. The NLS-mutant parafibromin is significantly impaired in its association with endogenous Paf1 and Leo1. We further report that overexpression of wild-type but not NLS-mutant parafibromin induces apoptosis in transfected cells. Inhibition of endogenous parafibromin expression by RNA interference inhibits the basal rate of apoptosis and apoptosis resulting from DNA damage induced by camptothecin, a topoisomerase I inhibitor. These experiments identify for the first time a proapoptotic activity of endogenous parafibromin likely to be important in its role as a tumor suppressor and show a functional role for the NLS of parafibromin in this activity.
Collapse
Affiliation(s)
- Ling Lin
- Metabolic Diseases Branch/National Institutes of Diabetes, Digestive and Kidney Diseases, NIH, Room 8C-101, Building 10, 10 Center Drive, MSC 1752, Bethesda, MD 20892-1752, USA
| | | | | | | | | |
Collapse
|
130
|
Iwata T, Mizusawa N, Taketani Y, Itakura M, Yoshimoto K. Parafibromin tumor suppressor enhances cell growth in the cells expressing SV40 large T antigen. Oncogene 2007; 26:6176-83. [PMID: 17404568 DOI: 10.1038/sj.onc.1210445] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Parafibromin (PF) is a 531-amino acid protein encoded by HRPT2, a putative tumor suppressor gene recently implicated in the autosomal-dominant hyperparathyroidism-jaw tumor familial cancer syndrome and sporadic parathyroid carcinoma. To investigate effects of PF's overexpression on cell proliferation, we performed assays in four different cell lines. The transient overexpression of PF inhibited cell growth in HEK293 and NIH3T3 cells, but enhanced cell growth in the SV40 large T antigen-expressing cell lines such as 293FT and COS7 cells. In 293FT cells, PF was found to interact with SV40 large T antigen and its overexpression promoted entry into the S phase, implying that the interaction enhanced progression through the cell cycle. The tumor suppressor protein PF acts as a positive regulator of cell growth similar to an oncoprotein in the presence of SV40 large T antigen.
Collapse
Affiliation(s)
- T Iwata
- Department of Medical Pharmacology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | |
Collapse
|
131
|
Yamashita Y, Akiyama T, Mizusawa N, Yoshimoto K, Goto M. A case of hyperparathyroidism-jaw tumour syndrome found in the treatment of an ossifying fibroma in the maxillary bone. Int J Oral Maxillofac Surg 2007; 36:365-9. [PMID: 17052894 DOI: 10.1016/j.ijom.2006.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 08/01/2006] [Accepted: 08/24/2006] [Indexed: 11/25/2022]
Abstract
Hyperparathyroidism-jaw tumour (HPT-JT) syndrome is characterized by parathyroid tumours as well as by ossifying fibromas of the mandible and maxilla, renal cysts, or Wilms' tumours. Recently, the gene responsible for HPT-JT syndrome has been identified as the HRPT2 tumour suppressor gene. In an 18-year-old male, a tumour in the maxilla was first diagnosed as an ossifying fibroma. During biochemical screening before surgery, the patient received a diagnosis of primary hyperparathyroidism. Neck computed tomography scanning showed a parathyroid tumour. Surgical excisions to remove the jaw tumour and parathyroid adenoma were performed. The postoperative course has been uneventful and a follow up at 2 years revealed no evidence of recurrence. The HRPT2 germline mutation of 39delC was detected in the proband, but not in his unaffected parents. These results suggested that the germline mutation occurred de novo.
Collapse
Affiliation(s)
- Y Yamashita
- Department of Oral and Maxillofacial Surgery, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| | | | | | | | | |
Collapse
|
132
|
Gallant P. Control of transcription by Pontin and Reptin. Trends Cell Biol 2007; 17:187-92. [PMID: 17320397 DOI: 10.1016/j.tcb.2007.02.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 01/24/2007] [Accepted: 02/09/2007] [Indexed: 11/26/2022]
Abstract
Pontin and Reptin are two closely related members of the AAA+ family of DNA helicases. They have roles in diverse cellular processes, including the response to DNA double-strand breaks and the control of gene expression. The two proteins share residence in different multiprotein complexes, such as the Tip60, Ino80, SRCAP and Uri1 complexes in animals, which are involved (directly or indirectly) in transcriptional regulation, but they also function independently from each other. Both Reptin and Pontin repress certain transcriptional targets of Myc, but only Reptin is required for the repression of specific beta-catenin and nuclear factor-kappaB targets. Here, I review recent studies that have addressed the mechanisms of transcriptional control by Pontin and Reptin.
Collapse
Affiliation(s)
- Peter Gallant
- Zoologisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
133
|
Zhao J, Yart A, Frigerio S, Perren A, Schraml P, Weisstanner C, Stallmach T, Krek W, Moch H. Sporadic human renal tumors display frequent allelic imbalances and novel mutations of the HRPT2 gene. Oncogene 2006; 26:3440-9. [PMID: 17130827 DOI: 10.1038/sj.onc.1210131] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inactivation of the HRPT2 gene encoding parafibromin was recently linked to the familial hyperparathyroidism-jaw tumor syndrome. Patients with this syndrome carry an increased risk of parathyroid and renal tumors. To determine the relevance of HRPT2 for sporadic renal tumors, clear cell, papillary and chromophobe renal cell carcinomas as well as oncocytomas and Wilms tumors were analysed for HRPT2 gene alterations. Loss of heterozygosity (LOH) of HRPT2 was found in seven of 56 (12.5%) clear cell, three of 14 (21%) papillary, six of 10 (60%) chromophobe renal cell carcinomas, three of eight (38%) oncocytomas and four of 10 (40%) Wilms tumors. In addition, two novel HRPT2 point mutations, causing K34Q and R292K changes in parafibromin, were detected in one clear cell carcinoma and one Wilms tumor, respectively. These tumors displayed LOH of the remaining wild-type allele, but interestingly no von Hippel-Lindau (VHL) mutation. Functional analysis revealed that the K34Q mutant species of parafibromin is, unlike wild-type protein, defective in suppressing cyclin D1 expression in vivo. Taken together, these results suggest that renal cancer-associated mutations in parafibromin occur in the absence of VHL mutation, which in turn may contribute to constitutively elevated cyclin D1 expression and abnormal cell proliferation.
Collapse
Affiliation(s)
- J Zhao
- Department of Pathology, Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Gill AJ, Clarkson A, Gimm O, Keil J, Dralle H, Howell VM, Marsh DJ. Loss of nuclear expression of parafibromin distinguishes parathyroid carcinomas and hyperparathyroidism-jaw tumor (HPT-JT) syndrome-related adenomas from sporadic parathyroid adenomas and hyperplasias. Am J Surg Pathol 2006; 30:1140-9. [PMID: 16931959 DOI: 10.1097/01.pas.0000209827.39477.4f] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Parathyroid carcinoma is notoriously difficult to diagnose with confidence in borderline cases. Commonly there is a long lag time between diagnosis and clinical evidence of malignant behavior even in histopathologically straightforward lesions. There is therefore a need for a novel adjunctive marker to assist in the diagnosis of carcinoma. Parafibromin is the protein encoded by the putative tumor suppressor gene HRPT2. Mutations predicted to inactivate parafibromin were first detected in the germline of patients with hyperparathyroidism-jaw tumor (HPT-JT) syndrome. Subsequently, somatic mutations have been identified in the majority of sporadic carcinomas. We performed immunohistochemistry for parafibromin on 115 parathyroid tissues comprising 4 HPT-JT-related tumors (3 adenomas and 1 carcinoma), 11 sporadic parathyroid carcinomas, 79 sporadic adenomas, 3 multiple endocrine neoplasia 2A-related adenomas, 2 sporadic primary hyperplasias, 2 multiple endocrine neoplasia (MEN)-1-related hyperplasias, 6 secondary hyperplasias, 4 tertiary hyperplasias, and 4 normal parathyroid glands. There was complete absence of nuclear staining in 3 of 4 (75%) HPT-JT-related tumors and 8 of 11 (73%) sporadic parathyroid carcinomas and focal weak staining in 1 of 4 HPT-JT tumors and 2 of 11 sporadic parathyroid carcinomas. Only 1 parathyroid carcinoma exhibited diffuse strong nuclear expression of parafibromin. In contrast, 98 of 100 non-HPT-JT-related benign parathyroids showed diffuse strong nuclear positivity and 2 of 100 showed weak positive staining. We conclude that, in the correct clinical and pathologic context, complete absence of nuclear staining for parafibromin is diagnostic of parathyroid carcinoma or an HPT-JT-related tumor.
Collapse
Affiliation(s)
- Anthony J Gill
- Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, Australia.
| | | | | | | | | | | | | |
Collapse
|
135
|
Vakoc CR, Sachdeva MM, Wang H, Blobel GA. Profile of histone lysine methylation across transcribed mammalian chromatin. Mol Cell Biol 2006; 26:9185-95. [PMID: 17030614 PMCID: PMC1698537 DOI: 10.1128/mcb.01529-06] [Citation(s) in RCA: 300] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Complex patterns of histone lysine methylation encode distinct functions within chromatin. We previously reported that trimethylation of lysine 9 of histone H3 (H3K9) occurs at both silent heterochromatin and at the transcribed regions of active mammalian genes, suggesting that the extent of histone lysine methylation involved in mammalian gene activation is not completely defined. To identify additional sites of histone methylation that respond to mammalian gene activity, we describe here a comparative assessment of all six known positions of histone lysine methylation and relate them to gene transcription. Using several model loci, we observed high trimethylation of H3K4, H3K9, H3K36, and H3K79 in the transcribed region, consistent with previous findings. We identify H4K20 monomethylation, a modification previously linked with repression, as a mark of transcription elongation in mammalian cells. In contrast, H3K27 monomethylation, a modification enriched at pericentromeric heterochromatin, was observed broadly distributed throughout all euchromatic sites analyzed, with selective depletion in the vicinity of the transcription start sites at active genes. Together, these results underscore that similar to other described methyl-lysine modifications, H4K20 and H3K27 monomethylation are versatile and dynamic with respect to gene activity, suggesting the existence of novel site-specific methyltransferases and demethylases coupled to the transcription cycle.
Collapse
Affiliation(s)
- Christopher R Vakoc
- The Children's Hospital of Philadelphia, Division of Hematology, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
136
|
Bradley KJ, Bowl MR, Williams SE, Ahmad BN, Partridge CJ, Patmanidi AL, Kennedy AM, Loh NY, Thakker RV. Parafibromin is a nuclear protein with a functional monopartite nuclear localization signal. Oncogene 2006; 26:1213-21. [PMID: 16964291 DOI: 10.1038/sj.onc.1209893] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Parafibromin is a nuclear protein with a tumour suppressor role in the development of non-hereditary and hereditary parathyroid carcinomas, and the hyperparathyroidism-jaw tumour (HPT-JT) syndrome, which is associated with renal and uterine tumours. Nuclear localization signal(s), (NLS(s)), of the 61 kDa parafibromin remain to be defined. Utilization of computer-prediction programmes, identified five NLSs (three bipartite (BP) and two monopartite (MP)). To investigate their functionality, wild-type (WT) and mutant parafibromin constructs tagged with enhanced green fluorescent protein or cMyc were transiently expressed in COS-7 cells, or human embryonic kidney 293 (HEK293) cells, and their subcellular locations determined by confocal fluorescence microscopy. Western blot analyses of nuclear and cytoplasmic fractions from the transfected cells were also performed. WT parafibromin localized to the nucleus and deletions or mutations of the three predicted BP and one of the predicted MP NLSs did not affect this localization. In contrast, deletions or mutations of a MP NLS, at residues 136-139, resulted in loss of nuclear localization. Furthermore, the critical basic residues, KKXR, of this MP NLS were found to be evolutionarily conserved, and over 60% of all parafibromin mutations lead to a loss of this NLS. Thus, an important functional domain of parafibromin, consisting of an evolutionarily conserved MP NLS, has been identified.
Collapse
Affiliation(s)
- K J Bradley
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Abstract
The Wingless/Wnt pathway controls cell fates during animal development and regulates tissue homeostasis as well as stem cell number and differentiation in epithelia. Deregulation of Wnt signaling has been associated with cancer in humans. In the nucleus, the Wingless/Wnt signal is transmitted via the key effector protein Armadillo/beta-catenin. The recent identification and functional analysis of novel Armadillo/beta-catenin interaction partners provide new and exciting insights into the highly complex mechanism of Wingless/Wnt target gene activation.
Collapse
Affiliation(s)
- Reto Städeli
- These authors contributed equally. Institut für Molekularbiologie, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
138
|
Zhang C, Kong D, Tan MH, Pappas DL, Wang PF, Chen J, Farber L, Zhang N, Koo HM, Weinreich M, Williams BO, Teh BT. Parafibromin inhibits cancer cell growth and causes G1 phase arrest. Biochem Biophys Res Commun 2006; 350:17-24. [PMID: 16989776 DOI: 10.1016/j.bbrc.2006.08.169] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 08/23/2006] [Indexed: 10/24/2022]
Abstract
The HRPT2 (hereditary hyperparathyroidism type 2) tumor suppressor gene encodes a ubiquitously expressed 531 amino acid protein termed parafibromin. Inactivation of parafibromin predisposes one to the development of HPT-JT syndrome. To date, the role of parafibromin in tumorigenesis is largely unknown. Here, we report that parafibromin is a nuclear protein that possesses anti-proliferative properties. We show that overexpression of parafibromin inhibits colony formation and cellular proliferation, and induces cell cycle arrest in the G1 phase. Moreover, HPT-JT syndrome-derived mutations in HRPT2 behave in a dominant-negative manner by abolishing the ability of parafibromin to suppress cell proliferation. These findings suggest that parafibromin has a critical role in cell growth, and mutations in HRPT2 can directly inhibit this role.
Collapse
Affiliation(s)
- Chun Zhang
- Laboratory of Cancer Genetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Scott RH, Stiller CA, Walker L, Rahman N. Syndromes and constitutional chromosomal abnormalities associated with Wilms tumour. J Med Genet 2006; 43:705-15. [PMID: 16690728 PMCID: PMC2564568 DOI: 10.1136/jmg.2006.041723] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 04/07/2006] [Accepted: 04/10/2006] [Indexed: 12/25/2022]
Abstract
Wilms tumour has been reported in association with over 50 different clinical conditions and several abnormal constitutional karyotypes. Conclusive evidence of an increased risk of Wilms tumour exists for only a minority of these conditions, including WT1 associated syndromes, familial Wilms tumour, and certain overgrowth conditions such as Beckwith-Wiedemann syndrome. In many reported conditions the rare co-occurrence of Wilms tumour is probably due to chance. However, for several conditions the available evidence cannot either confirm or exclude an increased risk, usually because of the rarity of the syndrome. In addition, emerging evidence suggests that an increased risk of Wilms tumour occurs only in a subset of individuals for some syndromes. The complex clinical and molecular heterogeneity of disorders associated with Wilms tumour, together with the apparent absence of functional links between most of the known predisposition genes, suggests that abrogation of a variety of pathways can promote Wilms tumorigenesis.
Collapse
Affiliation(s)
- R H Scott
- Section of Cancer Genetics, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | | | | | | |
Collapse
|
140
|
Guarnieri V, Scillitani A, Muscarella LA, Battista C, Bonfitto N, Bisceglia M, Minisola S, Mascia ML, D'Agruma L, Cole DEC. Diagnosis of parathyroid tumors in familial isolated hyperparathyroidism with HRPT2 mutation: implications for cancer surveillance. J Clin Endocrinol Metab 2006; 91:2827-32. [PMID: 16720667 DOI: 10.1210/jc.2005-1239] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Mutations of the HRPT2 gene have recently been implicated in the development of parathyroid carcinoma. OBJECTIVE The objective of this study was early diagnosis of parathyroid tumor in a family with germline HRPT2 mutation. PATIENTS, METHODS, AND RESULTS In a 40-yr-old male previously treated for parathyroid atypical adenoma, we screened the 17 translated HRPT2 exons and their exon-intron boundaries and found a germline frameshift mutation in exon 7 (685delAGAG) predicting a premature stop codon at nucleotides 767-769. Nine family members (age, 33.9 +/- 19.8 yr, mean +/- SD) also carry the mutation, but eight have had normal serum calcium. Biochemical and ultrasonographic evaluation uncovered a 27-yr-old hypercalcemic carrier niece with an atypical parathyroid adenoma, and a 43-yr-old normocalcemic carrier sister was found by ultrasonography to have an extrathyroidal nodule, which proved to be parathyroid carcinoma. The index case, 12 yr after surgery, was normocalcemic, but ultrasonography revealed an extrathyroidal nodule in the contralateral hemithyroid tissue that proved to be atypical adenoma. CONCLUSIONS Our report confirms that germline mutations of HRPT2 gene may be associated with multiple parathyroid neoplasms. Our experience suggests that longitudinal surveillance by serum biochemistry alone may not be 100% sensitive, and addition of routine neck ultrasonography is a readily accepted adjunct that may facilitate earlier disease detection in some families.
Collapse
Affiliation(s)
- Vito Guarnieri
- Unit of Endocrinology, Casa Sollievo della Sofferenza Hospital, Instituto di Ricovero e Cura a Carattere Scientifico, 71013 San Giovanni Rotondo (FG), Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Parusel CT, Kritikou EA, Hengartner MO, Krek W, Gotta M. URI-1 is required for DNA stability in C. elegans. Development 2006; 133:621-9. [PMID: 16436622 DOI: 10.1242/dev.02235] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Unconventional prefoldin RPB5 interactor (URI), an evolutionary conserved member of the prefoldin family of molecular chaperones, plays a central role in the regulation of nutrient-sensitive, TOR (target-of-rapamycin)-dependent gene expression programs in yeast. Mammalian URI has been shown to associate with key components of the transcriptional machinery, including RPB5, a shared subunit of all three RNA polymerases, the ATPases TIP48 and TIP49, which are present in various chromatin remodeling complexes, and human PAF1 and parafibromin, which are components of a transcription elongation complex. Here, we provide the first functional characterization of a URI-1 homolog in a multicellular organism and show that the C. elegans gene uri-1 is essential for germ cell proliferation. URI-1-deficient cells exhibit cell cycle arrest and display DNA breaks as evidenced by TUNEL staining and the appearance of HUS-1::GFP foci formation. In addition, uri-1(lf) mutants and uri-1(RNAi) worms show a p53-dependent increase in germline apoptosis. Our findings indicate that URI-1 has an important function in the mitotic and meiotic cell cycles. Furthermore, they imply that URI-1 participates in a pathway(s) that is associated with the suppression of endogenous genotoxic DNA damage and highlight a role for URI-1 in the control of genome integrity.
Collapse
Affiliation(s)
- Christine T Parusel
- Eidgenoessische Technische Hochschule Zuerich, Institute of Cell Biology, CH-8093 Zuerich, Switzerland
| | | | | | | | | |
Collapse
|
142
|
Mosimann C, Hausmann G, Basler K. Parafibromin/Hyrax Activates Wnt/Wg Target Gene Transcription by Direct Association with β-catenin/Armadillo. Cell 2006; 125:327-41. [PMID: 16630820 DOI: 10.1016/j.cell.2006.01.053] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 11/10/2005] [Accepted: 01/24/2006] [Indexed: 12/21/2022]
Abstract
The Wnt pathway controls cell fates, tissue homeostasis, and cancer. Its activation entails the association of beta-catenin with nuclear TCF/LEF proteins and results in transcriptional activation of target genes. The mechanism by which nuclear beta-catenin controls transcription is largely unknown. Here we genetically identify a novel Wnt/Wg pathway component that mediates the transcriptional outputs of beta-catenin/Armadillo. We show that Drosophila Hyrax and its human ortholog, Parafibromin, components of the Polymerase-Associated Factor 1 (PAF1) complex, are required for nuclear transduction of the Wnt/Wg signal and bind directly to the C-terminal region of beta-catenin/Armadillo. Moreover, we find that the transactivation potential of Parafibromin/Hyrax depends on the recruitment of Pygopus to beta-catenin/Armadillo. Our results assign to the tumor suppressor Parafibromin an unexpected role in Wnt signaling and provide a molecular mechanism for Wnt target gene control, in which the nuclear Wnt signaling complex directly engages the PAF1 complex, thereby controlling transcriptional initiation and elongation by RNA Polymerase II.
Collapse
Affiliation(s)
- Christian Mosimann
- National Research Center Frontiers in Genetics, Institut für Molekularbiologie, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | |
Collapse
|
143
|
Adelman K, Wei W, Ardehali MB, Werner J, Zhu B, Reinberg D, Lis JT. Drosophila Paf1 modulates chromatin structure at actively transcribed genes. Mol Cell Biol 2006; 26:250-60. [PMID: 16354696 PMCID: PMC1317635 DOI: 10.1128/mcb.26.1.250-260.2006] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The Paf1 complex in yeast has been reported to influence a multitude of steps in gene expression through interactions with RNA polymerase II (Pol II) and chromatin-modifying complexes; however, it is unclear which of these many activities are primary functions of Paf1 and are conserved in metazoans. We have identified and characterized the Drosophila homologs of three subunits of the yeast Paf1 complex and found striking differences between the yeast and Drosophila Paf1 complexes. We demonstrate that although Drosophila Paf1, Rtf1, and Cdc73 colocalize broadly with actively transcribing, phosphorylated Pol II, and all are recruited to activated heat shock genes with similar kinetics; Rtf1 does not appear to be a stable part of the Drosophila Paf1 complex. RNA interference (RNAi)-mediated depletion of Paf1 or Rtf1 leads to defects in induction of Hsp70 RNA, but tandem RNAi-chromatin immunoprecipitation assays show that loss of neither Paf1 nor Rtf1 alters the density or distribution of phosphorylated Pol II on the active Hsp70 gene. However, depletion of Paf1 reduces trimethylation of histone H3 at lysine 4 in the Hsp70 promoter region and significantly decreases the recruitment of chromatin-associated factors Spt6 and FACT, suggesting that Paf1 may manifest its effects on transcription through modulating chromatin structure.
Collapse
Affiliation(s)
- Karen Adelman
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|
144
|
Bradley KJ, Cavaco BM, Bowl MR, Harding B, Cranston T, Fratter C, Besser GM, Conceição Pereira M, Davie MWJ, Dudley N, Leite V, Sadler GP, Seller A, Thakker RV. Parafibromin mutations in hereditary hyperparathyroidism syndromes and parathyroid tumours. Clin Endocrinol (Oxf) 2006; 64:299-306. [PMID: 16487440 DOI: 10.1111/j.1365-2265.2006.02460.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate two patients with the hyperparathyroidism-jaw tumour (HPT-JT) syndrome and three patients with familial isolated hyperparathyroidism (FIHP), together with 31 parathyroid tumours (2 HPT-JT, 2 FIHP and 27 sporadic) for HRPT2 mutations. The HPT-JT syndrome and FIHP are autosomal dominant disorders that may be caused by abnormalities of the HRPT2 gene, located on chromosome 1q31.2. HRPT2 encodes a 531 amino acid protein, parafibromin, which interacts with human homologues of the yeast Paf1 complex. DESIGN Leukocyte and tumor DNA was used with HRPT2-specific primers for polymerase chain reaction amplification of the 17 exons and their splice junctions, and the DNA sequences of the polymerase chain reaction products determined. RESULTS Three heterozygous germline HRPT2 mutations, two in HPT-JT and one in FIHP patients, were identified. These consisted of one 1-bp duplication (745dup1bp), 1 nonsense (Arg234Stop) and 1 missense (Asp379Asn) mutation. One parathyroid tumour from an FIHP patient was demonstrated to harbour a germline deletion of 1 bp together with a somatic missense (Leu95Pro) mutation, consistent with a 'two-hit' model for hereditary cancer. The 27 sporadic benign parathyroid tumours did not harbour any HRPT2 somatic mutations. Six HRPT2 polymorphisms with allele frequencies ranging from 2% to 15% were detected. CONCLUSIONS Our results have identified three novel HRPT2 mutations (two germline and one somatic). The Asp379Asn mutation is likely to disrupt interaction with the human homologue of the yeast Paf1 complex, and the demonstration of combined germline and somatic HRPT2 mutations in a parathyroid tumour provide further evidence for the tumour suppressor role of the HRPT2 gene.
Collapse
Affiliation(s)
- K J Bradley
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, OCDEM, Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Zhu B, Zheng Y, Pham AD, Mandal SS, Erdjument-Bromage H, Tempst P, Reinberg D. Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation. Mol Cell 2006; 20:601-11. [PMID: 16307923 DOI: 10.1016/j.molcel.2005.09.025] [Citation(s) in RCA: 389] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 09/22/2005] [Accepted: 09/30/2005] [Indexed: 11/25/2022]
Abstract
In yeast, histone H2B monoubiquitination is a cotranscriptional event regulating histone H3 methylation at lysines 4 and 79. However, mammalian H2B monoubiquitination remains poorly understood. We report that in humans, the 600 kDa RNF20/40 complex is the E3 ligase and UbcH6 is the ubiquitin E2-conjugating enzyme for H2B-Lys120 monoubiquitination. RNF20 and RNF40 are both homologs of Bre1, the E3 ligase in the yeast case. UbcH6 physically interacts with RNF20/40 and with the hPAF complex. Formation of a trimeric complex with hPAF stimulates H2B monoubiquitination activity in vitro. Accordingly, UbcH6, RNF20/40, and the hPAF complex are recruited to transcriptionally active genes in vivo. RNF20 overexpression leads to elevated H2B monoubiquitination, subsequently higher levels of methylation at H3 lysines 4 and 79, and stimulation of HOX gene expression. In contrast, RNAi against the RNF20/40 complex or hPAF complex reduces H2B monoubiquitination, lowers methylation levels at H3 lysines 4 and 79, and represses HOX gene expression.
Collapse
Affiliation(s)
- Bing Zhu
- Howard Hughes Medical Institute, Division of Nucleic Acids Enzymology, Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | |
Collapse
|
146
|
|