101
|
Mitchell KF, Zarnowski R, Andes DR. The Extracellular Matrix of Fungal Biofilms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 931:21-35. [PMID: 27271680 DOI: 10.1007/5584_2016_6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A key feature of biofilms is their production of an extracellular matrix. This material covers the biofilm cells, providing a protective barrier to the surrounding environment. During an infection setting, this can include such offenses as host cells and products of the immune system as well as drugs used for treatment. Studies over the past two decades have revealed the matrix from different biofilm species to be as diverse as the microbes themselves. This chapter will review the composition and roles of matrix from fungal biofilms, with primary focus on Candida species, Saccharomyces cerevisiae, Aspergillus fumigatus, and Cryptococcus neoformans. Additional coverage will be provided on the antifungal resistance proffered by the Candida albicans matrix, which has been studied in the most depth. A brief section on the matrix produced by bacterial biofilms will be provided for comparison. Current tools for studying the matrix will also be discussed, as well as suggestions for areas of future study in this field.
Collapse
Affiliation(s)
- Kaitlin F Mitchell
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert Zarnowski
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - David R Andes
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
102
|
Du Z, Zhang Y, Li L. The Yeast Prion [SWI(+)] Abolishes Multicellular Growth by Triggering Conformational Changes of Multiple Regulators Required for Flocculin Gene Expression. Cell Rep 2015; 13:2865-78. [PMID: 26711350 DOI: 10.1016/j.celrep.2015.11.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/13/2015] [Accepted: 11/18/2015] [Indexed: 11/26/2022] Open
Abstract
Although transcription factors are prevalent among yeast prion proteins, the role of prion-mediated transcriptional regulation remains elusive. Here, we show that the yeast prion [SWI(+)] abolishes flocculin (FLO) gene expression and results in a complete loss of multicellularity. Further investigation demonstrates that besides Swi1, multiple other proteins essential for FLO expression, including Mss11, Sap30, and Msn1 also undergo conformational changes and become inactivated in [SWI(+)] cells. Moreover, the asparagine-rich region of Mss11 can exist as prion-like aggregates specifically in [SWI(+)] cells, which are SDS resistant, heritable, and curable, but become metastable after separation from [SWI(+)]. Our findings thus reveal a prion-mediated mechanism through which multiple regulators in a biological pathway can be inactivated. In combination with the partial loss-of-function phenotypes of [SWI(+)] cells on non-glucose sugar utilization, our data therefore demonstrate that a prion can influence distinct traits differently through multi-level regulations, providing insights into the biological roles of prions.
Collapse
Affiliation(s)
- Zhiqiang Du
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Searle 7-650, Chicago, IL 60611, USA.
| | - Ying Zhang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, No. 3 Shangyuan Residence, Haidian District, Beijing 100044, China
| | - Liming Li
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Searle 7-650, Chicago, IL 60611, USA.
| |
Collapse
|
103
|
Su H, Zhao Y, Zhou J, Feng H, Jiang D, Zhang KQ, Yang J. Trapping devices of nematode-trapping fungi: formation, evolution, and genomic perspectives. Biol Rev Camb Philos Soc 2015; 92:357-368. [PMID: 26526919 DOI: 10.1111/brv.12233] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 11/29/2022]
Abstract
Nematode-trapping fungi (NTF) are potential biological control agents against plant- and animal-parasitic nematodes. These fungi produce diverse trapping devices (traps) to capture, kill, and digest nematodes as food sources. Most NTF can live as both saprophytes and parasites. Traps are not only the weapons that NTF use to capture and infect nematodes, but also an important indicator of their switch from a saprophytic to a predacious lifestyle. Formation of traps and their numbers are closely related to the nematicidal activity of NTF, so the mechanisms governing trap formation have become a focus of research on NTF. Recently, much progress has been made in our understanding of trap formation, evolution, and the genome, proteome and transcriptome of NTF. Here we provide a comprehensive overview of recent advances in research on traps of NTF. Various inducers of trap formation, trap development, structural properties and evolution of traps are summarized and discussed. We specifically discuss the latest studies of NTF based on genomic, proteomic and transcriptomic analyses.
Collapse
Affiliation(s)
- Hao Su
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, China
| | - Yong Zhao
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, China
| | - Jing Zhou
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, China
| | - Huihua Feng
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, China
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, 650223, China
| | - Ke-Qin Zhang
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, China
| | - Jinkui Yang
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, China
| |
Collapse
|
104
|
Diderrich R, Kock M, Maestre-Reyna M, Keller P, Steuber H, Rupp S, Essen LO, Mösch HU. Structural Hot Spots Determine Functional Diversity of the Candida glabrata Epithelial Adhesin Family. J Biol Chem 2015; 290:19597-613. [PMID: 26105055 PMCID: PMC4528126 DOI: 10.1074/jbc.m115.655654] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/20/2015] [Indexed: 11/06/2022] Open
Abstract
For host colonization, the human fungal pathogen Candida glabrata is known to utilize a large family of highly related surface-exposed cell wall proteins, the lectin-like epithelial adhesins (Epas). To reveal the structure-function relationships within the entire Epa family, we have performed a large scale functional analysis of the adhesion (A) domains of 17 Epa paralogs in combination with three-dimensional structural studies of selected members with cognate ligands. Our study shows that most EpaA domains exert lectin-like functions and together recognize a wide variety of glycans with terminal galactosides for conferring epithelial cell adhesion. We further identify several conserved and variable structural features within the diverse Epa ligand binding pockets, which affect affinity and specificity. These features rationalize why mere phylogenetic relationships within the Epa family are weak indicators for functional classification and explain how Epa-like adhesins have evolved in C. glabrata and related fungal species.
Collapse
Affiliation(s)
| | - Michael Kock
- Biochemistry, Philipps-Universität, 35043 Marburg, Germany
| | | | - Petra Keller
- the Fraunhofer-Institut für Grenzflächen und Bioverfahrenstechnik, 70569 Stuttgart, Germany, and
| | - Holger Steuber
- Biochemistry, Philipps-Universität, 35043 Marburg, Germany
| | - Steffen Rupp
- the Fraunhofer-Institut für Grenzflächen und Bioverfahrenstechnik, 70569 Stuttgart, Germany, and the Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie, Universität Stuttgart, 70569 Stuttgart, Germany
| | | | | |
Collapse
|
105
|
Chandra J, Mukherjee PK. Candida Biofilms: Development, Architecture, and Resistance. Microbiol Spectr 2015; 3:10.1128/microbiolspec.MB-0020-2015. [PMID: 26350306 PMCID: PMC4566167 DOI: 10.1128/microbiolspec.mb-0020-2015] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Indexed: 12/17/2022] Open
Abstract
Intravascular device-related infections are often associated with biofilms (microbial communities encased within a polysaccharide-rich extracellular matrix) formed by pathogens on the surfaces of these devices. Candida species are the most common fungi isolated from catheter-, denture-, and voice prosthesis-associated infections and also are commonly isolated from contact lens-related infections (e.g., fungal keratitis). These biofilms exhibit decreased susceptibility to most antimicrobial agents, which contributes to the persistence of infection. Recent technological advances have facilitated the development of novel approaches to investigate the formation of biofilms and identify specific markers for biofilms. These studies have provided extensive knowledge of the effect of different variables, including growth time, nutrients, and physiological conditions, on biofilm formation, morphology, and architecture. In this article, we will focus on fungal biofilms (mainly Candida biofilms) and provide an update on the development, architecture, and resistance mechanisms of biofilms.
Collapse
Affiliation(s)
- Jyotsna Chandra
- Center for Medical Mycology and Mycology Reference Laboratory, Department of Dermatology, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106
| | - Pranab K Mukherjee
- Center for Medical Mycology and Mycology Reference Laboratory, Department of Dermatology, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
106
|
A proposed adhesin AoMad1 helps nematode-trapping fungus Arthrobotrys oligospora recognizing host signals for life-style switching. Fungal Genet Biol 2015; 81:172-81. [DOI: 10.1016/j.fgb.2015.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/11/2015] [Accepted: 02/17/2015] [Indexed: 12/20/2022]
|
107
|
Egge N, Muthusubramanian A, Cornwall GA. Amyloid properties of the mouse egg zona pellucida. PLoS One 2015; 10:e0129907. [PMID: 26043223 PMCID: PMC4456372 DOI: 10.1371/journal.pone.0129907] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/14/2015] [Indexed: 01/15/2023] Open
Abstract
The zona pellucida (ZP) surrounding the oocyte is an extracellular fibrillar matrix that plays critical roles during fertilization including species-specific gamete recognition and protection from polyspermy. The mouse ZP is composed of three proteins, ZP1, ZP2, and ZP3, all of which have a ZP polymerization domain that directs protein fibril formation and assembly into the three-dimensional ZP matrix. Egg coats surrounding oocytes in nonmammalian vertebrates and in invertebrates are also fibrillar matrices and are composed of ZP domain-containing proteins suggesting the basic structure and function of the ZP/egg coat is highly conserved. However, sequence similarity between ZP domains is low across species and thus the mechanism for the conservation of ZP/egg coat structure and its function is not known. Using approaches classically used to identify amyloid including conformation-dependent antibodies and dyes, X-ray diffraction, and negative stain electron microscopy, our studies suggest the mouse ZP is a functional amyloid. Amyloids are cross-β sheet fibrillar structures that, while typically associated with neurodegenerative and prion diseases in mammals, can also carry out functional roles in normal cells without resulting pathology. An analysis of the ZP domain from mouse ZP3 and ZP3 homologs from five additional taxa using the algorithm AmylPred 2 to identify amyloidogenic sites, revealed in all taxa a remarkable conservation of regions that were predicted to form amyloid. This included a conserved amyloidogenic region that localized to a stretch of hydrophobic amino acids previously shown in mouse ZP3 to be essential for fibril assembly. Similarly, a domain in the yeast protein α-agglutinin/Sag 1p, that possesses ZP domain-like features and which is essential for mating, also had sites that were predicted to be amyloidogenic including a hydrophobic stretch that appeared analogous to the critical site in mouse ZP3. Together, these studies suggest that amyloidogenesis may be a conserved mechanism for ZP structure and function across billions of years of evolution.
Collapse
Affiliation(s)
- Nathan Egge
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Archana Muthusubramanian
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Gail A. Cornwall
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
108
|
Kraushaar T, Brückner S, Veelders M, Rhinow D, Schreiner F, Birke R, Pagenstecher A, Mösch HU, Essen LO. Interactions by the Fungal Flo11 Adhesin Depend on a Fibronectin Type III-like Adhesin Domain Girdled by Aromatic Bands. Structure 2015; 23:1005-17. [DOI: 10.1016/j.str.2015.03.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 03/06/2015] [Accepted: 03/25/2015] [Indexed: 12/23/2022]
|
109
|
Dufrêne YF. Sticky microbes: forces in microbial cell adhesion. Trends Microbiol 2015; 23:376-82. [DOI: 10.1016/j.tim.2015.01.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 11/30/2022]
|
110
|
Molecular mechanism of flocculation self-recognition in yeast and its role in mating and survival. mBio 2015; 6:mBio.00427-15. [PMID: 25873380 PMCID: PMC4453552 DOI: 10.1128/mbio.00427-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We studied the flocculation mechanism at the molecular level by determining the atomic structures of N-Flo1p and N-Lg-Flo1p in complex with their ligands. We show that they have similar ligand binding mechanisms but distinct carbohydrate specificities and affinities, which are determined by the compactness of the binding site. We characterized the glycans of Flo1p and their role in this binding process and demonstrate that glycan-glycan interactions significantly contribute to the cell-cell adhesion mechanism. Therefore, the extended flocculation mechanism is based on the self-interaction of Flo proteins and this interaction is established in two stages, involving both glycan-glycan and protein-glycan interactions. The crucial role of calcium in both types of interaction was demonstrated: Ca2+ takes part in the binding of the carbohydrate to the protein, and the glycans aggregate only in the presence of Ca2+. These results unify the generally accepted lectin hypothesis with the historically first-proposed “Ca2+-bridge” hypothesis. Additionally, a new role of cell flocculation is demonstrated; i.e., flocculation is linked to cell conjugation and mating, and survival chances consequently increase significantly by spore formation and by introduction of genetic variability. The role of Flo1p in mating was demonstrated by showing that mating efficiency is increased when cells flocculate and by differential transcriptome analysis of flocculating versus nonflocculating cells in a low-shear environment (microgravity). The results show that a multicellular clump (floc) provides a uniquely organized multicellular ultrastructure that provides a suitable microenvironment to induce and perform cell conjugation and mating. Yeast cells can form multicellular clumps under adverse growth conditions that protect cells from harsh environmental stresses. The floc formation is based on the self-interaction of Flo proteins via an N-terminal PA14 lectin domain. We have focused on the flocculation mechanism and its role. We found that carbohydrate specificity and affinity are determined by the accessibility of the binding site of the Flo proteins where the external loops in the ligand-binding domains are involved in glycan recognition specificity. We demonstrated that, in addition to the Flo lectin-glycan interaction, glycan-glycan interactions also contribute significantly to cell-cell recognition and interaction. Additionally, we show that flocculation provides a uniquely organized multicellular ultrastructure that is suitable to induce and accomplish cell mating. Therefore, flocculation is an important mechanism to enhance long-term yeast survival.
Collapse
|
111
|
Wolff JO, Grawe I, Wirth M, Karstedt A, Gorb SN. Spider's super-glue: thread anchors are composite adhesives with synergistic hierarchical organization. SOFT MATTER 2015; 11:2394-2403. [PMID: 25672841 DOI: 10.1039/c4sm02130d] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Silk is a key innovation in spiders, fascinating both biologists and material scientists. However, to fulfil their biological function silken threads must be strongly fastened to substrates or other threads. The majority of modern spiders produce a unique and rather unexplored bio-adhesive: the two-compound pyriform secretion, which is spun into elaborate patterns (so called attachment discs) and used to anchor silken threads to substrates. Strong adhesion is achieved on a high variety of surfaces with a minimum of material consumption. Pyriform threads polymerize under ambient conditions, become functional within less than a second and can remain stable for years. They are biodegradable, biocompatible and highly versatile - the adhesion and the overall toughness of the attachment disc can be controlled by spinneret movements on a macroscopic level (ref. 1: V. Sahni et al., Nat. Commun., 2012, 3, 1106, DOI: 10.1038/ncomms2099). We found that the pyriform thread is a silk fibre that is coated with glue-like cement consisting of aligned nanofibrils, lipid enclosures and a dense, isotropic boundary layer. The threads are spun in a meshwork pattern that promotes stress distribution and crack arresting. Our results demonstrate, that hierarchical organization and fibre embedding may explain the high adhesive strength and flaw tolerance of a structure made by the same, rather simple type of silk glands.
Collapse
Affiliation(s)
- Jonas O Wolff
- Department of Functional Morphology and Biomechanics, University of Kiel, Am Botanischen Garten 1-9, D-24098 Kiel, Germany.
| | | | | | | | | |
Collapse
|
112
|
Silva-Dias A, Miranda IM, Branco J, Monteiro-Soares M, Pina-Vaz C, Rodrigues AG. Adhesion, biofilm formation, cell surface hydrophobicity, and antifungal planktonic susceptibility: relationship among Candida spp. Front Microbiol 2015; 6:205. [PMID: 25814989 PMCID: PMC4357307 DOI: 10.3389/fmicb.2015.00205] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/26/2015] [Indexed: 11/13/2022] Open
Abstract
We have performed the characterization of the adhesion profile, biofilm formation, cell surface hydrophobicity (CSH) and antifungal susceptibility of 184 Candida clinical isolates obtained from different human reservoirs. Adhesion was quantified using a flow cytometric assay and biofilm formation was evaluated using two methodologies: XTT and crystal violet assay. CSH was quantified with the microbial adhesion to hydrocarbons test while planktonic susceptibility was assessed accordingly the CLSI protocol for yeast M27-A3 S4. Yeast cells of non-albicans species exhibit increased ability to adhere and form biofilm. However, the correlation between adhesion and biofilm formation varied according to species and also with the methodology used for biofilm assessment. No association was found between strain's site of isolation or planktonic antifungal susceptibility and adhesion or biofilm formation. Finally CSH seemed to be a good predictor for biofilm formation but not for adhesion. Despite the marked variability registered intra and inter species, C. tropicalis and C. parapsilosis were the species exhibiting high adhesion profile. C. tropicalis, C. guilliermondii, and C. krusei revealed higher biofilm formation values in terms of biomass. C. parapsilosis was the species with lower biofilm metabolic activity.
Collapse
Affiliation(s)
- Ana Silva-Dias
- Department of Microbiology, Faculty of Medicine, University of Porto Porto, Portugal ; Cardiovascular Research and Development Unit, Faculty of Medicine, University of Porto Porto, Portugal ; CINTESIS - Center for Health Technology and Services Research, Faculty of Medicine, University of Porto Porto, Portugal
| | - Isabel M Miranda
- Department of Microbiology, Faculty of Medicine, University of Porto Porto, Portugal ; Cardiovascular Research and Development Unit, Faculty of Medicine, University of Porto Porto, Portugal ; CINTESIS - Center for Health Technology and Services Research, Faculty of Medicine, University of Porto Porto, Portugal
| | - Joana Branco
- Department of Microbiology, Faculty of Medicine, University of Porto Porto, Portugal
| | - Matilde Monteiro-Soares
- CINTESIS - Center for Health Technology and Services Research, Faculty of Medicine, University of Porto Porto, Portugal ; CIDES, Department of Information and Decision Sciences in Health, Faculty of Medicine, University of Porto Porto, Portugal
| | - Cidália Pina-Vaz
- Department of Microbiology, Faculty of Medicine, University of Porto Porto, Portugal ; CINTESIS - Center for Health Technology and Services Research, Faculty of Medicine, University of Porto Porto, Portugal ; Department of Microbiology, Centro Hospitalar S. João Porto, Portugal
| | - Acácio G Rodrigues
- Department of Microbiology, Faculty of Medicine, University of Porto Porto, Portugal ; CINTESIS - Center for Health Technology and Services Research, Faculty of Medicine, University of Porto Porto, Portugal ; Burn Unit and Department of Plastic and Reconstructive Surgery, Centro Hospitalar S. João Porto, Portugal
| |
Collapse
|
113
|
Liu Z, Li R, Dong Q, Bian L, Li X, Yuan S. Characterization of the non-sexual flocculation of fission yeast cells that results from the deletion of ribosomal protein L32. Yeast 2015; 32:439-49. [DOI: 10.1002/yea.3070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 12/25/2014] [Accepted: 02/12/2015] [Indexed: 11/11/2022] Open
Affiliation(s)
- Zhonghua Liu
- Jiangsu Key Laboratory for Microbes and Functional Genetics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Science; Nanjing Normal University; People's Republic of China
| | - Rongpeng Li
- Jiangsu Key Laboratory for Microbes and Functional Genetics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Science; Nanjing Normal University; People's Republic of China
| | - Qing Dong
- Jiangsu Key Laboratory for Microbes and Functional Genetics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Science; Nanjing Normal University; People's Republic of China
| | - Lezhi Bian
- Jiangsu Key Laboratory for Microbes and Functional Genetics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Science; Nanjing Normal University; People's Republic of China
| | - Xuesong Li
- Jiangsu Key Laboratory for Microbes and Functional Genetics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Science; Nanjing Normal University; People's Republic of China
| | - Sheng Yuan
- Jiangsu Key Laboratory for Microbes and Functional Genetics, Jiangsu Engineering and Technology Research Centre for Industrialization of Microbial Resources, College of Life Science; Nanjing Normal University; People's Republic of China
| |
Collapse
|
114
|
El-Kirat-Chatel S, Beaussart A, Derclaye S, Alsteens D, Kucharíková S, Van Dijck P, Dufrêne YF. Force nanoscopy of hydrophobic interactions in the fungal pathogen Candida glabrata. ACS NANO 2015; 9:1648-1655. [PMID: 25621738 DOI: 10.1021/nn506370f] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Candida glabrata is an opportunistic human fungal pathogen which binds to surfaces mainly through the Epa family of cell adhesion proteins. While some Epa proteins mediate specific lectin-like interactions with human epithelial cells, others promote adhesion and biofilm formation on plastic surfaces via nonspecific interactions that are not yet elucidated. We report the measurement of hydrophobic forces engaged in Epa6-mediated cell adhesion by means of atomic force microscopy (AFM). Using single-cell force spectroscopy, we found that C. glabrata wild-type (WT) cells attach to hydrophobic surfaces via strongly adhesive macromolecular bonds, while mutant cells impaired in Epa6 expression are weakly adhesive. Nanoscale mapping of yeast cells using AFM tips functionalized with hydrophobic groups shows that Epa6 is massively exposed on WT cells and conveys strong hydrophobic properties to the cell surface. Our results demonstrate that Epa6 mediates strong hydrophobic interactions, thereby providing a molecular basis for the ability of this adhesin to drive biofilm formation on abiotic surfaces.
Collapse
Affiliation(s)
- Sofiane El-Kirat-Chatel
- Institute of Life Sciences, Université Catholique de Louvain , Croix du Sud, 1, bte L7.04.01, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | | | | | | | |
Collapse
|
115
|
El-Kirat-Chatel S, Beaussart A, Vincent SP, Flos MA, Hols P, Lipke PN, Dufrêne YF. Forces in yeast flocculation. NANOSCALE 2015; 7:1760-1767. [PMID: 25515338 PMCID: PMC4304900 DOI: 10.1039/c4nr06315e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion ("flocculation") is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.
Collapse
Affiliation(s)
- Sofiane El-Kirat-Chatel
- Université catholique de Louvain, Institute of Life Sciences, B-1348 Louvain-la-Neuve, Belgium
| | - Audrey Beaussart
- Université catholique de Louvain, Institute of Life Sciences, B-1348 Louvain-la-Neuve, Belgium
| | - Stéphane P. Vincent
- University of Namur, Department of Chemistry, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Marta Abellán Flos
- University of Namur, Department of Chemistry, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Pascal Hols
- Université catholique de Louvain, Institute of Life Sciences, B-1348 Louvain-la-Neuve, Belgium
| | - Peter N. Lipke
- Department of Biology, Brooklyn College of City University of New York, Brooklyn, New York 11210, USA
| | - Yves F. Dufrêne
- Université catholique de Louvain, Institute of Life Sciences, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
116
|
A monoclonal antibody against glycoproteins of Aspergillus fumigatus shows anti-adhesive potential. Microb Pathog 2015; 79:24-30. [DOI: 10.1016/j.micpath.2015.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 11/18/2022]
|
117
|
Schluter J, Nadell CD, Bassler BL, Foster KR. Adhesion as a weapon in microbial competition. THE ISME JOURNAL 2015; 9:139-49. [PMID: 25290505 PMCID: PMC4268496 DOI: 10.1038/ismej.2014.174] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 06/17/2014] [Accepted: 08/11/2014] [Indexed: 01/09/2023]
Abstract
Microbes attach to surfaces and form dense communities known as biofilms, which are central to how microbes live and influence humans. The key defining feature of biofilms is adhesion, whereby cells attach to one another and to surfaces, via attachment factors and extracellular polymers. While adhesion is known to be important for the initial stages of biofilm formation, its function within biofilm communities has not been studied. Here we utilise an individual-based model of microbial groups to study the evolution of adhesion. While adhering to a surface can enable cells to remain in a biofilm, consideration of within-biofilm competition reveals a potential cost to adhesion: immobility. Highly adhesive cells that are resistant to movement face being buried and starved at the base of the biofilm. However, we find that when growth occurs at the base of a biofilm, adhesion allows cells to capture substratum territory and force less adhesive, competing cells out of the system. This process may be particularly important when cells grow on a host epithelial surface. We test the predictions of our model using the enteric pathogen Vibrio cholerae, which produces an extracellular matrix important for biofilm formation. Flow cell experiments indicate that matrix-secreting cells are highly adhesive and form expanding clusters that remove non-secreting cells from the population, as predicted by our simulations. Our study shows how simple physical properties, such as adhesion, can be critical to understanding evolution and competition within microbial communities.
Collapse
Affiliation(s)
- Jonas Schluter
- Department of Zoology, University of Oxford, Oxford, UK
- Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, UK
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa, Japan
| | - Carey D Nadell
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Kevin R Foster
- Department of Zoology, University of Oxford, Oxford, UK
- Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, UK
| |
Collapse
|
118
|
Fine-tuning of histone H3 Lys4 methylation during pseudohyphal differentiation by the CDK submodule of RNA polymerase II. Genetics 2014; 199:435-53. [PMID: 25467068 DOI: 10.1534/genetics.114.172841] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Transcriptional regulation is dependent upon the interactions between the RNA pol II holoenzyme complex and chromatin. RNA pol II is part of a highly conserved multiprotein complex that includes the core mediator and CDK8 subcomplex. In Saccharomyces cerevisiae, the CDK8 subcomplex, composed of Ssn2p, Ssn3p, Ssn8p, and Srb8p, is thought to play important roles in mediating transcriptional control of stress-responsive genes. Also central to transcriptional control are histone post-translational modifications. Lysine methylation, dynamically balanced by lysine methyltransferases and demethylases, has been intensively studied, uncovering significant functions in transcriptional control. A key question remains in understanding how these enzymes are targeted during stress response. To determine the relationship between lysine methylation, the CDK8 complex, and transcriptional control, we performed phenotype analyses of yeast lacking known lysine methyltransferases or demethylases in isolation or in tandem with SSN8 deletions. We show that the RNA pol II CDK8 submodule components SSN8/SSN3 and the histone demethylase JHD2 are required to inhibit pseudohyphal growth-a differentiation pathway induced during nutrient limitation-under rich conditions. Yeast lacking both SSN8 and JHD2 constitutively express FLO11, a major regulator of pseudohyphal growth. Interestingly, deleting known FLO11 activators including FLO8, MSS11, MFG1, TEC1, SNF1, KSS1, and GCN4 results in a range of phenotypic suppression. Using chromatin immunoprecipitation, we found that SSN8 inhibits H3 Lys4 trimethylation independently of JHD2 at the FLO11 locus, suggesting that H3 Lys4 hypermethylation is locking FLO11 into a transcriptionally active state. These studies implicate the CDK8 subcomplex in fine-tuning H3 Lys4 methylation levels during pseudohyphal differentiation.
Collapse
|
119
|
Bou Zeidan M, Zara G, Viti C, Decorosi F, Mannazzu I, Budroni M, Giovannetti L, Zara S. L-histidine inhibits biofilm formation and FLO11-associated phenotypes in Saccharomyces cerevisiae flor yeasts. PLoS One 2014; 9:e112141. [PMID: 25369456 PMCID: PMC4219837 DOI: 10.1371/journal.pone.0112141] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/18/2014] [Indexed: 11/19/2022] Open
Abstract
Flor yeasts of Saccharomyces cerevisiae have an innate diversity of Flo11p which codes for a highly hydrophobic and anionic cell-wall glycoprotein with a fundamental role in biofilm formation. In this study, 380 nitrogen compounds were administered to three S. cerevisiae flor strains handling Flo11p alleles with different expression levels. S. cerevisiae strain S288c was used as the reference strain as it cannot produce Flo11p. The flor strains generally metabolized amino acids and dipeptides as the sole nitrogen source, although with some exceptions regarding L-histidine and histidine containing dipeptides. L-histidine completely inhibited growth and its effect on viability was inversely related to Flo11p expression. Accordingly, L-histidine did not affect the viability of the Δflo11 and S288c strains. Also, L-histidine dramatically decreased air-liquid biofilm formation and adhesion to polystyrene of the flor yeasts with no effect on the transcription level of the Flo11p gene. Moreover, L-histidine modified the chitin and glycans content on the cell-wall of flor yeasts. These findings reveal a novel biological activity of L-histidine in controlling the multicellular behavior of yeasts [corrected].
Collapse
Affiliation(s)
- Marc Bou Zeidan
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | - Giacomo Zara
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | - Carlo Viti
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, University of Florence, Firenze, Italy
| | - Francesca Decorosi
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, University of Florence, Firenze, Italy
| | - Ilaria Mannazzu
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | | | - Luciana Giovannetti
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, University of Florence, Firenze, Italy
| | - Severino Zara
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
- * E-mail:
| |
Collapse
|
120
|
Krasowska A, Sigler K. How microorganisms use hydrophobicity and what does this mean for human needs? Front Cell Infect Microbiol 2014; 4:112. [PMID: 25191645 PMCID: PMC4137226 DOI: 10.3389/fcimb.2014.00112] [Citation(s) in RCA: 340] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/29/2014] [Indexed: 11/25/2022] Open
Abstract
Cell surface hydrophobicity (CSH) plays a crucial role in the attachment to, or detachment from the surfaces. The influence of CSH on adhesion of microorganisms to biotic and abiotic surfaces in medicine as well as in bioremediation and fermentation industry has both negative and positive aspects. Hydrophobic microorganisms cause the damage of surfaces by biofilm formation; on the other hand, they can readily accumulate on organic pollutants and decompose them. Hydrophilic microorganisms also play a considerable role in removing organic wastes from the environment because of their high resistance to hydrophobic chemicals. Despite the many studies on the environmental and metabolic factors affecting CSH, the knowledge of this subject is still scanty and is in most cases limited to observing the impact of hydrophobicity on adhesion, aggregation or flocculation. The future of research seems to lie in finding a way to managing the microbial adhesion process, perhaps by steering cell hydrophobicity.
Collapse
Affiliation(s)
- Anna Krasowska
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw Wroclaw, Poland
| | - Karel Sigler
- Department of Cell Biology, Institute of Microbiology, Czech Academy of Sciences Prague, Czech Republic
| |
Collapse
|
121
|
Abstract
Alcoholic fermentations have accompanied human civilizations throughout our history. Lager yeasts have a several-century-long tradition of providing fresh beer with clean taste. The yeast strains used for lager beer fermentation have long been recognized as hybrids between two Saccharomyces species. We summarize the initial findings on this hybrid nature, the genomics/transcriptomics of lager yeasts, and established targets of strain improvements. Next-generation sequencing has provided fast access to yeast genomes. Its use in population genomics has uncovered many more hybridization events within Saccharomyces species, so that lager yeast hybrids are no longer the exception from the rule. These findings have led us to propose network evolution within Saccharomyces species. This "web of life" recognizes the ability of closely related species to exchange DNA and thus drain from a combined gene pool rather than be limited to a gene pool restricted by speciation. Within the domesticated lager yeasts, two groups, the Saaz and Frohberg groups, can be distinguished based on fermentation characteristics. Recent evidence suggests that these groups share an evolutionary history. We thus propose to refer to the Saaz group as Saccharomyces carlsbergensis and to the Frohberg group as Saccharomyces pastorianus based on their distinct genomes. New insight into the hybrid nature of lager yeast will provide novel directions for future strain improvement.
Collapse
|
122
|
Tran VT, Braus-Stromeyer SA, Kusch H, Reusche M, Kaever A, Kühn A, Valerius O, Landesfeind M, Aßhauer K, Tech M, Hoff K, Pena-Centeno T, Stanke M, Lipka V, Braus GH. Verticillium transcription activator of adhesion Vta2 suppresses microsclerotia formation and is required for systemic infection of plant roots. THE NEW PHYTOLOGIST 2014; 202:565-581. [PMID: 24433459 DOI: 10.1111/nph.12671] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/03/2013] [Indexed: 05/05/2023]
Abstract
Six transcription regulatory genes of the Verticillium plant pathogen, which reprogrammed nonadherent budding yeasts for adhesion, were isolated by a genetic screen to identify control elements for early plant infection. Verticillium transcription activator of adhesion Vta2 is highly conserved in filamentous fungi but not present in yeasts. The Magnaporthe grisea ortholog conidiation regulator Con7 controls the formation of appressoria which are absent in Verticillium species. Vta2 was analyzed by using genetics, cell biology, transcriptomics, secretome proteomics and plant pathogenicity assays. Nuclear Vta2 activates the expression of the adhesin-encoding yeast flocculin genes FLO1 and FLO11. Vta2 is required for fungal growth of Verticillium where it is a positive regulator of conidiation. Vta2 is mandatory for accurate timing and suppression of microsclerotia as resting structures. Vta2 controls expression of 270 transcripts, including 10 putative genes for adhesins and 57 for secreted proteins. Vta2 controls the level of 125 secreted proteins, including putative adhesins or effector molecules and a secreted catalase-peroxidase. Vta2 is a major regulator of fungal pathogenesis, and controls host-plant root infection and H2 O2 detoxification. Verticillium impaired in Vta2 is unable to colonize plants and induce disease symptoms. Vta2 represents an interesting target for controlling the growth and development of these vascular pathogens.
Collapse
Affiliation(s)
- Van-Tuan Tran
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
- Department of Microbiology, Faculty of Biology, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Susanna A Braus-Stromeyer
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Harald Kusch
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Michael Reusche
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| | - Alexander Kaever
- Department of Bioinformatics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Goldschmidtstr. 1, D-37077, Göttingen, Germany
| | - Anika Kühn
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Manuel Landesfeind
- Department of Bioinformatics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Goldschmidtstr. 1, D-37077, Göttingen, Germany
| | - Kathrin Aßhauer
- Department of Bioinformatics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Goldschmidtstr. 1, D-37077, Göttingen, Germany
| | - Maike Tech
- Department of Bioinformatics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Goldschmidtstr. 1, D-37077, Göttingen, Germany
| | - Katharina Hoff
- Institute for Mathematics and Computer Science, Ernst-Moritz-Arndt-University Greifswald, Walther-Rathenau-Straße 47, D-17487, Greifswald, Germany
| | - Tonatiuh Pena-Centeno
- Institute for Mathematics and Computer Science, Ernst-Moritz-Arndt-University Greifswald, Walther-Rathenau-Straße 47, D-17487, Greifswald, Germany
| | - Mario Stanke
- Institute for Mathematics and Computer Science, Ernst-Moritz-Arndt-University Greifswald, Walther-Rathenau-Straße 47, D-17487, Greifswald, Germany
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| |
Collapse
|
123
|
Role of force-sensitive amyloid-like interactions in fungal catch bonding and biofilms. EUKARYOTIC CELL 2014; 13:1136-42. [PMID: 24681687 DOI: 10.1128/ec.00068-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Candida albicans Als adhesin Als5p has an amyloid-forming sequence that is required for aggregation and formation of model biofilms on polystyrene. Because amyloid formation can be triggered by force, we investigated whether laminar flow could activate amyloid formation and increase binding to surfaces. Shearing Saccharomyces cerevisiae cells expressing Als5p or C. albicans at 0.8 dyne/cm(2) increased the quantity and strength of cell-to-surface and cell-to-cell binding compared to that at 0.02 dyne/cm(2). Thioflavin T fluorescence showed that the laminar flow also induced adhesin aggregation into surface amyloid nanodomains in Als5p-expressing cells. Inhibitory concentrations of the amyloid dyes thioflavin S and Congo red or a sequence-specific anti-amyloid peptide decreased binding and biofilm formation under flow. Shear-induced binding also led to formation of robust biofilms. There was less shear-activated increase in adhesion, thioflavin fluorescence, and biofilm formation in cells expressing the amyloid-impaired V326N-substituted Als5p. Similarly, S. cerevisiae cells expressing Flo1p or Flo11p flocculins also showed shear-dependent binding, amyloid formation, biofilm formation, and inhibition by anti-amyloid compounds. Together, these results show that laminar flow activated amyloid formation and led to enhanced adhesion of yeast cells to surfaces and to biofilm formation.
Collapse
|
124
|
Jones SK, Hirakawa MP, Bennett RJ. Sexual biofilm formation in Candida tropicalis opaque cells. Mol Microbiol 2014; 92:383-98. [PMID: 24612417 DOI: 10.1111/mmi.12565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2014] [Indexed: 12/14/2022]
Abstract
Candida albicans and Candida tropicalis are opportunistic fungal pathogens that can transition between white and opaque phenotypic states. White and opaque cells differ both morphologically and in their responses to environmental signals. In C. albicans, opaque cells respond to sexual pheromones by undergoing conjugation, while white cells are induced by pheromones to form sexual biofilms. Here, we show that sexual biofilm formation also occurs in C. tropicalis but, unlike C. albicans, biofilms are formed exclusively by opaque cells. C. tropicalis biofilm formation was dependent on the pheromone receptors Ste2 and Ste3, confirming the role of pheromone signalling in sexual biofilm development. Structural analysis of C. tropicalis sexual biofilms revealed stratified communities consisting of a basal layer of yeast cells and an upper layer of filamentous cells, together with an extracellular matrix. Transcriptional profiling showed that genes involved in pheromone signalling and conjugation were upregulated in sexual biofilms. Furthermore, FGR23, which encodes an agglutinin-like protein, was found to enhance both mating and sexual biofilm formation. Together, these studies reveal that C. tropicalis opaque cells form sexual biofilms with a complex architecture, and suggest a conserved role for sexual agglutinins in mediating mating, cell cohesion and biofilm formation.
Collapse
Affiliation(s)
- Stephen K Jones
- Department of Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| | | | | |
Collapse
|
125
|
Maintaining two mating types: structure of the mating type locus and its role in heterokaryosis in Podospora anserina. Genetics 2014; 197:421-32. [PMID: 24558260 DOI: 10.1534/genetics.113.159988] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudo-homothallism is a reproductive strategy elected by some fungi producing heterokaryotic sexual spores containing genetically different but sexually compatible nuclei. This lifestyle appears as a compromise between true homothallism (self-fertility with predominant inbreeding) and complete heterothallism (with exclusive outcrossing). However, pseudohomothallic species face the problem of maintaining heterokaryotic mycelia to fully benefit from this lifestyle, as homokaryons are self-sterile. Here, we report on the structure of chromosome 1 in mat+ and mat- isolates of strain S of the pseudohomothallic fungus Podospora anserina. Chromosome 1 contains either one of the mat+ and mat- mating types of P. anserina, which is mostly found in nature as a mat+/mat- heterokaryotic mycelium harboring sexually compatible nuclei. We identified a "mat" region ∼0.8 Mb long, devoid of meiotic recombination and containing the mating-type idiomorphs, which is a candidate to be involved in the maintenance of the heterokaryotic state, since the S mat+ and S mat- strains have different physiology that may enable hybrid-vigor-like phenomena in the heterokaryons. The mat region contains 229 coding sequences. A total of 687 polymorphisms were detected between the S mat+ and S mat- chromosomes. Importantly, the mat region is colinear between both chromosomes, which calls for an original mechanism of recombination inhibition. Microarray analyses revealed that 10% of the P. anserina genes have different transcriptional profiles in S mat+ and S mat-, in line with their different phenotypes. Finally, we show that the heterokaryotic state is faithfully maintained during mycelium growth of P. anserina, yet mat+/mat+ and mat-/mat- heterokaryons are as stable as mat+/mat- ones, evidencing a maintenance of heterokaryosis that does not rely on fitness-enhancing complementation between the S mat+ and S mat- strains.
Collapse
|
126
|
Abstract
We tell of a journey that led to discovery of amyloids formed by yeast cell adhesins and their importance in biofilms and host immunity. We begin with the identification of the adhesin functional amyloid-forming sequences that mediate fiber formation in vitro. Atomic force microscopy and confocal microscopy show 2-dimensional amyloid "nanodomains" on the surface of cells that are activated for adhesion. These nanodomains are arrays of adhesin molecules that bind multivalent ligands with high avidity. Nanodomains form when adhesin molecules are stretched in the AFM or under laminar flow. Treatment with antiamyloid perturbants or mutation of the amyloid sequence prevents adhesion nanodomain formation and activation. We are now discovering biological consequences. Adhesin nanodomains promote formation and maintenance of biofilms, which are microbial communities. Also, in abscesses within candidiasis patients, we find adhesin amyloids on the surface of the fungi. In both human infection and a Caenorhabditis elegans infection model, the presence of fungal surface amyloids elicits anti-inflammatory responses. Thus, this is a story of how fungal adhesins respond to extension forces through formation of cell surface amyloid nanodomains, with key consequences for biofilm formation and host responses.
Collapse
|
127
|
How carbohydrates sculpt cells: chemical control of morphogenesis in the yeast cell wall. Nat Rev Microbiol 2013; 11:648-55. [PMID: 23949603 DOI: 10.1038/nrmicro3090] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In budding yeast, the neck that connects the mother and daughter cell is the site of essential functions such as organelle trafficking, septum formation and cytokinesis. Therefore, the morphology of this region, which depends on the surrounding cell wall, must be maintained throughout the cell cycle. Growth at the neck is prevented, redundantly, by a septin ring inside the cell membrane and a chitin ring in the cell wall. Here, we describe recent work supporting the hypothesis that attachment of the chitin ring, which forms at the mother-bud neck during budding, to β-1,3-glucan in the cell wall is necessary to stop growth at the neck. Thus, in this scenario, chemistry controls morphogenesis.
Collapse
|
128
|
Alsteens D, Beaussart A, Derclaye S, El-Kirat-Chatel S, Park HR, Lipke PN, Dufrêne YF. Single-Cell Force Spectroscopy of Als-Mediated Fungal Adhesion. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2013; 5:3657-3662. [PMID: 23956795 PMCID: PMC3743104 DOI: 10.1039/c3ay40473k] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Macroscopic assays that are traditionally used to investigate the adhesion behaviour of microbial cells provide averaged information obtained on large populations of cells and do not measure the fundamental forces driving single-cell adhesion. Here, we use single-cell force spectroscopy (SCFS) to quantify the specific and non-specific forces engaged in the adhesion of the human fungal pathogen Candida albicans. Saccharomyces cerevisiae cells expressing the C. albicans adhesion protein Als5p were attached on atomic force microscopy tipless cantilevers using a bioinspired polydopamine wet polymer, and force-distance curves were recorded between the obtained cell probes and various solid surfaces. Force signatures obtained on hydrophobic substrates exhibited large adhesion forces (1.25 ± 0.2 nN) with extended rupture lengths (up to 400 nm), attributed to the binding and stretching of the hydrophobic tandem repeats of Als5p. Data collected on fibronectin (Fn) -coated substrates featured strong adhesion forces (2.8 ± 0.6 nN), reflecting specific binding between Fn and the N-terminal immunoglobulin-like regions of Als5p, followed by weakly adhesive macromolecular bonds. Both hydrophobic and Fn adhesion forces increased with contact time, emphasizing the important role that time plays in strengthening adhesion. Our SCFS methodology provides a versatile platform in biomedicine for understanding the fundamental forces driving adhesion and biofilm formation in fungal pathogens.
Collapse
Affiliation(s)
- David Alsteens
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium
| | - Audrey Beaussart
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium
| | - Sylvie Derclaye
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium
| | - Sofiane El-Kirat-Chatel
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium
| | - Hye Rim Park
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium
| | - Peter N. Lipke
- Department of Biology, Brooklyn College of City University of New York, Brooklyn, New York 11210, USA
| | - Yves F. Dufrêne
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium
- Corresponding author: Phone: (32) 10 47 36 00, Fax: (32) 10 47 20 05,
| |
Collapse
|
129
|
Ielasi FS, Goyal P, Sleutel M, Wohlkonig A, Willaert RG. The mannose-specific lectin domains of Flo1p from Saccharomyces cerevisiae and Lg-Flo1p from S. pastorianus: crystallization and preliminary X-ray diffraction analysis of the adhesin-carbohydrate complexes. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:779-782. [PMID: 23832207 PMCID: PMC3702324 DOI: 10.1107/s1744309113015030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/31/2013] [Indexed: 06/02/2023]
Abstract
Flo1p and Lg-Flo1p are two cell-wall adhesins belonging to the Flo (flocculation) protein family from the yeasts Saccharomyces cerevisiae and S. pastorianus. The main function of these modular proteins endowed with calcium-dependent lectin activity is to mediate cell-cell adhesion events during yeast flocculation, a process which is well known at the cellular level but still not fully characterized from a molecular perspective. Recently, structural features of the N-terminal Flo lectin domains, including the N-terminal domain of Lg-Flo1p (N-Lg-Flo1p), and their interactions with carbohydrate molecules have been investigated. However, structural data concerning the N-terminal domain of Flo1p (N-Flo1p), which is the most specific among the Flo proteins, are missing and information about the N-Lg-Flo1p-carbohydrate interaction still lacks detailed structural insight. Here, the crystallization and preliminary X-ray characterization of the apo form and the mannose complex of N-Flo1p and X-ray analysis of N-Lg-Flo1p crystals soaked in α-1,2-mannobiose are reported. The N-Flo1p crystals diffracted to a resolution of 1.43 Å in the case of the apo form and to 2.12 Å resolution for the mannose complex. Both crystals were orthorhombic and belonged to space group P212121, with one molecule in the asymmetric unit. The N-Lg-Flo1p-α-1,2-mannobiose complex crystal diffracted to 1.73 Å resolution and belonged to the monoclinic space group P1211 with two molecules in the asymmetric unit.
Collapse
Affiliation(s)
- Francesco S Ielasi
- Structural Biology Brussels (SBB) - Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
130
|
Younes SS, Khalaf RA. The Candida albicans Hwp2p can complement the lack of filamentation of a Saccharomyces cerevisiae flo11 null strain. MICROBIOLOGY-SGM 2013; 159:1160-1164. [PMID: 23558263 DOI: 10.1099/mic.0.067249-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The opportunistic fungal pathogen Candida albicans is one of the leading agents of life-threatening infections affecting immunocompromised individuals. Many factors make C. albicans a successful pathogen. These include the ability to switch between yeast and invasive hyphal morphologies in addition to an arsenal of cell wall virulence factors such as lipases, proteases, dismutases and adhesins that promote the attachment to the host, a prerequisite for invasive growth. We have previously characterized Hwp2, a C. albicans cell wall protein which we found necessary for proper oxidative stress, biofilm formation and adhesion to host cells. Baker's yeast Saccharomyces cerevisiae also possesses adhesins that promote aggregation and flocculence. Flo11 is one such adhesin that has sequence similarity to Hwp2. Here we determined that transforming an HWP2 cassette can complement the lack of filamentation of an S. cerevisiae flo11 null strain and impart on S. cerevisiae adhesive properties similar to those of a pathogen.
Collapse
Affiliation(s)
- Samer S Younes
- Natural Sciences Department, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Roy A Khalaf
- Natural Sciences Department, Lebanese American University, PO Box 36, Byblos, Lebanon
| |
Collapse
|
131
|
She X, Zhang L, Chen H, Calderone R, Li D. Cell surface changes in the Candida albicans mitochondrial mutant goa1Δ are associated with reduced recognition by innate immune cells. Cell Microbiol 2013; 15:1572-84. [PMID: 23490206 DOI: 10.1111/cmi.12135] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/13/2013] [Accepted: 03/04/2013] [Indexed: 01/09/2023]
Abstract
We have previously characterized several fungal-specific proteins from the human pathogen Candida albicans that either encode subunits of mitochondria Complex I (CI) of the electron transport chain (ETC) or regulate CI activity (Goa1p). Herein, the role of energy production and cell wall gene expression is investigated in the mitochondria mutant goa1Δ. We show that downregulation of cell wall-encoding genes in the goa1Δ results in sensitivity to cell wall inhibitors such as Congo red and Calcofluor white, reduced phagocytosis by a macrophage cell line, reduced recognition by macrophage receptors, and decreased expression of cytokines such as IL-6, IL-10 and IFN-γ. In spite of the reduced recognition by macrophages, the goa1Δ is still killed to the same extent as control strains. We also demonstrate that expression of the epithelial cell receptors E-cadherin and EGFR is also reduced in the presence of goa1Δ. Together, our data demonstrate the importance of mitochondria in the expression of cell wall biomolecules and the interaction of C. albicans with innate immune and epithelial cells. Our underlying premise is thatmitochondrial proteins such as Goa1p and other fungal-specific mitochondrial proteins regulate critical functions in cell growth and in virulence. As such, they remain as valid drug targets for antifungal drug discovery.
Collapse
Affiliation(s)
- Xiaodong She
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington DC 20057, USA
| | | | | | | | | |
Collapse
|
132
|
Cell aggregations in yeasts and their applications. Appl Microbiol Biotechnol 2013; 97:2305-18. [PMID: 23397484 DOI: 10.1007/s00253-013-4735-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/19/2013] [Accepted: 01/21/2013] [Indexed: 12/23/2022]
Abstract
Yeasts can display four types of cellular aggregation: sexual, flocculation, biofilm formation, and filamentous growth. These cell aggregations arise, in some yeast strains, as a response to environmental or physiological changes. Sexual aggregation is part of the yeast mating process, representing the first step of meiotic recombination. The flocculation phenomenon is a calcium-dependent asexual reversible cellular aggregation that allows the yeast to withstand adverse conditions. Biofilm formation consists of multicellular aggregates that adhere to solid surfaces and are embedded in a protein matrix; this gives the yeast strain either the ability to colonize new environments or to survive harsh environmental conditions. Finally, the filamentous growth is the ability of some yeast strains to grow in filament forms. Filamentous growth can be attained by two different means, with the formation of either hyphae or pseudohyphae. Both hyphae and pseudohyphae arise when the yeast strain is under nutrient starvation conditions and they represent a means for the microbial strain to spread over a wide area to survey for food sources, without increasing its biomass. Additionally, this filamentous growth is also responsible for the invasive growth of some yeast.
Collapse
|
133
|
Aagaard JE, Springer SA, Soelberg SD, Swanson WJ. Duplicate abalone egg coat proteins bind sperm lysin similarly, but evolve oppositely, consistent with molecular mimicry at fertilization. PLoS Genet 2013; 9:e1003287. [PMID: 23408913 PMCID: PMC3567151 DOI: 10.1371/journal.pgen.1003287] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 12/14/2012] [Indexed: 12/22/2022] Open
Abstract
Sperm and egg proteins constitute a remarkable paradigm in evolutionary biology: despite their fundamental role in mediating fertilization (suggesting stasis), some of these molecules are among the most rapidly evolving ones known, and their divergence can lead to reproductive isolation. Because of strong selection to maintain function among interbreeding individuals, interacting fertilization proteins should also exhibit a strong signal of correlated divergence among closely related species. We use evidence of such molecular co-evolution to target biochemical studies of fertilization in North Pacific abalone (Haliotis spp.), a model system of reproductive protein evolution. We test the evolutionary rates (dN/dS) of abalone sperm lysin and two duplicated egg coat proteins (VERL and VEZP14), and find a signal of co-evolution specific to ZP-N, a putative sperm binding motif previously identified by homology modeling. Positively selected residues in VERL and VEZP14 occur on the same face of the structural model, suggesting a common mode of interaction with sperm lysin. We test this computational prediction biochemically, confirming that the ZP-N motif is sufficient to bind lysin and that the affinities of VERL and VEZP14 are comparable. However, we also find that on phylogenetic lineages where lysin and VERL evolve rapidly, VEZP14 evolves slowly, and vice versa. We describe a model of sexual conflict that can recreate this pattern of anti-correlated evolution by assuming that VEZP14 acts as a VERL mimic, reducing the intensity of sexual conflict and slowing the co-evolution of lysin and VERL. Interacting sperm and egg proteins must co-evolve to maintain compatibility at fertilization, so their divergence among species should be correlated—lineages with rapidly evolving sperm proteins should have rapidly evolving egg proteins. We use this expectation to target biochemical studies of fertilization in a model system (abalone). We study a discrete functional domain (ZP-N) found in a pair of duplicated egg coat proteins, and we find the ZP-N motif from both proteins bind sperm lysin (a protein important for sperm passage of the egg coat) in a similar fashion. ZP-N is a feature of vertebrate and invertebrate egg coat proteins, as well as yeast mating recognition proteins, demonstrating its broad significance in sexual reproduction. Unexpectedly, we find that the ZP-N motifs of VEZP14 and VERL exhibit inverse patterns of co-evolution with lysin, suggesting that these duplicates may have opposite functions in fertilization. Using computer simulations, we model a novel explanation for this pattern whereby VEZP14 acts as a decoy of VERL in order to decrease the effective amount of sperm lysin and slow the rate of fertilization. Such molecular mimicry could complement other well-established fertilization blocks that females use to control rates of fertilization and limit polyspermy.
Collapse
Affiliation(s)
- Jan E Aagaard
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA.
| | | | | | | |
Collapse
|
134
|
El-Kirat-Chatel S, Beaussart A, Alsteens D, Jackson DN, Lipke PN, Dufrêne YF. Nanoscale analysis of caspofungin-induced cell surface remodelling in Candida albicans. NANOSCALE 2013; 5:1105-15. [PMID: 23262781 PMCID: PMC3564254 DOI: 10.1039/c2nr33215a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The advent of fungal pathogens that are resistant to the classic repertoire of antifungal drugs has increased the need for new therapeutic agents. A prominent example of such a novel compound is caspofungin, known to alter cell wall biogenesis by inhibiting β-1,3-D-glucan synthesis. Although much progress has been made in understanding the mechanism of action of caspofungin, little is known about its influence on the biophysical properties of the fungal cells. Here, we use atomic force microscopy (AFM) to demonstrate that caspofungin induces major remodelling of the cell surface properties of Candida albicans. Caspofungin causes major morphological and structural alterations of the cells, which correlate with a decrease of the cell wall mechanical strength. Moreover, we find that the drug induces the massive exposure of the cell adhesion protein Als1 on the cell surface and leads to increased cell surface hydrophobicity, two features that trigger cell aggregation. This behaviour is not observed in yeast species lacking Als1, demonstrating the key role that the protein plays in determining the aggregation phenotype of C. albicans. The results show that AFM opens up new avenues for understanding the molecular bases of microbe-drug interactions and for developing new therapeutic agents.
Collapse
Affiliation(s)
- Sofiane El-Kirat-Chatel
- Université catholique de Louvain, Institute of Life Sciences & Institute of Condensed Matter and Nanosciences, Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium
| | - Audrey Beaussart
- Université catholique de Louvain, Institute of Life Sciences & Institute of Condensed Matter and Nanosciences, Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium
| | - David Alsteens
- Université catholique de Louvain, Institute of Life Sciences & Institute of Condensed Matter and Nanosciences, Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium
| | - Desmond N. Jackson
- Department of Biology, Brooklyn College of City University of New York, Brooklyn, New York 11210, USA
| | - Peter N. Lipke
- Department of Biology, Brooklyn College of City University of New York, Brooklyn, New York 11210, USA
| | - Yves F. Dufrêne
- Université catholique de Louvain, Institute of Life Sciences & Institute of Condensed Matter and Nanosciences, Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium
- Corresponding authors:
| |
Collapse
|
135
|
Reduction of ribosome level triggers flocculation of fission yeast cells. EUKARYOTIC CELL 2013; 12:450-9. [PMID: 23355005 DOI: 10.1128/ec.00321-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Deletion of ribosomal protein L32 genes resulted in a nonsexual flocculation of fission yeast. Nonsexual flocculation also occurred when two other ribosomal protein genes, rpl21-2 and rpl9-2, were deleted. However, deletion of two nonribosomal protein genes, mpg and fbp, did not cause flocculation. Overall transcript levels of rpl32 in rpl32-1Δ and rpl32-2Δ cells were reduced by 35.9% and 46.9%, respectively, and overall ribosome levels in rpl32-1Δ and rpl32-2Δ cells dropped 31.1% and 27.8%, respectively, compared to wild-type cells. Interestingly, ribosome protein expression levels and ribosome levels were also reduced greatly in sexually flocculating diploid YHL6381/WT (h⁺/h⁻) cells compared to a mixture of YHL6381 (h⁺) and WT (h⁻) nonflocculating haploid cells. Transcriptome analysis indicated that the reduction of ribosomal levels in sexual flocculating cells was caused by more-extensive suppression of ribosomal biosynthesis gene expression, while the reduction of ribosomal levels caused by deleting ribosomal protein genes in nonsexual flocculating cells was due to an imbalance between ribosomal proteins. We propose that once the reduction of ribosomal levels is below a certain threshold value, flocculation is triggered.
Collapse
|
136
|
Abstract
The composition and organization of the cell walls from Saccharomyces cerevisiae, Candida albicans, Aspergillus fumigatus, Schizosaccharomyces pombe, Neurospora crassa, and Cryptococcus neoformans are compared and contrasted. These cell walls contain chitin, chitosan, β-1,3-glucan, β-1,6-glucan, mixed β-1,3-/β-1,4-glucan, α-1,3-glucan, melanin, and glycoproteins as major constituents. A comparison of these cell walls shows that there is a great deal of variability in fungal cell wall composition and organization. However, in all cases, the cell wall components are cross-linked together to generate a cell wall matrix. The biosynthesis and properties of each of the major cell wall components are discussed. The chitin and glucans are synthesized and extruded into the cell wall space by plasma membrane-associated chitin synthases and glucan synthases. The glycoproteins are synthesized by ER-associated ribosomes and pass through the canonical secretory pathway. Over half of the major cell wall proteins are modified by the addition of a glycosylphosphatidylinositol anchor. The cell wall glycoproteins are also modified by the addition of O-linked oligosaccharides, and their N-linked oligosaccharides are extensively modified during their passage through the secretory pathway. These cell wall glycoprotein posttranslational modifications are essential for cross-linking the proteins into the cell wall matrix. Cross-linking the cell wall components together is essential for cell wall integrity. The activities of four groups of cross-linking enzymes are discussed. Cell wall proteins function as cross-linking enzymes, structural elements, adhesins, and environmental stress sensors and protect the cell from environmental changes.
Collapse
Affiliation(s)
- Stephen J Free
- Department of Biological Sciences, SUNY, University at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
137
|
Beaussart A, Alsteens D, El-Kirat-Chatel S, Lipke PN, Kucharíková S, Van Dijck P, Dufrêne YF. Single-molecule imaging and functional analysis of Als adhesins and mannans during Candida albicans morphogenesis. ACS NANO 2012; 6:10950-64. [PMID: 23145462 PMCID: PMC3528847 DOI: 10.1021/nn304505s] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cellular morphogenesis in the fungal pathogen Candida albicans is associated with changes in cell wall composition that play important roles in biofilm formation and immune responses. Yet, how fungal morphogenesis modulates the biophysical properties and interactions of the cell surface molecules is poorly understood, mainly owing to the paucity of high-resolution imaging techniques. Here, we use single-molecule atomic force microscopy to localize and analyze the key components of the surface of living C. albicans cells during morphogenesis. We show that the yeast-to-hypha transition leads to a major increase in the distribution, adhesion, unfolding, and extension of Als adhesins and their associated mannans on the cell surface. We also find that morphogenesis dramatically increases cell surface hydrophobicity. These molecular changes are critical for microbe-host interactions, including adhesion, colonization, and biofilm formation. The single-molecule experiments presented here offer promising prospects for understanding how microbial pathogens use cell surface molecules to modulate biofilm and immune interactions.
Collapse
Affiliation(s)
- Audrey Beaussart
- Université catholique de Louvain, Institute of Life Sciences & Institute of Condensed Matter and Nanosciences, Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium
| | - David Alsteens
- Université catholique de Louvain, Institute of Life Sciences & Institute of Condensed Matter and Nanosciences, Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium
| | - Sofiane El-Kirat-Chatel
- Université catholique de Louvain, Institute of Life Sciences & Institute of Condensed Matter and Nanosciences, Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium
| | - Peter N. Lipke
- Department of Biology, Brooklyn College of City University of New York, Brooklyn, New York 11210, USA
| | - Sona Kucharíková
- Department of Molecular Microbiology, VIB, K.U. Leuven, Leuven, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, K.U. Leuven, Leuven, Belgium
| | - Patrick Van Dijck
- Department of Molecular Microbiology, VIB, K.U. Leuven, Leuven, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, K.U. Leuven, Leuven, Belgium
| | - Yves F. Dufrêne
- Université catholique de Louvain, Institute of Life Sciences & Institute of Condensed Matter and Nanosciences, Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium
- Corresponding authors: Yves Dufrêne: . Patrick Van Dijck: . Peter Lipke:
| |
Collapse
|
138
|
Rosenblum EB, Poorten TJ, Joneson S, Settles M. Substrate-specific gene expression in Batrachochytrium dendrobatidis, the chytrid pathogen of amphibians. PLoS One 2012. [PMID: 23185485 PMCID: PMC3502224 DOI: 10.1371/journal.pone.0049924] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Determining the mechanisms of host-pathogen interaction is critical for understanding and mitigating infectious disease. Mechanisms of fungal pathogenicity are of particular interest given the recent outbreaks of fungal diseases in wildlife populations. Our study focuses on Batrachochytrium dendrobatidis (Bd), the chytrid pathogen responsible for amphibian declines around the world. Previous studies have hypothesized a role for several specific families of secreted proteases as pathogenicity factors in Bd, but the expression of these genes has only been evaluated in laboratory growth conditions. Here we conduct a genome-wide study of Bd gene expression under two different nutrient conditions. We compare Bd gene expression profiles in standard laboratory growth media and in pulverized host tissue (i.e., frog skin). A large proportion of genes in the Bd genome show increased expression when grown in host tissue, indicating the importance of studying pathogens on host substrate. A number of gene classes show particularly high levels of expression in host tissue, including three families of secreted proteases (metallo-, serine- and aspartyl-proteases), adhesion genes, lipase-3 encoding genes, and a group of phylogenetically unusual crinkler-like effectors. We discuss the roles of these different genes as putative pathogenicity factors and discuss what they can teach us about Bd’s metabolic targets, host invasion, and pathogenesis.
Collapse
Affiliation(s)
- Erica Bree Rosenblum
- Department of Environmental Science Policy and Management, University of California, Berkeley, California, United States of America.
| | | | | | | |
Collapse
|
139
|
Orlean P. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 2012; 192:775-818. [PMID: 23135325 PMCID: PMC3522159 DOI: 10.1534/genetics.112.144485] [Citation(s) in RCA: 315] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/06/2012] [Indexed: 01/02/2023] Open
Abstract
The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins.
Collapse
Affiliation(s)
- Peter Orlean
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
140
|
Heinisch JJ, Lipke PN, Beaussart A, El Kirat Chatel S, Dupres V, Alsteens D, Dufrêne YF. Atomic force microscopy - looking at mechanosensors on the cell surface. J Cell Sci 2012; 125:4189-95. [PMID: 23077172 DOI: 10.1242/jcs.106005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Living cells use cell surface proteins, such as mechanosensors, to constantly sense and respond to their environment. However, the way in which these proteins respond to mechanical stimuli and assemble into large complexes remains poorly understood at the molecular level. In the past years, atomic force microscopy (AFM) has revolutionized the way in which biologists analyze cell surface proteins to molecular resolution. In this Commentary, we discuss how the powerful set of advanced AFM techniques (e.g. live-cell imaging and single-molecule manipulation) can be integrated with the modern tools of molecular genetics (i.e. protein design) to study the localization and molecular elasticity of individual mechanosensors on the surface of living cells. Although we emphasize recent studies on cell surface proteins from yeasts, the techniques described are applicable to surface proteins from virtually all organisms, from bacteria to human cells.
Collapse
Affiliation(s)
- Jürgen J Heinisch
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Barbarastr. 11, 49076 Osnabrück, Germany.
| | | | | | | | | | | | | |
Collapse
|
141
|
Christiaens JF, Van Mulders SE, Duitama J, Brown CA, Ghequire MG, De Meester L, Michiels J, Wenseleers T, Voordeckers K, Verstrepen KJ. Functional divergence of gene duplicates through ectopic recombination. EMBO Rep 2012; 13:1145-51. [PMID: 23070367 PMCID: PMC3512402 DOI: 10.1038/embor.2012.157] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 09/17/2012] [Indexed: 12/01/2022] Open
Abstract
This report reveals that duplicated genes undergo ectopic recombination, which leads to new chimaeric alleles. Mimicking these intergenic recombination events creates chimaera with phenotypes that differ from those of their parental genes. Gene duplication stimulates evolutionary innovation as the resulting paralogs acquire mutations that lead to sub- or neofunctionalization. A comprehensive in silico analysis of paralogs in Saccharomyces cerevisiae reveals that duplicates of cell-surface and subtelomeric genes also undergo ectopic recombination, which leads to new chimaeric alleles. Mimicking such intergenic recombination events in the FLO (flocculation) family of cell-surface genes shows that chimaeric FLO alleles confer different adhesion phenotypes than the parental genes. Our results indicate that intergenic recombination between paralogs can generate a large set of new alleles, thereby providing the raw material for evolutionary adaptation and innovation.
Collapse
Affiliation(s)
- Joaquin F Christiaens
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven (Heverlee), Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Cuéllar-Cruz M, López-Romero E, Villagómez-Castro JC, Ruiz-Baca E. Candida species: new insights into biofilm formation. Future Microbiol 2012; 7:755-71. [PMID: 22702528 DOI: 10.2217/fmb.12.48] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Biofilms of Candida albicans, Candida parapsilosis, Candida glabrata and Candida tropicalis are associated with high indices of hospital morbidity and mortality. Major factors involved in the formation and growth of Candida biofilms are the chemical composition of the medical implant and the cell wall adhesins responsible for mediating Candida-Candida, Candida-human host cell and Candida-medical device adhesion. Strategies for elucidating the mechanisms that regulate the formation of Candida biofilms combine tools from biology, chemistry, nanoscience, material science and physics. This review proposes the use of new technologies, such as synchrotron radiation, to study the mechanisms of biofilm formation. In the future, this information is expected to facilitate the design of new materials and antifungal compounds that can eradicate nosocomial Candida infections due to biofilm formation on medical implants. This will reduce dissemination of candidiasis and hopefully improve the quality of life of patients.
Collapse
Affiliation(s)
- Mayra Cuéllar-Cruz
- Unidad de Biotecnología Médica & Farmacéutica, Centro de Investigación & Asistencia en Tecnología & Diseño del Estado de Jalisco, AC, Guadalajara, Jalisco, México.
| | | | | | | |
Collapse
|
143
|
Valim CXR, Basso LR, dos Reis Almeida FB, Reis TF, Damásio ARL, Arruda LK, Martinez R, Roque-Barreira MC, Oliver C, Jamur MC, Coelho PSR. Characterization of PbPga1, an antigenic GPI-protein in the pathogenic fungus Paracoccidioides brasiliensis. PLoS One 2012; 7:e44792. [PMID: 23024763 PMCID: PMC3443090 DOI: 10.1371/journal.pone.0044792] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 08/14/2012] [Indexed: 12/21/2022] Open
Abstract
Paracoccidioides brasiliensis is the etiologic agent of paracoccidioidomycosis (PCM), one of the most prevalent mycosis in Latin America. P. brasiliensis cell wall components interact with host cells and influence the pathogenesis of PCM. Cell wall components, such as glycosylphosphatidylinositol (GPI)-proteins play a critical role in cell adhesion and host tissue invasion. Although the importance of GPI-proteins in the pathogenesis of other medically important fungi is recognized, little is known about their function in P. brasiliensis cells and PCM pathogenesis. We cloned the PbPga1 gene that codifies for a predicted GPI-anchored glycoprotein from the dimorphic pathogenic fungus P. brasiliensis. PbPga1 is conserved in Eurotiomycetes fungi and encodes for a protein with potential glycosylation sites in a serine/threonine-rich region, a signal peptide and a putative glycosylphosphatidylinositol attachment signal sequence. Specific chicken anti-rPbPga1 antibody localized PbPga1 on the yeast cell surface at the septum between the mother cell and the bud with stronger staining of the bud. The exposure of murine peritoneal macrophages to rPbPga1 induces TNF-α release and nitric oxide (NO) production by macrophages. Furthermore, the presence of O-glycosylation sites was demonstrated by β-elimination under ammonium hydroxide treatment of rPbPga1. Finally, sera from PCM patients recognized rPbPga1 by Western blotting indicating the presence of specific antibodies against rPbPga1. In conclusion, our findings suggest that the PbPga1gene codifies for a cell surface glycoprotein, probably attached to a GPI-anchor, which may play a role in P. brasiliensis cell wall morphogenesis and infection. The induction of inflammatory mediators released by rPbPga1 and the reactivity of PCM patient sera toward rPbPga1 imply that the protein favors the innate mechanisms of defense and induces humoral immunity during P. brasiliensis infection.
Collapse
Affiliation(s)
- Clarissa X. R. Valim
- Departamento de Biologia Celular e Molecular e Biagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, São Paulo, Brazil
| | - Luiz Roberto Basso
- Departamento de Biologia Celular e Molecular e Biagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, São Paulo, Brazil
| | - Fausto B. dos Reis Almeida
- Departamento de Biologia Celular e Molecular e Biagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, São Paulo, Brazil
| | - Thaila Fernanda Reis
- Departamento de Biologia Celular e Molecular e Biagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, São Paulo, Brazil
| | | | - Luisa Karla Arruda
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, São Paulo, Brazil
| | - Roberto Martinez
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, São Paulo, Brazil
| | - Maria Cristina Roque-Barreira
- Departamento de Biologia Celular e Molecular e Biagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, São Paulo, Brazil
| | - Constance Oliver
- Departamento de Biologia Celular e Molecular e Biagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, São Paulo, Brazil
| | - Maria Célia Jamur
- Departamento de Biologia Celular e Molecular e Biagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, São Paulo, Brazil
| | - Paulo Sergio Rodrigues Coelho
- Departamento de Biologia Celular e Molecular e Biagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
144
|
Gilchrist KB, Garcia MC, Sobonya R, Lipke PN, Klotz SA. New features of invasive candidiasis in humans: amyloid formation by fungi and deposition of serum amyloid P component by the host. J Infect Dis 2012; 206:1473-8. [PMID: 22802434 DOI: 10.1093/infdis/jis464] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Invasive candidiasis occurs in the gastrointestinal tract, especially in neutropenic patients. We were interested in determining whether invasive fungi formed amyloid in humans as they are known to do in vitro. We also sought to characterize the consequence(s) of such amyloid formation. METHODS Tissue from 25 autopsy patients with invasive candidiasis of the gastrointestinal tract was stained with amyloidophilic dyes and for the presence of serum amyloid P component (SAP). Confirmation of the interaction of SAP and Candida was demonstrated using Candida albicans and mutants for amyloid formation. RESULTS Amyloid was present on the cellular surface of fungi invading gut tissue. Moreover, SAP bound to the fungal cell walls, confirming the presence of amyloid. In vitro observations showed SAP bound avidly to fungi when amyloid formed in fungal cell walls. An unexpected result was the lack of host neutrophils in response to the invading fungi, not only in neutropenic patients but also in patients with normal or increased white blood counts. CONCLUSIONS We report the first demonstration of functional fungal amyloid in human tissue and the binding of SAP to invading fungi. It is postulated that fungal amyloid, SAP, or a complex of the proteins may inhibit the neutrophil response.
Collapse
|
145
|
Structure, dynamics and domain organization of the repeat protein Cin1 from the apple scab fungus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:1118-28. [PMID: 22771296 DOI: 10.1016/j.bbapap.2012.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/16/2012] [Accepted: 06/26/2012] [Indexed: 11/20/2022]
Abstract
Venturia inaequalis is a hemi-biotrophic fungus that causes scab disease of apple. A recently-identified gene from this fungus, cin1 (cellophane-induced 1), is up-regulated over 1000-fold in planta and considerably on cellophane membranes, and encodes a cysteine-rich secreted protein of 523 residues with eight imperfect tandem repeats of ~60 amino acids. The Cin1 sequence has no homology to known proteins and appears to be genus-specific; however, Cin1 repeats and other repeat domains may be structurally similar. An NMR-derived structure of the first two repeat domains of Cin1 (Cin1-D1D2) and a low-resolution model of the full-length protein (Cin1-FL) using SAXS data were determined. The structure of Cin1-D1D2 reveals that each domain comprises a core helix-loop-helix (HLH) motif as part of a three-helix bundle, and is stabilized by two intra-domain disulfide bonds. Cin1-D1D2 adopts a unique protein fold as DALI and PDBeFOLD analysis identified no structural homology. A (15)N backbone NMR dynamic analysis of Cin1-D1D2 showed that a short stretch of the inter-domain linker has large amplitude motions that give rise to reciprocal domain-domain mobility. This observation was supported by SAXS data modeling, where the scattering length density envelope remains thick at the domain-domain boundary, indicative of inter-domain dynamics. Cin1-FL SAXS data models a loosely-packed arrangement of domains, rather than the canonical parallel packing of adjacent HLH repeats observed in α-solenoid repeat proteins. Together, these data suggest that the repeat domains of Cin1 display a "beads-on-a-string" organization with inherent inter-domain flexibility that is likely to facilitate interactions with target ligands.
Collapse
|
146
|
Cuéllar-Cruz M, Vega-González A, Mendoza-Novelo B, López-Romero E, Ruiz-Baca E, Quintanar-Escorza MA, Villagómez-Castro JC. The effect of biomaterials and antifungals on biofilm formation by Candida species: a review. Eur J Clin Microbiol Infect Dis 2012; 31:2513-27. [PMID: 22581304 DOI: 10.1007/s10096-012-1634-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
Abstract
Candida albicans, C. glabrata, C. parapsilosis, and C. tropicalis are able to form biofilms on virtually any biomaterial implanted in a human host. Biofilms are a primary cause of mortality in immunocompromised and hospitalized patients, as they cause recurrent and invasive candidiasis, which is difficult to eradicate. This is due to the fact that the biofilm cells show high resistance to antifungal treatments and the host defense mechanisms, and exhibit an excellent ability to adhere to biomaterials. Elucidation of the mechanisms of antifungal resistance in Candida biofilms is of unquestionable importance; therefore, this review analyzes both the chemical composition of biomaterials used to fabricate the medical devices, as well as the Candida genes and proteins that confer drug resistance.
Collapse
Affiliation(s)
- M Cuéllar-Cruz
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), Unidad de Biotecnología Médica y Farmacéutica, Av. Normalistas #800, Col. Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, México.
| | | | | | | | | | | | | |
Collapse
|
147
|
Boder ET, Raeeszadeh-Sarmazdeh M, Price JV. Engineering antibodies by yeast display. Arch Biochem Biophys 2012; 526:99-106. [PMID: 22450168 DOI: 10.1016/j.abb.2012.03.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 03/09/2012] [Accepted: 03/10/2012] [Indexed: 12/19/2022]
Abstract
Since its first application to antibody engineering 15 years ago, yeast display technology has been developed into a highly potent tool for both affinity maturing lead molecules and isolating novel antibodies and antibody-like species. Robust approaches to the creation of diversity, construction of yeast libraries, and library screening or selection have been elaborated, improving the quality of engineered molecules and certainty of success in an antibody engineering campaign and positioning yeast display as one of the premier antibody engineering technologies currently in use. Here, we summarize the history of antibody engineering by yeast surface display, approaches used in its application, and a number of examples highlighting the utility of this method for antibody engineering.
Collapse
Affiliation(s)
- Eric T Boder
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA.
| | | | | |
Collapse
|
148
|
Ielasi FS, Decanniere K, Willaert RG. The epithelial adhesin 1 (Epa1p) from the human-pathogenic yeast Candida glabrata: structural and functional study of the carbohydrate-binding domain. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:210-7. [PMID: 22349222 DOI: 10.1107/s0907444911054898] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 12/20/2011] [Indexed: 01/18/2023]
Abstract
The yeast Candida glabrata represents the second major cause of clinical candidiasis cases in the world. The ability of this opportunistic pathogen to adhere to human epithelial and endothelial cells relies on the Epa adhesins, a large set of cell-wall proteins whose N-terminal domains are endowed with a calcium-dependent lectin activity. This feature allows the yeast cells to adhere to host cells by establishing multiple interactions with the glycans expressed on their cell membrane. The ligand-binding domain of the Epa1p adhesin, which is one of the best characterized in the Epa family, was expressed in Escherichia coli, purified and crystallized in complex with lactose. Sequence identity with the domain of another yeast adhesin, the Flo5p flocculin from Saccharomyces cerevisiae, was exploited for molecular replacement and the structure of the domain was solved at a resolution of 1.65 Å. The protein is a member of the PA14 superfamily. It has a β-sandwich core and a DcisD calcium-binding motif, which is also present in the binding site of Flo5p. However, Epa1p differs from this homologue by the lack of a Flo5-like subdomain and by a significantly decreased accessibility of the solvent to the binding site, in which a calcium ion still plays an active role in the interactions with carbohydrates. This structural insight, together with fluorescence-assay data, confirms and explains the higher specificity of Epa1p adhesin for glycan molecules compared with the S. cerevisiae flocculins.
Collapse
Affiliation(s)
- Francesco S Ielasi
- Research Group Structural Biology Brussels (SBB), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | | | | |
Collapse
|
149
|
Blanco LP, Evans ML, Smith DR, Badtke MP, Chapman MR. Diversity, biogenesis and function of microbial amyloids. Trends Microbiol 2012; 20:66-73. [PMID: 22197327 PMCID: PMC3278576 DOI: 10.1016/j.tim.2011.11.005] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 11/09/2011] [Accepted: 11/11/2011] [Indexed: 11/27/2022]
Abstract
Amyloid is a distinct β-sheet-rich fold that many proteins can acquire. Frequently associated with neurodegenerative diseases in humans, including Alzheimer's, Parkinson's and Huntington's diseases, amyloids are traditionally considered the product of protein misfolding. However, the amyloid fold is now recognized as a ubiquitous part of normal cellular biology. Functional amyloids have been identified in nearly all facets of cellular life, with microbial functional amyloids leading the way. Unlike disease-associated amyloids, functional amyloids are assembled by dedicated, directed pathways and ultimately perform a physiological function that benefits the organism. The evolved amyloid assembly and disassembly pathways of microbes have provided novel insights into how cells have harnessed the amyloid assembly process for productive means. An understanding of functional amyloid biogenesis promises to provide a fresh perspective on the molecular events that underlie disease-associated amyloidogenesis. Here, we review functional microbial amyloids with an emphasis on curli fibers and their role in promoting biofilm formation and other community behaviors.
Collapse
Affiliation(s)
- Luz P Blanco
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
150
|
Many Saccharomyces cerevisiae Cell Wall Protein Encoding Genes Are Coregulated by Mss11, but Cellular Adhesion Phenotypes Appear Only Flo Protein Dependent. G3-GENES GENOMES GENETICS 2012; 2:131-41. [PMID: 22384390 PMCID: PMC3276193 DOI: 10.1534/g3.111.001644] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 11/21/2011] [Indexed: 01/01/2023]
Abstract
The outer cell wall of the yeast Saccharomyces cerevisiae serves as the interface with the surrounding environment and directly affects cell-cell and cell-surface interactions. Many of these interactions are facilitated by specific adhesins that belong to the Flo protein family. Flo mannoproteins have been implicated in phenotypes such as flocculation, substrate adhesion, biofilm formation, and pseudohyphal growth. Genetic data strongly suggest that individual Flo proteins are responsible for many specific cellular adhesion phenotypes. However, it remains unclear whether such phenotypes are determined solely by the nature of the expressed FLO genes or rather as the result of a combination of FLO gene expression and other cell wall properties and cell wall proteins. Mss11 has been shown to be a central element of FLO1 and FLO11 gene regulation and acts together with the cAMP-PKA-dependent transcription factor Flo8. Here we use genome-wide transcription analysis to identify genes that are directly or indirectly regulated by Mss11. Interestingly, many of these genes encode cell wall mannoproteins, in particular, members of the TIR and DAN families. To examine whether these genes play a role in the adhesion properties associated with Mss11 expression, we assessed deletion mutants of these genes in wild-type and flo11Δ genetic backgrounds. This analysis shows that only FLO genes, in particular FLO1/10/11, appear to significantly impact on such phenotypes. Thus adhesion-related phenotypes are primarily dependent on the balance of FLO gene expression.
Collapse
|