101
|
Cougnoux A, Drummond RA, Collar AL, Iben JR, Salman A, Westgarth H, Wassif CA, Cawley NX, Farhat NY, Ozato K, Lionakis MS, Porter FD. Microglia activation in Niemann-Pick disease, type C1 is amendable to therapeutic intervention. Hum Mol Genet 2018; 27:2076-2089. [PMID: 29617956 PMCID: PMC5985727 DOI: 10.1093/hmg/ddy112] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/06/2018] [Accepted: 03/26/2018] [Indexed: 12/12/2022] Open
Abstract
Niemann-Pick disease, type C1 (NPC1) is a neurodegenerative disorder with limited treatment options. NPC1 is associated with neuroinflammation; however, attempts to therapeutically target neuroinflammation in NPC1 have had mixed success. We show here that NPC1 neuroinflammation is characterized by an atypical microglia activation phenotype. Specifically, Npc1-/- microglia demonstrated altered morphology, reduced levels of lineage markers and a shift toward glycolytic metabolism. Treatment with 2-hydroxypropyl-β-cyclodextrin (HPβCD), a drug currently being studied in a phase 2b/3 clinical trial, reversed all microglia-associated defects in Npc1-/- animals. In addition, impairing microglia mediated neuroinflammation by genetic deletion of IRF8 led to decreased symptoms and increased lifespan. We identified CD22 as a marker of dysregulated microglia in Npc1 mutant mice and subsequently demonstrated that elevated cerebrospinal fluid levels of CD22 in NPC1 patients responds to HPβCD administration. Collectively, these data provide the first in-depth analysis of microglia function in NPC1 and suggest possible new therapeutic approaches.
Collapse
Affiliation(s)
- Antony Cougnoux
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, , Bethesda, MD 20879, USA
| | - Rebecca A Drummond
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20879, USA
| | - Amanda L Collar
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20879, USA
| | - James R Iben
- Molecular Genomics Core, National Institutes of Health, Bethesda, MD 20879, USA
| | - Alexander Salman
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, , Bethesda, MD 20879, USA
| | - Harrison Westgarth
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, , Bethesda, MD 20879, USA
| | - Christopher A Wassif
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, , Bethesda, MD 20879, USA
| | - Niamh X Cawley
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, , Bethesda, MD 20879, USA
| | - Nicole Y Farhat
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, , Bethesda, MD 20879, USA
| | - Keiko Ozato
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20879, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20879, USA
| | - Forbes D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, , Bethesda, MD 20879, USA
| |
Collapse
|
102
|
Gradzka S, Thomas OS, Kretz O, Haimovici A, Vasilikos L, Wong WWL, Häcker G, Gentle IE. Inhibitor of apoptosis proteins are required for effective fusion of autophagosomes with lysosomes. Cell Death Dis 2018; 9:529. [PMID: 29743550 PMCID: PMC5943300 DOI: 10.1038/s41419-018-0508-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 12/21/2022]
Abstract
Inhibitor of Apoptosis Proteins act as E3 ubiquitin ligases to regulate NF-κB signalling from multiple pattern recognition receptors including NOD2, as well as TNF Receptor Superfamily members. Loss of XIAP in humans causes X-linked Lymphoproliferative disease type 2 (XLP-2) and is often associated with Crohn’s disease. Crohn’s disease is also caused by mutations in the gene encoding NOD2 but the mechanisms behind Crohn’s disease development in XIAP and NOD2 deficient-patients are still unknown. Numerous other mutations causing Crohn’s Disease occur in genes controlling various aspects of autophagy, suggesting a strong involvement of autophagy in preventing Crohn’s disease. Here we show that the IAP proteins cIAP2 and XIAP are required for efficient fusion of lysosomes with autophagosomes. IAP inhibition or loss of both cIAP2 and XIAP resulted in a strong blockage in autophagic flux and mitophagy, suggesting that XIAP deficiency may also drive Crohn’s Disease due to defects in autophagy.
Collapse
Affiliation(s)
- Sylwia Gradzka
- Institute of Medical Microbiology and Hygiene, University Medical Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver S Thomas
- Institute of Medical Microbiology and Hygiene, University Medical Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Kretz
- Renal Division, University Medical Center Freiburg, Freiburg, Germany.,Department of Neuroanatomy, University Freiburg, Freiburg, Germany.,Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Aladin Haimovici
- Institute of Medical Microbiology and Hygiene, University Medical Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lazaros Vasilikos
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Wendy Wei-Lynn Wong
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, University Medical Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ian E Gentle
- Institute of Medical Microbiology and Hygiene, University Medical Center Freiburg, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
103
|
Cavounidis A, Uhlig HH. Crohn's Disease in Niemann-Pick Disease Type C1: Caught in the Cross-Fire of Host-Microbial Interactions. Dig Dis Sci 2018; 63:811-813. [PMID: 29411209 DOI: 10.1007/s10620-018-4953-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Athena Cavounidis
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK. .,Department of Paediatrics, University of Oxford, Oxford, UK.
| |
Collapse
|
104
|
Cougnoux A, Movassaghi M, Picache JA, Iben JR, Navid F, Salman A, Martin K, Farhat NY, Cluzeau C, Tseng WC, Burkert K, Sojka C, Wassif CA, Cawley NX, Bonnet R, Porter FD. Gastrointestinal Tract Pathology in a BALB/c Niemann-Pick Disease Type C1 Null Mouse Model. Dig Dis Sci 2018; 63:870-880. [PMID: 29357083 PMCID: PMC6292218 DOI: 10.1007/s10620-018-4914-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/02/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Niemann-Pick disease, type C (NPC) is a rare lysosomal storage disorder characterized by progressive neurodegeneration, splenomegaly, hepatomegaly, and early death. NPC is caused by mutations in either the NPC1 or NPC2 gene. Impaired NPC function leads to defective intracellular transport of unesterified cholesterol and its accumulation in late endosomes and lysosomes. A high frequency of Crohn disease has been reported in NPC1 patients, suggesting that gastrointestinal tract pathology may become a more prominent clinical issue if effective therapies are developed to slow the neurodegeneration. The Npc1 nih mouse model on a BALB/c background replicates the hepatic and neurological disease observed in NPC1 patients. Thus, we sought to characterize the gastrointestinal tract pathology in this model to determine whether it can serve as a model of Crohn disease in NPC1. METHODS We analyzed the gastrointestinal tract and isolated macrophages of BALB/cJ cNctr-Npc1m1N/J (Npc1-/-) mouse model to determine whether there was any Crohn-like pathology or inflammatory cell activation. We also evaluated temporal changes in the microbiota by 16S rRNA sequencing of fecal samples to determine whether there were changes consistent with Crohn disease. RESULTS Relative to controls, Npc1 mutant mice demonstrate increased inflammation and crypt abscesses in the gastrointestinal tract; however, the observed pathological changes are significantly less than those observed in other Crohn disease mouse models. Analysis of Npc1 mutant macrophages demonstrated an increased response to lipopolysaccharides and delayed bactericidal activity; both of which are pathological features of Crohn disease. Analysis of the bacterial microbiota does not mimic what is reported in Crohn disease in either human or mouse models. We did observe significant increases in cyanobacteria and epsilon-proteobacteria. The increase in epsilon-proteobacteria may be related to altered cholesterol homeostasis since cholesterol is known to promote growth of this bacterial subgroup. CONCLUSIONS Macrophage dysfunction in the BALB/c Npc1-/- mouse is similar to that observed in other Crohn disease models. However, neither the degree of pathology nor the microbiota changes are typical of Crohn disease. Thus, this mouse model is not a good model system for Crohn disease pathology reported in NPC1 patients.
Collapse
Affiliation(s)
- Antony Cougnoux
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Miyad Movassaghi
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Jaqueline A Picache
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - James R Iben
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Fatemeh Navid
- Department of Health and Human Services, National Institutes of Health, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, 20892, USA
| | - Alexander Salman
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Kyle Martin
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Nicole Y Farhat
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Celine Cluzeau
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Wei-Chia Tseng
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Kathryn Burkert
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Caitlin Sojka
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Christopher A Wassif
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Niamh X Cawley
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Richard Bonnet
- Microbes, Inflammation, Intestin et Susceptibilité de l'Hôte (M2iSH), Inserm U1071, INRA USC2018, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, Center Hospitalier Universitaire, Clermont-Ferrand, France
| | - Forbes D Porter
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA.
| |
Collapse
|
105
|
Uhlig HH. Mendelian Diseases and Inflammatory Bowel Disease-Data Mining for Genetic Risk and Disease-Associated Confounders. Inflamm Bowel Dis 2018; 24:467-470. [PMID: 29462400 DOI: 10.1093/ibd/izx090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Holm H Uhlig
- Translational Gastroenterology Unit, Experimental Medicine and Department of Paediatrics, University of Oxford, John Radcliffe Hospital Oxford, UK
| |
Collapse
|
106
|
Abstract
The discovery of numerous genetic variants in the human genome that are associated with inflammatory bowel disease (IBD) has revealed critical pathways that play important roles in intestinal homeostasis. These genetic studies have identified a critical role for macroautophagy/autophagy and more recently, lysosomal function, in maintaining the intestinal barrier and mucosal homeostasis. This review highlights recent work on the functional characterization of IBD-associated human genetic variants in cell type-specific functions for autophagy.
Collapse
Affiliation(s)
- Kara G Lassen
- a Broad Institute ; Cambridge , MA USA.,b Center for Computational and Integrative Biology ; Massachusetts General Hospital ; Boston , MA USA
| | - Ramnik J Xavier
- a Broad Institute ; Cambridge , MA USA.,b Center for Computational and Integrative Biology ; Massachusetts General Hospital ; Boston , MA USA.,c Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease ; Massachusetts General Hospital; Harvard Medical School ; Boston , MA USA
| |
Collapse
|
107
|
Abstract
The cellular degradative pathway of autophagy has a fundamental role in immunity. Here, we review the function of autophagy and autophagy proteins in inflammation. We discuss how the autophagy machinery controls the burden of infectious agents while simultaneously limiting inflammatory pathologies, which often involves processes that are distinct from conventional autophagy. Among the newly emerging processes we describe are LC3-associated phagocytosis and targeting by autophagy proteins, both of which require many of the same proteins that mediate conventional autophagy. We also discuss how autophagy contributes to differentiation of myeloid and lymphoid cell types, coordinates multicellular immunity, and facilitates memory responses. Together, these functions establish an intimate link between autophagy, mucosal immunity, and chronic inflammatory diseases. Finally, we offer our perspective on current challenges and barriers to translation.
Collapse
Affiliation(s)
- Yu Matsuzawa-Ishimoto
- Kimmel Center for Biology and Medicine at the Skirball Institute and.,Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; ,
| | - Seungmin Hwang
- Department of Pathology, The University of Chicago, Chicago, Illinois 60637, USA;
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute and.,Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; ,
| |
Collapse
|
108
|
|
109
|
Kim SW, Ehrman J, Ahn MR, Kondo J, Lopez AAM, Oh YS, Kim XH, Crawley SW, Goldenring JR, Tyska MJ, Rericha EC, Lau KS. Shear stress induces noncanonical autophagy in intestinal epithelial monolayers. Mol Biol Cell 2017; 28:3043-3056. [PMID: 28855375 PMCID: PMC5662261 DOI: 10.1091/mbc.e17-01-0021] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/04/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022] Open
Abstract
Shear stress applied on the apical side of polarizing intestinal cells induces vacuole formation via the autophagy machinery. This response is relayed through apical microvilli that act as mechanosensors linking the physical environment to the intracellular trafficking pathways. Flow of fluids through the gut, such as milk from a neonatal diet, generates a shear stress on the unilaminar epithelium lining the lumen. We report that exposure to physiological levels of fluid shear stress leads to the formation of large vacuoles, containing extracellular contents within polarizing intestinal epithelial cell monolayers. These observations lead to two questions: how can cells lacking primary cilia transduce shear stress, and what molecular pathways support the formation of vacuoles that can exceed 80% of the cell volume? We find that shear forces are sensed by actin-rich microvilli that eventually generate the apical brush border, providing evidence that these structures possess mechanosensing ability. Importantly, we identified the molecular pathway that regulates large vacuole formation downstream from mechanostimulation to involve central components of the autophagy pathway, including ATG5 and LC3, but not Beclin. Together our results establish a novel link between the actin-rich microvilli, the macroscopic transport of fluids across cells, and the noncanonical autophagy pathway in organized epithelial monolayers.
Collapse
Affiliation(s)
- Sun Wook Kim
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Jonathan Ehrman
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
| | - Mok-Ryeon Ahn
- Department of Food Science and Nutrition, Dong-A University, Busan 604-714, Republic of Korea
| | - Jumpei Kondo
- Department of Biochemistry, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Andrea A Mancheno Lopez
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Yun Sik Oh
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Xander H Kim
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Scott W Crawley
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - James R Goldenring
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232.,Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232.,Nashville VA Medical Center, Nashville, TN 37212
| | - Matthew J Tyska
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Erin C Rericha
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232 .,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
110
|
Uhlig HH, Muise AM. Clinical Genomics in Inflammatory Bowel Disease. Trends Genet 2017; 33:629-641. [PMID: 28755896 DOI: 10.1016/j.tig.2017.06.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022]
Abstract
Genomic technologies inform the complex genetic basis of polygenic inflammatory bowel disease (IBD) as well as Mendelian disease-associated IBD. Aiming to diagnose patients that present with extreme phenotypes due to monogenic forms of IBD, genomics has progressed from 'orphan disease' research towards an integrated standard of clinical care. Advances in diagnostic clinical genomics are increasingly complemented by pathway-specific therapies that aim to correct the consequences of genetic defects. This highlights the exceptional potential for personalized precision medicine. IBD is nevertheless a challenging example for genomic medicine because the overall fraction of patients with Mendelian defects is low, the number of potential candidate genes is high, and interventional evidence is still emerging. We discuss requirements and prospects of explanatory and predictive clinical genomics in IBD.
Collapse
Affiliation(s)
- Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, UK; Department of Paediatrics, University of Oxford, UK.
| | - Aleixo M Muise
- Program in Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada; SickKids Inflammatory Bowel Disease Centre and Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
111
|
Lassen KG, Xavier RJ. Genetic control of autophagy underlies pathogenesis of inflammatory bowel disease. Mucosal Immunol 2017; 10:589-597. [PMID: 28327616 PMCID: PMC6069523 DOI: 10.1038/mi.2017.18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/19/2017] [Indexed: 02/04/2023]
Abstract
Autophagy contributes to cellular homeostasis in the face of nutrient deprivation and other cellular stresses. Cell type-specific functions for autophagy are critical in maintaining homeostasis at both the tissue level and at the whole-organism level. Recent work has highlighted the ways in which human genetic variants modulate autophagy to alter epithelial and immune responses in inflammatory bowel disease.
Collapse
Affiliation(s)
- K G Lassen
- Broad Institute, Cambridge, Massachusetts, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - R J Xavier
- Broad Institute, Cambridge, Massachusetts, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
112
|
Yan J, Hedl M, Abraham C. An inflammatory bowel disease-risk variant in INAVA decreases pattern recognition receptor-induced outcomes. J Clin Invest 2017; 127:2192-2205. [PMID: 28436939 DOI: 10.1172/jci86282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/16/2017] [Indexed: 12/25/2022] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by dysregulation in both cytokines and responses to intestinal microbes, and proper regulation of pattern recognition receptor (PRR) signaling is critical for intestinal immune homeostasis. Altered functions for the IBD risk locus containing rs7554511, which encompasses the C1orf106 gene (recently named INAVA), and roles for the protein encoded by the INAVA gene are unknown. Here, we investigated the role of INAVA and INAVA genotype in regulating PRR-initiated outcomes in primary human cells. Both peripheral and intestinal myeloid cells expressed INAVA. Upon PRR stimulation, INAVA was required for optimal MAPK and NF-κB activation, cytokine secretion, and intracellular bacterial clearance. INAVA recruited 14-3-3τ, thereby contributing to recruitment of a signaling complex that amplified downstream signals and cytokines. Further, INAVA enhanced bacterial clearance by regulating reactive oxygen, reactive nitrogen, and autophagy pathways. Macrophages from rs7554511 C risk carriers expressed lower levels of INAVA RNA and protein. Lower expression was attributed in part to decreased transcription mediated directly by the intronic region containing the rs7554511 C variant. In rs7554511 C risk carrier macrophages, lower INAVA expression led to decreased PRR-induced activation of MAPK and NF-κB pathways, cytokines, and bacterial clearance pathways. Thus, IBD-associated polymorphisms in INAVA modulate PRR-initiated signaling, cytokines, and intracellular bacterial clearance, likely contributing to intestinal immune homeostasis.
Collapse
|
113
|
Basal autophagy prevents autoactivation or enhancement of inflammatory signals by targeting monomeric MyD88. Sci Rep 2017; 7:1009. [PMID: 28432355 PMCID: PMC5430896 DOI: 10.1038/s41598-017-01246-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/23/2017] [Indexed: 11/09/2022] Open
Abstract
Autophagy, the processes of delivery of intracellular components to lysosomes, regulates induction of inflammation. Inducible macroautophagy degrades inflammasomes and dysfunctional mitochondria to downregulate inflammatory signals. Nonetheless, the effects of constitutive basal autophagy on inflammatory signals are largely unknown. Here, we report a previously unknown effect of basal autophagy. Lysosomal inhibition induced weak inflammatory signals in the absence of a cellular stimulus and in the presence of a nutrient supply, and their induction was impaired by MyD88 deficiency. During lysosomal inhibition, MyD88 was accumulated, and overabundant MyD88 autoactivated downstream signaling or enhanced TLR/IL-1R-mediated signaling. MyD88 is probably degraded via basal microautophagy because macroautophagy inhibitors, ATG5 deficiency, and an activator of chaperone-mediated autophagy did not affect MyD88. Analysis using a chimeric protein whose monomerization/dimerization can be switched revealed that monomeric MyD88 is susceptible to degradation. Immunoprecipitation of monomeric MyD88 revealed its interaction with TRAF6. In TRAF6-deficient cells, degradation of basal MyD88 was enhanced, suggesting that TRAF6 participates in protection from basal autophagy. Thus, basal autophagy lowers monomeric MyD88 expression, and thereby autoactivation of inflammatory signals is prevented. Given that impairment of lysosomes occurs in various settings, our results provide novel insights into the etiology of inflammatory signals that affect consequences of inflammation.
Collapse
|
114
|
Chirieleison SM, Marsh RA, Kumar P, Rathkey JK, Dubyak GR, Abbott DW. Nucleotide-binding oligomerization domain (NOD) signaling defects and cell death susceptibility cannot be uncoupled in X-linked inhibitor of apoptosis (XIAP)-driven inflammatory disease. J Biol Chem 2017; 292:9666-9679. [PMID: 28404814 DOI: 10.1074/jbc.m117.781500] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/03/2017] [Indexed: 12/22/2022] Open
Abstract
The X-linked inhibitor of apoptosis (XIAP) protein has been identified as a key genetic driver of two distinct inflammatory disorders, X-linked lymphoproliferative syndrome 2 (XLP-2) and very-early-onset inflammatory bowel disease (VEO-IBD). Molecularly, the role of XIAP mutations in the pathogenesis of these disorders is unclear. Recent work has consistently shown XIAP to be critical for signaling downstream of the Crohn's disease susceptibility protein nucleotide-binding oligomerization domain-containing 2 (NOD2); however, the reported effects of XLP-2 and VEO-IBD XIAP mutations on cell death have been inconsistent. In this manuscript, we describe a CRISPR-mediated genetic system for cells of the myeloid lineage in which XIAP alleles can be replaced with disease-associated XIAP variants expressed at endogenous levels to simultaneously study inflammation-related cell death and NOD2 signaling. We show that, consistent with previous studies, NOD2 signaling is critically dependent on the BIR2 domain of XIAP. We further used this system to reconcile the aforementioned inconsistent XIAP cell death data to show that XLP-2 and VEO-IBD XIAP mutations that exhibit a loss-of-function NOD2 phenotype also lower the threshold for inflammatory cell death. Last, we identified and studied three novel patient XIAP mutations and used this system to characterize NOD2 and cell death phenotypes driven by XIAP. The results of this work support the role of XIAP in mediating NOD2 signaling while reconciling the role of XLP-2 and VEO-IBD XIAP mutations in inflammatory cell death and provide a set of tools and framework to rapidly test newly discovered XIAP variants.
Collapse
Affiliation(s)
| | - Rebecca A Marsh
- the Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital, Cincinnati, Ohio 45229
| | | | | | - George R Dubyak
- Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 and
| | | |
Collapse
|
115
|
Iida T, Onodera K, Nakase H. Role of autophagy in the pathogenesis of inflammatory bowel disease. World J Gastroenterol 2017; 23:1944-1953. [PMID: 28373760 PMCID: PMC5360635 DOI: 10.3748/wjg.v23.i11.1944] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/07/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) results from a complex series of interactions between susceptibility genes, the environment, and the immune system. Recently, some studies provided strong evidence that the process of autophagy affects several aspects of mucosal immune responses. Autophagy is a cellular stress response that plays key roles in physiological processes, such as innate and adaptive immunity, adaptation to starvation, degradation of aberrant proteins or organelles, antimicrobial defense, and protein secretion. Dysfunctional autophagy is recognized as a contributing factor in many chronic inflammatory diseases, including IBD. Autophagy plays multiple roles in IBD pathogenesis by altering processes that include intracellular bacterial killing, antimicrobial peptide secretion by Paneth cells, goblet cell function, proinflammatory cytokine production by macrophages, antigen presentation by dendritic cells, and the endoplasmic reticulum stress response in enterocytes. Recent studies have identified susceptibility genes involved in autophagy, such as NOD2, ATG16L1, and IRGM, and active research is ongoing all over the world. The aim of this review is a systematic appraisal of the current literature to provide a better understanding of the role of autophagy in the pathogenesis of IBD. Understanding these mechanisms will bring about new strategies for the treatment and prevention of IBD.
Collapse
|
116
|
Elimrani I, Koenekoop J, Dionne S, Marcil V, Delvin E, Levy E, Seidman EG. Vitamin D Reduces Colitis- and Inflammation-Associated Colorectal Cancer in Mice Independent of NOD2. Nutr Cancer 2017; 69:276-288. [PMID: 28045548 DOI: 10.1080/01635581.2017.1263346] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease (IBD) patients are at increased risk of developing colorectal cancer (CRC). Vitamin D (vD) induces NOD2 gene expression, enhancing immunity, while deficiency impairs intestinal epithelial integrity, increasing inflammation. This study investigated the effect of vD on CRC in colitis, and if preventive benefits are mediated via NOD2. Inflammation-associated CRC was induced by treating C57BL/6J and Nod2-/- mice with azoxymethane (AOM) and dextran sodium sulfate (DSS) cycles (×3). vD-deficient mice displayed more severe colitis compared to vD-supplemented mice, with greater weight loss, higher colitis activity index, increased colonic weight/length ratios, and lower survival rates. Increased histological inflammation score and increased IL-6 were observed in the mucosa of vD-deficient mice. Overall incidence of colonic tumors was not significantly different between vD-deficient and vD-supplemented mice. Higher tumor multiplicity was observed in vD-deficient vs vD-supplemented groups (both mouse strains). After AOM/DSS treatment, decreased plasma 25(OH)D3 levels and downregulation of vD target genes Cyp24 and Vdr were observed in both mice strains (vD-deficient or vD-supplemented diet), compared to saline-treated controls on the vD-deficient diet. In conclusion, vD supplementation reduced colitis severity and decreased the number of inflammation-associated colorectal tumors in both C57BL/6J and Nod2-/- mice, independent of NOD2.
Collapse
Affiliation(s)
- Ihsan Elimrani
- a Division of Gastroenterology, Faculty of Medicine, IBD Laboratory, Research Institute, McGill University Health Center, McGill University , Montreal , Quebec , Canada
| | - Jamie Koenekoop
- a Division of Gastroenterology, Faculty of Medicine, IBD Laboratory, Research Institute, McGill University Health Center, McGill University , Montreal , Quebec , Canada
| | - Serge Dionne
- a Division of Gastroenterology, Faculty of Medicine, IBD Laboratory, Research Institute, McGill University Health Center, McGill University , Montreal , Quebec , Canada
| | - Valerie Marcil
- a Division of Gastroenterology, Faculty of Medicine, IBD Laboratory, Research Institute, McGill University Health Center, McGill University , Montreal , Quebec , Canada.,b Department of Nutrition and Biochemistry , Sainte Justine Hospital Research Center, University of Montreal , Montreal , Quebec , Canada
| | - Edgar Delvin
- b Department of Nutrition and Biochemistry , Sainte Justine Hospital Research Center, University of Montreal , Montreal , Quebec , Canada
| | - Emile Levy
- b Department of Nutrition and Biochemistry , Sainte Justine Hospital Research Center, University of Montreal , Montreal , Quebec , Canada
| | - Ernest G Seidman
- a Division of Gastroenterology, Faculty of Medicine, IBD Laboratory, Research Institute, McGill University Health Center, McGill University , Montreal , Quebec , Canada
| |
Collapse
|
117
|
Fineran P, Lloyd-Evans E, Lack NA, Platt N, Davis LC, Morgan AJ, Höglinger D, Tatituri RVV, Clark S, Williams IM, Tynan P, Al Eisa N, Nazarova E, Williams A, Galione A, Ory DS, Besra GS, Russell DG, Brenner MB, Sim E, Platt FM. Pathogenic mycobacteria achieve cellular persistence by inhibiting the Niemann-Pick Type C disease cellular pathway. Wellcome Open Res 2016. [PMID: 28008422 DOI: 10.12688/wellcomeopenres.10036.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Tuberculosis remains a major global health concern. The ability to prevent phagosome-lysosome fusion is a key mechanism by which intracellular mycobacteria, including Mycobacterium tuberculosis, achieve long-term persistence within host cells. The mechanisms underpinning this key intracellular pro-survival strategy remain incompletely understood. Host macrophages infected with persistent mycobacteria share phenotypic similarities with cells taken from patients suffering from Niemann-Pick Disease Type C (NPC), a rare lysosomal storage disease in which endocytic trafficking defects and lipid accumulation within the lysosome lead to cell dysfunction and cell death. We investigated whether these shared phenotypes reflected an underlying mechanistic connection between mycobacterial intracellular persistence and the host cell pathway dysfunctional in NPC. METHODS The induction of NPC phenotypes in macrophages from wild-type mice or obtained from healthy human donors was assessed via infection with mycobacteria and subsequent measurement of lipid levels and intracellular calcium homeostasis. The effect of NPC therapeutics on intracellular mycobacterial load was also assessed. RESULTS Macrophages infected with persistent intracellular mycobacteria phenocopied NPC cells, exhibiting accumulation of multiple lipid types, reduced lysosomal Ca2+ levels, and defects in intracellular trafficking. These NPC phenotypes could also be induced using only lipids/glycomycolates from the mycobacterial cell wall. These data suggest that persistent intracellular mycobacteria inhibit the NPC pathway, likely via inhibition of the NPC1 protein, and subsequently induce altered acidic store Ca2+ homeostasis. Reduced lysosomal calcium levels may provide a mechanistic explanation for the reduced levels of phagosome-lysosome fusion in mycobacterial infection. Treatments capable of correcting defects in NPC mutant cells via modulation of host cell calcium were of benefit in promoting clearance of mycobacteria from infected host cells. CONCLUSION These findings provide a novel mechanistic explanation for mycobacterial intracellular persistence, and suggest that targeting interactions between the mycobacteria and host cell pathways may provide a novel avenue for development of anti-TB therapies.
Collapse
Affiliation(s)
- Paul Fineran
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Emyr Lloyd-Evans
- Department of Pharmacology, University of Oxford, Oxford, UK.,School of Biosciences, Cardiff University, Cardiff, UK
| | - Nathan A Lack
- Department of Pharmacology, University of Oxford, Oxford, UK.,School of Medicine, Koç University, Istanbul, Turkey
| | - Nick Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Lianne C Davis
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Doris Höglinger
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | | | - Ian M Williams
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Patricia Tynan
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Nada Al Eisa
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Evgeniya Nazarova
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, USA
| | | | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, USA
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, USA
| | - Michael B Brenner
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Edith Sim
- Department of Pharmacology, University of Oxford, Oxford, UK.,Faculty of Science Engineering and Computing, Kingston University, Kingston upon Thames, UK
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
118
|
Fineran P, Lloyd-Evans E, Lack NA, Platt N, Davis LC, Morgan AJ, Höglinger D, Tatituri RVV, Clark S, Williams IM, Tynan P, Al Eisa N, Nazarova E, Williams A, Galione A, Ory DS, Besra GS, Russell DG, Brenner MB, Sim E, Platt FM. Pathogenic mycobacteria achieve cellular persistence by inhibiting the Niemann-Pick Type C disease cellular pathway. Wellcome Open Res 2016; 1:18. [PMID: 28008422 PMCID: PMC5172425 DOI: 10.12688/wellcomeopenres.10036.2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Tuberculosis remains a major global health concern. The ability to prevent phagosome-lysosome fusion is a key mechanism by which intracellular mycobacteria, including Mycobacterium tuberculosis, achieve long-term persistence within host cells. The mechanisms underpinning this key intracellular pro-survival strategy remain incompletely understood. Host macrophages infected with persistent mycobacteria share phenotypic similarities with cells taken from patients suffering from Niemann-Pick Disease Type C (NPC), a rare lysosomal storage disease in which endocytic trafficking defects and lipid accumulation within the lysosome lead to cell dysfunction and cell death. We investigated whether these shared phenotypes reflected an underlying mechanistic connection between mycobacterial intracellular persistence and the host cell pathway dysfunctional in NPC. METHODS The induction of NPC phenotypes in macrophages from wild-type mice or obtained from healthy human donors was assessed via infection with mycobacteria and subsequent measurement of lipid levels and intracellular calcium homeostasis. The effect of NPC therapeutics on intracellular mycobacterial load was also assessed. RESULTS Macrophages infected with persistent intracellular mycobacteria phenocopied NPC cells, exhibiting accumulation of multiple lipid types, reduced lysosomal Ca2+ levels, and defects in intracellular trafficking. These NPC phenotypes could also be induced using only lipids/glycomycolates from the mycobacterial cell wall. These data suggest that persistent intracellular mycobacteria inhibit the NPC pathway, likely via inhibition of the NPC1 protein, and subsequently induce altered acidic store Ca2+ homeostasis. Reduced lysosomal calcium levels may provide a mechanistic explanation for the reduced levels of phagosome-lysosome fusion in mycobacterial infection. Treatments capable of correcting defects in NPC mutant cells via modulation of host cell calcium were of benefit in promoting clearance of mycobacteria from infected host cells. CONCLUSION These findings provide a novel mechanistic explanation for mycobacterial intracellular persistence, and suggest that targeting interactions between the mycobacteria and host cell pathways may provide a novel avenue for development of anti-TB therapies.
Collapse
Affiliation(s)
- Paul Fineran
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Emyr Lloyd-Evans
- Department of Pharmacology, University of Oxford, Oxford, UK
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Nathan A. Lack
- Department of Pharmacology, University of Oxford, Oxford, UK
- School of Medicine, Koç University, Istanbul, Turkey
| | - Nick Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Lianne C. Davis
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Doris Höglinger
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | | | - Ian M. Williams
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Patricia Tynan
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Nada Al Eisa
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Evgeniya Nazarova
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, USA
| | | | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Daniel S. Ory
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, USA
| | | | - David G. Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, USA
| | - Michael B. Brenner
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Edith Sim
- Department of Pharmacology, University of Oxford, Oxford, UK
- Faculty of Science Engineering and Computing, Kingston University, Kingston upon Thames, UK
| | | |
Collapse
|
119
|
Yang C, Jiao Y, Yan N, Wu B, Ren Y, Li H, Sun J, Gao J. NOD2 mediates isoflurane preconditioning-induced protection of myocardial injury. Neurosci Lett 2016; 637:154-160. [PMID: 27865880 DOI: 10.1016/j.neulet.2016.11.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 12/14/2022]
Abstract
Anesthetic cardioprotection reduces myocardial infarct size following ischemia-reperfusion injury. However, the underlying mechanisms that drive ischemia-reperfusion injury in cardiomyocytes remain unclear. In this study, we report that isoflurane, a commonly used inhaled anesthetic, can protect cardiomyocytes from anoxia/reoxygenation injury by a nucleotide binding oligomerization domain containing 2 (NOD2)-dependent mechanism. The results showed that isoflurane increased cell viability, and decreased autophagosome generation in primary cardiomyocytes under anoxia/reoxygenation conditions. In addition, western blot revealed that isoflurane reduces the expression of NOD2. Overexpression of NOD2 is accompanied by an increased expression of autophagy-related genes, decreased cell viability, and enhanced expression of phosphorylation p38-mitogen-activated protein kinase (p38MAPK), while NOD2 knockdown exerted the opposite effect. Following preconditioning with SB203580, a p38MAPK inhibitor, the inhibitory effect of isoflurane on cardiomyocytes autophagy was further enhanced, which suggests that p38MAPK is involved in the mechanism of cardioprotection provided by isoflurane. These findings reveal a novel mechanism underlying isoflurane-afford protection of myocardial injury.
Collapse
Affiliation(s)
- Cheng Yang
- Tianjin medical university graduate school; Department of anesthesiology, Affiliated Hospital of Logistics University of PAP, Tianjin 300162, China
| | - Yang Jiao
- Department of anesthesiology, General hospital of Tianjin medical university, Tianjin 300052, China
| | - Nuo Yan
- Tianjin medical university graduate school; Department of anesthesiology, Affiliated Hospital of Logistics University of PAP, Tianjin 300162, China
| | - Banglin Wu
- Department of anesthesiology, the Central Hospital of Enshi Autonomous Prefecture, Enshi 445000, China
| | - Yiqing Ren
- Tianjin medical university graduate school; Department of anesthesiology, Affiliated Hospital of Logistics University of PAP, Tianjin 300162, China
| | - Hui Li
- Tianjin medical university graduate school; Department of anesthesiology, Affiliated Hospital of Logistics University of PAP, Tianjin 300162, China
| | - Jinchao Sun
- Tianjin medical university graduate school; Department of anesthesiology, Affiliated Hospital of Logistics University of PAP, Tianjin 300162, China
| | - Jie Gao
- Tianjin medical university graduate school; Department of anesthesiology, Affiliated Hospital of Logistics University of PAP, Tianjin 300162, China.
| |
Collapse
|
120
|
Loganes C, Pin A, Naviglio S, Girardelli M, Bianco AM, Martelossi S, Tommasini A, Piscianz E. Altered pattern of tumor necrosis factor-alpha production in peripheral blood monocytes from Crohn's disease. World J Gastroenterol 2016; 22:9117-9126. [PMID: 27895399 PMCID: PMC5107593 DOI: 10.3748/wjg.v22.i41.9117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/25/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the inflammatory state in Crohn’s disease (CD) patients and correlate it with genetic background and microbial spreading.
METHODS By means of flow cytometry, production of tumor necrosis factor-alpha (TNF-α) was measured in peripheral blood monocytes from patients suffering from CD, ulcerative colitis (UC) and in healthy subjects after stimulation of the NOD2 and TLR pathways. CD patients were genotyped for the three most common NOD2 variants (R702W, G908R and L1007Pfs*2) and basal production of TNF-α was correlated to NOD2 genotype. Also, production of TNF-α was correlated to plasmatic levels of LPS Binding Protein (LBP), soluble (s) CD14 and to the activity state of the disease.
RESULTS The patients with CD were characterized by a significantly higher monocyte basal expression of TNF-α compared with healthy subjects and UC patients, and after stimulation with Pam3CSK4 (ligand of TLR2/1) and MDP-L18 (ligand of NOD2) this difference was maintained, while other microbial stimuli (LPS, ligand of TLR4 and PolyI:C, ligand of TLR3) induced massive activation in CD monocytes as well as in UC and in healthy control cells. There was no significant difference in the production of TNF-α between patients who carried CD-associated heterozygous or homozygous variants in NOD2 and patients with wild type NOD2 genotype. Although serum LBP levels have been shown to correlate positively with the state of activity of the disease, TNF-α production did not show a clear correlation with either LBP or sCD14 levels in plasma. Moreover, no clear correlation was seen between TNF-α production and activity indices in either CD or UC.
CONCLUSION Peripheral monocytes from CD express higher basal and stimulated TNF-α than controls, regardless of NOD2 genotype and without a clear correlation with disease activity.
Collapse
|
121
|
Abstract
Autophagy has broad functions in immunity, ranging from cell-autonomous defence to coordination of complex multicellular immune responses. The successful resolution of infection and avoidance of autoimmunity necessitates efficient and timely communication between autophagy and pathways that sense the immune environment. The recent literature indicates that a variety of immune mediators induce or repress autophagy. It is also becoming increasingly clear that immune signalling cascades are subject to regulation by autophagy, and that a return to homeostasis following a robust immune response is critically dependent on this pathway. Importantly, examples of non-canonical forms of autophagy in mediating immunity are pervasive. In this article, the progress in elucidating mechanisms of crosstalk between autophagy and inflammatory signalling cascades is reviewed. Improved mechanistic understanding of the autophagy machinery offers hope for treating infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Ken Cadwell
- grid.137628.90000 0004 1936 8753and the Department of Microbiology, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, 10016 New York USA
| |
Collapse
|
122
|
Abstract
The cause of Crohn’s disease (CD) has posed a conundrum for at least a century. A large body of work coupled with recent technological advances in genome research have at last started to provide some of the answers. Initially this review seeks to explain and to differentiate between bowel inflammation in the primary immunodeficiencies that generally lead to very early onset diffuse bowel inflammation in humans and in animal models, and the real syndrome of CD. In the latter, a trigger, almost certainly enteric infection by one of a multitude of organisms, allows the faeces access to the tissues, at which stage the response of individuals predisposed to CD is abnormal. Direct investigation of patients’ inflammatory response together with genome-wide association studies (GWAS) and DNA sequencing indicate that in CD the failure of acute inflammation and the clearance of bacteria from the tissues, and from within cells, is defective. The retained faecal products result in the characteristic chronic granulomatous inflammation and adaptive immune response. In this review I will examine the contemporary evidence that has led to this understanding, and look for explanations for the recent dramatic increase in the incidence of this disease.
Collapse
|
123
|
Abstract
The cause of Crohn's disease (CD) has posed a conundrum for at least a century. A large body of work coupled with recent technological advances in genome research have at last started to provide some of the answers. Initially this review seeks to explain and to differentiate between bowel inflammation in the primary immunodeficiencies that generally lead to very early onset diffuse bowel inflammation in humans and in animal models, and the real syndrome of CD. In the latter, a trigger, almost certainly enteric infection by one of a multitude of organisms, allows the faeces access to the tissues, at which stage the response of individuals predisposed to CD is abnormal. Direct investigation of patients' inflammatory response together with genome-wide association studies (GWAS) and DNA sequencing indicate that in CD the failure of acute inflammation and the clearance of bacteria from the tissues, and from within cells, is defective. The retained faecal products result in the characteristic chronic granulomatous inflammation and adaptive immune response. In this review I will examine the contemporary evidence that has led to this understanding, and look for explanations for the recent dramatic increase in the incidence of this disease.
Collapse
|
124
|
|
125
|
Schultz ML, Krus KL, Lieberman AP. Lysosome and endoplasmic reticulum quality control pathways in Niemann-Pick type C disease. Brain Res 2016; 1649:181-188. [PMID: 27026653 DOI: 10.1016/j.brainres.2016.03.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/17/2016] [Accepted: 03/24/2016] [Indexed: 12/13/2022]
Abstract
Lysosomal storage diseases result from inherited deficiencies of lysosomal hydrolytic activities or lipid transport. Collectively, these disorders are a common cause of morbidity in the pediatric population and are often associated with severe neurodegeneration. Among this group of diseases is Niemann-Pick type C, an autosomal recessive disorder of lipid trafficking that causes cognitive impairment, ataxia and death, most often in childhood. Here, we review the current knowledge of disease pathogenesis, with particular focus on insights gleaned from genetics and the study of model systems. Critical advances in understanding mechanisms that regulate intracellular cholesterol trafficking have emerged from this work and are highlighted. We review effects of disease-causing mutations on quality control pathways involving the lysosome and endoplasmic reticulum, and discuss how they function to clear the most common mutant protein found in Niemann-Pick type C patients, NPC1-I1061T. Finally, we summarize insights into the mechanisms that degrade misfolded transmembrane proteins in the endoplasmic reticulum and how manipulating these quality control pathways may lead to the identification of novel targets for disease-modifying therapies. This article is part of a Special Issue entitled SI:Autophagy.
Collapse
Affiliation(s)
- Mark L Schultz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Kelsey L Krus
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|