101
|
Hirano M, Satake W, Ihara K, Tsuge I, Kondo S, Saida K, Betsui H, Okubo K, Sakamoto H, Ueno S, Ikuno Y, Ishihara R, Iwahashi H, Ohishi M, Mano T, Yamashita T, Suzuki Y, Nakamura Y, Kusunoki S, Toda T. The First Nationwide Survey and Genetic Analyses of Bardet-Biedl Syndrome in Japan. PLoS One 2015; 10:e0136317. [PMID: 26325687 PMCID: PMC4556711 DOI: 10.1371/journal.pone.0136317] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/31/2015] [Indexed: 01/27/2023] Open
Abstract
Bardet-Biedl syndrome (BBS) is an autosomal recessive disorder characterized by central obesity, mental impairment, rod-cone dystrophy, polydactyly, hypogonadism in males, and renal abnormalities. The causative genes have been identified as BBS1-19. In Western countries, this disease is often reported, but remains undiagnosed in many patients until later in life, while only a few patients with no mutations identified have been reported in Japan. We thus conducted the first nationwide survey of BBS in Japan by sending questionnaires to 2,166 clinical departments with board-certified specialists and found 7 patients with clinically definite BBS. We performed exome analyses combined with analyses of mRNA and protein in these patients. We identified 2 novel mutations in the BBS5 gene (p.R89X and IVS7-27 T>G) in 2 sibling patients. The latter mutation that resided far from the authentic splicing site was associated with skipping of exon 8. We also found 3 previously reported mutations in the BBS2 (p.R413X and p.R480X) and BBS7 (p.C243Y) genes in 2 patients. To our knowledge, a nationwide survey of BBS has not been reported in any other country. In addition, this is the first study to identify genetic alterations in Japanese patients with BBS. Our results indicate that BBS in Japan is genetically heterogeneous and at least partly shares genetic features with BBS in other countries.
Collapse
Affiliation(s)
- Makito Hirano
- Department of Neurology, Sakai Hospital Kinki University Faculty of Medicine, Sakai, Japan
- Department of Neurology, Kinki University Faculty of Medicine, Osakasayama, Japan
- * E-mail:
| | - Wataru Satake
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenji Ihara
- Department of Pediatrics, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Ikuya Tsuge
- Department of Pediatrics, Fujita Health University, Toyoake, Japan
| | - Shuji Kondo
- Department of Pediatrics, Tokushima University, Tokushima, Japan
| | - Ken Saida
- Department of Nephrology, National Center for Child Health and Development, Tokyo, Japan
| | - Hiroyuki Betsui
- Department of Pediatrics, Haga Red Cross Hospital, Mooka, Japan
| | - Kazuhiro Okubo
- Department of Pediatrics, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Hikaru Sakamoto
- Department of Neurology, Sakai Hospital Kinki University Faculty of Medicine, Sakai, Japan
| | - Shuichi Ueno
- Department of Neurology, Sakai Hospital Kinki University Faculty of Medicine, Sakai, Japan
- Department of Neurology, Kinki University Faculty of Medicine, Osakasayama, Japan
| | - Yasushi Ikuno
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryu Ishihara
- Department of Gastrointestinal Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Hiromi Iwahashi
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Mitsuru Ohishi
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Toshiyuki Mano
- Department of Pediatric Neurology, Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Yusaku Nakamura
- Department of Neurology, Sakai Hospital Kinki University Faculty of Medicine, Sakai, Japan
| | - Susumu Kusunoki
- Department of Neurology, Kinki University Faculty of Medicine, Osakasayama, Japan
| | - Tatsushi Toda
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
102
|
Yoon CK, Kim NKD, Joung JG, Shin JY, Park JH, Eum HH, Lee HO, Park WY, Yu HG. The diagnostic application of targeted re-sequencing in Korean patients with retinitis pigmentosa. BMC Genomics 2015; 16:515. [PMID: 26155838 PMCID: PMC4496857 DOI: 10.1186/s12864-015-1723-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/26/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Identification of the causative genes of retinitis pigmentosa (RP) is important for the clinical care of patients with RP. However, a comprehensive genetic study has not been performed in Korean RP patients. Moreover, the genetic heterogeneity found in sensorineural genetic disorders makes identification of pathogenic mutations challenging. Therefore, high throughput genetic testing using massively parallel sequencing is needed. RESULTS Sixty-two Korean patients with nonsyndromic RP (46 patients from 18 families and 16 simplex cases) who consented to molecular genetic testing were recruited in this study and targeted exome sequencing was applied on 53 RP-related genes. Causal variants were characterised by selecting exonic and splicing variants, selecting variants with low allele frequency (below 1 %), and discarding the remaining variants with quality below 20. The variants were additionally confirmed by an inheritance pattern and cosegregation test of the families, and the rest of the variants were prioritised using in-silico prediction tools. Finally, causal variants were detected from 10 of 18 familial cases (55.5 %) and 7 of 16 simplex cases (43.7 %) in total. Novel variants were detected in 13 of 20 (65 %) candidate variants. Compound heterozygous variants were found in four of 7 simplex cases. CONCLUSION Panel-based targeted re-sequencing can be used as an effective molecular diagnostic tool for RP.
Collapse
Affiliation(s)
- Chang-Ki Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| | - Nayoung K D Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Je-Gun Joung
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Joo Young Shin
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Hyun Park
- Department of Ophthalmology, Seoul Paik Hospital, Inje University, Seoul, Korea
| | - Hye-Hyun Eum
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea.,Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Hae-Ock Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Woong-Yang Park
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea. .,Samsung Genome Institute, Samsung Medical Center, Seoul, Korea.
| | - Hyeong Gon Yu
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
103
|
Srilekha S, Arokiasamy T, Srikrupa NN, Umashankar V, Meenakshi S, Sen P, Kapur S, Soumittra N. Homozygosity Mapping in Leber Congenital Amaurosis and Autosomal Recessive Retinitis Pigmentosa in South Indian Families. PLoS One 2015; 10:e0131679. [PMID: 26147992 PMCID: PMC4493089 DOI: 10.1371/journal.pone.0131679] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/04/2015] [Indexed: 11/18/2022] Open
Abstract
Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP) are retinal degenerative diseases which cause severe retinal dystrophy affecting the photoreceptors. LCA is predominantly inherited as an autosomal recessive trait and contributes to 5% of all retinal dystrophies; whereas RP is inherited by all the Mendelian pattern of inheritance and both are leading causes of visual impairment in children and young adults. Homozygosity mapping is an efficient strategy for mapping both known and novel disease loci in recessive conditions, especially in a consanguineous mating, exploiting the fact that the regions adjacent to the disease locus will also be homozygous by descent in such inbred children. Here we have studied eleven consanguineous LCA and one autosomal recessive RP (arRP) south Indian families to know the prevalence of mutations in known genes and also to know the involvement of novel loci, if any. Complete ophthalmic examination was done for all the affected individuals including electroretinogram, fundus photograph, fundus autofluorescence, and optical coherence tomography. Homozygosity mapping using Affymetrix 250K HMA GeneChip on eleven LCA families followed by screening of candidate gene(s) in the homozygous block identified mutations in ten families; AIPL1 - 3 families, RPE65- 2 families, GUCY2D, CRB1, RDH12, IQCB1 and SPATA7 in one family each, respectively. Six of the ten (60%) mutations identified are novel. Homozygosity mapping using Affymetrix 10K HMA GeneChip on the arRP family identified a novel nonsense mutation in MERTK. The mutations segregated within the family and was absent in 200 control chromosomes screened. In one of the eleven LCA families, the causative gene/mutation was not identified but many homozygous blocks were noted indicating that a possible novel locus/gene might be involved. The genotype and phenotype features, especially the fundus changes for AIPL1, RPE65, CRB1, RDH12 genes were as reported earlier.
Collapse
Affiliation(s)
- Sundaramurthy Srilekha
- SNONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai, India
- Ph.D Scholar, Birla Institute of Technology & Science (BITS), Hyderabad, India
| | - Tharigopala Arokiasamy
- SNONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai, India
| | - Natarajan N. Srikrupa
- SNONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai, India
- Ph.D Scholar, Birla Institute of Technology & Science (BITS), Hyderabad, India
| | | | - Swaminathan Meenakshi
- Department of Peadiatric ophthalmology and starbismus, Medical Research Foundation, Chennai, India
| | - Parveen Sen
- Department of Vitreo-Retinal Services, Medical Research Foundation, Chennai, India
| | - Suman Kapur
- Head, Department of Biological Science, Birla Institute of Technology & Science (BITS), Hyderabad, India
| | - Nagasamy Soumittra
- SNONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai, India
- * E-mail: /
| |
Collapse
|
104
|
Khan AO, Al Rashaed S, Neuhaus C, Bergmann C, Bolz HJ. Peripherin mutations cause a distinct form of recessive Leber congenital amaurosis and dominant phenotypes in asymptomatic parents heterozygous for the mutation. Br J Ophthalmol 2015; 100:209-15. [PMID: 26061163 DOI: 10.1136/bjophthalmol-2015-306844] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/26/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND Dominant mutations in peripherin (PRPH2) are associated with a spectrum of retinal dystrophy phenotypes, many of which are adult onset and involve the macula. Recessive PRPH2 mutations cause retinal dystrophy associated with prominent maculopathy in adulthood; however, the presenting childhood phenotype has not been defined. We characterise this phenotype. METHODS Retrospective case series of families harbouring bi-allelic PRPH2 mutations (2010-2014). RESULTS Three children (two families; assessed at 2 years old) and two adults (one family; assessed at 24 and 35 years old) with homozygous PRPH2 mutations (c.497G>A (p.Cys166Tyr) or c.136C>T (p.Arg46*)) all had infantile nystagmus and decreased vision noted soon after birth and a history of staring at lights during infancy (photophilia). The three children had high hyperopia, a normal or near normal fundus, and non-recordable electroretinographies (ERGs). The two adults had slight myopia, macular and peripheral retinal changes, and non-recordable ERGs. All five available carrier parents had macular±peripheral retinal findings, although they considered themselves asymptomatic except for one mother who had developed visual loss in one eye at 48 years old and had an associated subfoveal lesion. CONCLUSIONS Bi-allelic PRPH2 mutations cause a distinct Leber congenital amaurosis phenotype in infancy; affected adults have prominent maculopathy. Heterozygous parents can be asymptomatic but have clinically obvious macular phenotypes with or without peripheral retinal findings, which can be helpful in making the genetic diagnosis in affected children. The difference between the heterozygous and homozygous phenotypes is likely related to gene product dosage effect.
Collapse
Affiliation(s)
- Arif O Khan
- Division of Pediatric Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Saba Al Rashaed
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | | | - Carsten Bergmann
- Center for Human Genetics, Bioscientia, Ingelheim, Germany Department of Medicine, University Freiburg Medical Center, Freiburg, Germany
| | - Hanno J Bolz
- Center for Human Genetics, Bioscientia, Ingelheim, Germany Institute of Human Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
105
|
Novel GUCY2D Gene Mutations in Japanese Male Twins with Leber Congenital Amaurosis. J Ophthalmol 2015; 2015:693468. [PMID: 26097748 PMCID: PMC4444599 DOI: 10.1155/2015/693468] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/28/2015] [Indexed: 01/12/2023] Open
Abstract
Purpose. Leber congenital amaurosis (LCA), a genetically and clinically heterogeneous disease, is the earliest onset retinitis pigmentosa (RP) and is the most severe of hereditary retinal dystrophies. This study was conducted to investigate genetic and clinical features of LCA in a set of Japanese male twins with LCA. Methods. To identify causative mutations, 74 genes known to cause RP or LCA were examined by targeted-next generation sequencing (NGS). Targeted-NGS was performed using a custom designed Agilent HaloPlex target enrichment kit with Illumina Miseq sequencer. Identified potential pathogenic mutations were confirmed using Sanger sequencing. Clinical analyses were based on ophthalmic examination, fundus photography, and electroretinography (ERG). Results. Compound heterozygous GUCY2D mutations of novel splicing mutation c.2113+2_2113+3insT and novel missense mutation p.L905P were detected in both twins. Their father and mother were heterozygous for c.2113+2_2113+3insT and p.L905P, respectively. The twins had phenotypic features similar to those previously reported in patients with GUCY2D mutations. This included early childhood onset of visual loss, nystagmus, unrecordable ERG, photophobia, and hyperopia. Conclusions. To the best of our knowledge, this is the first report of genetic and clinical features of Japanese LCA twins with GUCY2D mutation, which were detected using targeted-NGS.
Collapse
|
106
|
Jia Y, Louw JJ, Breckpot J, Callewaert B, Barrea C, Sznajer Y, Gewillig M, Souche E, Dehaspe L, Vermeesch JR, Lambrechts D, Devriendt K, Corveleyn A. The diagnostic value of next generation sequencing in familial nonsyndromic congenital heart defects. Am J Med Genet A 2015; 167A:1822-9. [DOI: 10.1002/ajmg.a.37108] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/19/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Yaojuan Jia
- Department of Human Genetics; KU Leuven; Leuven Belgium
| | - Jacoba J. Louw
- Department of Human Genetics; KU Leuven; Leuven Belgium
- Department of Congenital and Pediatric Cardiology; University Hospitals Leuven; Leuven Belgium
| | - Jeroen Breckpot
- Department of Human Genetics; KU Leuven; Leuven Belgium
- Department of Pediatrics; University Hospitals Leuven; Leuven Belgium
| | - Bert Callewaert
- Center for Medical Genetics; University of Ghent; Ghent Belgium
| | - Catherine Barrea
- Department of Congenital and Pediatric Cardiology; Universit; é; Catholique de Louvain; Brussels Belgium
| | - Yves Sznajer
- Center for Human Genetics; Université Catholique de Louvain; Brussels Belgium
| | - Marc Gewillig
- Department of Congenital and Pediatric Cardiology; University Hospitals Leuven; Leuven Belgium
| | - Erika Souche
- Department of Human Genetics; KU Leuven; Leuven Belgium
| | - Luc Dehaspe
- Department of Human Genetics; KU Leuven; Leuven Belgium
| | | | - Diether Lambrechts
- Department of Oncology; KU Leuven; Leuven Belgium
- Vesalius Research Center; VIB; Leuven Belgium
| | | | | |
Collapse
|
107
|
van Huet RAC, Pierrache LH, Meester-Smoor MA, Klaver CC, van den Born LI, Hoyng CB, de Wijs IJ, Collin RWJ, Hoefsloot LH, Klevering BJ. The efficacy of microarray screening for autosomal recessive retinitis pigmentosa in routine clinical practice. Mol Vis 2015; 21:461-76. [PMID: 25999674 PMCID: PMC4415583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 04/26/2015] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To determine the efficacy of multiple versions of a commercially available arrayed primer extension (APEX) microarray chip for autosomal recessive retinitis pigmentosa (arRP). METHODS We included 250 probands suspected of arRP who were genetically analyzed with the APEX microarray between January 2008 and November 2013. The mode of inheritance had to be autosomal recessive according to the pedigree (including isolated cases). If the microarray identified a heterozygous mutation, we performed Sanger sequencing of exons and exon-intron boundaries of that specific gene. The efficacy of this microarray chip with the additional Sanger sequencing approach was determined by the percentage of patients that received a molecular diagnosis. We also collected data from genetic tests other than the APEX analysis for arRP to provide a detailed description of the molecular diagnoses in our study cohort. RESULTS The APEX microarray chip for arRP identified the molecular diagnosis in 21 (8.5%) of the patients in our cohort. Additional Sanger sequencing yielded a second mutation in 17 patients (6.8%), thereby establishing the molecular diagnosis. In total, 38 patients (15.2%) received a molecular diagnosis after analysis using the microarray and additional Sanger sequencing approach. Further genetic analyses after a negative result of the arRP microarray (n = 107) resulted in a molecular diagnosis of arRP (n = 23), autosomal dominant RP (n = 5), X-linked RP (n = 2), and choroideremia (n = 1). CONCLUSIONS The efficacy of the commercially available APEX microarray chips for arRP appears to be low, most likely caused by the limitations of this technique and the genetic and allelic heterogeneity of RP. Diagnostic yields up to 40% have been reported for next-generation sequencing (NGS) techniques that, as expected, thereby outperform targeted APEX analysis.
Collapse
Affiliation(s)
- Ramon A. C. van Huet
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laurence H.M. Pierrache
- The Rotterdam Eye Hospital, Rotterdam, The Netherlands,Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Magda A. Meester-Smoor
- The Rotterdam Eye Hospital, Rotterdam, The Netherlands,Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Caroline C.W. Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands,Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Carel B. Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ilse J. de Wijs
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob W. J. Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands,Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Lies H. Hoefsloot
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - B. Jeroen Klevering
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
108
|
Xu Y, Guan L, Xiao X, Zhang J, Li S, Jiang H, Jia X, Yang J, Guo X, Yin Y, Wang J, Zhang Q. Mutation analysis in 129 genes associated with other forms of retinal dystrophy in 157 families with retinitis pigmentosa based on exome sequencing. Mol Vis 2015; 21:477-86. [PMID: 25999675 PMCID: PMC4415588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/26/2015] [Indexed: 10/25/2022] Open
Abstract
PURPOSE Mutations in 60 known genes were previously identified by exome sequencing in 79 of 157 families with retinitis pigmentosa (RP). This study analyzed variants in 129 genes associated with other forms of hereditary retinal dystrophy in the same cohort. METHODS Apart from the 73 genes previously analyzed, a further 129 genes responsible for other forms of hereditary retinal dystrophy were selected based on RetNet. Variants in the 129 genes determined by whole exome sequencing were selected and filtered by bioinformatics analysis. Candidate variants were confirmed by Sanger sequencing and validated by analysis of available family members and controls. RESULTS A total of 90 candidate variants were present in the 129 genes. Sanger sequencing confirmed 83 of the 90 variants. Analysis of family members and controls excluded 76 of these 83 variants. The remaining seven variants were considered to be potential pathogenic mutations; these were c.899A>G, c.1814C>G, and c.2107C>T in BBS2; c.1073C>T and c.1669C>T in INPP5E; and c.3582C>G and c.5704-5C>G in CACNA1F. Six of these seven mutations were novel. The mutations were detected in five unrelated patients without a family history, including three patients with homozygous or compound heterozygous mutations in BBS2 and INPP5E, and two patients with hemizygous mutations in CACNA1F. None of the patients had mutations in the genes associated with autosome dominant retinal dystrophy. CONCLUSIONS Only a small portion of patients with RP, about 3% (5/157), had causative mutations in the 129 genes associated with other forms of hereditary retinal dystrophy.
Collapse
Affiliation(s)
- Yan Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | | | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | | | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | | | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | | | - Xiangming Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ye Yin
- BGI-Shenzhen, Shenzhen, China
| | | | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
109
|
Mayer AK, Mahajnah M, Zobor D, Bonin M, Sharkia R, Wissinger B. Novel homozygous large deletion including the 5' part of the SPATA7 gene in a consanguineous Israeli Muslim Arab family. Mol Vis 2015; 21:306-15. [PMID: 25814828 PMCID: PMC4360169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 03/12/2015] [Indexed: 11/03/2022] Open
Abstract
PURPOSE To identify the genetic defect in a consanguineous Israeli Muslim Arab family with juvenile retinitis pigmentosa (RP). METHODS DNA samples were collected from the index patient, her parents, her affected sister, and two non-affected siblings. Genome-wide linkage analysis with 250 K single nucleotide polymorphism (SNP) arrays was performed using DNA from the two affected patients. Owing to consanguinity in the family, we applied homozygosity mapping to identify the disease-causing gene. The candidate gene SPATA7 was screened for mutations with PCR amplifications and direct Sanger sequencing. RESULTS Following high-density SNP arrays, we identified several homozygous genomic regions one of which included the SPATA7 gene. Several mutations in SPATA7 have been reported for various forms of retinal dystrophy, including Leber congenital amaurosis (LCA) and juvenile RP. PCR-based sequence content mapping, long-distance PCR amplifications, and subsequent sequencing analysis revealed a homozygous 63.4 kb large deletion that encompasses the 5' part of the SPATA7 gene including exons 1-5. The mutation showed concordant segregation with the phenotype in the family as expected for autosomal recessive mode of inheritance and is consistent with a diagnosis of juvenile RP. CONCLUSIONS We report a novel homozygous large deletion in SPATA7 associated with juvenile RP in a consanguineous Israeli Muslim Arab family. This is the first larger deletion mutation reported for SPATA7.
Collapse
Affiliation(s)
- Anja-Kathrin Mayer
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Muhammad Mahajnah
- Child Neurology and Development Center, Hillel-Yaffe Medical Center, Hadera, Israel,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ditta Zobor
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Michael Bonin
- Department of Medical Genetics, Institute for Human Genetics, University of Tuebingen, Tuebingen, Germany
| | - Rajech Sharkia
- The Triangle Regional Research and Development Center, Kfar Qari’, Israel,Beit-Berl Academic College, Beit-Berl, Israel
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
110
|
Chacon-Camacho OF, Zenteno JC. Review and update on the molecular basis of Leber congenital amaurosis. World J Clin Cases 2015; 3:112-124. [PMID: 25685757 PMCID: PMC4317604 DOI: 10.12998/wjcc.v3.i2.112] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/03/2014] [Accepted: 11/19/2014] [Indexed: 02/05/2023] Open
Abstract
Inherited retinal diseases are uncommon pathologies and one of the most harmful causes of childhood and adult blindness. Leber congenital amaurosis (LCA) is the most severe kind of these diseases accounting for approximately 5% of the whole retinal dystrophies and 20% of the children that study on blind schools. Clinical ophthalmologic findings including severe vision loss, nystagmus and ERG abnormalities should be suspected through the first year of life in this group of patients. Phenotypic variability is found when LCA patients have a full ophthalmologic examination. However, a correct diagnosis may be carried out; the determination of ophthalmologic clues as light sensibility, night blindness, fundus pigmentation, among other, join with electroretinographics findings, optical coherence tomography, and new technologies as molecular gene testing may help to reach to a precise diagnosis. Several retinal clinical features in LCA may suggest a genetic or gene particular defect; thus genetic-molecular tools could directly corroborate the clinical diagnosis. Currently, approximately 20 genes have been associated to LCA. In this review, historical perspective, clinical ophthalmological findings, new molecular-genetics technologies, possible phenotype-genotypes correlations, and gene therapy for some LCA genes are described.
Collapse
|
111
|
Leber Congenital Amaurosis: First Genotyped Hungarian Patients and Report of 2 Novel Mutations in the CRB1 and CEP290 Genes. Eur J Ophthalmol 2015; 26:78-84. [DOI: 10.5301/ejo.5000643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2015] [Indexed: 01/17/2023]
Abstract
Purpose To introduce the first Hungarian patients with genetically defined Leber congenital amaurosis (LCA) and to report 2 novel mutations. Methods Seven otherwise healthy patients (4-29 years, 5 male and 2 female) who had an onset of severe visual impairment before age 2 years were investigated. The diagnosis was established in all individuals by medical history, funduscopy, and full-field electroretinogram (ERG). Ocular examination included visual acuity testing, digital fundus photography, and in 6 patients retinal imaging with optical coherence tomography (OCT). Arrayed primer extension microarray screening was performed in all probands. In 2 patients, further Sanger sequencing and targeted next-generation sequencing revealed the second disease allele. Results A cone-rod type LCA was revealed in 4 patients and a rod-cone type disease in 3 patients. Five patients presented with maculopathy. Optical coherence tomography (OCT) imaging showed diffuse retinal thickening in 3 probands with severe macular atrophy in one. Full-field ERGs were undetectable or residual in all patients. Genetic screening revealed AIPL1, CRB1, and CEP290 gene-related pathology in 6 patients; in 1 proband, no mutation was found. Three homozygous and 3 compound heterozygous mutations were identified. Two novel variants were detected: c.2536G>T (p.G846X) in the CRB1 gene and c.4929delA (p.Lys1643fsX2) in the CEP290 gene. Conclusions Genetic subtypes identified are among the most common ones in LCA; the phenotypes are consistent with those reported previously. Both novel mutations are predicted to result in a premature translation termination. The phenotype related to the novel CRB1 mutation results in severe atrophic maculopathy.
Collapse
|
112
|
Yücel-Yılmaz D, Tarlan B, Kıratlı H, Ozgül RK. Genome-wide homozygosity mapping in families with leber congenital amaurosis identifies mutations in AIPL1 and RDH12 genes. DNA Cell Biol 2015; 33:876-83. [PMID: 25148430 DOI: 10.1089/dna.2014.2554] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Leber congenital amaurosis (LCA) causes severe visual impairment and blindness very early in life. Mutant alleles of several genes acting in different pathways, of which all have critical roles for normal retinal function, were involved in LCA development. The purpose of this study was to use genome-wide genotyping to identify LCA-causing loci in two Turkish families. Genome-wide genotyping and haplotype analysis were performed for prioritization of candidate genes for mutation screening in families with LCA. Identified informative critical choromosomal regions obtained by homozygosity mapping from the families were searched for overlapping of any LCA causative genes. Corresponding clinical phenotypes of the patients with identified mutations were evaluated. In this study, two families were shown to be linked to two different LCA loci covering retinol dehydrogenase 12 (RDH12) and aryl-hydrocarbon-interacting protein-like1 (AIPL1) genes. Mutation screening revealed a novel p.Gln141* mutation in the AIPL1 gene and a previously described p.Thr49Met mutation in the RDH12 gene in a homozygous state. Our patients with the RDH12 mutation had the distinct macular coloboma sign, and the patient with the AIPL1 mutation developed microphthalmia and severe widespread retinal pigment epithelial atrophy, in contrast to previously reported cases. It is currently evident that mutation screening needs to be done in at least 18 genes known to be associated with LCA. Thus, homozygosity mapping is an alternative technique to improve the molecular diagnosis in LCA, which is a group of genetically and clinically heterogeneous diseases causing retinal degeneration. The patients without mutation in known genes may further be analyzed by using next-generation sequencing.
Collapse
Affiliation(s)
- Didem Yücel-Yılmaz
- 1 Metabolism Unit, Department of Pediatrics, Institute of Child Health, Hacettepe University , Ankara, Turkey
| | | | | | | |
Collapse
|
113
|
Mansergh FC, Carrigan M, Hokamp K, Farrar GJ. Gene expression changes during retinal development and rod specification. Mol Vis 2015; 21:61-87. [PMID: 25678762 PMCID: PMC4301594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/16/2015] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Retinitis pigmentosa (RP) typically results from individual mutations in any one of >70 genes that cause rod photoreceptor cells to degenerate prematurely, eventually resulting in blindness. Gene therapies targeting individual RP genes have shown efficacy at clinical trial; however, these therapies require the surviving photoreceptor cells to be viable and functional, and may be economically feasible for only the more commonly mutated genes. An alternative potential treatment strategy, particularly for late stage disease, may involve stem cell transplants into the photoreceptor layer of the retina. Rod progenitors from postnatal mouse retinas can be transplanted and can form photoreceptors in recipient adult retinas; optimal numbers of transplantable cells are obtained from postnatal day 3-5 (P3-5) retinas. These cells can also be expanded in culture; however, this results in the loss of photoreceptor potential. Gene expression differences between postnatal retinas, cultured retinal progenitor cells (RPCs), and rod photoreceptor precursors were investigated to identify gene expression patterns involved in the specification of rod photoreceptors. METHODS Microarrays were used to investigate differences in gene expression between cultured RPCs that have lost photoreceptor potential, P1 retinas, and fresh P5 retinas that contain significant numbers of transplantable photoreceptors. Additionally, fluorescence-activated cell sorting (FACS) sorted Rho-eGFP-expressing rod photoreceptor precursors were compared with Rho-eGFP-negative cells from the same P5 retinas. Differential expression was confirmed with quantitative polymerase chain reaction (q-PCR). RESULTS Analysis of the microarray data sets, including the use of t-distributed stochastic neighbor embedding (t-SNE) to identify expression pattern neighbors of key photoreceptor specific genes, resulted in the identification of 636 genes differentially regulated during rod specification. Forty-four of these genes when mutated have previously been found to cause retinal disease. Although gene function in other tissues may be known, the retinal function of approximately 61% of the gene list is as yet undetermined. Many of these genes' promoters contain binding sites for the key photoreceptor transcription factors Crx and Nr2e3; moreover, the genomic clustering of differentially regulated genes appears to be non-random. CONCLUSIONS This study aids in understanding gene expression differences between rod photoreceptor progenitors versus cultured RPCs that have lost photoreceptor potential. The results provide insights into rod photoreceptor development and should expedite the development of cell-based treatments for RP. Furthermore, the data set includes a large number of retinopathy genes; less-well-characterized genes within this data set are a resource for those seeking to identify novel retinopathy genes in patients with RP (GEO accession: GSE59201).
Collapse
Affiliation(s)
- Fiona C Mansergh
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Matthew Carrigan
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Karsten Hokamp
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - G Jane Farrar
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
114
|
Roosing S, van den Born LI, Sangermano R, Banfi S, Koenekoop RK, Zonneveld-Vrieling MN, Klaver CCW, van Lith-Verhoeven JJC, Cremers FPM, den Hollander AI, Hoyng CB. Mutations in MFSD8, encoding a lysosomal membrane protein, are associated with nonsyndromic autosomal recessive macular dystrophy. Ophthalmology 2015; 122:170-9. [PMID: 25227500 DOI: 10.1016/j.ophtha.2014.07.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/21/2014] [Accepted: 07/21/2014] [Indexed: 01/09/2023] Open
Abstract
PURPOSE This study aimed to identify the genetic defects in 2 families with autosomal recessive macular dystrophy with central cone involvement. DESIGN Case series. PARTICIPANTS Two families and a cohort of 244 individuals with various inherited maculopathies and cone disorders. METHODS Genome-wide linkage analysis and exome sequencing were performed in 1 large family with 5 affected individuals. In addition, exome sequencing was performed in the proband of a second family. Subsequent analysis of the identified mutations in 244 patients was performed by Sanger sequencing or restriction enzyme digestion. The medical history of individuals carrying the MFSD8 variants was reviewed and additional ophthalmic examinations were performed, including electroretinography (ERG), multifocal ERG (mfERG), perimetry, optical coherence tomography (OCT), fundus autofluorescence, and fundus photography. MAIN OUTCOME MEASURES MFSD8 variants, age at diagnosis, visual acuity, fundus appearance, color vision defects, visual field, ERG, mfERG, fundus autofluorescence, and OCT findings. RESULTS Compound heterozygous variants in MFSD8, a gene encoding a lysosomal transmembrane protein, were identified in 2 families with macular dystrophy with a normal or subnormal ERG, but reduced mfERG. In both families, a heterozygous missense variant p.Glu336Gln was identified, which was predicted to have a mild effect on the protein. In the first family, a protein-truncating variant (p.Glu381*) was identified on the other allele, and in the second family, a variant (c.1102G>C) was identified that results in a splicing defect leading to skipping of exon 11 (p.Lys333Lysfs*3). The p.Glu336Gln allele was found to be significantly enriched in patients with maculopathies and cone disorders (6/488) compared with ethnically matched controls (35/18 682; P < 0.0001), suggesting that it may act as a genetic modifier. CONCLUSIONS In this study, we identified variants in MFSD8 as a novel cause of nonsyndromic autosomal recessive macular dystrophy with central cone involvement. Affected individuals showed no neurologic features typical for variant late-infantile neuronal ceroid lipofuscinosis (vLINCL), a severe and devastating multisystem lysosomal storage disease previously associated with mutations in MFSD8. We propose a genotype-phenotype model in which a combination of a severe and a mild variant cause nonsyndromic macular dystrophy with central cone involvement, and 2 severe mutations cause vLINCL.
Collapse
Affiliation(s)
- Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands; Current affiliation: Howard Hughes Medical Institute, The Rockefeller University, Department for Pediatric Brain Diseases, New York, New York
| | | | - Riccardo Sangermano
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, Naples, Italy; Medical Genetics, Department of Biochemistry, Biophysics, and General Pathology, Second University of Naples, Naples, Italy
| | - Robert K Koenekoop
- McGill Ocular Genetics Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
| | | | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Centre, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Anneke I den Hollander
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands; Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
115
|
Shin SJ, Kim M, Chae H, Kwon A, Kim Y, Kim SJ, Yoon HE, Jekarl DW, Lee S. Identification of compound heterozygous mutations in the BBS7 gene in a Korean family with Bardet-Biedl syndrome. Ann Lab Med 2014; 35:181-4. [PMID: 25553308 PMCID: PMC4272959 DOI: 10.3343/alm.2015.35.1.181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 07/22/2014] [Accepted: 11/14/2014] [Indexed: 11/19/2022] Open
Affiliation(s)
- Seok Joon Shin
- Division of Nephrology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Myungshin Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea. ; Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyojin Chae
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea. ; Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ahlm Kwon
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Yonggoo Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea. ; Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung Jun Kim
- Division of Nephrology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hye Eun Yoon
- Division of Nephrology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong Wook Jekarl
- Department of Laboratory Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seungok Lee
- Department of Laboratory Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
116
|
Comprehensive analysis of patients with Stargardt macular dystrophy reveals new genotype-phenotype correlations and unexpected diagnostic revisions. Genet Med 2014; 17:262-70. [PMID: 25474345 PMCID: PMC4385427 DOI: 10.1038/gim.2014.174] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/28/2014] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Stargardt macular dystrophy (STGD) results in early central vision loss. We sought to explain the genetic cause of STGD in a cohort of 88 patients from three different cultural backgrounds. METHODS Next-generation sequencing using a novel capture panel was used to search for disease-causing mutations. Patients with undetermined causes were clinically reexamined and tested for copy-number variations as well as intronic mutations. RESULTS We determined the cause of disease in 67% of our patients. Our analysis identified 35 novel ABCA4 alleles. Eleven patients had mutations in genes not previously reported to cause STGD. Finally, 45% of our patients with unsolved causes had single deleterious mutations in ABCA4, a recessive disease gene. No likely pathogenic copy-number variations were identified. CONCLUSION This study expands our knowledge of STGD by identifying dozens of novel alleles that cause the disease. The frequency of single mutations in ABCA4 among STGD patients is higher than that among controls, indicating that these mutations contribute to disease. Disease in 11 patients was explained by mutations outside ABCA4, underlining the need to genotype all retinal disease genes to maximize genetic diagnostic rates. Few ABCA4 mutations were observed in our French Canadian patients. This population may contain an unidentified founder mutation. Our results indicate that copy-number variations are unlikely to be a major cause of STGD.
Collapse
|
117
|
Zhao L, Wang F, Wang H, Li Y, Alexander S, Wang K, Willoughby CE, Zaneveld JE, Jiang L, Soens ZT, Earle P, Simpson D, Silvestri G, Chen R. Next-generation sequencing-based molecular diagnosis of 82 retinitis pigmentosa probands from Northern Ireland. Hum Genet 2014; 134:217-30. [PMID: 25472526 DOI: 10.1007/s00439-014-1512-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/20/2014] [Indexed: 11/24/2022]
Abstract
Retinitis pigmentosa (RP) is a group of inherited retinal disorders characterized by progressive photoreceptor degeneration. An accurate molecular diagnosis is essential for disease characterization and clinical prognoses. A retinal capture panel that enriches 186 known retinal disease genes, including 55 known RP genes, was developed. Targeted next-generation sequencing was performed for a cohort of 82 unrelated RP cases from Northern Ireland, including 46 simplex cases and 36 familial cases. Disease-causing mutations were identified in 49 probands, including 28 simplex cases and 21 familial cases, achieving a solving rate of 60 %. In total, 65 pathogenic mutations were found, and 29 of these were novel. Interestingly, the molecular information of 12 probands was neither consistent with their initial inheritance pattern nor clinical diagnosis. Further clinical reassessment resulted in a refinement of the clinical diagnosis in 11 patients. This is the first study to apply next-generation sequencing-based, comprehensive molecular diagnoses to a large number of RP probands from Northern Ireland. Our study shows that molecular information can aid clinical diagnosis, potentially changing treatment options, current family counseling and management.
Collapse
Affiliation(s)
- Li Zhao
- Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Huang XF, Huang F, Wu KC, Wu J, Chen J, Pang CP, Lu F, Qu J, Jin ZB. Genotype–phenotype correlation and mutation spectrum in a large cohort of patients with inherited retinal dystrophy revealed by next-generation sequencing. Genet Med 2014; 17:271-8. [DOI: 10.1038/gim.2014.138] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/19/2014] [Indexed: 11/09/2022] Open
|
119
|
Seong MW, Seo SH, Yu YS, Hwang JM, Cho SI, Ra EK, Park H, Lee SJ, Kim JY, Park SS. Diagnostic application of an extensive gene panel for Leber congenital amaurosis with severe genetic heterogeneity. J Mol Diagn 2014; 17:100-5. [PMID: 25445212 DOI: 10.1016/j.jmoldx.2014.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/08/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022] Open
Abstract
Leber congenital amaurosis (LCA) is a genetically heterogeneous disorder and the most severe form of inherited retinal dystrophy. We report results of a diagnostic application of an extensive gene panel composed of 204 retinal dystrophy-related genes and discuss its feasibility as a diagnostic tool. Nineteen unrelated LCA patients were included in the study: two patients for validation purposes of our gene panel, 15 previously analyzed patients with no identified mutations, and two previously unanalyzed patients. Genetic diagnosis for each patient was conducted according to whether the variants were consistent with the known inheritance pattern of each gene. We identified two heterozygous or homozygous pathogenic variants in seven of 19 patients. On the basis of mutation information, clinical features were re-reviewed, and clinical diagnoses for two patients were revised from LCA to LCA-related disorders. In addition, a coverage simulation was performed to determine the optimal depth of coverage of the gene panel. Using our gene panel, we diagnosed LCA and LCA-related disorders in 36.8% of patients and one or more deleterious variants or variants of unknown significance in 89.5% of patients. Molecular diagnosis using this extensive gene panel is expected to facilitate diagnosis of retinal dystrophy and help provide proper treatment to patients, although further analyses is needed for a complete clinical validation.
Collapse
Affiliation(s)
- Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soo Hyun Seo
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Suk Yu
- Department of Ophthalmology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong-Min Hwang
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sung Im Cho
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Kyung Ra
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyunwoong Park
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Jun Lee
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Yeon Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Sup Park
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
120
|
Hu F, Zeng XY, Liu LL, Luo YL, Jiang YP, Wang H, Xie J, Hu CQ, Gan L, Huang L. Genetic analysis of Chinese families reveals a novel truncation allele of the retinitis pigmentosa GTPase regulator gene. Int J Ophthalmol 2014; 7:753-8. [PMID: 25349787 DOI: 10.3980/j.issn.2222-3959.2014.05.02] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/10/2014] [Indexed: 11/02/2022] Open
Abstract
AIM To make comprehensive molecular diagnosis for retinitis pigmentosa (RP) patients in a consanguineous Han Chinese family using next generation sequencing based Capture-NGS screen technology. METHODS A five-generation Han Chinese family diagnosed as non-syndromic X-linked recessive RP (XLRP) was recruited, including four affected males, four obligate female carriers and eleven unaffected family members. Capture-NGS was performed using a custom designed capture panel covers 163 known retinal disease genes including 47 RP genes, followed by the validation of detected mutation using Sanger sequencing in all recruited family members. RESULTS Capture-NGS in one affected 47-year-old male reveals a novel mutation, c.2417_2418insG:p.E806fs, in exon ORF15 of RP GTPase regulator (RPGR) gene results in a frameshift change that results in a premature stop codon and a truncated protein product. The mutation was further validated in three of four affected males and two of four female carriers but not in the other unaffected family members. CONCLUSION We have identified a novel mutation, c.2417_2418insG:p.E806fs, in a Han Chinese family with XLRP. Our findings expand the mutation spectrum of RPGR and the phenotypic spectrum of XLRP in Han Chinese families, and confirms Capture-NGS could be an effective and economic approach for the comprehensive molecular diagnosis of RP.
Collapse
Affiliation(s)
- Fang Hu
- Department of Ophthalmology, the First Affiliated Hospital, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Xiang-Yun Zeng
- Department of Ophthalmology, the First Affiliated Hospital, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Lin-Lin Liu
- Department of Ophthalmology, the First Affiliated Hospital, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Yao-Ling Luo
- Department of Ophthalmology, the First Affiliated Hospital, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Yi-Ping Jiang
- Department of Ophthalmology, the First Affiliated Hospital, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Hui Wang
- Department of Ophthalmology, the First Affiliated Hospital, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Jing Xie
- Department of Ophthalmology, the First Affiliated Hospital, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Cheng-Quan Hu
- Department of Ophthalmology, the First Affiliated Hospital, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Lin Gan
- Flaum Eye Institute and Department of Ophthalmology, School of Medicine and Dentistry, University of Rochester, New York 14642, USA
| | - Liang Huang
- Department of Ophthalmology, the First Affiliated Hospital, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China ; Flaum Eye Institute and Department of Ophthalmology, School of Medicine and Dentistry, University of Rochester, New York 14642, USA
| |
Collapse
|
121
|
Wang F, Wang Y, Zhang B, Zhao L, Lyubasyuk V, Wang K, Xu M, Li Y, Wu F, Wen C, Bernstein PS, Lin D, Zhu S, Wang H, Zhang K, Chen R. A missense mutation in HK1 leads to autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 2014; 55:7159-64. [PMID: 25316723 DOI: 10.1167/iovs.14-15520] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Retinitis pigmentosa (RP) is a genetically heterogeneous disease with over 60 causative genes known to date. Nevertheless, approximately 40% of RP cases remain genetically unsolved, suggesting that many novel disease-causing genes are yet to be identified. In this study, we aimed to identify the causative mutation for a large autosomal dominant RP (adRP) family with negative results from known retinal disease gene screening. METHODS Linkage analysis followed by whole-exome sequencing was performed. Stringent variant filtering and prioritization was carried out to identify the causative mutation. RESULTS Linkage analysis identified a minimal disease region of 8 Mb on chromosome 10 with a peak parametric logarithm (base 10) of odds (LOD) score of 3.500. Further whole-exome sequencing identified a heterozygous missense mutation (NM_000188.2:c.2539G>A, p.E847K) in hexokinase 1 (HK1) that segregated with the disease phenotype in the family. Biochemical assays showed that the E847K mutation does not affect hexokinase enzymatic activity or the protein stability, suggesting that the mutation may impact other uncharacterized function or result in a gain of function of HK1. CONCLUSIONS Here, we identified HK1 as a novel causative gene for adRP. This is the first report that associates the glucose metabolic pathway with human retinal degenerative disease, suggesting a potential new disease mechanism.
Collapse
Affiliation(s)
- Feng Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Yandong Wang
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Bin Zhang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Li Zhao
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, Houston, Texas, United States
| | - Vera Lyubasyuk
- Shiley Eye Center and Institute for Genomic Medicine, University of California-San Diego, La Jolla, California, United States
| | - Keqing Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Mingchu Xu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Frances Wu
- Shiley Eye Center and Institute for Genomic Medicine, University of California-San Diego, La Jolla, California, United States
| | - Cindy Wen
- Shiley Eye Center and Institute for Genomic Medicine, University of California-San Diego, La Jolla, California, United States
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Danni Lin
- Shiley Eye Center and Institute for Genomic Medicine, University of California-San Diego, La Jolla, California, United States
| | - Susanna Zhu
- Shiley Eye Center and Institute for Genomic Medicine, University of California-San Diego, La Jolla, California, United States
| | - Hui Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Kang Zhang
- Shiley Eye Center and Institute for Genomic Medicine, University of California-San Diego, La Jolla, California, United States Veterans Administration Healthcare System, San Diego, California, United States
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, Houston, Texas, United States The Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
122
|
A novel exon 17 deletion mutation of RPGRIP1 gene in two siblings with Leber congenital amaurosis. Jpn J Ophthalmol 2014; 58:528-35. [DOI: 10.1007/s10384-014-0339-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 06/30/2014] [Indexed: 11/25/2022]
|
123
|
Khan AO, Al-Mesfer S, Al-Turkmani S, Bergmann C, Bolz HJ. Genetic analysis of strictly defined Leber congenital amaurosis with (and without) neurodevelopmental delay. Br J Ophthalmol 2014; 98:1724-8. [PMID: 24997176 DOI: 10.1136/bjophthalmol-2014-305122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Leber congenital amaurosis (LCA) is a severe infantile retinal dystrophy that is non-syndromic other than neurodevelopmental delay, reported in up to 20% of cases according to one older study. The phenotype is typically autosomal recessive and is genetically heterogeneous. Although LCA is defined by a non-recordable electroretinogram (ERG) during infancy, many LCA studies include infants with low ERG readings and/or older children not phenotyped during infancy. More recent series of genetically confirmed LCA do not document the recurrent neurodevelopmental delay of older studies. We investigate the possibility that neurodevelopmental delay is not actually a recurrent feature of strictly defined otherwise non-syndromic LCA. METHODS Retrospective consecutive case series (2012-2014) of children with strictly defined LCA, all of whom underwent targeted next-generation sequencing with a panel of 14 LCA genes. RESULTS All families were endogamous and/or consanguineous. 18/19 (22/23 children) had detectable causative recessive mutations, and these were in one of three genes only: 11 in RPGRIP1, 5 in GUCY2D and 2 in RPE65. 9/11 children with RPGRIP1 mutations harboured homozygous c.1007delA (p.Glu370Asnfs*5) mutation. 5/23 children (22%) had concomitant neurodevelopmental delay, and these five children harboured recessive mutations in RPGRIP1 (2) or GUCY2D (3). Haplotype analysis for cases with the RPGRIP1 deletion suggested a single ancestral mutation. CONCLUSIONS Neurodevelopmental delay is a potential feature of strictly defined LCA, documented in our series for some children with homozygous RPGRIP1 and GUCY2D mutations. Strictly defining LCA can limit genetic heterogeneity. On the Arabian Peninsula, the phenotype is frequently from recessive RPGRIP1 mutations, most of which are a founder RPGRIP1 deletion.
Collapse
Affiliation(s)
- Arif O Khan
- Division of Pediatric Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Saleh Al-Mesfer
- Division of Pediatric Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Shahira Al-Turkmani
- Division of Pediatric Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Carsten Bergmann
- Bioscientia Center for Human Genetics, Ingelheim, Germany Department of Nephrology and Center for Clinical Research, University Hospital Freiburg, Germany
| | - Hanno J Bolz
- Bioscientia Center for Human Genetics, Ingelheim, Germany Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
124
|
Ran X, Cai WJ, Huang XF, Liu Q, Lu F, Qu J, Wu J, Jin ZB. 'RetinoGenetics': a comprehensive mutation database for genes related to inherited retinal degeneration. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau047. [PMID: 24939193 PMCID: PMC4060621 DOI: 10.1093/database/bau047] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inherited retinal degeneration (IRD), a leading cause of human blindness worldwide, is exceptionally heterogeneous with clinical heterogeneity and genetic variety. During the past decades, tremendous efforts have been made to explore the complex heterogeneity, and massive mutations have been identified in different genes underlying IRD with the significant advancement of sequencing technology. In this study, we developed a comprehensive database, ‘RetinoGenetics’, which contains informative knowledge about all known IRD-related genes and mutations for IRD. ‘RetinoGenetics’ currently contains 4270 mutations in 186 genes, with detailed information associated with 164 phenotypes from 934 publications and various types of functional annotations. Then extensive annotations were performed to each gene using various resources, including Gene Ontology, KEGG pathways, protein–protein interaction, mutational annotations and gene–disease network. Furthermore, by using the search functions, convenient browsing ways and intuitive graphical displays, ‘RetinoGenetics’ could serve as a valuable resource for unveiling the genetic basis of IRD. Taken together, ‘RetinoGenetics’ is an integrative, informative and updatable resource for IRD-related genetic predispositions. Database URL:http://www.retinogenetics.org/.
Collapse
Affiliation(s)
- Xia Ran
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325027, China, Division of Ophthalmic Genetics, Laboratory for Stem Cell and Retinal Regeneration, The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China and The State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health People's Republic of China, Wenzhou 325027, China
| | - Wei-Jun Cai
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325027, China, Division of Ophthalmic Genetics, Laboratory for Stem Cell and Retinal Regeneration, The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China and The State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health People's Republic of China, Wenzhou 325027, ChinaInstitute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325027, China, Division of Ophthalmic Genetics, Laboratory for Stem Cell and Retinal Regeneration, The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China and The State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health People's Republic of China, Wenzhou 325027, China
| | - Xiu-Feng Huang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325027, China, Division of Ophthalmic Genetics, Laboratory for Stem Cell and Retinal Regeneration, The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China and The State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health People's Republic of China, Wenzhou 325027, ChinaInstitute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325027, China, Division of Ophthalmic Genetics, Laboratory for Stem Cell and Retinal Regeneration, The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China and The State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health People's Republic of China, Wenzhou 325027, China
| | - Qi Liu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325027, China, Division of Ophthalmic Genetics, Laboratory for Stem Cell and Retinal Regeneration, The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China and The State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health People's Republic of China, Wenzhou 325027, China
| | - Fan Lu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325027, China, Division of Ophthalmic Genetics, Laboratory for Stem Cell and Retinal Regeneration, The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China and The State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health People's Republic of China, Wenzhou 325027, ChinaInstitute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325027, China, Division of Ophthalmic Genetics, Laboratory for Stem Cell and Retinal Regeneration, The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China and The State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health People's Republic of China, Wenzhou 325027, China
| | - Jia Qu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325027, China, Division of Ophthalmic Genetics, Laboratory for Stem Cell and Retinal Regeneration, The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China and The State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health People's Republic of China, Wenzhou 325027, ChinaInstitute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325027, China, Division of Ophthalmic Genetics, Laboratory for Stem Cell and Retinal Regeneration, The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China and The State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health People's Republic of China, Wenzhou 325027, China
| | - Jinyu Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325027, China, Division of Ophthalmic Genetics, Laboratory for Stem Cell and Retinal Regeneration, The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China and The State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health People's Republic of China, Wenzhou 325027, China
| | - Zi-Bing Jin
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325027, China, Division of Ophthalmic Genetics, Laboratory for Stem Cell and Retinal Regeneration, The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China and The State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health People's Republic of China, Wenzhou 325027, ChinaInstitute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325027, China, Division of Ophthalmic Genetics, Laboratory for Stem Cell and Retinal Regeneration, The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China and The State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health People's Republic of China, Wenzhou 325027, China
| |
Collapse
|
125
|
de Castro-Miró M, Pomares E, Lorés-Motta L, Tonda R, Dopazo J, Marfany G, Gonzàlez-Duarte R. Combined genetic and high-throughput strategies for molecular diagnosis of inherited retinal dystrophies. PLoS One 2014; 9:e88410. [PMID: 24516651 PMCID: PMC3917917 DOI: 10.1371/journal.pone.0088410] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 01/06/2014] [Indexed: 12/30/2022] Open
Abstract
Most diagnostic laboratories are confronted with the increasing demand for molecular diagnosis from patients and families and the ever-increasing genetic heterogeneity of visual disorders. Concerning Retinal Dystrophies (RD), almost 200 causative genes have been reported to date, and most families carry private mutations. We aimed to approach RD genetic diagnosis using all the available genetic information to prioritize candidates for mutational screening, and then restrict the number of cases to be analyzed by massive sequencing. We constructed and optimized a comprehensive cosegregation RD-chip based on SNP genotyping and haplotype analysis. The RD-chip allows to genotype 768 selected SNPs (closely linked to 100 RD causative genes) in a single cost-, time-effective step. Full diagnosis was attained in 17/36 Spanish pedigrees, yielding 12 new and 12 previously reported mutations in 9 RD genes. The most frequently mutated genes were USH2A and CRB1. Notably, RD3–up to now only associated to Leber Congenital Amaurosis– was identified as causative of Retinitis Pigmentosa. The main assets of the RD-chip are: i) the robustness of the genetic information that underscores the most probable candidates, ii) the invaluable clues in cases of shared haplotypes, which are indicative of a common founder effect, and iii) the detection of extended haplotypes over closely mapping genes, which substantiates cosegregation, although the assumptions in which the genetic analysis is based could exceptionally lead astray. The combination of the genetic approach with whole exome sequencing (WES) greatly increases the diagnosis efficiency, and revealed novel mutations in USH2A and GUCY2D. Overall, the RD-chip diagnosis efficiency ranges from 16% in dominant, to 80% in consanguineous recessive pedigrees, with an average of 47%, well within the upper range of massive sequencing approaches, highlighting the validity of this time- and cost-effective approach whilst high-throughput methodologies become amenable for routine diagnosis in medium sized labs.
Collapse
Affiliation(s)
- Marta de Castro-Miró
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Esther Pomares
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Laura Lorés-Motta
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Raul Tonda
- Centre Nacional d’Anàlisi Genòmica, PCB, Barcelona, Spain
| | - Joaquín Dopazo
- Department of Computational Genomics, Centro de Investigación Príncipe Felipe, Valencia, Spain
- BIER, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Gemma Marfany
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Roser Gonzàlez-Duarte
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
126
|
Roosing S, Collin RWJ, den Hollander AI, Cremers FPM, Siemiatkowska AM. Prenylation defects in inherited retinal diseases. J Med Genet 2014; 51:143-51. [DOI: 10.1136/jmedgenet-2013-102138] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
127
|
Wang F, Wang H, Tuan HF, Nguyen DH, Sun V, Keser V, Bowne SJ, Sullivan LS, Luo H, Zhao L, Wang X, Zaneveld JE, Salvo JS, Siddiqui S, Mao L, Wheaton DK, Birch DG, Branham KE, Heckenlively JR, Wen C, Flagg K, Ferreyra H, Pei J, Khan A, Ren H, Wang K, Lopez I, Qamar R, Zenteno JC, Ayala-Ramirez R, Buentello-Volante B, Fu Q, Simpson DA, Li Y, Sui R, Silvestri G, Daiger SP, Koenekoop RK, Zhang K, Chen R. Next generation sequencing-based molecular diagnosis of retinitis pigmentosa: identification of a novel genotype-phenotype correlation and clinical refinements. Hum Genet 2013; 133:331-45. [PMID: 24154662 DOI: 10.1007/s00439-013-1381-5] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
Abstract
Retinitis pigmentosa (RP) is a devastating form of retinal degeneration, with significant social and professional consequences. Molecular genetic information is invaluable for an accurate clinical diagnosis of RP due to its high genetic and clinical heterogeneity. Using a gene capture panel that covers 163 of the currently known retinal disease genes, including 48 RP genes, we performed a comprehensive molecular screening in a collection of 123 RP unsettled probands from a wide variety of ethnic backgrounds, including 113 unrelated simplex and 10 autosomal recessive RP (arRP) cases. As a result, 61 mutations were identified in 45 probands, including 38 novel pathogenic alleles. Interestingly, we observed that phenotype and genotype were not in full agreement in 21 probands. Among them, eight probands were clinically reassessed, resulting in refinement of clinical diagnoses for six of these patients. Finally, recessive mutations in CLN3 were identified in five retinal degeneration patients, including four RP probands and one cone-rod dystrophy patient, suggesting that CLN3 is a novel non-syndromic retinal disease gene. Collectively, our results underscore that, due to the high molecular and clinical heterogeneity of RP, comprehensive screening of all retinal disease genes is effective in identifying novel pathogenic mutations and provides an opportunity to discover new genotype-phenotype correlations. Information gained from this genetic screening will directly aid in patient diagnosis, prognosis, and treatment, as well as allowing appropriate family planning and counseling.
Collapse
Affiliation(s)
- Feng Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|