101
|
Khan KN, Robson A, Mahroo OAR, Arno G, Inglehearn CF, Armengol M, Waseem N, Holder GE, Carss KJ, Raymond LF, Webster AR, Moore AT, McKibbin M, van Genderen MM, Poulter JA, Michaelides M. A clinical and molecular characterisation of CRB1-associated maculopathy. Eur J Hum Genet 2018; 26:687-694. [PMID: 29391521 PMCID: PMC5945653 DOI: 10.1038/s41431-017-0082-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/14/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022] Open
Abstract
To date, over 150 disease-associated variants in CRB1 have been described, resulting in a range of retinal disease phenotypes including Leber congenital amaurosis and retinitis pigmentosa. Despite this, no genotype–phenotype correlations are currently recognised. We performed a retrospective review of electronic patient records to identify patients with macular dystrophy due to bi-allelic variants in CRB1. In total, seven unrelated individuals were identified. The median age at presentation was 21 years, with a median acuity of 0.55 decimalised Snellen units (IQR = 0.43). The follow-up period ranged from 0 to 19 years (median = 2.0 years), with a median final decimalised Snellen acuity of 0.65 (IQR = 0.70). Fundoscopy revealed only a subtly altered foveal reflex, which evolved into a bull’s-eye pattern of outer retinal atrophy. Optical coherence tomography identified structural changes—intraretinal cysts in the early stages of disease, and later outer retinal atrophy. Genetic testing revealed that one rare allele (c.498_506del, p.(Ile167_Gly169del)) was present in all patients, with one patient being homozygous for the variant and six being heterozygous. In trans with this, one variant recurred twice (p.(Cys896Ter)), while the four remaining alleles were each observed once (p.(Pro1381Thr), p.(Ser478ProfsTer24), p.(Cys195Phe) and p.(Arg764Cys)). These findings show that the rare CRB1 variant, c.498_506del, is strongly associated with localised retinal dysfunction. The clinical findings are much milder than those observed with bi-allelic, loss-of-function variants in CRB1, suggesting this in-frame deletion acts as a hypomorphic allele. This is the most prevalent disease-causing CRB1 variant identified in the non-Asian population to date.
Collapse
Affiliation(s)
- Kamron N Khan
- University College London Institute of Ophthalmology, University College London, London, UK. .,Inherited Eye Disease Service, Moorfields Eye Hospital, London, UK. .,Section of Ophthalmology and Neuroscience, Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK. .,Department of Ophthalmology, St. James's University Teaching Hospital, Leeds, UK.
| | - Anthony Robson
- Department of Electrophysiology, Moorfields Eye Hospital, London, UK
| | - Omar A R Mahroo
- University College London Institute of Ophthalmology, University College London, London, UK.,Inherited Eye Disease Service, Moorfields Eye Hospital, London, UK
| | - Gavin Arno
- University College London Institute of Ophthalmology, University College London, London, UK
| | - Chris F Inglehearn
- Section of Ophthalmology and Neuroscience, Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - Monica Armengol
- Inherited Eye Disease Service, Moorfields Eye Hospital, London, UK
| | - Naushin Waseem
- Section of Ophthalmology and Neuroscience, Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - Graham E Holder
- Department of Electrophysiology, Moorfields Eye Hospital, London, UK
| | - Keren J Carss
- NIHR BioResource - Rare Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK.,Department of Haematology, NHS Blood and Transplant Centre, University of Cambridge, Cambridge, CB2 0PT, UK.,Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Lucy F Raymond
- NIHR BioResource - Rare Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK.,Department of Haematology, NHS Blood and Transplant Centre, University of Cambridge, Cambridge, CB2 0PT, UK.,Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Andrew R Webster
- University College London Institute of Ophthalmology, University College London, London, UK.,Inherited Eye Disease Service, Moorfields Eye Hospital, London, UK
| | - Anthony T Moore
- University College London Institute of Ophthalmology, University College London, London, UK.,Inherited Eye Disease Service, Moorfields Eye Hospital, London, UK.,Ophthalmology Department, University of California San Francisco Medical School, San Francisco, CA, USA
| | - Martin McKibbin
- Section of Ophthalmology and Neuroscience, Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK.,Department of Ophthalmology, St. James's University Teaching Hospital, Leeds, UK
| | - Maria M van Genderen
- Bartiméus Diagnostic Centre for Complex Visual Disorders, Zeist, The Netherlands.,Department of Ophthalmology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - James A Poulter
- Section of Ophthalmology and Neuroscience, Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - Michel Michaelides
- University College London Institute of Ophthalmology, University College London, London, UK.,Inherited Eye Disease Service, Moorfields Eye Hospital, London, UK
| | | |
Collapse
|
102
|
Fernández-Marmiesse A, Gouveia S, Couce ML. NGS Technologies as a Turning Point in Rare Disease Research , Diagnosis and Treatment. Curr Med Chem 2018; 25:404-432. [PMID: 28721829 PMCID: PMC5815091 DOI: 10.2174/0929867324666170718101946] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/19/2017] [Accepted: 07/14/2017] [Indexed: 01/17/2023]
Abstract
Approximately 25-50 million Americans, 30 million Europeans, and 8% of the Australian population have a rare disease. Rare diseases are thus a common problem for clinicians and account for enormous healthcare costs worldwide due to the difficulty of establishing a specific diagnosis. In this article, we review the milestones achieved in our understanding of rare diseases since the emergence of next-generation sequencing (NGS) technologies and analyze how these advances have influenced research and diagnosis. The first half of this review describes how NGS has changed diagnostic workflows and provided an unprecedented, simple way of discovering novel disease-associated genes. We focus particularly on metabolic and neurodevelopmental disorders. NGS has enabled cheap and rapid genetic diagnosis, highlighted the relevance of mosaic and de novo mutations, brought to light the wide phenotypic spectrum of most genes, detected digenic inheritance or the presence of more than one rare disease in the same patient, and paved the way for promising new therapies. In the second part of the review, we look at the limitations and challenges of NGS, including determination of variant causality, the loss of variants in coding and non-coding regions, and the detection of somatic mosaicism variants and epigenetic mutations, and discuss how these can be overcome in the near future.
Collapse
Affiliation(s)
- Ana Fernández-Marmiesse
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sofía Gouveia
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - María L. Couce
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
103
|
Astuti GDN, van den Born LI, Khan MI, Hamel CP, Bocquet B, Manes G, Quinodoz M, Ali M, Toomes C, McKibbin M, El-Asrag ME, Haer-Wigman L, Inglehearn CF, Black GCM, Hoyng CB, Cremers FPM, Roosing S. Identification of Inherited Retinal Disease-Associated Genetic Variants in 11 Candidate Genes. Genes (Basel) 2018; 9:genes9010021. [PMID: 29320387 PMCID: PMC5793174 DOI: 10.3390/genes9010021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/31/2017] [Accepted: 01/03/2018] [Indexed: 01/09/2023] Open
Abstract
Inherited retinal diseases (IRDs) display an enormous genetic heterogeneity. Whole exome sequencing (WES) recently identified genes that were mutated in a small proportion of IRD cases. Consequently, finding a second case or family carrying pathogenic variants in the same candidate gene often is challenging. In this study, we searched for novel candidate IRD gene-associated variants in isolated IRD families, assessed their causality, and searched for novel genotype-phenotype correlations. Whole exome sequencing was performed in 11 probands affected with IRDs. Homozygosity mapping data was available for five cases. Variants with minor allele frequencies ≤ 0.5% in public databases were selected as candidate disease-causing variants. These variants were ranked based on their: (a) presence in a gene that was previously implicated in IRD; (b) minor allele frequency in the Exome Aggregation Consortium database (ExAC); (c) in silico pathogenicity assessment using the combined annotation dependent depletion (CADD) score; and (d) interaction of the corresponding protein with known IRD-associated proteins. Twelve unique variants were found in 11 different genes in 11 IRD probands. Novel autosomal recessive and dominant inheritance patterns were found for variants in Small Nuclear Ribonucleoprotein U5 Subunit 200 (SNRNP200) and Zinc Finger Protein 513 (ZNF513), respectively. Using our pathogenicity assessment, a variant in DEAH-Box Helicase 32 (DHX32) was the top ranked novel candidate gene to be associated with IRDs, followed by eight medium and lower ranked candidate genes. The identification of candidate disease-associated sequence variants in 11 single families underscores the notion that the previously identified IRD-associated genes collectively carry > 90% of the defects implicated in IRDs. To identify multiple patients or families with variants in the same gene and thereby provide extra proof for pathogenicity, worldwide data sharing is needed.
Collapse
Affiliation(s)
- Galuh D. N. Astuti
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (G.D.N.A.); (M.I.K.); (L.H.-W.); (F.P.M.C.)
- Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
| | | | - M. Imran Khan
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (G.D.N.A.); (M.I.K.); (L.H.-W.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, The Netherlands
| | - Christian P. Hamel
- Institut National de la Santé et de la Recherche Médicale, Institute for Neurosciences of Montpellier, 34080 Montpellier, France; (B.B.); (G.M.)
- University of Montpellier, 34090 Montpellier, France
- CHRU, Genetics of Sensory Diseases, 34295 Montpellier, France
| | - Béatrice Bocquet
- Institut National de la Santé et de la Recherche Médicale, Institute for Neurosciences of Montpellier, 34080 Montpellier, France; (B.B.); (G.M.)
- University of Montpellier, 34090 Montpellier, France
- CHRU, Genetics of Sensory Diseases, 34295 Montpellier, France
| | - Gaël Manes
- Institut National de la Santé et de la Recherche Médicale, Institute for Neurosciences of Montpellier, 34080 Montpellier, France; (B.B.); (G.M.)
- University of Montpellier, 34090 Montpellier, France
| | - Mathieu Quinodoz
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, 1015 Lausanne, Switzerland;
| | - Manir Ali
- Section of Ophthalmology & Neuroscience, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St. James’s University Hospital, LS9 7TF Leeds, UK; (M.A.); (C.T.); (M.E.E.-A.); (C.F.I.)
| | - Carmel Toomes
- Section of Ophthalmology & Neuroscience, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St. James’s University Hospital, LS9 7TF Leeds, UK; (M.A.); (C.T.); (M.E.E.-A.); (C.F.I.)
| | - Martin McKibbin
- Department of Ophthalmology, St. James’s University Hospital, LS9 7TF Leeds, UK;
| | - Mohammed E. El-Asrag
- Section of Ophthalmology & Neuroscience, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St. James’s University Hospital, LS9 7TF Leeds, UK; (M.A.); (C.T.); (M.E.E.-A.); (C.F.I.)
- Department of Zoology, Faculty of Science, Benha University, 13511 Benha, Egypt
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (G.D.N.A.); (M.I.K.); (L.H.-W.); (F.P.M.C.)
| | - Chris F. Inglehearn
- Section of Ophthalmology & Neuroscience, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St. James’s University Hospital, LS9 7TF Leeds, UK; (M.A.); (C.T.); (M.E.E.-A.); (C.F.I.)
| | - Graeme C. M. Black
- Centre for Genomic Medicine, St. Mary’s Hospital, Manchester Academic Health Science Centre, University of Manchester, M13 9PL Manchester, UK;
| | - Carel B. Hoyng
- Department of Ophthalmology, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands;
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (G.D.N.A.); (M.I.K.); (L.H.-W.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, The Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (G.D.N.A.); (M.I.K.); (L.H.-W.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, The Netherlands
- Correspondence: ; Tel.: +31-(0)24-365-5266
| |
Collapse
|
104
|
Fiorentino A, Fujinami K, Arno G, Robson AG, Pontikos N, Arasanz Armengol M, Plagnol V, Hayashi T, Iwata T, Parker M, Fowler T, Rendon A, Gardner JC, Henderson RH, Cheetham ME, Webster AR, Michaelides M, Hardcastle AJ. Missense variants in the X-linked gene PRPS1 cause retinal degeneration in females. Hum Mutat 2018; 39:80-91. [PMID: 28967191 DOI: 10.1002/humu.23349] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 12/14/2022]
Abstract
Retinal dystrophies are a heterogeneous group of disorders of visual function leading to partial or complete blindness. We report the genetic basis of an unusual retinal dystrophy in five families with affected females and no affected males. Heterozygous missense variants were identified in the X-linked phosphoribosyl pyrophosphate synthetase 1 (PRPS1) gene: c.47C > T, p.(Ser16Phe); c.586C > T, p.(Arg196Trp); c.641G > C, p.(Arg214Pro); and c.640C > T, p.(Arg214Trp). Missense variants in PRPS1 are usually associated with disease in male patients, including Arts syndrome, Charcot-Marie-Tooth, and nonsyndromic sensorineural deafness. In our study families, affected females manifested a retinal dystrophy with interocular asymmetry. Three unrelated females from these families had hearing loss leading to a diagnosis of Usher syndrome. Other neurological manifestations were also observed in three individuals. Our data highlight the unexpected X-linked inheritance of retinal degeneration in females caused by variants in PRPS1 and suggest that tissue-specific skewed X-inactivation or variable levels of pyrophosphate synthetase-1 deficiency are the underlying mechanism(s). We speculate that the absence of affected males in the study families suggests that some variants may be male embryonic lethal when inherited in the hemizygous state. The unbiased nature of next-generation sequencing enables all possible modes of inheritance to be considered for association of gene variants with novel phenotypic presentation.
Collapse
Affiliation(s)
| | - Kaoru Fujinami
- UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
- National Institute of Sensory Organs, National Hospital Organization, Tokyo Medical Center, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Gavin Arno
- UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
| | - Anthony G Robson
- UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
| | - Nikolas Pontikos
- UCL Institute of Ophthalmology, London, United Kingdom
- UCL Genetics Institute, London, United Kingdom
| | | | | | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takeshi Iwata
- National Institute of Sensory Organs, National Hospital Organization, Tokyo Medical Center, Tokyo, Japan
| | - Matthew Parker
- Genomics England, Queen Mary University of London, London, United Kingdom
- Sheffield Diagnostic Genetics Service, Sheffield Children's Hospital, Sheffield, United Kingdom
| | - Tom Fowler
- Genomics England, Queen Mary University of London, London, United Kingdom
| | - Augusto Rendon
- Genomics England, Queen Mary University of London, London, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | | | - Robert H Henderson
- Moorfields Eye Hospital, London, United Kingdom
- Great Ormond Street Hospital for Children, Great Ormond Street, London, United Kingdom
| | | | - Andrew R Webster
- UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
| | - Michel Michaelides
- UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
| | | |
Collapse
|
105
|
Farrar GJ, Carrigan M, Dockery A, Millington-Ward S, Palfi A, Chadderton N, Humphries M, Kiang AS, Kenna PF, Humphries P. Toward an elucidation of the molecular genetics of inherited retinal degenerations. Hum Mol Genet 2017; 26:R2-R11. [PMID: 28510639 PMCID: PMC5886474 DOI: 10.1093/hmg/ddx185] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/08/2017] [Indexed: 02/06/2023] Open
Abstract
While individually classed as rare diseases, hereditary retinal degenerations (IRDs) are the major cause of registered visual handicap in the developed world. Given their hereditary nature, some degree of intergenic heterogeneity was expected, with genes segregating in autosomal dominant, recessive, X-linked recessive, and more rarely in digenic or mitochondrial modes. Today, it is recognized that IRDs, as a group, represent one of the most genetically diverse of hereditary conditions - at least 260 genes having been implicated, with 70 genes identified in the most common IRD, retinitis pigmentosa (RP). However, targeted sequencing studies of exons from known IRD genes have resulted in the identification of candidate mutations in only approximately 60% of IRD cases. Given recent advances in the development of gene-based medicines, characterization of IRD patient cohorts for known IRD genes and elucidation of the molecular pathologies of disease in those remaining unresolved cases has become an endeavor of the highest priority. Here, we provide an outline of progress in this area.
Collapse
Affiliation(s)
- G Jane Farrar
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Matthew Carrigan
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Adrian Dockery
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Sophia Millington-Ward
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Arpad Palfi
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Naomi Chadderton
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Marian Humphries
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Anna Sophia Kiang
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Paul F Kenna
- Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland
| | - Pete Humphries
- Institute of Genetics, School of Genetics and Microbiology, University of Dublin, Trinity College, Dublin 2, Ireland
| |
Collapse
|
106
|
Ellingford JM, Horn B, Campbell C, Arno G, Barton S, Tate C, Bhaskar S, Sergouniotis PI, Taylor RL, Carss KJ, Raymond LFL, Michaelides M, Ramsden SC, Webster AR, Black GCM. Assessment of the incorporation of CNV surveillance into gene panel next-generation sequencing testing for inherited retinal diseases. J Med Genet 2017; 55:114-121. [PMID: 29074561 PMCID: PMC5800348 DOI: 10.1136/jmedgenet-2017-104791] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/20/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Diagnostic use of gene panel next-generation sequencing (NGS) techniques is commonplace for individuals with inherited retinal dystrophies (IRDs), a highly genetically heterogeneous group of disorders. However, these techniques have often failed to capture the complete spectrum of genomic variation causing IRD, including CNVs. This study assessed the applicability of introducing CNV surveillance into first-tier diagnostic gene panel NGS services for IRD. METHODS Three read-depth algorithms were applied to gene panel NGS data sets for 550 referred individuals, and informatics strategies used for quality assurance and CNV filtering. CNV events were confirmed and reported to referring clinicians through an accredited diagnostic laboratory. RESULTS We confirmed the presence of 33 deletions and 11 duplications, determining these findings to contribute to the confirmed or provisional molecular diagnosis of IRD for 25 individuals. We show that at least 7% of individuals referred for diagnostic testing for IRD have a CNV within genes relevant to their clinical diagnosis, and determined a positive predictive value of 79% for the employed CNV filtering techniques. CONCLUSION Incorporation of CNV analysis increases diagnostic yield of gene panel NGS diagnostic tests for IRD, increases clarity in diagnostic reporting and expands the spectrum of known disease-causing mutations.
Collapse
Affiliation(s)
- Jamie M Ellingford
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, Manchester University NHS Foundation Trust, St Mary's Hospital, Manchester, UK.,Division of Evolution and Genomic Sciences, Neuroscience and Mental Health Domain, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Bradley Horn
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, Manchester University NHS Foundation Trust, St Mary's Hospital, Manchester, UK
| | - Christopher Campbell
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, Manchester University NHS Foundation Trust, St Mary's Hospital, Manchester, UK
| | - Gavin Arno
- Department of Genetics, UCL Institute of Ophthalmology, London, UK
| | - Stephanie Barton
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, Manchester University NHS Foundation Trust, St Mary's Hospital, Manchester, UK
| | - Catriona Tate
- Congenica, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sanjeev Bhaskar
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, Manchester University NHS Foundation Trust, St Mary's Hospital, Manchester, UK
| | - Panagiotis I Sergouniotis
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, Manchester University NHS Foundation Trust, St Mary's Hospital, Manchester, UK
| | - Rachel L Taylor
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, Manchester University NHS Foundation Trust, St Mary's Hospital, Manchester, UK.,Division of Evolution and Genomic Sciences, Neuroscience and Mental Health Domain, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Keren J Carss
- Department of Haematology, University of Cambridge NHS Blood and Transplant Centre, Cambridge, UK.,Department of NIHR BioResource - Rare Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Lucy F L Raymond
- Department of NIHR BioResource - Rare Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK.,Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Michel Michaelides
- Department of Genetics, UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Simon C Ramsden
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, Manchester University NHS Foundation Trust, St Mary's Hospital, Manchester, UK
| | - Andrew R Webster
- Department of Genetics, UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Graeme C M Black
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, Manchester University NHS Foundation Trust, St Mary's Hospital, Manchester, UK.,Division of Evolution and Genomic Sciences, Neuroscience and Mental Health Domain, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
107
|
Thompson JA, De Roach JN, McLaren TL, Montgomery HE, Hoffmann LH, Campbell IR, Chen FK, Mackey DA, Lamey TM. The genetic profile of Leber congenital amaurosis in an Australian cohort. Mol Genet Genomic Med 2017; 5:652-667. [PMID: 29178642 PMCID: PMC5702575 DOI: 10.1002/mgg3.321] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 12/21/2022] Open
Abstract
Background Leber congenital amaurosis (LCA) is a severe visual impairment responsible for infantile blindness, representing ~5% of all inherited retinal dystrophies. LCA encompasses a group of heterogeneous disorders, with 24 genes currently implicated in pathogenesis. Such clinical and genetic heterogeneity poses great challenges for treatment, with personalized therapies anticipated to be the best treatment candidates. Unraveling the individual genetic etiology of disease is a prerequisite for personalized therapies, and could identify potential treatment candidates, inform patient management, and discriminate syndromic forms of disease. Methods We have genetically analyzed 45 affected and 82 unaffected individuals from 34 unrelated LCA pedigrees using predominantly next‐generation sequencing and Array CGH technology. Results We present the molecular findings for an Australian LCA cohort, sourced from the Australian Inherited Retinal Disease Registry & DNA Bank. CEP290 and GUCY2D mutations, each represent 19% of unrelated LCA cases, followed by NMNAT1 (12%). Genetic subtypes were consistent with other reports, and were resolved in 90% of this cohort. Conclusion The high resolution rate achieved, equivalent to recent findings using whole exome/genome sequencing, reflects the progression from hypothesis (LCA Panel) to non‐hypothesis (RD Panel) testing and, coupled with Array CGH analysis, is a highly effective first‐tier test for LCA.
Collapse
Affiliation(s)
- Jennifer A Thompson
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - John N De Roach
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia.,Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, Western Australia, Australia
| | - Terri L McLaren
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Hannah E Montgomery
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Ling H Hoffmann
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Isabella R Campbell
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Fred K Chen
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia.,Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, Western Australia, Australia.,Lions Eye Institute, Nedlands, Western Australia, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - David A Mackey
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia.,Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, Western Australia, Australia.,Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Tina M Lamey
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia.,Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
108
|
Gupta PR, Huckfeldt RM. Gene therapy for inherited retinal degenerations: initial successes and future challenges. J Neural Eng 2017; 14:051002. [DOI: 10.1088/1741-2552/aa7a27] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
109
|
Rapidly Progressive White Matter Involvement in Early Childhood: The Expanding Phenotype of Infantile Onset Pompe? JIMD Rep 2017; 39:55-62. [PMID: 28726123 DOI: 10.1007/8904_2017_46] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 05/31/2017] [Accepted: 06/30/2017] [Indexed: 01/01/2023] Open
Abstract
Glycogen accumulation in the central nervous system of patients with classical infantile onset Pompe disease (IOPD) has been a consistent finding on the few post-mortems performed. While delays in myelination and a possible reduction in processing speed have previously been noted, it has only been recently that the potential for clinically significant progressive white matter disease has been noted. The limited reports thus far published infer that in some IOPD patients, this manifests as intellectual decline in the second decade of life. We present a CRIM negative patient, immunomodulated with rituximab and methotrexate at birth, who despite an initial good clinical response to ERT, at the age of just under 4 years, presented with evolving spasticity in the lower limbs. The investigation of which revealed progressive central nervous system involvement. Given both the earlier onset of the symptoms and consanguineous familial pedigree, extensive biochemical and genetic investigation was undertaken to ensure no alternative pathology was elucidated. In light of these findings, we review the radiology and post-mortems of previous cases and discuss the potential mechanisms that may underlie this presentation.
Collapse
|
110
|
Vincent AL, Abeysekera N, van Bysterveldt KA, Oliver VF, Ellingford JM, Barton S, Black GC. Next-generation sequencing targeted disease panel in rod-cone retinal dystrophies in Māori and Polynesian reveals novel changes and a common founder mutation. Clin Exp Ophthalmol 2017; 45:901-910. [PMID: 28488341 DOI: 10.1111/ceo.12983] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/02/2017] [Indexed: 01/20/2023]
Abstract
IMPORTANCE This study identifies unique genetic variation observed in a cohort of Māori and Polynesian patients with rod-cone retinal dystrophies using a targeted next-generation sequencing retinal disease gene panel. BACKGROUND With over 250 retinal disease genes identified, genetic diagnosis is still only possible in 60-70% of individuals and even less within unique ethnic groups. DESIGN Prospective genetic testing in patients with rod-cone retinal dystrophies identified from the New Zealand Inherited Retinal Disease Database, PARTICIPANTS: Sixteen patients of Māori and Polynesian ancestry. METHODS Next-generation sequencing of a targeted retinal gene panel. Sanger sequencing for a novel PDE6B mutation in subsequent Māori patients. MAIN OUTCOME MEASURES Genetic diagnosis, genotype-phenotype correlation. RESULTS Thirteen unique pathogenic variants were identified in 9 of 16 (56.25%) patients in 10 different genes. A definitive genetic diagnosis was made in 7/16 patients (43.7%). Six changes were novel and not in public databases of human variation. In four patients, a homozygous, novel pathogenic variant (c.2197G > C, p.(Ala 733Pro)) in PDE6B was identified and also present in a further five similarly affected Māori patients. CONCLUSIONS AND RELEVANCE Over half of the Māori and Polynesian patients with inherited rod-cone diseases have no pathogenic variant(s) detected with a targeted retinal next-generation sequencing strategy, which is supportive of novel genetic mechanisms in this population. A novel PDE6B founder variant is likely to account for 16% of recessive inherited retinal dystrophy in Māori. Careful characterization of the clinical presentation permits identification of further Māori patients with a similar phenotype and simplifies the diagnostic algorithm.
Collapse
Affiliation(s)
- Andrea L Vincent
- Department of Ophthalmology, FMHS, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.,Eye Department, Greenlane Clinical Centre, Auckland District Health Board, Auckland, New Zealand
| | - Nandoun Abeysekera
- Department of Ophthalmology, FMHS, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Katherine A van Bysterveldt
- Department of Ophthalmology, FMHS, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Verity F Oliver
- Department of Ophthalmology, FMHS, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Jamie M Ellingford
- Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester, UK
| | - Stephanie Barton
- Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester, UK
| | - Graeme Cm Black
- Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester, UK
| |
Collapse
|
111
|
Validation of copy number variation analysis for next-generation sequencing diagnostics. Eur J Hum Genet 2017; 25:719-724. [PMID: 28378820 DOI: 10.1038/ejhg.2017.42] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/12/2017] [Accepted: 01/31/2017] [Indexed: 01/01/2023] Open
Abstract
Although a common cause of disease, copy number variants (CNVs) have not routinely been identified from next-generation sequencing (NGS) data in a clinical context. This study aimed to examine the sensitivity and specificity of a widely used software package, ExomeDepth, to identify CNVs from targeted NGS data sets. We benchmarked the accuracy of CNV detection using ExomeDepth v1.1.6 applied to targeted NGS data sets by comparison to CNV events detected through whole-genome sequencing for 25 individuals and determined the sensitivity and specificity of ExomeDepth applied to these targeted NGS data sets to be 100% and 99.8%, respectively. To define quality assurance metrics for CNV surveillance through ExomeDepth, we undertook simulation of single-exon (n=1000) and multiple-exon heterozygous deletion events (n=1749), determining a sensitivity of 97% (n=2749). We identified that the extent of sequencing coverage, the inter- and intra-sample variability in the depth of sequencing coverage and the composition of analysis regions are all important determinants of successful CNV surveillance through ExomeDepth. We then applied these quality assurance metrics during CNV surveillance for 140 individuals across 12 distinct clinical areas, encompassing over 500 potential rare disease diagnoses. All 140 individuals lacked molecular diagnoses after routine clinical NGS testing, and by application of ExomeDepth, we identified 17 CNVs contributing to the cause of a Mendelian disorder. Our findings support the integration of CNV detection using ExomeDepth v1.1.6 with routine targeted NGS diagnostic services for Mendelian disorders. Implementation of this strategy increases diagnostic yields and enhances clinical care.
Collapse
|
112
|
Stenson PD, Mort M, Ball EV, Evans K, Hayden M, Heywood S, Hussain M, Phillips AD, Cooper DN. The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet 2017. [PMID: 28349240 DOI: 10.1007/s00439‐017‐1779‐6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The Human Gene Mutation Database (HGMD®) constitutes a comprehensive collection of published germline mutations in nuclear genes that underlie, or are closely associated with human inherited disease. At the time of writing (March 2017), the database contained in excess of 203,000 different gene lesions identified in over 8000 genes manually curated from over 2600 journals. With new mutation entries currently accumulating at a rate exceeding 17,000 per annum, HGMD represents de facto the central unified gene/disease-oriented repository of heritable mutations causing human genetic disease used worldwide by researchers, clinicians, diagnostic laboratories and genetic counsellors, and is an essential tool for the annotation of next-generation sequencing data. The public version of HGMD ( http://www.hgmd.org ) is freely available to registered users from academic institutions and non-profit organisations whilst the subscription version (HGMD Professional) is available to academic, clinical and commercial users under license via QIAGEN Inc.
Collapse
Affiliation(s)
- Peter D Stenson
- School of Medicine, Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| | - Matthew Mort
- School of Medicine, Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Edward V Ball
- School of Medicine, Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Katy Evans
- School of Medicine, Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Matthew Hayden
- School of Medicine, Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Sally Heywood
- School of Medicine, Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Michelle Hussain
- School of Medicine, Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Andrew D Phillips
- School of Medicine, Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - David N Cooper
- School of Medicine, Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
113
|
Stenson PD, Mort M, Ball EV, Evans K, Hayden M, Heywood S, Hussain M, Phillips AD, Cooper DN. The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet 2017; 136:665-677. [PMID: 28349240 PMCID: PMC5429360 DOI: 10.1007/s00439-017-1779-6] [Citation(s) in RCA: 932] [Impact Index Per Article: 133.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 03/14/2017] [Indexed: 02/06/2023]
Abstract
The Human Gene Mutation Database (HGMD®) constitutes a comprehensive collection of published germline mutations in nuclear genes that underlie, or are closely associated with human inherited disease. At the time of writing (March 2017), the database contained in excess of 203,000 different gene lesions identified in over 8000 genes manually curated from over 2600 journals. With new mutation entries currently accumulating at a rate exceeding 17,000 per annum, HGMD represents de facto the central unified gene/disease-oriented repository of heritable mutations causing human genetic disease used worldwide by researchers, clinicians, diagnostic laboratories and genetic counsellors, and is an essential tool for the annotation of next-generation sequencing data. The public version of HGMD (http://www.hgmd.org) is freely available to registered users from academic institutions and non-profit organisations whilst the subscription version (HGMD Professional) is available to academic, clinical and commercial users under license via QIAGEN Inc.
Collapse
Affiliation(s)
- Peter D Stenson
- School of Medicine, Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| | - Matthew Mort
- School of Medicine, Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Edward V Ball
- School of Medicine, Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Katy Evans
- School of Medicine, Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Matthew Hayden
- School of Medicine, Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Sally Heywood
- School of Medicine, Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Michelle Hussain
- School of Medicine, Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Andrew D Phillips
- School of Medicine, Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - David N Cooper
- School of Medicine, Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
114
|
Panel-Based Clinical Genetic Testing in 85 Children with Inherited Retinal Disease. Ophthalmology 2017; 124:985-991. [PMID: 28341476 DOI: 10.1016/j.ophtha.2017.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To assess the clinical usefulness of genetic testing in a pediatric population with inherited retinal disease (IRD). DESIGN Single-center retrospective case series. PARTICIPANTS Eighty-five unrelated children with a diagnosis of isolated or syndromic IRD who were referred for clinical genetic testing between January 2014 and July 2016. METHODS Participants underwent a detailed ophthalmic examination, accompanied by electrodiagnostic testing (EDT) and dysmorphologic assessment where appropriate. Ocular and extraocular features were recorded using Human Phenotype Ontology terms. Subsequently, multigene panel testing (105 or 177 IRD-associated genes) was performed in an accredited diagnostic laboratory, followed by clinical variant interpretation. MAIN OUTCOME MEASURES Diagnostic yield and clinical usefulness of genetic testing. RESULTS Overall, 78.8% of patients (n = 67) received a probable molecular diagnosis; 7.5% (n = 5) of these had autosomal dominant disease, 25.4% (n = 17) had X-linked disease, and 67.2% (n = 45) had autosomal recessive disease. In a further 5.9% of patients (n = 5), a single heterozygous ABCA4 variant was identified; all these participants had a spectrum of clinical features consistent with ABCA4 retinopathy. Most participants (84.7%; n = 72) had undergone EDT and 81.9% (n = 59) of these patients received a probable molecular diagnosis. The genes most frequently mutated in the present cohort were CACNA1F and ABCA4, accounting for 14.9% (n = 10) and 11.9% (n = 8) of diagnoses respectively. Notably, in many cases, genetic testing helped to distinguish stationary from progressive IRD subtypes and to establish a precise diagnosis in a timely fashion. CONCLUSIONS Multigene panel testing pointed to a molecular diagnosis in 84.7% of children with IRD. The diagnostic yield in the study population was significantly higher compared with that in previously reported unselected IRD cohorts. Approaches similar to the one described herein are expected to become a standard component of care in pediatric ophthalmology. We propose the introduction of genetic testing early in the diagnostic pathway in children with clinical and/or electrophysiologic findings, suggestive of IRD.
Collapse
|
115
|
Unravelling the Complexity of Inherited Retinal Dystrophies Molecular Testing: Added Value of Targeted Next-Generation Sequencing. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6341870. [PMID: 28127548 PMCID: PMC5227126 DOI: 10.1155/2016/6341870] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/30/2016] [Accepted: 10/20/2016] [Indexed: 11/18/2022]
Abstract
To assess the clinical utility of targeted Next-Generation Sequencing (NGS) for the diagnosis of Inherited Retinal Dystrophies (IRDs), a total of 109 subjects were enrolled in the study, including 88 IRD affected probands and 21 healthy relatives. Clinical diagnoses included Retinitis Pigmentosa (RP), Leber Congenital Amaurosis (LCA), Stargardt Disease (STGD), Best Macular Dystrophy (BMD), Usher Syndrome (USH), and other IRDs with undefined clinical diagnosis. Participants underwent a complete ophthalmologic examination followed by genetic counseling. A custom AmpliSeq™ panel of 72 IRD-related genes was designed for the analysis and tested using Ion semiconductor Next-Generation Sequencing (NGS). Potential disease-causing mutations were identified in 59.1% of probands, comprising mutations in 16 genes. The highest diagnostic yields were achieved for BMD, LCA, USH, and STGD patients, whereas RP confirmed its high genetic heterogeneity. Causative mutations were identified in 17.6% of probands with undefined diagnosis. Revision of the initial diagnosis was performed for 9.6% of genetically diagnosed patients. This study demonstrates that NGS represents a comprehensive cost-effective approach for IRDs molecular diagnosis. The identification of the genetic alterations underlying the phenotype enabled the clinicians to achieve a more accurate diagnosis. The results emphasize the importance of molecular diagnosis coupled with clinic information to unravel the extensive phenotypic heterogeneity of these diseases.
Collapse
|
116
|
de Castro-Miró M, Tonda R, Escudero-Ferruz P, Andrés R, Mayor-Lorenzo A, Castro J, Ciccioli M, Hidalgo DA, Rodríguez-Ezcurra JJ, Farrando J, Pérez-Santonja JJ, Cormand B, Marfany G, Gonzàlez-Duarte R. Novel Candidate Genes and a Wide Spectrum of Structural and Point Mutations Responsible for Inherited Retinal Dystrophies Revealed by Exome Sequencing. PLoS One 2016; 11:e0168966. [PMID: 28005958 PMCID: PMC5179108 DOI: 10.1371/journal.pone.0168966] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/09/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND NGS-based genetic diagnosis has completely revolutionized the human genetics field. In this study, we have aimed to identify new genes and mutations by Whole Exome Sequencing (WES) responsible for inherited retinal dystrophies (IRD). METHODS A cohort of 33 pedigrees affected with a variety of retinal disorders was analysed by WES. Initial prioritization analysis included around 300 IRD-associated genes. In non-diagnosed families a search for pathogenic mutations in novel genes was undertaken. RESULTS Genetic diagnosis was attained in 18 families. Moreover, a plausible candidate is proposed for 10 more cases. Two thirds of the mutations were novel, including 4 chromosomal rearrangements, which expand the IRD allelic heterogeneity and highlight the contribution of private mutations. Our results prompted clinical re-evaluation of some patients resulting in assignment to a syndromic instead of non-syndromic IRD. Notably, WES unveiled four new candidates for non-syndromic IRD: SEMA6B, CEP78, CEP250, SCLT1, the two latter previously associated to syndromic disorders. We provide functional data supporting that missense mutations in CEP250 alter cilia formation. CONCLUSION The diagnostic efficiency of WES, and strictly following the ACMG/AMP criteria is 55% in reported causative genes or functionally supported new candidates, plus 30% families in which likely pathogenic or VGUS/VUS variants were identified in plausible candidates. Our results highlight the clinical utility of WES for molecular diagnosis of IRD, provide a wider spectrum of mutations and concomitant genetic variants, and challenge our view on syndromic vs non-syndromic, and causative vs modifier genes.
Collapse
Affiliation(s)
- Marta de Castro-Miró
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Raul Tonda
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Paula Escudero-Ferruz
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Rosa Andrés
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | | | - Joaquín Castro
- Servicio de Oftalmología, Unidad de Retina, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Daniel A. Hidalgo
- Hospital Interzonal General de Agudos Eva Perón, Buenos Aires, Argentina
| | | | - Jorge Farrando
- Institut Oftalmològic Quirón Barcelona, Barcelona, Spain
| | - Juan J. Pérez-Santonja
- Department of Ophthalmology, Alicante University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Alicante, Spain
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Gemma Marfany
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Roser Gonzàlez-Duarte
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
117
|
Arno G, Agrawal SA, Eblimit A, Bellingham J, Xu M, Wang F, Chakarova C, Parfitt DA, Lane A, Burgoyne T, Hull S, Carss KJ, Fiorentino A, Hayes MJ, Munro PM, Nicols R, Pontikos N, Holder GE, Asomugha C, Raymond FL, Moore AT, Plagnol V, Michaelides M, Hardcastle AJ, Li Y, Cukras C, Webster AR, Cheetham ME, Chen R. Mutations in REEP6 Cause Autosomal-Recessive Retinitis Pigmentosa. Am J Hum Genet 2016; 99:1305-1315. [PMID: 27889058 PMCID: PMC5142109 DOI: 10.1016/j.ajhg.2016.10.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/13/2016] [Indexed: 12/15/2022] Open
Abstract
Retinitis pigmentosa (RP) is the most frequent form of inherited retinal dystrophy. RP is genetically heterogeneous and the genes identified to date encode proteins involved in a wide range of functional pathways, including photoreceptor development, phototransduction, the retinoid cycle, cilia, and outer segment development. Here we report the identification of biallelic mutations in Receptor Expression Enhancer Protein 6 (REEP6) in seven individuals with autosomal-recessive RP from five unrelated families. REEP6 is a member of the REEP/Yop1 family of proteins that influence the structure of the endoplasmic reticulum but is relatively unstudied. The six variants identified include three frameshift variants, two missense variants, and a genomic rearrangement that disrupts exon 1. Human 3D organoid optic cups were used to investigate REEP6 expression and confirmed the expression of a retina-specific isoform REEP6.1, which is specifically affected by one of the frameshift mutations. Expression of the two missense variants (c.383C>T [p.Pro128Leu] and c.404T>C [p.Leu135Pro]) and the REEP6.1 frameshift mutant in cultured cells suggest that these changes destabilize the protein. Furthermore, CRISPR-Cas9-mediated gene editing was used to produce Reep6 knock-in mice with the p.Leu135Pro RP-associated variant identified in one RP-affected individual. The homozygous knock-in mice mimic the clinical phenotypes of RP, including progressive photoreceptor degeneration and dysfunction of the rod photoreceptors. Therefore, our study implicates REEP6 in retinal homeostasis and highlights a pathway previously uncharacterized in retinal dystrophy.
Collapse
Affiliation(s)
- Gavin Arno
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; Moorfields Eye Hospital, London EC1V 2PD, UK
| | - Smriti A Agrawal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Aiden Eblimit
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - James Bellingham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Mingchu Xu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Feng Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | | | - David A Parfitt
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Amelia Lane
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Thomas Burgoyne
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Sarah Hull
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; Moorfields Eye Hospital, London EC1V 2PD, UK
| | - Keren J Carss
- NIHR BioResource - Rare Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Department of Haematology, University of Cambridge, NHS Blood and Transplant Centre, Cambridge CB2 0PT, UK
| | | | - Matthew J Hayes
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Peter M Munro
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Ralph Nicols
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Nikolas Pontikos
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Graham E Holder
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; Moorfields Eye Hospital, London EC1V 2PD, UK
| | - Chinwe Asomugha
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - F Lucy Raymond
- NIHR BioResource - Rare Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Anthony T Moore
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; Moorfields Eye Hospital, London EC1V 2PD, UK; Ophthalmology Department, UCSF School of Medicine, Koret Vision Center, San Francisco, CA 94133-0644, USA
| | - Vincent Plagnol
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; Moorfields Eye Hospital, London EC1V 2PD, UK
| | | | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | | | - Andrew R Webster
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; Moorfields Eye Hospital, London EC1V 2PD, UK
| | | | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA.
| |
Collapse
|
118
|
Branham K, Matsui H, Biswas P, Guru AA, Hicks M, Suk JJ, Li H, Jakubosky D, Long T, Telenti A, Nariai N, Heckenlively JR, Frazer KA, Sieving PA, Ayyagari R. Establishing the involvement of the novel gene AGBL5 in retinitis pigmentosa by whole genome sequencing. Physiol Genomics 2016; 48:922-927. [PMID: 27764769 DOI: 10.1152/physiolgenomics.00101.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023] Open
Abstract
While more than 250 genes are known to cause inherited retinal degenerations (IRD), nearly 40-50% of families have the genetic basis for their disease unknown. In this study we sought to identify the underlying cause of IRD in a family by whole genome sequence (WGS) analysis. Clinical characterization including standard ophthalmic examination, fundus photography, visual field testing, electroretinography, and review of medical and family history was performed. WGS was performed on affected and unaffected family members using Illumina HiSeq X10. Sequence reads were aligned to hg19 using BWA-MEM and variant calling was performed with Genome Analysis Toolkit. The called variants were annotated with SnpEff v4.11, PolyPhen v2.2.2, and CADD v1.3. Copy number variations were called using Genome STRiP (svtoolkit 2.00.1611) and SpeedSeq software. Variants were filtered to detect rare potentially deleterious variants segregating with disease. Candidate variants were validated by dideoxy sequencing. Clinical evaluation revealed typical adolescent-onset recessive retinitis pigmentosa (arRP) in affected members. WGS identified about 4 million variants in each individual. Two rare and potentially deleterious compound heterozygous variants p.Arg281Cys and p.Arg487* were identified in the gene ATP/GTP binding protein like 5 (AGBL5) as likely causal variants. No additional variants in IRD genes that segregated with disease were identified. Mutation analysis confirmed the segregation of these variants with the IRD in the pedigree. Homology models indicated destabilization of AGBL5 due to the p.Arg281Cys change. Our findings establish the involvement of mutations in AGBL5 in RP and validate the WGS variant filtering pipeline we designed.
Collapse
Affiliation(s)
- Kari Branham
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Hiroko Matsui
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| | - Pooja Biswas
- Shiley Eye Institute, University of California San Diego, La Jolla, California
| | - Aditya A Guru
- Shiley Eye Institute, University of California San Diego, La Jolla, California
| | | | - John J Suk
- Shiley Eye Institute, University of California San Diego, La Jolla, California
| | - He Li
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| | - David Jakubosky
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| | - Tao Long
- Human Longevity Incorporated, San Diego, California
| | | | - Naoki Nariai
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| | | | - Kelly A Frazer
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California.,Department of Pediatrics and Rady Children's Hospital, Division of Genome Information Sciences, University of California, San Diego, La Jolla, California; and
| | - Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Radha Ayyagari
- Shiley Eye Institute, University of California San Diego, La Jolla, California;
| |
Collapse
|
119
|
The role of small in-frame insertions/deletions in inherited eye disorders and how structural modelling can help estimate their pathogenicity. Orphanet J Rare Dis 2016; 11:125. [PMID: 27628848 PMCID: PMC5024463 DOI: 10.1186/s13023-016-0505-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/22/2016] [Indexed: 01/05/2023] Open
Abstract
Background Although the majority of small in-frame insertions/deletions (indels) has no/little affect on protein function, a small subset of these changes has been causally associated with genetic disorders. Notably, the molecular mechanisms and frequency by which they give rise to disease phenotypes remain largely unknown. The aim of this study is to provide insights into the role of in-frame indels (≤21 nucleotides) in two genetically heterogeneous eye disorders. Results One hundred eighty-one probands with childhood cataracts and 486 probands with retinal dystrophy underwent multigene panel testing in a clinical diagnostic laboratory. In-frame indels were collected and evaluated both clinically and in silico. Variants that could be modeled in the context of protein structure were identified and analysed using integrative structural modeling. Overall, 55 small in-frame indels were detected in 112 of 667 probands (16.8 %); 17 of these changes were novel to this study and 18 variants were reported clinically. A reliable model of the corresponding protein sequence could be generated for 8 variants. Structural modeling indicated a diverse range of molecular mechanisms of disease including disruption of secondary and tertiary protein structure and alteration of protein-DNA binding sites. Conclusions In childhood cataract and retinal dystrophy subjects, one small in-frame indel is clinically reported in every ~37 individuals tested. The clinical utility of computational tools evaluating these changes increases when the full complexity of the involved molecular mechanisms is embraced. Electronic supplementary material The online version of this article (doi:10.1186/s13023-016-0505-0) contains supplementary material, which is available to authorized users.
Collapse
|
120
|
Tiwari A, Lemke J, Altmueller J, Thiele H, Glaus E, Fleischhauer J, Nürnberg P, Neidhardt J, Berger W. Identification of Novel and Recurrent Disease-Causing Mutations in Retinal Dystrophies Using Whole Exome Sequencing (WES): Benefits and Limitations. PLoS One 2016; 11:e0158692. [PMID: 27391102 PMCID: PMC4938416 DOI: 10.1371/journal.pone.0158692] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/20/2016] [Indexed: 11/28/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are Mendelian diseases with tremendous genetic and phenotypic heterogeneity. Identification of the underlying genetic basis of these dystrophies is therefore challenging. In this study we employed whole exome sequencing (WES) in 11 families with IRDs and identified disease-causing variants in 8 of them. Sequence analysis of about 250 IRD-associated genes revealed 3 previously reported disease-associated variants in RHO, BEST1 and RP1. We further identified 5 novel pathogenic variants in RPGRIP1 (p.Ser964Profs*37), PRPF8 (p.Tyr2334Leufs*51), CDHR1 (p.Pro133Arg and c.439-17G>A) and PRPF31 (p.Glu183_Met193dup). In addition to confirming the power of WES in genetic diagnosis of IRDs, we document challenges in data analysis and show cases where the underlying genetic causes of IRDs were missed by WES and required additional techniques. For example, the mutation c.439-17G>A in CDHR1 would be rated unlikely applying the standard WES analysis. Only transcript analysis in patient fibroblasts confirmed the pathogenic nature of this variant that affected splicing of CDHR1 by activating a cryptic splice-acceptor site. In another example, a 33-base pair duplication in PRPF31 missed by WES could be identified only via targeted analysis by Sanger sequencing. We discuss the advantages and challenges of using WES to identify mutations in heterogeneous diseases like IRDs.
Collapse
Affiliation(s)
- Amit Tiwari
- Institute of Medical Molecular Genetics, University of Zurich, Wagistrasse 12, CH-8952, Schlieren, Switzerland
- * E-mail:
| | - Johannes Lemke
- Institute of Medical Molecular Genetics, University of Zurich, Wagistrasse 12, CH-8952, Schlieren, Switzerland
| | - Janine Altmueller
- Cologne Center for Genomics (CCG), University of Cologne, Weyertal 115b, D-50931, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Weyertal 115b, D-50931, Cologne, Germany
| | - Esther Glaus
- Institute of Medical Molecular Genetics, University of Zurich, Wagistrasse 12, CH-8952, Schlieren, Switzerland
| | - Johannes Fleischhauer
- Department of Ophthalmology, University Hospital Zurich, Frauenklinikstrasse 24, CH-8091, Zürich, Switzerland
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Weyertal 115b, D-50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch Str. 21, D-50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, D-50931, Cologne, Germany
| | - John Neidhardt
- Institute of Medical Molecular Genetics, University of Zurich, Wagistrasse 12, CH-8952, Schlieren, Switzerland
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zurich, Wagistrasse 12, CH-8952, Schlieren, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University and ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|