101
|
Neumaier F, Paterno M, Alpdogan S, Tevoufouet EE, Schneider T, Hescheler J, Albanna W. Surgical Approaches in Psychiatry: A Survey of the World Literature on Psychosurgery. World Neurosurg 2017; 97:603-634.e8. [DOI: 10.1016/j.wneu.2016.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 12/11/2022]
|
102
|
Luyten L, Hendrickx S, Raymaekers S, Gabriëls L, Nuttin B. Electrical stimulation in the bed nucleus of the stria terminalis alleviates severe obsessive-compulsive disorder. Mol Psychiatry 2016; 21:1272-80. [PMID: 26303665 DOI: 10.1038/mp.2015.124] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/11/2015] [Accepted: 06/25/2015] [Indexed: 12/22/2022]
Abstract
In 1998, we proposed deep brain stimulation as a last-resort treatment option for patients suffering from severe, treatment-resistant obsessive-compulsive disorder (OCD). Here, 24 OCD patients were included in a long-term follow-up study to evaluate the effects of electrical stimulation in the anterior limbs of the internal capsule (ALIC) and bed nucleus of the stria terminalis (BST). We find that electrical stimulation in the ALIC/BST area is safe and significantly decreases obsessions, compulsions, and associated anxiety and depressive symptoms, and improves global functioning in a blinded crossover trial (n=17), after 4 years (n=18), and at last follow-up (up to 171 months, n=24). Moreover, our data indicate that BST may be a better stimulation target compared with ALIC to alleviate OCD symptoms. We conclude that electrical stimulation in BST is a promising therapeutic option for otherwise treatment-resistant OCD patients.
Collapse
Affiliation(s)
- L Luyten
- KU Leuven Research Group Experimental Neurosurgery and Neuroanatomy, Leuven, Belgium.,KU Leuven Research Group Psychology of Learning and Experimental Psychopathology, Leuven, Belgium
| | - S Hendrickx
- KU Leuven Research Group Experimental Neurosurgery and Neuroanatomy, Leuven, Belgium
| | - S Raymaekers
- KU Leuven Research Group Psychiatry, Leuven, Belgium
| | - L Gabriëls
- UPC-KU Leuven University Center for OCD, Leuven, Belgium
| | - B Nuttin
- KU Leuven Research Group Experimental Neurosurgery and Neuroanatomy, Leuven, Belgium.,UZ Leuven Department of Neurosurgery, Leuven, Belgium
| |
Collapse
|
103
|
van den Heuvel OA, van Wingen G, Soriano-Mas C, Alonso P, Chamberlain SR, Nakamae T, Denys D, Goudriaan AE, Veltman DJ. Brain circuitry of compulsivity. Eur Neuropsychopharmacol 2016; 26:810-27. [PMID: 26711687 DOI: 10.1016/j.euroneuro.2015.12.005] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 08/28/2015] [Accepted: 12/01/2015] [Indexed: 01/27/2023]
Abstract
Compulsivity is associated with alterations in the structure and the function of parallel and interacting brain circuits involved in emotional processing (involving both the reward and the fear circuits), cognitive control, and motor functioning. These brain circuits develop during the pre-natal period and early childhood under strong genetic and environmental influences. In this review we bring together literature on cognitive, emotional, and behavioral processes in compulsivity, based mainly on studies in patients with obsessive-compulsive disorder and addiction. Disease symptoms normally change over time. Goal-directed behaviors, in response to reward or anxiety, often become more habitual over time. During the course of compulsive disorders the mental processes and repetitive behaviors themselves contribute to the neuroplastic changes in the involved circuits, mainly in case of chronicity. On the other hand, successful treatment is able to normalize altered circuit functioning or to induce compensatory mechanisms. We conclude that insight in the neurobiological characteristics of the individual symptom profile and disease course, including the potential targets for neuroplasticity is an unmet need to advance the field.
Collapse
Affiliation(s)
- Odile A van den Heuvel
- Department of Psychiatry, VU University Medical Center (VUmc), Amsterdam, The Netherlands; Department of Anatomy & Neurosciences, VUmc, Amsterdam, The Netherlands; The Obsessive-Compulsive Disorder Team, Haukeland University Hospital, Bergen, Norway.
| | - Guido van Wingen
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Carles Soriano-Mas
- OCD Clinical and Research Unit, Department of Psychiatry, Bellvitge University Hospital; Bellvitge Biomedical Research Institute (IDIBELL), and CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Barcelona, Spain; Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Spain
| | - Pino Alonso
- OCD Clinical and Research Unit, Department of Psychiatry, Bellvitge University Hospital; Bellvitge Biomedical Research Institute (IDIBELL), and CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Spain
| | - Samuel R Chamberlain
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridge and Peterborough NHS Foundation Trust (CPFT), Cambridge, United Kingdom
| | - Takashi Nakamae
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Damiaan Denys
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anna E Goudriaan
- Academic Medical Center, Department of Psychiatry, Amsterdam Institute for Addiction Research, University of Amsterdam, Amsterdam, The Netherlands; Arkin Mental Health and Jellinek Addiction Treatment, Amsterdam, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| |
Collapse
|
104
|
Cryoablation of an atrioventricular nodal reentrant tachycardia in a patient with an implanted deep brain stimulator. HeartRhythm Case Rep 2016; 2:258-260. [PMID: 28491683 PMCID: PMC5419761 DOI: 10.1016/j.hrcr.2016.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
105
|
Abstract
Like cardiovascular disease and cancer, neurological disorders present an increasing challenge for an ageing population. Whereas nonpharmacological procedures are routine for eliminating cancer tissue or opening a blocked artery, the focus in neurological disease remains on pharmacological interventions. Setbacks in clinical trials and the obstacle of access to the brain for drug delivery and surgery have highlighted the potential for therapeutic use of ultrasound in neurological diseases, and the technology has proved useful for inducing focused lesions, clearing protein aggregates, facilitating drug uptake, and modulating neuronal function. In this Review, we discuss milestones in the development of therapeutic ultrasound, from the first steps in the 1950s to recent improvements in technology. We provide an overview of the principles of diagnostic and therapeutic ultrasound, for surgery and transient opening of the blood-brain barrier, and its application in clinical trials of stroke, Parkinson disease and chronic pain. We discuss the promising outcomes of safety and feasibility studies in preclinical models, including rodents, pigs and macaques, and efficacy studies in models of Alzheimer disease. We also consider the challenges faced on the road to clinical translation.
Collapse
|
106
|
Kubu CS, Ready RE, Festa JR, Roper BL, Pliskin NH. The Times They Are a Changin': Neuropsychology and Integrated Care Teams. Clin Neuropsychol 2016; 30:51-65. [PMID: 26839169 DOI: 10.1080/13854046.2015.1134670] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To gather illustrative data from clinical neuropsychologists who are working in integrated care settings in order to provide an initial blueprint for moving forward in this new era of health care. METHOD A survey was designed to illustrate the ways in which neuropsychologists are participating in integrated care teams and distributed on major neuropsychology listservs. The survey evaluated the settings, roles, services provided, practice issues, remuneration, and impact of neuropsychologists' participation in integrated care teams with respect to patient care and health outcomes. Frequencies were used to summarize the findings as well as qualitative coding of narrative responses. RESULTS There were 412 respondents to the survey and 261 of those indicated that they worked in at least one integrated care setting. Neuropsychologists work in a variety of integrated care settings and provide diverse services which contribute to improved patient care and outcomes. CONCLUSIONS Three primary themes emerge from the findings with regard to the engagement and teams: advocacy, collaboration, and communication. We argue for the need for more easily accessible outcome studies illustrating the clinical benefits and cost-savings associated with inclusion of neuropsychologists in integrated care teams. In addition, educational and training initiatives are needed to better equip current and future clinical neuropsychologists to function effectively in integrated care settings.
Collapse
Affiliation(s)
- Cynthia S Kubu
- a Department of Psychiatry and Psychology , Center for Neurological Restoration , Cleveland , OH , USA
| | - Rebecca E Ready
- b Psychological and Brain Sciences , University of Massachusetts , Amherst , MA , USA
| | - Joanne R Festa
- c Department of Neurology , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - Brad L Roper
- d Psychology Section Affairs Medical Center , Memphis , TN , USA.,e University of Tennessee College of Medicine , Memphis , TN , USA
| | - Neil H Pliskin
- f Department of Psychiatry , University of Illinois , Chicago , IL , USA
| |
Collapse
|
107
|
Fitzgerald PB, Segrave RA. Deep brain stimulation in mental health: Review of evidence for clinical efficacy. Aust N Z J Psychiatry 2015; 49:979-93. [PMID: 26246408 DOI: 10.1177/0004867415598011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE There is increasing interest in the use of deep brain stimulation as a treatment for psychiatric disorders. In this review, we consider the evidence for the effectiveness of deep brain stimulation for psychiatric indications, with a primary focus on obsessive compulsive disorder and major depressive disorder. METHODS Case reports, case series and clinical trials where deep brain stimulation was primarily utilised in the treatment of a psychiatric disorder, including obsessive compulsive disorder, major depressive disorder, anorexia nervosa or an addictive disorder were identified. The evidence for the effectiveness of deep brain stimulation in the treatment of obsessive compulsive disorder and major depressive disorder was reviewed with studies clustered by the site of implantation. RESULTS The majority of identified manuscripts report small case series or single cases. A limited number of studies have reported some form of randomised or blinded stimulation comparison. All of these comparative reports have included small samples of subjects (less than 20 per study in total) compromising the feasibility of making statistical comparison between outcomes in the comparison phases. The two exceptions to this have been industry-sponsored studies conducted in the treatment of major depressive disorder. However, both were stopped prematurely due to concerns about poor efficacy. CONCLUSIONS There is insufficient evidence at this point in time to support the use of deep brain stimulation as a clinical treatment for any psychiatric disorder outside of research and programmes where formal outcome data are being systematically collated. While some promising initial data exist to support its potential efficacy for a number of psychiatric conditions, further research is required to establish optimal implantation targets, patient characteristics associated with positive therapeutic outcomes and optimal deep brain stimulation parameters and parameter-programming methods.
Collapse
Affiliation(s)
- Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Alfred Psychiatry Research Centre, Monash University Central Clinical School and Alfred Health, Melbourne, VIC, Australia
| | - Rebecca A Segrave
- Monash Alfred Psychiatry Research Centre, Alfred Psychiatry Research Centre, Monash University Central Clinical School and Alfred Health, Melbourne, VIC, Australia
| |
Collapse
|
108
|
Tonge M, Ackermans L, Kocabicak E, van Kranen-Mastenbroek V, Kuijf M, Oosterloo M, Kubben P, Temel Y. A detailed analysis of intracerebral hemorrhages in DBS surgeries. Clin Neurol Neurosurg 2015; 139:183-7. [PMID: 26513430 DOI: 10.1016/j.clineuro.2015.10.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Deep brain stimulation is nowadays a frequently performed surgery in patients with movement disorders, intractable epilepsy, and severe psychiatric disorders. The most feared complication of this surgery is an intracerebral hemorrhage due to the electrode placement, either for intraoperative electrophysiology (microelectrode recording) and/or implantation of the final electrode (macroelectrode). Here, we have investigated the risk of developing an intracerebral hemorrhage in our cohort of deep brain stimulation patients over a period of 15 years. PATIENTS AND METHODS We have collected demographic data and analyzed the effect of performing surgery with single-electrode versus multiple electrode guided DBS. The effect of using single-dose versus double-dose contrast enhanced MRI to visualize vessels for the electrode trajectory planning has been investigated as well. RESULTS We have found that the overall calculated risk of an intracerebral hemorrhage in our series was 1.81% per patient, 0.3% per recording electrode and 0.23% per brain insertion. While three out of four patients recovered without neurological deficits, there was one mortality in a patient with cardiovascular comorbidities. Statistical comparisons between the groups of single-electrode versus multiple electrode guided surgery and single-dose gadolinium versus double-dose contrast enhanced MRI revealed no significant differences. In addition, there was no meaningful correlation between the age at surgery and the risk of bleeding. CONCLUSION We have found that the risk of developing an intracerebral hemorrhage due to deep brain stimulation surgery is low. The clinical course of the patients with an intracerebral hemorrhage was generally favorable.
Collapse
Affiliation(s)
- Mehmet Tonge
- Department of Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Linda Ackermans
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ersoy Kocabicak
- Department of Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Neurosurgery, Ondokuz Mayis University, Samsun, Turkey
| | | | - Mark Kuijf
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mayke Oosterloo
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Pieter Kubben
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
109
|
Velasco F, Velasco AL. Considerations for Improving Cost Benefit of Deep Brain Stimulation for the Treatment of Chronic Neurologic Diseases. World Neurosurg 2015; 84:1560-2. [PMID: 26193671 DOI: 10.1016/j.wneu.2015.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 07/11/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Francisco Velasco
- Unit for Stereotactic and Functional Neurosurgery, Hospital General de Mexico, Mexico City, Mexico.
| | - Ana Luisa Velasco
- Unit for Stereotactic and Functional Neurosurgery, Hospital General de Mexico, Mexico City, Mexico
| |
Collapse
|
110
|
Lipsman N, Lozano AM. Cosmetic neurosurgery, ethics, and enhancement. Lancet Psychiatry 2015; 2:585-6. [PMID: 26303544 DOI: 10.1016/s2215-0366(15)00206-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Nir Lipsman
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, ON M5T 2S8, Canada.
| | - Andres M Lozano
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, ON M5T 2S8, Canada
| |
Collapse
|
111
|
Abstract
Despite the application of deep brain stimulation (DBS) as an efficient treatment modality for psychiatric disorders, such as obsessive-compulsive disorder (OCD), Gilles de la Tourette Syndrome (GTS), and treatment refractory major depression (TRD), few patients are operated or included in clinical trials, often for fear of the potential risks of an approach deemed too dangerous. To assess the surgical risks, we conducted an analysis of publications on DBS for psychiatric disorders. A PubMed search was conducted on reports on DBS for OCD, GTS, and TRD. Forty-nine articles were included. Only reports on complications related to DBS were selected and analyzed. Two hundred seventy-two patients with a mean follow-up of 22 months were included in our analysis. Surgical mortality was nil. The overall mortality was 1.1 %: two suicides were unrelated to DBS and one death was reported to be unlikely due to DBS. The majority of complications were transient and related to stimulation. Long-term morbidity occurred in 16.5 % of cases. Three patients had permanent neurological complications due to intracerebral hemorrhage (2.2 %). Complications reported in DBS for psychiatric diseases appear to be similar to those reported for DBS in movement disorders. But class I evidence is lacking. Our analysis was based mainly on small non-randomized studies. A significant number of patients (approximately 150 patients) who were treated with DBS for psychiatric diseases had to be excluded from our analysis as no data on complications was available. The exact prevalence of complications of DBS in psychiatric diseases could not be established. DBS for psychiatric diseases is promising, but remains an experimental technique in need of further evaluation. A close surveillance of patients undergoing DBS for psychiatric diseases is mandatory.
Collapse
|
112
|
Sugiyama K, Nozaki T, Asakawa T, Koizumi S, Saitoh O, Namba H. The present indication and future of deep brain stimulation. Neurol Med Chir (Tokyo) 2015; 55:416-21. [PMID: 25925757 PMCID: PMC4628169 DOI: 10.2176/nmc.ra.2014-0394] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The use of electrical stimulation to treat pain in human disease dates back to ancient Rome or Greece. Modern deep brain stimulation (DBS) was initially applied for pain treatment in the 1960s, and was later used to treat movement disorders in the 1990s. After recognition of DBS as a therapy for central nervous system (CNS) circuit disorders, DBS use showed drastic increase in terms of adaptability to disease and the patient’s population. More than 100,000 patients have received DBS therapy worldwide. The established indications for DBS are Parkinson’s disease, tremor, and dystonia, whereas global indications of DBS expanded to other neuronal diseases or disorders such as neuropathic pain, epilepsy, and tinnitus. DBS is also experimentally used to manage cognitive disorders and psychiatric diseases such as major depression, obsessive-compulsive disorder (OCD), Tourette’s syndrome, and eating disorders. The importance of ethics and conflicts surrounding the regulation and freedom of choice associated with the application of DBS therapy for new diseases or disorders is increasing. These debates are centered on the use of DBS to treat new diseases and disorders as well as its potential to enhance ability in normal healthy individuals. Here we present three issues that need to be addressed in the future: (1) elucidation of the mechanisms of DBS, (2) development of new DBS methods, and (3) miniaturization of the DBS system. With the use of DBS, functional neurosurgery entered into the new era that man can manage and control the brain circuit to treat intractable neuronal diseases and disorders.
Collapse
Affiliation(s)
- Kenji Sugiyama
- Department of Neurosurgery, Hamamatsu University School of Medicine
| | | | | | | | | | | |
Collapse
|
113
|
Müller S, Riedmüller R, van Oosterhout A. Rivaling paradigms in psychiatric neurosurgery: adjustability versus quick fix versus minimal-invasiveness. Front Integr Neurosci 2015; 9:27. [PMID: 25883557 PMCID: PMC4383041 DOI: 10.3389/fnint.2015.00027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/17/2015] [Indexed: 11/26/2022] Open
Abstract
In the wake of deep brain stimulation (DBS) development, ablative neurosurgical procedures are seeing a comeback, although they had been discredited and nearly completely abandoned in the 1970s because of their unethical practice. Modern stereotactic ablative procedures as thermal or radiofrequency ablation, and particularly radiosurgery (e.g., Gamma Knife) are much safer than the historical procedures, so that a re-evaluation of this technique is required. The different approaches of modern psychiatric neurosurgery refer to different paradigms: microsurgical ablative procedures is based on the paradigm ‘quick fix,’ radiosurgery on the paradigm ‘minimal-invasiveness,’ and DBS on the paradigm ‘adjustability.’ From a mere medical perspective, none of the procedures is absolutely superior; rather, they have different profiles of advantages and disadvantages. Therefore, individual factors are crucial in decision-making, particularly the patients’ social situation, individual preferences, and individual attitudes. The different approaches are not only rivals, but also enriching mutually. DBS is preferable for exploring new targets, which may become candidates for ablative microsurgery or radiosurgery.
Collapse
Affiliation(s)
- Sabine Müller
- Charité-Universitätsmedizin Berlin, Department of Psychiatry and Psychotherapy, CCM, Mind and Brain Research Berlin, Germany
| | - Rita Riedmüller
- Charité-Universitätsmedizin Berlin, Department of Psychiatry and Psychotherapy, CCM, Mind and Brain Research Berlin, Germany
| | | |
Collapse
|
114
|
Serra-Blasco M, de Vita S, Rodríguez MR, de Diego-Adeliño J, Puigdemont D, Martín-Blanco A, Pérez-Egea R, Molet J, Álvarez E, Pérez V, Portella MJ. Cognitive functioning after deep brain stimulation in subcallosal cingulate gyrus for treatment-resistant depression: an exploratory study. Psychiatry Res 2015; 225:341-6. [PMID: 25592978 DOI: 10.1016/j.psychres.2014.11.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 11/11/2014] [Accepted: 11/24/2014] [Indexed: 11/25/2022]
Abstract
Deep brain stimulation (DBS) is being investigated as a therapeutic alternative for patients with treatment-resistant depression (TRD), but its cognitive safety has been scarcely explored. The aim of this exploratory study is to evaluate cognitive function of patients before and after deep brain stimulation of the subgenual cingulate gyrus (SCG). Eight treatment-resistant depressed patients were implanted in subgenual cingulate gyrus. A neuropsychological battery was used to evaluate patients before surgery and 1-year after. A matched group of eight first-episode patients was also assessed. A MANOVA was performed for each cognitive domain and those tests showing main time effects were then correlated with depressive symptoms and with medication load. There were significant group and time effects for memory and a group effect for language. No significant interactions between groups or cognitive domains were observed. Medication load was negatively correlated with memory at time 1, and clinical change negatively correlated with memory improvement. These findings support the cognitive safety of DBS of subgenual cingulate gyrus, as cognitive function did not worsen after chronic stimulation and memory performance even improved. The results, though, should be interpreted cautiously given the small sample size and the fact that some treatment-resistant patients received electroconvulsive therapy (ECT) before implantation.
Collapse
Affiliation(s)
- Maria Serra-Blasco
- Department of Psychiatry - Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Catalonia, Spain
| | - Sol de Vita
- Department of Psychiatry - Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Catalonia, Spain
| | - Mar Rivas Rodríguez
- Department of Psychiatry - Universidad Autónoma de Madrid, Hospital Universitario de la Princesa, Madrid, CIBERSAM, Madrid, Spain
| | - Javier de Diego-Adeliño
- Department of Psychiatry - Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Catalonia, Spain
| | - Dolors Puigdemont
- Department of Psychiatry - Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Catalonia, Spain
| | - Ana Martín-Blanco
- Department of Psychiatry - Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Catalonia, Spain
| | - Rosario Pérez-Egea
- Department of Psychiatry - Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Catalonia, Spain
| | - Joan Molet
- Department of Neurosurgery - Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Catalonia, Spain
| | - Enric Álvarez
- Department of Psychiatry - Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Catalonia, Spain
| | - Victor Pérez
- Department of Psychiatry - Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Catalonia, Spain
| | - Maria J Portella
- Department of Psychiatry - Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Catalonia, Spain.
| |
Collapse
|
115
|
Jiménez-Ponce F, García-Muñoz L, Carrillo-Ruiz J. The role of bioethics in the neurosurgical treatment of psychiatric disorders. REVISTA MÉDICA DEL HOSPITAL GENERAL DE MÉXICO 2015. [DOI: 10.1016/j.hgmx.2015.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
116
|
Koek RJ, Langevin JP, Krahl SE, Kosoyan HJ, Schwartz HN, Chen JWY, Melrose R, Mandelkern MJ, Sultzer D. Deep brain stimulation of the basolateral amygdala for treatment-refractory combat post-traumatic stress disorder (PTSD): study protocol for a pilot randomized controlled trial with blinded, staggered onset of stimulation. Trials 2014; 15:356. [PMID: 25208824 PMCID: PMC4168122 DOI: 10.1186/1745-6215-15-356] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/21/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Combat post-traumatic stress disorder (PTSD) involves significant suffering, impairments in social and occupational functioning, substance use and medical comorbidity, and increased mortality from suicide and other causes. Many veterans continue to suffer despite current treatments. Deep brain stimulation (DBS) has shown promise in refractory movement disorders, depression and obsessive-compulsive disorder, with deep brain targets chosen by integration of clinical and neuroimaging literature. The basolateral amygdala (BLn) is an optimal target for high-frequency DBS in PTSD based on neurocircuitry findings from a variety of perspectives. DBS of the BLn was validated in a rat model of PTSD by our group, and limited data from humans support the potential safety and effectiveness of BLn DBS. METHODS/DESIGN We describe the protocol design for a first-ever Phase I pilot study of bilateral BLn high-frequency DBS for six severely ill, functionally impaired combat veterans with PTSD refractory to conventional treatments. After implantation, patients are monitored for a month with stimulators off. An electroencephalographic (EEG) telemetry session will test safety of stimulation before randomization to staggered-onset, double-blind sham versus active stimulation for two months. Thereafter, patients will undergo an open-label stimulation for a total of 24 months. Primary efficacy outcome is a 30% decrease in the Clinician Administered PTSD Scale (CAPS) total score. Safety outcomes include extensive assessments of psychiatric and neurologic symptoms, psychosocial function, amygdala-specific and general neuropsychological functions, and EEG changes. The protocol requires the veteran to have a cohabiting significant other who is willing to assist in monitoring safety and effect on social functioning. At baseline and after approximately one year of stimulation, trauma script-provoked 18FDG PET metabolic changes in limbic circuitry will also be evaluated. DISCUSSION While the rationale for studying DBS for PTSD is ethically and scientifically justified, the importance of the amygdaloid complex and its connections for a myriad of emotional, perceptual, behavioral, and vegetative functions requires a complex trial design in terms of outcome measures. Knowledge generated from this pilot trial can be used to design future studies to determine the potential of DBS to benefit both veterans and nonveterans suffering from treatment-refractory PTSD. TRIAL REGISTRATION PCC121657, 19 March 2014.
Collapse
Affiliation(s)
- Ralph J Koek
- />Psychiatry Service, VA Greater Los Angeles Healthcare System (VAGLAHS), 11301 Wilshire Blvd, Los Angeles, CA 90073 USA
- />David Geffen School of Medicine at UCLA, Los Angeles, USA
- />16111 Plummer St. (116A-11), North Hills, CA 91343 USA
| | - Jean-Philippe Langevin
- />David Geffen School of Medicine at UCLA, Los Angeles, USA
- />Neurosurgery Service, VAGLAHS, 11301 Wilshire Blvd, Los Angeles, C 90073 USA
| | - Scott E Krahl
- />David Geffen School of Medicine at UCLA, Los Angeles, USA
- />Research and Development Service, VAGLAHS, 11301 Wilshire Blvd, Los Angeles, CA 90073 USA
| | - Hovsep J Kosoyan
- />David Geffen School of Medicine at UCLA, Los Angeles, USA
- />Research and Development Service, VAGLAHS, 11301 Wilshire Blvd, Los Angeles, CA 90073 USA
| | - Holly N Schwartz
- />Psychiatry Service, VA Greater Los Angeles Healthcare System (VAGLAHS), 11301 Wilshire Blvd, Los Angeles, CA 90073 USA
- />David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - James WY Chen
- />David Geffen School of Medicine at UCLA, Los Angeles, USA
- />Neurology Service, VAGLAHS, 11301 Wilshire Blvd, Los Angeles, CA 90073 USA
| | - Rebecca Melrose
- />David Geffen School of Medicine at UCLA, Los Angeles, USA
- />Brain, Behavior, and Aging Research Center, VAGLAHS, 11301 Wilshire Blvd, Los Angeles, CA 90073 USA
| | - Mark J Mandelkern
- />David Geffen School of Medicine at UCLA, Los Angeles, USA
- />Imaging Department, Radiology Service, VAGLAHS, 11301 Wilshire Blvd, Los Angeles, CA 90073 USA
- />Physics Department, UC Irvine, Irvine, CA 92697 USA
| | - David Sultzer
- />Psychiatry Service, VA Greater Los Angeles Healthcare System (VAGLAHS), 11301 Wilshire Blvd, Los Angeles, CA 90073 USA
- />David Geffen School of Medicine at UCLA, Los Angeles, USA
| |
Collapse
|
117
|
Affiliation(s)
- Jean Régis
- Aix-Marseille University, INSERM, UMR 1106 and Timone University Hospital, Functional and Stereotactic Neurosurgery Service and Gamma Knife Unit, 264 rue Saint Pierre, 13385, Marseille, CEDEX 05, France,
| |
Collapse
|
118
|
Visser-Vandewalle V. Neurosurgery: Psychosurgery guidelines--friction between ideal and reality? Nat Rev Neurol 2014; 10:310-1. [PMID: 24752126 DOI: 10.1038/nrneurol.2014.68] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, University of Cologne, 62 Kerpener Street, Cologne 50937, Germany
| |
Collapse
|