101
|
Han L, Xue W, Cao H, Chen X, Qi F, Ma T, Tu Y, Diao Q, Zhang C, Cui K. Comparison of Rumen Fermentation Parameters and Microbiota of Yaks From Different Altitude Regions in Tibet, China. Front Microbiol 2022; 12:807512. [PMID: 35222306 PMCID: PMC8867021 DOI: 10.3389/fmicb.2021.807512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 01/18/2023] Open
Abstract
Rumen microbiota are closely linked to feed utilization and environmental adaptability of ruminants. At present, little is known about the influence of different extreme environments on the rumen microbiota of yaks. In this study, 30 ruminal fluid samples from 30 healthy female yaks (average 280 kg of BW) in 5-8 years of life were collected from three regions in Tibet, China, and compared by gas chromatography and high-throughput sequencing. Results showed that propionic acid, butyric acid, and total volatile fatty acids were significantly (p < 0.05) higher, while microbial abundance and diversity were significantly (p < 0.05) lower, in the Nagqu (4,500 m altitude) compared with the Xigatse (4,800 m altitude) and Lhasa (3,800 m altitude) regions. Principal coordinate analysis revealed significant (p < 0.05) differences in rumen microbial composition of yaks from different regions. Specifically, Bacteroidetes and Firmicutes were identified by linear discriminant analysis effect size (LDA > 3) as being the signature phyla for Xigatse and Nagqu regions, respectively. In addition, the relative abundance of Rikenellaceae_RC9_gut_group, Quinella, Prevotellaceae_UCG-003, Lachnospiraceae_NK3A20_group, Papillibacter, Ruminococcaceae_UCG-010, Prevotellaceae_NK3B31_group, and Ruminococcaceae_UCG-005 correlated with altitude and rumen fermentation parameters (p < 0.05). Finally, the predicted function of rumen microbiota was found to differ between regions (p < 0.05). In summary, our results reveal that regions located at different altitudes influence microbiota composition and fermentation function of yaks' rumen. The present findings can provide mechanistic insights on yak adaptation to high altitudes and improve the feeding efficiency of these animals in extreme regions.
Collapse
Affiliation(s)
- Lulu Han
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of the Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanchao Xue
- Animal Husbandry and Veterinary Station of Huangyuan, Huangyuan, China
| | - Hanwen Cao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Xiaoying Chen
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Fasheng Qi
- General Station of Animal Husbandry and Veterinary Technology Extension of Naqu, Naqu, China
| | - Tao Ma
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of the Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Tu
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of the Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiyu Diao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of the Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengfu Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Kai Cui
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of the Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| |
Collapse
|
102
|
Zhang R, Liu J, Jiang L, Wang X, Mao S. The Remodeling Effects of High-Concentrate Diets on Microbial Composition and Function in the Hindgut of Dairy Cows. Front Nutr 2022; 8:809406. [PMID: 35178417 PMCID: PMC8845480 DOI: 10.3389/fnut.2021.809406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/15/2021] [Indexed: 01/22/2023] Open
Abstract
At present, research on high-concentrate (HC) diets mostly focused on the rumen, and there is a paucity of information on the hindgut microbiota of dairy cows. In the present study, a 2 × 2 crossover design with four healthy Holstein cows was used, and the metagenomics approach was adopted to reveal the remodeling effects of HC diets on hindgut microbiota and their metabolic functions. Results showed that, compared with the low-concentrate (LC) diets, HC diets have markedly decreased (p < 0.05) the abundance of cellulolytic bacteria (such as Fibrobacter, Ruminococcus, and Ruminiclostridium) and methanogens (such as Methanobrevibacter, Methanosarcina, and Methanosphaera); and correspondingly, HC diets have significantly reduced (p < 0.05) the abundance of carbohydrate-active enzymes (CAZy) related to hemicellulases (GH10, GH11, and GH54) and cellulases (GH1, GH44, and GH45) and increased the abundance of one oligosaccharide-degrading enzyme (GH32). Furthermore, 62 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of hindgut microbiota were affected (p < 0.05) by different dietary treatments, and the major pathways altered by HC diets were “Methane metabolism” (enriched in the LC group), “Lipid metabolism” (enriched in the HC group), and several sub-pathways in “Amino acid metabolism” (such as Phenylalanine metabolism, and Phenylalanine, tyrosine, and tryptophan biosynthesis). Also, the microbial genes involved in the pathways “Methane metabolism” (except 1 gene), “Tryptophan metabolism”, and “Phenylalanine metabolism” were all decreased (p < 0.05) in the present study. These findings suggested that HC diets caused the remodeling of hindgut microbiota and its potential functions, and these results may benefit in gaining a deeper understanding of the impact of HC diets on the hindgut microbiota of dairy cows.
Collapse
Affiliation(s)
- Ruiyang Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Junhua Liu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Linshu Jiang
- Beijing University of Agriculture, Beijing, China
| | - Xinfeng Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
- *Correspondence: Xinfeng Wang
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
- Shengyong Mao
| |
Collapse
|
103
|
Koyun OY, Callaway TR, Nisbet DJ, Anderson RC. Innovative Treatments Enhancing the Functionality of Gut Microbiota to Improve Quality and Microbiological Safety of Foods of Animal Origin. Annu Rev Food Sci Technol 2022; 13:433-461. [DOI: 10.1146/annurev-food-100121-050244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gastrointestinal tract, or gut, microbiota is a microbial community containing a variety of microorganisms colonizing throughout the gut that plays a crucial role in animal health, growth performance, and welfare. The gut microbiota is closely associated with the quality and microbiological safety of foods and food products originating from animals. The gut microbiota of the host can be modulated and enhanced in ways that improve the quality and safety of foods of animal origin. Probiotics—also known as direct-fed microbials—competitive exclusion cultures, prebiotics, and synbiotics have been utilized to achieve this goal. Reducing foodborne pathogen colonization in the gut prior to slaughter and enhancing the chemical, nutritional, or sensory characteristics of foods (e.g., meat, milk, and eggs) are two of many positive outcomes derived from the use of these competitive enhancement–based treatments in food-producing animals. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Osman Y. Koyun
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - Todd R. Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - David J. Nisbet
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, Texas, USA
| | - Robin C. Anderson
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, Texas, USA
| |
Collapse
|
104
|
Tuggle CK, Clarke J, Dekkers JCM, Ertl D, Lawrence-Dill CJ, Lyons E, Murdoch BM, Scott NM, Schnable PS. The Agricultural Genome to Phenome Initiative (AG2PI): creating a shared vision across crop and livestock research communities. Genome Biol 2022; 23:3. [PMID: 34980221 PMCID: PMC8722016 DOI: 10.1186/s13059-021-02570-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
| | | | | | - David Ertl
- Iowa Corn Growers Association, Johnston, USA
| | | | | | | | | | | |
Collapse
|
105
|
Corrêa PS, Jimenez CR, Mendes LW, Rymer C, Ray P, Gerdes L, da Silva VO, De Nadai Fernandes EA, Abdalla AL, Louvandini H. Taxonomy and Functional Diversity in the Fecal Microbiome of Beef Cattle Reared in Brazilian Traditional and Semi-Intensive Production Systems. Front Microbiol 2021; 12:768480. [PMID: 34956130 PMCID: PMC8692951 DOI: 10.3389/fmicb.2021.768480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/04/2021] [Indexed: 01/10/2023] Open
Abstract
The importance of beef production for economy of Brazil and the growing demand for animal protein across the globe warrant an improvement in the beef production system. Although most attention has been on modulation of the rumen microbiome to improve ruminant production, the role of the lower gut microbiome in host health and nutrition remains relatively unexplored. This work aimed to investigate the taxonomy and functional variations in the fecal microbiome of Brazilian beef cattle reared in two different production systems using a metagenomic approach. Sixty male beef cattle from six farms representing semi-intensive (I, n = 2) and traditional (T, n = 4) Brazilian beef production systems were enrolled in the study. Shotgun sequencing was used to characterize taxonomic and functional composition and diversity of the microbiome in fecal samples collected from each animal. Fecal samples were analyzed for copper (Cu), lead (Pb), nitrogen (N), phosphorous (P), selenium (Se), and zinc (Zn) and stable isotopes of carbon (13C) and nitrogen (15N). The fecal microbiome was influenced by the beef production systems with greater functional and lower taxonomic diversity in beef cattle feces from I systems compared with that from T systems. The concentration of N, P, and Zn was higher in beef cattle feces from I systems compared with that from T systems and was associated with taxonomic and functional profile of fecal microbiome in I system, suggesting the role of fecal nutrients in shaping system-specific microbiome. Semi-intensive management practices led to a more complex but less connected fecal microbiome in beef cattle. The microbial community in beef cattle feces from I systems was characterized by greater abundance of beneficial bacteria (phylum Firmicutes and butyrate-producing bacteria family Lachnospiraceae and genera Anaerostipes, Blautia, Butyrivibrio, Eubacterium, Roseburia, and Ruminococcus). In addition, the fecal abundance of microbial genes related to immune system, nutrient metabolism, and energy production was greater in beef cattle raised under I systems compared with that under T systems. Findings of the current study suggest that semi-intensive management practices could facilitate the development of a healthier and more efficient fecal microbiome in beef cattle by driving an increase in the abundance of beneficial bacteria and functional genes.
Collapse
Affiliation(s)
- Patricia Spoto Corrêa
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, Brazil
| | - Carolina Rodriguez Jimenez
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, Brazil
| | - Lucas William Mendes
- Laboratory of Molecular Cell Biology, Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, Brazil
| | - Caroline Rymer
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Partha Ray
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Luciana Gerdes
- Reference Laboratory on Classification and Evaluation of Animal Products, Institute of Zootechnics, Nova Odessa, Brazil
| | - Vagner Ovani da Silva
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, Brazil
| | | | - Adibe Luiz Abdalla
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, Brazil
| | - Helder Louvandini
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
106
|
Wang H, Yu Z, Gao Z, Li Q, Qiu X, Wu F, Guan T, Cao B, Su H. Effects of compound probiotics on growth performance, rumen fermentation, blood parameters, and health status of neonatal Holstein calves. J Dairy Sci 2021; 105:2190-2200. [PMID: 34955257 DOI: 10.3168/jds.2021-20721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/06/2021] [Indexed: 12/25/2022]
Abstract
This study aimed to investigate the effects of compound probiotics (consisting of 108 cfu/g of Lactobacillus plantarum, 108 cfu/g of Pediococcus acidilactici, 108 cfu/g of Pediococcus pentosaceus, 107 cfu/g of and Bacillus subtilis) on growth performance, rumen fermentation, bacteria community, blood parameters, and health status of Holstein calves at the first 3 mo of age. Forty-eight newborn calves were randomly divided into the following 3 groups: control group (milk replacer with no compound probiotics), low compound probiotics group (milk replacer + 0.12 g of compound probiotics per head per day), and high compound probiotics group (HP; milk replacer + 1.2 g of compound probiotics per head per day). Starter pellets of the low compound probiotics and HP groups were coated with 0.05% compound probiotics. Milk replacer was provided from 2 to 63 d of age (6 L at 2-10 d, 8 L at 11-42 d, 6 L at 43-49 d, 4 L at 50-56 d, and 2 L at 57-63 d), and starter pellets were provided ad libitum from 7 to 90 d of age. Body weight and body size (d 1, 30, 60, and 90), blood (d 40 and 80), and rumen fluid (d 90) were analyzed using the one-way ANOVA procedure; fecal score was recorded daily and analyzed as repeated measures using the mixed model procedure. Results showed that diet supplemented with compound probiotics had no effects on the body weight, average daily gain, dry matter intake, and feed efficiency. At 90 d of age, diet supplemented with compound probiotics decreased the withers height. Immunity activities increased in the HP group, supported by the increased concentrations of serum total protein and immunoglobulins at 40 d of age, and by the increased activity of superoxide dismutase at 80 d of age. Diet supplemented with compound probiotics altered rumen fermentation, indicated by the decreased rumen acetic acid and propionic acid, and the increased butyric acid concentrations. Diet supplemented with compound probiotics improved the health status of calves, indicated by the decreased fecal score at 3 wk of age and the decreased medicine treatments. In summary, although diet supplemented with HP decreased the withers height, this level of probiotics is recommended to improve rumen development and health status of newborn Holstein calves.
Collapse
Affiliation(s)
- Haibo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Ministry of Education, Chengdu 610000, China
| | - Zhaotao Yu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Department of Animal Science, University of Tennessee, Knoxville 37996
| | - Zhibiao Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qianwen Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xinjun Qiu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Fei Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tianci Guan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Binghai Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huawei Su
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
107
|
Mazzucco R, Schlötterer C. Long-term gut microbiome dynamics in Drosophila melanogaster reveal environment-specific associations between bacterial taxa at the family level. Proc Biol Sci 2021; 288:20212193. [PMID: 34905708 PMCID: PMC8670958 DOI: 10.1098/rspb.2021.2193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The influence of the microbiome on its host is well-documented, but the interplay of its members is not yet well-understood. Even for simple microbiomes, the interaction among members of the microbiome is difficult to study. Longitudinal studies provide a promising approach to studying such interactions through the temporal covariation of different taxonomic units. By contrast to most longitudinal studies, which span only a single host generation, we here present a post hoc analysis of a whole-genome dataset of 81 samples that follows microbiome composition for up to 180 host generations, which cover nearly 10 years. The microbiome diversity remained rather stable in replicated Drosophila melanogaster populations exposed to two different temperature regimes. The composition changed, however, systematically across replicates of the two temperature regimes. Significant associations between families, mostly specific to one temperature regime, indicate functional interdependence of different microbiome components. These associations also involve moderately abundant families, which emphasizes their functional importance, and highlights the importance of looking beyond the common constituents of the Drosophila microbiome.
Collapse
Affiliation(s)
- Rupert Mazzucco
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Wien 1210, Austria
| | - Christian Schlötterer
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Wien 1210, Austria
| |
Collapse
|
108
|
Choi Y, Lee SJ, Kim HS, Eom JS, Jo SU, Guan LL, Seo J, Kim H, Lee SS, Lee SS. Effects of seaweed extracts on in vitro rumen fermentation characteristics, methane production, and microbial abundance. Sci Rep 2021; 11:24092. [PMID: 34916562 PMCID: PMC8677731 DOI: 10.1038/s41598-021-03356-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/01/2021] [Indexed: 01/02/2023] Open
Abstract
Several seaweed extracts have been reported to have potential antimethanogenic effects in ruminants. In this study, the effect of three brown seaweed species (Undaria pinnatifida, UPIN; Sargassum fusiforme, SFUS; and Sargassum fulvellum, SFUL) on rumen fermentation characteristics, total gas, methane (CH4), carbon dioxide (CO2) production, and microbial populations were investigated using an in vitro batch culture system. Seaweed extract and its metabolites, total flavonoid and polyphenol contents were identified and compared. For the in vitro batch, 0.25 mg∙mL-1 of each seaweed extract were used in 6, 12, 24, 36 and 48 h of incubation. Seaweed extract supplementation decreased CH4 yield and its proportion to total gas production after 12, 24, and 48 h of incubation, while total gas production were not significantly different. Total volatile fatty acid and molar proportion of propionate increased with SFUS and SFUL supplementation after 24 h of incubation, whereas UPIN was not affected. Additionally, SFUS increased the absolute abundance of total bacteria, ciliate protozoa, fungi, methanogenic archaea, and Fibrobacter succinogenes. The relative proportions of Butyrivibrio fibrisolvens, Butyrivibrio proteoclasticus, and Prevotella ruminicola were lower with seaweed extract supplementation, whereas Anaerovibrio lipolytica increased. Thus, seaweed extracts can decrease CH4 production, and alter the abundance of rumen microbial populations.
Collapse
Affiliation(s)
- Youyoung Choi
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Shin Ja Lee
- Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyun Sang Kim
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jun Sik Eom
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seong Uk Jo
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Jakyeom Seo
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Hanbeen Kim
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Sang Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Sunchon, Republic of Korea
| | - Sung Sill Lee
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea.
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea.
- Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
109
|
Cholewińska P, Wołoszyńska M, Michalak M, Czyż K, Rant W, Smoliński J, Wyrostek A, Wojnarowski K. Influence of selected factors on the Firmicutes, Bacteroidetes phyla and the Lactobacillaceae family in the digestive tract of sheep. Sci Rep 2021; 11:23801. [PMID: 34893656 PMCID: PMC8664831 DOI: 10.1038/s41598-021-03207-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
In this study, we used 10 healthy sheep, which gave birth to healthy twins. Stool samples were collected from mothers and their offspring 3 times during the study (0, 28 and 56 day postpartum). Milk samples were taken from the mothers at the same time. RT PCR analysis of faeces and milk was performed in order to assess the level of bacteria from the Firmicutes and Bacteroidetes phyla including the family Lactobacillaceae (phylum Firmicutes). The composition of mother's milk was also analyzed and their BCS. The data were compiled statistically. The obtained results showed that the level of the studied groups of bacteria may change due to the change of diet. Additionally, there were significant differences between lambs and mothers in the levels of the studied groups of bacteria. Analysis also shown that in the digestive system of mothers was a smaller disproportion in the level of the studied bacterial phyla than in lambs. The results also indicated the occurrence of differences in the bacterial composition at the individual level, both in ewes and their offspring. Additionally, in the conducted experiment, there were differences in the level of Firmicutes and Bacteroidetes groups depending on the sex.
Collapse
Affiliation(s)
- Paulina Cholewińska
- Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, 51-630, Wroclaw, Poland.
| | - Magdalena Wołoszyńska
- grid.411200.60000 0001 0694 6014Department of Genetics, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
| | - Marta Michalak
- grid.411200.60000 0001 0694 6014Department of Animal Nutrition and Feed Management, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
| | - Katarzyna Czyż
- grid.411200.60000 0001 0694 6014Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
| | - Witold Rant
- grid.13276.310000 0001 1955 7966Institute of Animal Breeding, Warsaw University of Life Sciences – SGGW, 02-786 Warsaw, Poland
| | - Jakub Smoliński
- grid.411200.60000 0001 0694 6014Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
| | - Anna Wyrostek
- grid.411200.60000 0001 0694 6014Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
| | - Konrad Wojnarowski
- grid.411200.60000 0001 0694 6014Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
| |
Collapse
|
110
|
Koester LR, Petry AL, Youngs CR, Schmitz-Esser S. Ewe Vaginal Microbiota: Associations With Pregnancy Outcome and Changes During Gestation. Front Microbiol 2021; 12:745884. [PMID: 34745049 PMCID: PMC8570082 DOI: 10.3389/fmicb.2021.745884] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Reproductive performance is paramount to the success of livestock production enterprises focused on lamb meat production. Reproductive success is influenced by various factors, possibly including the reproductive tract microbial communities present at the time of copulation and throughout pregnancy. There are few publications that identify the vaginal microbial communities of livestock, and even fewer exist for sheep. To compare ewe vaginal microbial communities, vaginal swabs were taken from 67 Hampshire and Hampshire X Suffolk crossbred ewes from the Iowa State University sheep farm at a pre-breeding time point (S1) and after pregnancy testing (S2). Animals that were determined pregnant were sampled again within a few days of expected parturition (S3). DNA was extracted from these swabs, and 16S rRNA gene Illumina MiSeq amplicon sequencing was conducted to fingerprint the bacterial communities found within this system. Pre-breeding time point samples showed no differences in community structure between animals later found to be pregnant or non-pregnant, but significant changes were detected in species richness (Chao; P < 0.001) and species diversity (Shannon; P < 0.001) at the second sampling time point. A higher microbial diversity within the S2 time point samples may suggest a more stable environment driven by pregnancy, as this increased diversity is maintained in pregnant animals from the S2 to the S3 time point. Additionally, several bacterial phylotypes, such as Mannheimia, Oscillospiraceae-like OTUs and Alistipes, were more abundant at either the S1 or S2 time points in animals that established pregnancy, suggesting a beneficial effect on pregnancy outcome. This study identifies changes within the microbial communities of the ewe vagina before and during gestation and offers inferences on how these changes may impact pregnancy outcome. Information presented herein offers new knowledge about sheep vaginal microbial communities and serves as a starting point to help guide researchers to improve sheep reproductive performance in the future.
Collapse
Affiliation(s)
- Lucas R Koester
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States.,Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Amy L Petry
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, United States
| | - Curtis R Youngs
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Stephan Schmitz-Esser
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States.,Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
111
|
Zoelzer F, Burger AL, Dierkes PW. Unraveling differences in fecal microbiota stability in mammals: from high variable carnivores and consistently stable herbivores. Anim Microbiome 2021; 3:77. [PMID: 34736528 PMCID: PMC8567652 DOI: 10.1186/s42523-021-00141-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Through the rapid development in DNA sequencing methods and tools, microbiome studies on a various number of species were performed during the last decade. This advance makes it possible to analyze hundreds of samples from different species at the same time in order to obtain a general overview of the microbiota. However, there is still uncertainty on the variability of the microbiota of different animal orders and on whether certain bacteria within a species are subject to greater fluctuations than others. This is largely due to the fact that the analysis in most extensive comparative studies is based on only a few samples per species or per study site. In our study, we aim to close this knowledge gap by analyzing multiple individual samples per species including two carnivore suborders Canoidea and Feloidea as well as the orders of herbivore Perissodactyla and Artiodactyla held in different zoos. To assess microbial diversity, 621 fecal samples from 31 species were characterized by sequencing the V3-V4 region of the 16S rRNA gene using Illumina MiSeq. RESULTS We found significant differences in the consistency of microbiota composition and in fecal microbial diversity between carnivore and herbivore species. Whereas the microbiota of Carnivora is highly variable and inconsistent within and between species, Perissodactyla and Ruminantia show fewer differences across species boundaries. Furthermore, low-abundance bacterial families show higher fluctuations in the fecal microbiota than high-abundance ones. CONCLUSIONS Our data suggest that microbial diversity is significantly higher in herbivores than in carnivores, whereas the microbiota in carnivores, unlike in herbivores, varies widely even within species. This high variability has methodological implications and underlines the need to analyze a minimum amount of about 10 samples per species. In our study, we found considerable differences in the occurrence of different bacterial families when looking at just three and six samples. However, from a sample number of 10 onwards, these within-species fluctuations balanced out in most cases and led to constant and more reliable results.
Collapse
Affiliation(s)
- Franziska Zoelzer
- Bioscience Education and Zoo Biology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| | - Anna Lena Burger
- Bioscience Education and Zoo Biology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Paul Wilhelm Dierkes
- Bioscience Education and Zoo Biology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| |
Collapse
|
112
|
Metagenomic Sequencing Reveals that High-Grain Feeding Alters the Composition and Metabolism of Cecal Microbiota and Induces Cecal Mucosal Injury in Sheep. mSystems 2021; 6:e0091521. [PMID: 34609166 PMCID: PMC8547435 DOI: 10.1128/msystems.00915-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The cecum serves as an additional fermentation site for ruminants, but it lacks buffering capacity and has a relatively simple epithelial structure compared to the rumen. The role of high-grain (HG) diets in manipulating the rumen microbiome has been well elucidated, yet the microbial response to such diets in the cecum and the subsequent microbe-host interactions remain largely unexplored. Here, we describe the modification of the cecal microbiome and host epithelial gene expression based on data from 20 sheep grouped to feed an HG diet for 7, 14, and 28 days. Our data indicate that the alteration of cecal microbial fermentation was manifested by a decrease in luminal pH and an increase in acetate and butyrate concentrations following the diet change to HG. We further demonstrate that the alteration of the microbiome was driven by microbes that are likely acetate producers (e.g., Blautia spp. and Akkermansia spp.) and butyrate producers (e.g., Anaerostipes spp. and Roseburia spp.). Moreover, the core microbiota in the cecal microbiome was predominantly maintained after HG diet feeding, while the specific populations of the cecal microbiomes adaptively varied at the species and genomic levels time dependently. Association analysis suggests that the perturbations of the cecal microbiome under the HG diet were closely linked to the variations in the two key enzymes that catalyze the conversion of pyruvate to acetyl-CoA and urease enzymes that hydrolyze urea into ammonia, alongside mucosal inflammatory responses. Overall, our findings here provide novel insights into understanding microbiome-host interactions in the hindgut of ruminants. IMPORTANCE High-grain (HG) diets are known to alter the rumen microbiome. However, the responses of the hindgut microbiota and its epithelial function need further investigation in ruminants. Using 20 sheep as the experimental model, we found that the microbial fermentation pattern of the cecum changed after switching to the HG diet. The taxa of the acetate and butyrate producers increased with the feeding time. Moreover, enzymes engaged in carbon and nitrogen metabolisms of the cecal microbiome are altered. The expression of epithelial genes related to volatile fatty acid (VFA) absorption and metabolism, cytokines, and tight junction proteins, alongside light microscopy visualization of epithelial tissue, suggested that the HG diet may induce cecal mucosal inflammatory responses. Our findings reveal cecal microbial and metabolic perturbations in response to HG diets in sheep and provide a new reference for the research on hindgut microbial homeostasis and host health in ruminants.
Collapse
|
113
|
Lambo MT, Chang X, Liu D. The Recent Trend in the Use of Multistrain Probiotics in Livestock Production: An Overview. Animals (Basel) 2021; 11:2805. [PMID: 34679827 PMCID: PMC8532664 DOI: 10.3390/ani11102805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 01/16/2023] Open
Abstract
It has been established that introducing feed additives to livestock, either nutritional or non-nutritional, is beneficial in manipulating the microbial ecosystem to maintain a balance in the gut microbes and thereby improving nutrient utilization, productivity, and health status of animals. Probiotic use has gained popularity in the livestock industry, especially since antimicrobial growth promoter's use has been restricted due to the challenge of antibiotic resistance in both animals and consumers of animal products. Their usage has been linked to intestinal microbial balance and improved performance in administered animals. Even though monostrain probiotics could be beneficial, multistrain probiotics containing two or more species or strains have gained considerable attention. Combining different strains has presumably achieved several health benefits over single strains due to individual isolates' addition and positive synergistic adhesion effects on animal health and performance. However, there has been inconsistency in the effects of the probiotic complexes in literature. This review discusses multistrain probiotics, summarizes selected literature on their effects on ruminants, poultry, and swine productivity and the various modes by which they function.
Collapse
Affiliation(s)
- Modinat Tolani Lambo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (M.T.L.); (X.C.)
| | - Xiaofeng Chang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (M.T.L.); (X.C.)
| | - Dasen Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (M.T.L.); (X.C.)
- College of Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
114
|
Amat S, Holman DB, Schmidt K, Menezes ACB, Baumgaertner F, Winders T, Kirsch JD, Liu T, Schwinghamer TD, Sedivec KK, Dahlen CR. The Nasopharyngeal, Ruminal, and Vaginal Microbiota and the Core Taxa Shared across These Microbiomes in Virgin Yearling Heifers Exposed to Divergent In Utero Nutrition during Their First Trimester of Gestation and in Pregnant Beef Heifers in Response to Mineral Supplementation. Microorganisms 2021; 9:2011. [PMID: 34683332 PMCID: PMC8537542 DOI: 10.3390/microorganisms9102011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/11/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
In the present study, we evaluated whether the nasopharyngeal, ruminal, and vaginal microbiota would diverge (1) in virgin yearling beef heifers (9 months old) due to the maternal restricted gain during the first trimester of gestation; and (2) in pregnant beef heifers in response to the vitamin and mineral (VTM) supplementation during the first 6 months of pregnancy. As a secondary objective, using the microbiota data obtained from these two cohorts of beef heifers managed at the same location and sampled at the same time, we performed a holistic assessment of the microbial ecology residing within the respiratory, gastrointestinal, and reproductive tract of cattle. Our 16S rRNA gene sequencing results revealed that both α and β-diversity of the nasopharyngeal, ruminal and vaginal microbiota did not differ between virgin heifers raised from dams exposed to either a low gain (targeted average daily gain of 0.28 kg/d, n = 22) or a moderate gain treatment (0.79 kg/d, n = 23) during the first 84 days of gestation. Only in the vaginal microbiota were there relatively abundant genera that were affected by maternal rate of gain during early gestation. Whilst there was no significant difference in community structure and diversity in any of the three microbiota between pregnant heifers received no VTM (n = 15) and VTM supplemented (n = 17) diets, the VTM supplementation resulted in subtle compositional alterations in the nasopharyngeal and ruminal microbiota. Although the nasopharyngeal, ruminal, and vaginal microbiota were clearly distinct, a total of 41 OTUs, including methanogenic archaea, were identified as core taxa shared across the respiratory, gastrointestinal, and reproductive tracts of both virgin and pregnant heifers.
Collapse
Affiliation(s)
- Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA;
| | - Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C & E Trail, Lacombe, AB T4L 1W1, Canada; (D.B.H.); (T.L.)
| | - Kaycie Schmidt
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA;
| | - Ana Clara B. Menezes
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (A.C.B.M.); (F.B.); (T.W.); (J.D.K.); (C.R.D.)
| | - Friederike Baumgaertner
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (A.C.B.M.); (F.B.); (T.W.); (J.D.K.); (C.R.D.)
| | - Thomas Winders
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (A.C.B.M.); (F.B.); (T.W.); (J.D.K.); (C.R.D.)
| | - James D. Kirsch
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (A.C.B.M.); (F.B.); (T.W.); (J.D.K.); (C.R.D.)
| | - Tingting Liu
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C & E Trail, Lacombe, AB T4L 1W1, Canada; (D.B.H.); (T.L.)
| | - Timothy D. Schwinghamer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada;
| | - Kevin K. Sedivec
- Central Grasslands Research Extension Center, North Dakota State University, Streeter, ND 58483, USA;
| | - Carl R. Dahlen
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (A.C.B.M.); (F.B.); (T.W.); (J.D.K.); (C.R.D.)
| |
Collapse
|
115
|
Minardi D, Ryder D, Del Campo J, Garcia Fonseca V, Kerr R, Mortensen S, Pallavicini A, Bass D. Improved high throughput protocol for targeting eukaryotic symbionts in metazoan and eDNA samples. Mol Ecol Resour 2021; 22:664-678. [PMID: 34549891 PMCID: PMC9292944 DOI: 10.1111/1755-0998.13509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023]
Abstract
Eukaryote symbionts of animals are major drivers of ecosystems not only because of their diversity and host interactions from variable pathogenicity but also through different key roles such as commensalism and to different types of interdependence. However, molecular investigations of metazoan eukaryomes require minimising coamplification of homologous host genes. In this study we (1) identified a previously published “antimetazoan” reverse primer to theoretically enable amplification of a wider range of microeukaryotic symbionts, including more evolutionarily divergent sequence types, (2) evaluated in silico several antimetazoan primer combinations, and (3) optimised the application of the best performing primer pair for high throughput sequencing (HTS) by comparing one‐step and two‐step PCR amplification approaches, testing different annealing temperatures and evaluating the taxonomic profiles produced by HTS and data analysis. The primer combination 574*F – UNonMet_DB tested in silico showed the largest diversity of nonmetazoan sequence types in the SILVA database and was also the shortest available primer combination for broadly‐targeting antimetazoan amplification across the 18S rRNA gene V4 region. We demonstrate that the one‐step PCR approach used for library preparation produces significantly lower proportions of metazoan reads, and a more comprehensive coverage of host‐associated microeukaryote reads than the two‐step approach. Using higher PCR annealing temperatures further increased the proportion of nonmetazoan reads in all sample types tested. The resulting V4 region amplicons were taxonomically informative even when only the forward read is analysed. This region also revealed a diversity of known and putatively parasitic lineages and a wider diversity of host‐associated eukaryotes.
Collapse
Affiliation(s)
- Diana Minardi
- Centre for Environment, Fisheries and Aquaculture Research, Weymouth, Dorset, UK.,Cefas, International Centre for Aquatic Animal Health, Weymouth, Dorset, UK
| | - David Ryder
- Centre for Environment, Fisheries and Aquaculture Research, Weymouth, Dorset, UK.,Cefas, International Centre for Aquatic Animal Health, Weymouth, Dorset, UK
| | - Javier Del Campo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Vera Garcia Fonseca
- Centre for Environment, Fisheries and Aquaculture Research, Weymouth, Dorset, UK.,Cefas, International Centre for Aquatic Animal Health, Weymouth, Dorset, UK
| | - Rose Kerr
- Centre for Environment, Fisheries and Aquaculture Research, Weymouth, Dorset, UK.,Cefas, International Centre for Aquatic Animal Health, Weymouth, Dorset, UK
| | | | | | - David Bass
- Centre for Environment, Fisheries and Aquaculture Research, Weymouth, Dorset, UK.,Cefas, International Centre for Aquatic Animal Health, Weymouth, Dorset, UK.,Department of Life Sciences, The Natural History Museum, London, UK
| |
Collapse
|
116
|
Arshad MA, Hassan FU, Rehman MS, Huws SA, Cheng Y, Din AU. Gut microbiome colonization and development in neonatal ruminants: Strategies, prospects, and opportunities. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:883-895. [PMID: 34632119 PMCID: PMC8484983 DOI: 10.1016/j.aninu.2021.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 01/23/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Colonization and development of the gut microbiome is a crucial consideration for optimizing the health and performance of livestock animals. This is mainly attributed to the fact that dietary and management practices greatly influence the gut microbiota, subsequently leading to changes in nutrient utilization and immune response. A favorable microbiome can be implanted through dietary or management interventions of livestock animals, especially during early life. In this review, we explore all the possible factors (for example gestation, colostrum, and milk feeding, drinking water, starter feed, inoculation from healthy animals, prebiotics/probiotics, weaning time, essential oil and transgenesis), which can influence rumen microbiome colonization and development. We discuss the advantages and disadvantages of potential strategies used to manipulate gut development and microbial colonization to improve the production and health of newborn calves at an early age when they are most susceptible to enteric disease. Moreover, we provide insights into possible interventions and their potential effects on rumen development and microbiota establishment. Prospects of latest techniques like transgenesis and host genetics have also been discussed regarding their potential role in modulation of rumen microbiome and subsequent effects on gut development and performance in neonatal ruminants.
Collapse
Affiliation(s)
- Muhammad A Arshad
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Pakistan
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Faiz-Ul Hassan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Pakistan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Muhammad S Rehman
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Sharon A Huws
- School of Biological Sciences, Institute for Global Food Security, Queen's University of Belfast, Belfast, BT9 5DL, GB-NIR, UK
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ahmad U Din
- Drug Discovery Research Center, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
117
|
Mortazavi SMH, Kaur M, Farahnaky A, Torley PJ, Osborn AM. The pathogenic and spoilage bacteria associated with red meat and application of different approaches of high CO 2 packaging to extend product shelf-life. Crit Rev Food Sci Nutr 2021; 63:1733-1754. [PMID: 34445909 DOI: 10.1080/10408398.2021.1968336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
With the fast-global development of packaging techniques, the potential antimicrobial effect of CO2, as a safe, cheap and readily available gas, makes it the integral component for packaging of meat products. The associated spoilage and/or pathogenic bacteria on raw meat may respond in different ways to elevated CO2 concentrations. The growth of some aerobic Gram-negative bacteria such as Pseudomonas spp. is significantly inhibited but some LAB bacteria may be allowed to grow faster and dominate the product. The antimicrobial efficacy of enriched CO2 packaging is attributed to the rate of CO2 solubility in the product which is itself affected by the level of headspace CO2, product pH, temperature and the ratio of headspace gas to product (G:P). This review, first, explores the varied range of beef and sheep meat spoilage and pathogenic bacteria and the intrinsic and extrinsic parameters that may influence the pattern of microbial growth and meat spoilage rate during storage. Then, the antimicrobial mechanism of elevated CO2 packaging will be discussed and the different approaches of achieving enriched CO2 packaging i.e. the traditional technique of flushing a desired gas mixture and/or using the new commercially developed CO2 emitters will then be compared in terms of their strengths, limitations and technical mode of action.
Collapse
Affiliation(s)
| | - Mandeep Kaur
- Biosciences and Food Technology Discipline, School of Science, RMIT University, Melbourne, Australia
| | - Asgar Farahnaky
- Biosciences and Food Technology Discipline, School of Science, RMIT University, Melbourne, Australia
| | - Peter J Torley
- Biosciences and Food Technology Discipline, School of Science, RMIT University, Melbourne, Australia
| | - A Mark Osborn
- Biosciences and Food Technology Discipline, School of Science, RMIT University, Melbourne, Australia
| |
Collapse
|
118
|
Identifying fungal-host associations in an amphibian host system. PLoS One 2021; 16:e0256328. [PMID: 34411153 PMCID: PMC8376043 DOI: 10.1371/journal.pone.0256328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Host-associated microbes can interact with macro-organisms in a number of ways that affect host health. Few studies of host-associated microbiomes, however, focus on fungi. In addition, it is difficult to discern whether a fungal organism found in or on an ectotherm host is associating with it in a durable, symbiotic interaction versus a transient one, and to what extent the habitat and host share microbes. We seek to identify these host-microbe interactions on an amphibian, the Colorado boreal toad (Anaxyrus boreas boreas). We sequenced the ITS1 region of the fungal community on the skin of wild toads (n = 124) from four sites in the Colorado Rocky Mountains, across its physiologically dynamic developmental life stages. We also sampled the common habitats used by boreal toads: water from their natal wetland and aquatic pond sediment. We then examined diversity patterns within different life stages, between host and habitat, and identified fungal taxa that could be putatively host-associated with toads by using an indicator species analysis on toad versus environmental samples. Host and habitat were strikingly similar, with the exception of toad eggs. Post-hatching toad life stages were distinct in their various fungal diversity measures. We identified eight fungal taxa that were significantly associated with eggs, but no other fungal taxa were associated with other toad life stages compared with their environmental habitat. This suggests that although pre- and post-metamorphic toad life stages differ from each other, the habitat and host fungal communities are so similar that identifying obligate host symbionts is difficult with the techniques used here. This approach does, however, leverage sequence data from host and habitat samples to predict which microbial taxa are host-associated versus transient microbes, thereby condensing a large set of sequence data into a smaller list of potential targets for further consideration.
Collapse
|
119
|
Nejidat A, Diaz-Reck D, Gelfand I, Zaady E. Persistence and spread of tetracycline resistance genes and microbial community variations in the soil of animal corrals in a semi-arid planted forest. FEMS Microbiol Ecol 2021; 97:6323997. [PMID: 34279614 DOI: 10.1093/femsec/fiab106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 07/15/2021] [Indexed: 11/14/2022] Open
Abstract
At the spring, goat and sheep herds are transferred to planted forests, in a semi-arid region in the northern Negev Desert, Israel, to reduce herbaceous biomass and, fire risk. The herds are held overnight in corrals for about 4 months, enriching the soil with organic matter and nitrogen. This research examined the effect of these enrichments on soil bacterial community structure (BCS) and the abundance of tetracycline resistance genes (TRGs) in active and abandoned corrals (1-10-years-old). Based on 16S rRNA gene sequences, the Proteobacteria and Actinobacteria phyla dominated the soil of all corrals. The Actinobacteria were less abundant in the active and 1-year-old corrals (23-26%) than in the other corrals and the control (33-38%). A principal component analysis showed that, the BCS in the active and the 1-year-old abandoned corrals was significantly different from that in the older corrals and the control. The Firmicutes phylum constituted 28% of the BCS in the active corrals, 12.5% in the 1-year-old corrals and 2% in the older corrals and the control. In contrast, the Acidobacteria phylum was hardly detected in the active and 1-year-old abandoned corrals and constituted 10% of the BCS in the older corrals. Genes conferring resistance to tetracycline were detected in high numbers. The tetG and tetW genes were detected in the active and abandoned corrals (1-10 years). The tetQ gene was detected only in the active and 1-year-old abandoned corrals. None of the genes were detected in the control soil. The three genes were detected outside an active corral, in the downstream section of an ephemeral tributary. The results prove that abandoned and unobserved periodic animal corrals are an environmental reservoir for TRGs.
Collapse
Affiliation(s)
- Ali Nejidat
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 84990, Israel
| | - Damiana Diaz-Reck
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-G urion 84990, Israel
| | - Ilya Gelfand
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 84990, Israel
| | - Eli Zaady
- Department of Natural Resources, Gilat Research Center, Agriculture Research Organization, Mobile, Post Negev 8531100, Israel
| |
Collapse
|
120
|
Boosting the potential of cattle breeding using molecular biology, genetics, and bioinformatics approaches – a review. ACTA VET BRNO 2021. [DOI: 10.2754/avb202190020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cattle are among the most important farm animals that underwent an intense selection with the aim to increase milk production and to improve growth and meat properties, meanwhile reducing the generation interval allowing for a faster herd turnover. Recently, a shift from traditional breeding methods to breeding based on genetic testing has been observed. In this perspective, we review the techniques of molecular biology, genetics, and bioinformatics that are expected to further boost the agricultural potential of cattle. We discuss embryo selection based on next-generation and Nanopore sequencing and in vitro embryo production, boosting the potential of genetically superior animals. Gene editing of embryos could further speed up the selection process, essentially introducing a change in a single generation. Lastly, we discuss the host-microbiome co-evolution and adaptation. For example, cattle already adapted to low-quality low-cost fodder could be bred to achieve desired properties for the beef and dairy industry. The challenge of breeding and genetic editing is to accompany the selection on desired consumer-oriented traits with the push for sustainability and the adaptation to a changing climate while remaining economically viable. We propose that we are yet to see the limits of what is possible to achieve with modern technology for the cattle of the future; the ultimate goal will be to produce and maintain genetically elite individuals that can sustain the growing demands on the production.
Collapse
|
121
|
Szeligowska N, Cholewińska P, Czyż K, Wojnarowski K, Janczak M. Inter and intraspecies comparison of the level of selected bacterial phyla in in cattle and sheep based on feces. BMC Vet Res 2021; 17:224. [PMID: 34172061 PMCID: PMC8235250 DOI: 10.1186/s12917-021-02922-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/25/2021] [Indexed: 12/23/2022] Open
Abstract
Background The microbiome of the digestive tract of ruminants contains microbial ecosystem that is affected by both environmental and genetic factors. The subject of this study concerns the influence of selected genetic factors, such as species of animals and “host” individual differences on the digestive tract microbiome composition. The results show the core microbiological composition (Firmicutes and Bacteroidetes) of ruminants digestive tract (based on feces) depending on breed and “host”. The Bacteroidetes and Firmicutes phyla are the most abundant in ruminants digestive tract. The aim of the study was to determine the differences prevalence level of Bacteroidetes and Firmicutes phyla in feces of Charolaise cattle and Polish Olkuska Sheep with respect to intra- and inter-species variability. Results The research group in the experiment consisted of animals at the age of 3 months kept in the same environmental conditions – rams of Polish Olkuska Sheep (n = 10) and Charolaise bulls (n = 10). Feces were collected individually from each animal (animals without disease symptoms were selected), living on the same environmental conditions. The analysis of the results in terms of species showed differences in the Firmicutes phylum level and Lactobacillaceae family between rams and bulls. Subsequently, the analysis performed for the “host effect” showed differentiation in the levels of the Bacteroidetes and Firmicutes phyla between individuals in a group and also between the groups. Conclusion The obtained results suggest that, apart from the diet and the environment, the species and the individual host are equally important factors influencing the microbiological composition of the digestive system of ruminants.
Collapse
Affiliation(s)
- Natalia Szeligowska
- Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, 51-630, Wroclaw, Poland
| | - Paulina Cholewińska
- Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, 51-630, Wroclaw, Poland.
| | - Katarzyna Czyż
- Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, 51-630, Wroclaw, Poland
| | - Konrad Wojnarowski
- Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, 51-630, Wroclaw, Poland
| | - Marzena Janczak
- Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, 51-630, Wroclaw, Poland
| |
Collapse
|
122
|
Xie F, Jin W, Si H, Yuan Y, Tao Y, Liu J, Wang X, Yang C, Li Q, Yan X, Lin L, Jiang Q, Zhang L, Guo C, Greening C, Heller R, Guan LL, Pope PB, Tan Z, Zhu W, Wang M, Qiu Q, Li Z, Mao S. An integrated gene catalog and over 10,000 metagenome-assembled genomes from the gastrointestinal microbiome of ruminants. MICROBIOME 2021; 9:137. [PMID: 34118976 PMCID: PMC8199421 DOI: 10.1186/s40168-021-01078-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/15/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND Gastrointestinal tract (GIT) microbiomes in ruminants play major roles in host health and thus animal production. However, we lack an integrated understanding of microbial community structure and function as prior studies. are predominantly biased towards the rumen. Therefore, to acquire a microbiota inventory of the discrete GIT compartments, In this study, we used shotgun metagenomics to profile the microbiota of 370 samples that represent 10 GIT regions of seven ruminant species. RESULTS Our analyses reconstructed a GIT microbial reference catalog with > 154 million nonredundant genes and identified 8745 uncultured candidate species from over 10,000 metagenome-assembled genomes. The integrated gene catalog across the GIT regions demonstrates spatial associations between the microbiome and physiological adaptations, and 8745 newly characterized genomes substantially expand the genomic landscape of ruminant microbiota, particularly those from the lower gut. This substantially expands the previously known set of endogenous microbial diversity and the taxonomic classification rate of the GIT microbiome. These candidate species encode hundreds of enzymes and novel biosynthetic gene clusters that improve our understanding concerning methane production and feed efficiency in ruminants. Overall, this study expands the characterization of the ruminant GIT microbiota at unprecedented spatial resolution and offers clues for improving ruminant livestock production in the future. CONCLUSIONS Having access to a comprehensive gene catalog and collections of microbial genomes provides the ability to perform efficiently genome-based analysis to achieve a detailed classification of GIT microbial ecosystem composition. Our study will bring unprecedented power in future association studies to investigate the impact of the GIT microbiota in ruminant health and production. Video abstract.
Collapse
Affiliation(s)
- Fei Xie
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wei Jin
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Huazhe Si
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuan Yuan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Ye Tao
- Shanghai BIOZERON Biotechnology Company Ltd, Shanghai, China
| | - Junhua Liu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoxu Wang
- Department of Special Economic Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Chengjian Yang
- Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Qiushuang Li
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xiaoting Yan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Limei Lin
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qian Jiang
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lei Zhang
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Changzheng Guo
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chris Greening
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Australia
| | - Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Phillip B Pope
- Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Min Wang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
| | - Zhipeng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.
- Department of Special Economic Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
123
|
Schmitz-Esser S. The Rumen Epithelial Microbiota: Possible Gatekeepers of the Rumen Epithelium and Its Potential Contributions to Epithelial Barrier Function and Animal Health and Performance. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.11672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Ruminants are characterized by their unique mode of digesting cellulose-rich plant material in their forestomach, the rumen, which is densely populated by diverse microorganisms that are crucial for the breakdown of plant material. Among ruminal microbial communities, the microorganisms in the rumen fluid or attached to feed particles have attracted considerable research interest. However, comparatively less is known about the microorganisms attached to the rumen epithelium. Generally, the tissue lining the gastrointestinal tract serves the dual role of absorbing nutrients while preventing the infiltration of unwanted compounds and molecules as well as microorganisms. The rumen epithelium fulfills critical physiological functions for the ruminant host in energy absorption, metabolism, and nutrient transport. Essential host metabolites, such as short-chain fatty acids, ammonia, urea, and minerals, are exchanged across the rumen wall, thereby exposing the rumen epithelial microbiota to these nutrients. The integrity of the gastrointestinal barrier is central to animal health and productivity. The integrity of the rumen epithelium can be compromised by high ruminal microbial fermentation activity resulting in decreased rumen pH or by stress conditions such as heat stress or feed restriction. It is important to keep in mind that feeding strategies in cattle have changed over the last decades in favor of energy- and nutrient-rich concentrates instead of fiber-rich forages. These dietary shifts support high milk yields and growth rates but raised concerns regarding a possibly compromised rumen function. This paper will provide an overview of the composition of rumen epithelial microbial communities under physiological and disease conditions and will provide insights into the knowledge about the function and in situ activity of rumen epithelial microorganisms and their relevance for animal health and production. Given that an impaired intestinal barrier will negatively affect economically significant phenotypes, a better understanding of rumen wall microbiota is urgently needed.
Collapse
|
124
|
Islam M, Kim SH, Son AR, Ramos SC, Jeong CD, Yu Z, Kang SH, Cho YI, Lee SS, Cho KK, Lee SS. Seasonal Influence on Rumen Microbiota, Rumen Fermentation, and Enteric Methane Emissions of Holstein and Jersey Steers under the Same Total Mixed Ration. Animals (Basel) 2021; 11:1184. [PMID: 33924248 PMCID: PMC8074768 DOI: 10.3390/ani11041184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 01/16/2023] Open
Abstract
Seasonal effects on rumen microbiome and enteric methane (CH4) emissions are poorly documented. In this study, 6 Holstein and 6 Jersey steers were fed the same total mixed ration diet during winter, spring, and summer seasons under a 2 × 3 factorial arrangement for 30 days per season. The dry matter intake (DMI), rumen fermentation characteristics, enteric CH4 emissions and rumen microbiota were analyzed. Holstein had higher total DMI than Jersey steers regardless of season. However, Holstein steers had the lowest metabolic DMI during summer, while Jersey steers had the lowest total DMI during winter. Jersey steers had higher CH4 yields and intensities than Holstein steers regardless of season. The pH was decreased, while ammonia nitrogen concentration was increased in summer regardless of breed. Total volatile fatty acids concentration and propionate proportions were the highest in winter, while acetate and butyrate proportion were the highest in spring and in summer, respectively, regardless of breed. Moreover, Holstein steers produced a higher proportion of propionate, while Jersey steers produced a higher proportion of butyrate regardless of season. Metataxonomic analysis of rumen microbiota showed that operational taxonomic units and Chao 1 estimates were lower and highly unstable during summer, while winter had the lowest Shannon diversity. Beta diversity analysis suggested that the overall rumen microbiota was shifted according to seasonal changes in both breeds. In winter, the rumen microbiota was dominated by Carnobacterium jeotgali and Ruminococcus bromii, while in summer, Paludibacter propionicigenes was predominant. In Jersey steers, Capnocytophaga cynodegmi, Barnesiella viscericola and Flintibacter butyricus were predominant, whereas in Holstein steers, Succinivibrio dextrinosolvens and Gilliamella bombicola were predominant. Overall results suggest that seasonal changes alter rumen microbiota and fermentation characteristics of both breeds; however, CH4 emissions from steers were significantly influenced by breeds, not by seasons.
Collapse
Affiliation(s)
- Mahfuzul Islam
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.I.); (S.-H.K.); (A-R.S.); (S.C.R.); (C.-D.J.)
- Department of Microbiology and Parasitology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Seon-Ho Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.I.); (S.-H.K.); (A-R.S.); (S.C.R.); (C.-D.J.)
| | - A-Rang Son
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.I.); (S.-H.K.); (A-R.S.); (S.C.R.); (C.-D.J.)
| | - Sonny C. Ramos
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.I.); (S.-H.K.); (A-R.S.); (S.C.R.); (C.-D.J.)
| | - Chang-Dae Jeong
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.I.); (S.-H.K.); (A-R.S.); (S.C.R.); (C.-D.J.)
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Seung Ha Kang
- Faculty of Medicine, Diamantina Institute, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Yong-Il Cho
- Animal Disease and Diagnostic Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea;
| | - Sung-Sill Lee
- Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju 52828, Korea;
| | - Kwang-Keun Cho
- Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju 52725, Korea;
| | - Sang-Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.I.); (S.-H.K.); (A-R.S.); (S.C.R.); (C.-D.J.)
| |
Collapse
|
125
|
Islam M, Kim SH, Ramos SC, Mamuad LL, Son AR, Yu Z, Lee SS, Cho YI, Lee SS. Holstein and Jersey Steers Differ in Rumen Microbiota and Enteric Methane Emissions Even Fed the Same Total Mixed Ration. Front Microbiol 2021; 12:601061. [PMID: 33868186 PMCID: PMC8044996 DOI: 10.3389/fmicb.2021.601061] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
Previous studies have focused on the rumen microbiome and enteric methane (CH4) emissions in dairy cows, yet little is known about steers, especially steers of dairy breeds. In the present study, we comparatively examined the rumen microbiota, fermentation characteristics, and CH4 emissions from six non-cannulated Holstein (710.33 ± 43.02 kg) and six Jersey (559.67 ± 32.72 kg) steers. The steers were fed the same total mixed ration (TMR) for 30 days. After 25 days of adaptation to the diet, CH4 emissions were measured using GreenFeed for three consecutive days, and rumen fluid samples were collected on last day using stomach tubing before feeding (0 h) and 6 h after feeding. CH4 production (g/d/animal), CH4 yield (g/kg DMI), and CH4 intensity (g/kg BW0.75) were higher in the Jersey steers than in the Holstein steers. The lowest pH value was recorded at 6 h after feeding. The Jersey steers had lower rumen pH and a higher concentration of ammonia-nitrogen (NH3-N). The Jersey steers had a numerically higher molar proportion of acetate than the Holstein steers, but the opposite was true for that of propionate. Metataxonomic analysis of the rumen microbiota showed that the two breeds had similar species richness, Shannon, and inverse Simpson diversity indexes. Principal coordinates analysis showed that the overall rumen microbiota was different between the two breeds. Both breeds were dominated by Prevotella ruminicola, and its highest relative abundance was observed 6 h after feeding. The genera Ethanoligenens, Succinivibrio, and the species Ethanoligenens harbinense, Succinivibrio dextrinosolvens, Prevotella micans, Prevotella copri, Prevotella oris, Prevotella baroniae, and Treponema succinifaciens were more abundant in Holstein steers while the genera Capnocytophaga, Lachnoclostridium, Barnesiella, Oscillibacter, Galbibacter, and the species Capnocytophaga cynodegmi, Galbibacter mesophilus, Barnesiella intestinihominis, Prevotella shahii, and Oscillibacter ruminantium in the Jersey steers. The Jersey steers were dominated by Methanobrevibacter millerae while the Holstein steers by Methanobrevibacter olleyae. The overall results suggest that sampling hour has little influence on the rumen microbiota; however, breeds of steers can affect the assemblage of the rumen microbiota and different mitigation strategies may be needed to effectively manipulate the rumen microbiota and mitigate enteric CH4 emissions from these steers.
Collapse
Affiliation(s)
- Mahfuzul Islam
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea.,Department of Microbiology and Parasitology, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Seon-Ho Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - Sonny C Ramos
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - Lovelia L Mamuad
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - A-Rang Son
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Sung-Sil Lee
- Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju, South Korea
| | - Yong-Il Cho
- Animal Disease and Diagnostic Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - Sang-Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| |
Collapse
|
126
|
Si H, Han Y, Liu H, Lou Y, Li Z. Effects of rumen-protected arginine supplementation on the plasma amino acids and gut microbiota of sika deer (Cervus nippon). Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
127
|
Chow JTH, Gall AR, Johnson AK, Huynh TN. Characterization of Listeria monocytogenes isolates from lactating dairy cows in a Wisconsin farm: Antibiotic resistance, mammalian cell infection, and effects on the fecal microbiota. J Dairy Sci 2021; 104:4561-4574. [PMID: 33516554 DOI: 10.3168/jds.2020-18885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/04/2020] [Indexed: 12/26/2022]
Abstract
Listeria monocytogenes is an invasive foodborne pathogen that is ubiquitously present in the dairy farm environment. Although cattle are a reservoir of L. monocytogenes, most adult animals do not exhibit clinical symptoms, suggesting a homeostasis between this pathogen and the bovine gastrointestinal ecosystem. Nevertheless, substantial prevalence of L. monocytogenes fecal shedding by dairy cattle has been reported in many studies, posing threats of transmission within the herd and contamination of the human food supply. Accordingly, understanding the L. monocytogenes ecology within the bovine gastrointestinal tract is important to prevent clinical illness in the animal host, reduce transmission, and guide intervention strategies. In this study, we conducted a longitudinal sampling of fecal samples from 20 lactating dairy cows in one Wisconsin farm over a 29-d period and found a strikingly high incidence of L. monocytogenes shedding, in 90% of sampled animals. The L. monocytogenes isolates were genetically diverse, representing all common serotypes previously identified from cattle. Additionally, most tested isolates were resistant to ampicillin, and a few were also resistant to gentamicin or trimethoprim/sulfamethoxazole. Most isolates effectively infected human epithelial cells (Caco-2) and murine fibroblasts (L2), suggesting that they are all capable of causing systemic infection if the intestinal barrier is breached. Finally, we investigated the effects of L. monocytogenes colonization on the gastrointestinal tract microbiota by analyzing the fecal bacterial communities of some shedding and nonshedding cows. Whereas L. monocytogenes did not affect the α and β diversity of tested animals, a subset of shedding cows exhibited different abundances of certain operational taxonomic units within the Bacteroidetes and Firmicutes phyla compared with nonshedding cows. Overall, our findings highlight the threat of antibiotic resistance among some L. monocytogenes isolates, emphasize the need for a strain-specific approach in listeriosis treatment, and suggest the potential negative influence of subclinical L. monocytogenes carriage on animal gut health.
Collapse
Affiliation(s)
- Justin T H Chow
- Department of Food Science, University of Wisconsin, Madison 53706
| | - Aaron R Gall
- Department of Food Science, University of Wisconsin, Madison 53706
| | | | - TuAnh N Huynh
- Department of Food Science, University of Wisconsin, Madison 53706.
| |
Collapse
|
128
|
Górniak W, Cholewińska P, Szeligowska N, Wołoszyńska M, Soroko M, Czyż K. Effect of Intense Exercise on the Level of Bacteroidetes and Firmicutes Phyla in the Digestive System of Thoroughbred Racehorses. Animals (Basel) 2021; 11:ani11020290. [PMID: 33498857 PMCID: PMC7910997 DOI: 10.3390/ani11020290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/28/2022] Open
Abstract
Exercise significantly affects the body of both animals and humans, including the composition of the digestive microbiome. This study aimed to determine the changes in the composition of the most numerous bacterial phyla (Firmicutes and Bacteroidetes, as well as the level of the Lactobacillaceae family) in the digestive system of horses under the influence of physical effort. The study included a group of 17 Thoroughbred racehorses at the age of 3 years, fed the same forage, from whom feces samples were collected individually before and 48 h after physical effort. The obtained samples were subjected to DNA isolation and RT-PCR analysis. The results showed a significant increase in the level of both phyla after exercise compared to the state before physical effort; there were no such differences in the level of facultative aerobes, i.e., the Lactobacillaceae family (although a decreasing tendency was found after exercise). In addition, the analysis of the level of the studied phyla indicates individual differences in horses' response to the effort.
Collapse
Affiliation(s)
- Wanda Górniak
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wroclaw, Poland
- Correspondence:
| | - Paulina Cholewińska
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wroclaw, Poland; (P.C.); (N.S.); (M.S.); (K.C.)
| | - Natalia Szeligowska
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wroclaw, Poland; (P.C.); (N.S.); (M.S.); (K.C.)
| | - Magdalena Wołoszyńska
- Department of Genetics, Wrocław University of Environmental and Life Sciences, Kożuchowska 7, 51-631 Wroclaw, Poland;
| | - Maria Soroko
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wroclaw, Poland; (P.C.); (N.S.); (M.S.); (K.C.)
| | - Katarzyna Czyż
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wroclaw, Poland; (P.C.); (N.S.); (M.S.); (K.C.)
| |
Collapse
|
129
|
Cholewińska P, Górniak W, Wojnarowski K. Impact of selected environmental factors on microbiome of the digestive tract of ruminants. BMC Vet Res 2021; 17:25. [PMID: 33419429 PMCID: PMC7796543 DOI: 10.1186/s12917-021-02742-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/01/2021] [Indexed: 12/12/2022] Open
Abstract
Ruminants are an important part of world animal production. The main factors affecting their production rates are age, diet, physiological condition and welfare. Disorders related to low level of welfare can significantly affect the microbiological composition of the digestive system, which is essential to maintain high production rates. The microbiology of the ruminant gastrointestinal tract may be significantly affected by inappropriate keeping system (especially in juveniles), psychological stress (e.g. transport), or heat stress. This results in an increased risk of metabolic diseases, reduced fertility and systemic diseases. Therefore, the paper focuses on selected disorders i.e., aforementioned inappropriate maintenance system, psychological stress, heat stress and their effects on the microbiome of the digestive system.
Collapse
Affiliation(s)
- Paulina Cholewińska
- Institute of Animal Breeding, Wrocław University of Enviromental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland
| | - Wanda Górniak
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Enviromental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland
| | - Konrad Wojnarowski
- Institute of Animal Breeding, Wrocław University of Enviromental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland
| |
Collapse
|
130
|
Sanz-Fernandez MV, Daniel JB, Seymour DJ, Kvidera SK, Bester Z, Doelman J, Martín-Tereso J. Targeting the Hindgut to Improve Health and Performance in Cattle. Animals (Basel) 2020; 10:E1817. [PMID: 33036177 PMCID: PMC7600859 DOI: 10.3390/ani10101817] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/19/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
An adequate gastrointestinal barrier function is essential to preserve animal health and well-being. Suboptimal gut health results in the translocation of contents from the gastrointestinal lumen across the epithelium, inducing local and systemic inflammatory responses. Inflammation is characterized by high energetic and nutrient requirements, which diverts resources away from production. Further, barrier function defects and inflammation have been both associated with several metabolic diseases in dairy cattle and liver abscesses in feedlots. The gastrointestinal tract is sensitive to several factors intrinsic to the productive cycles of dairy and beef cattle. Among them, high grain diets, commonly fed to support lactation and growth, are potentially detrimental for rumen health due to their increased fermentability, representing the main risk factor for the development of acidosis. Furthermore, the increase in dietary starch associated with such rations frequently results in an increase in the bypass fraction reaching distal sections of the intestine. The effects of high grain diets in the hindgut are comparable to those in the rumen and, thus, hindgut acidosis likely plays a role in grain overload syndrome. However, the relative contribution of the hindgut to this syndrome remains unknown. Nutritional strategies designed to support hindgut health might represent an opportunity to sustain health and performance in bovines.
Collapse
Affiliation(s)
- M. Victoria Sanz-Fernandez
- Trouw Nutrition Research and Development, PO Box 299, 3800 AG Amersfoort, The Netherlands; (J.-B.D.); (D.J.S.); (Z.B.); (J.D.); (J.M.-T.)
| | - Jean-Baptiste Daniel
- Trouw Nutrition Research and Development, PO Box 299, 3800 AG Amersfoort, The Netherlands; (J.-B.D.); (D.J.S.); (Z.B.); (J.D.); (J.M.-T.)
| | - Dave J. Seymour
- Trouw Nutrition Research and Development, PO Box 299, 3800 AG Amersfoort, The Netherlands; (J.-B.D.); (D.J.S.); (Z.B.); (J.D.); (J.M.-T.)
| | | | - Zeno Bester
- Trouw Nutrition Research and Development, PO Box 299, 3800 AG Amersfoort, The Netherlands; (J.-B.D.); (D.J.S.); (Z.B.); (J.D.); (J.M.-T.)
| | - John Doelman
- Trouw Nutrition Research and Development, PO Box 299, 3800 AG Amersfoort, The Netherlands; (J.-B.D.); (D.J.S.); (Z.B.); (J.D.); (J.M.-T.)
| | - Javier Martín-Tereso
- Trouw Nutrition Research and Development, PO Box 299, 3800 AG Amersfoort, The Netherlands; (J.-B.D.); (D.J.S.); (Z.B.); (J.D.); (J.M.-T.)
| |
Collapse
|
131
|
Ku-Vera JC, Jiménez-Ocampo R, Valencia-Salazar SS, Montoya-Flores MD, Molina-Botero IC, Arango J, Gómez-Bravo CA, Aguilar-Pérez CF, Solorio-Sánchez FJ. Role of Secondary Plant Metabolites on Enteric Methane Mitigation in Ruminants. Front Vet Sci 2020; 7:584. [PMID: 33195495 PMCID: PMC7481446 DOI: 10.3389/fvets.2020.00584] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/21/2020] [Indexed: 01/28/2023] Open
Abstract
The rumen microbiome plays a fundamental role in all ruminant species, it is involved in health, nutrient utilization, detoxification, and methane emissions. Methane is a greenhouse gas which is eructated in large volumes by ruminants grazing extensive grasslands in the tropical regions of the world. Enteric methane is the largest contributor to the emissions of greenhouse gases originating from animal agriculture. A large variety of plants containing secondary metabolites [essential oils (terpenoids), tannins, saponins, and flavonoids] have been evaluated as cattle feedstuffs and changes in volatile fatty acid proportions and methane synthesis in the rumen have been assessed. Alterations to the rumen microbiome may lead to changes in diversity, composition, and structure of the methanogen community. Legumes containing condensed tannins such as Leucaena leucocephala have shown a good methane mitigating effect when fed at levels of up to 30–35% of ration dry matter in cattle as a result of the effect of condensed tannins on rumen bacteria and methanogens. It has been shown that saponins disrupt the membrane of rumen protozoa, thus decreasing the numbers of both protozoa and methanogenic archaea. Trials carried out with cattle housed in respiration chambers have demonstrated the enteric methane mitigation effect in cattle and sheep of tropical legumes such as Enterolobium cyclocarpum and Samanea saman which contain saponins. Essential oils are volatile constituents of terpenoid or non-terpenoid origin which impair energy metabolism of archaea and have shown reductions of up to 26% in enteric methane emissions in ruminants. There is emerging evidence showing the potential of flavonoids as methane mitigating compounds, but more work is required in vivo to confirm preliminary findings. From the information hereby presented, it is clear that plant secondary metabolites can be a rational approach to modulate the rumen microbiome and modify its function, some species of rumen microbes improve protein and fiber degradation and reduce feed energy loss as methane in ruminants fed tropical plant species.
Collapse
Affiliation(s)
- Juan Carlos Ku-Vera
- Laboratory of Climate Change and Livestock Production, Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Mérida, Mexico
| | - Rafael Jiménez-Ocampo
- Laboratory of Climate Change and Livestock Production, Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Mérida, Mexico.,National Institute for Forestry, Agriculture and Livestock Research-INIFAP, Experimental Field Valle del Guadiana, Durango, Mexico
| | | | - María Denisse Montoya-Flores
- National Center for Disciplinary Research in Physiology and Animal Breeding, National Institute for Forestry, Agriculture and Livestock Research-INIFAP, Ajuchitlan, Queretaro, Mexico
| | | | - Jacobo Arango
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | | | - Carlos Fernando Aguilar-Pérez
- Laboratory of Climate Change and Livestock Production, Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Mérida, Mexico
| | - Francisco Javier Solorio-Sánchez
- Laboratory of Climate Change and Livestock Production, Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Mérida, Mexico
| |
Collapse
|