101
|
Méndez Rojano R, Mendez S, Lucor D, Ranc A, Giansily-Blaizot M, Schved JF, Nicoud F. Kinetics of the coagulation cascade including the contact activation system: sensitivity analysis and model reduction. Biomech Model Mechanobiol 2019; 18:1139-1153. [DOI: 10.1007/s10237-019-01134-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/16/2019] [Indexed: 12/14/2022]
|
102
|
Kadri OE, Chandran VD, Surblyte M, Voronov RS. In vivo measurement of blood clot mechanics from computational fluid dynamics based on intravital microscopy images. Comput Biol Med 2019; 106:1-11. [PMID: 30660757 PMCID: PMC6390965 DOI: 10.1016/j.compbiomed.2019.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/31/2022]
Abstract
Ischemia which leads to heart attacks and strokes is one of the major causes of death in the world. Whether an occlusion occurs or not depends on the ability of a growing thrombus to resist flow forces exerted on its structure. This manuscript provides the first known in vivo measurement of how much stress a clot can withstand, before yielding to the surrounding blood flow. Namely, Lattice-Boltzmann Method flow simulations are performed based on 3D clot geometries, which are estimated from intravital microscopy images of laser-induced injuries in cremaster microvasculature of live mice. In addition to reporting the blood clot yield stresses, we also show that the thrombus "core" does not experience significant deformation, while its "shell" does. This indicates that the shell is more prone to embolization. Therefore, drugs should be designed to target the shell selectively, while leaving the core intact to minimize excessive bleeding. Finally, we laid down a foundation for a nondimensionalization procedure which unraveled a relationship between clot mechanics and biology. Hence, the proposed framework could ultimately lead to a unified theory of thrombogenesis, capable of explaining all clotting events. Thus, the findings presented herein will be beneficial to the understanding and treatment of heart attacks, strokes and hemophilia.
Collapse
Affiliation(s)
- Olufemi Emmanuel Kadri
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Vishnu Deep Chandran
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Migle Surblyte
- Ying Wu College of Computing Sciences, Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Roman S Voronov
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
103
|
Grande Gutierrez N, Mathew M, McCrindle BW, Tran JS, Kahn AM, Burns JC, Marsden AL. Hemodynamic variables in aneurysms are associated with thrombotic risk in children with Kawasaki disease. Int J Cardiol 2019; 281:15-21. [PMID: 30728104 DOI: 10.1016/j.ijcard.2019.01.092] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/22/2018] [Accepted: 01/25/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Thrombosis is a major adverse outcome associated with coronary artery aneurysms (CAAs) resulting from Kawasaki disease (KD). Clinical guidelines recommend initiation of anticoagulation therapy with maximum CAA diameter (Dmax) ≥8 mm or Z-score ≥ 10. Here, we investigate the role of aneurysm hemodynamics as a superior method for thrombotic risk stratification in KD patients. METHODS AND RESULTS We retrospectively studied ten KD patients with CAAs, including five patients who developed thrombosis. We constructed patient-specific anatomic models from cardiac magnetic resonance images and performed computational hemodynamic simulations using SimVascular. Our simulations incorporated pulsatile flow, deformable arterial walls and boundary conditions automatically tuned to match patient-specific arterial pressure and cardiac output. From simulation results, we derived local hemodynamic variables including time-averaged wall shear stress (TAWSS), low wall shear stress exposure, and oscillatory shear index (OSI). Local TAWSS was significantly lower in CAAs that developed thrombosis (1.2 ± 0.94 vs. 7.28 ± 9.77 dynes/cm2, p = 0.006) and the fraction of CAA surface area exposed to low wall shear stress was larger (0.69 ± 0.17 vs. 0.25 ± 0.26%, p = 0.005). Similarly, longer residence times were obtained in branches where thrombosis was confirmed (9.07 ± 6.26 vs. 2.05 ± 2.91 cycles, p = 0.004). No significant differences were found for OSI or anatomical measurements such us Dmax and Z-score. Assessment of thrombotic risk according to hemodynamic variables had higher sensitivity and specificity compared to standard clinical metrics (Dmax, Z-score). CONCLUSIONS Hemodynamic variables can be obtained non-invasively via simulation and may provide improved thrombotic risk stratification compared to current diameter-based metrics, facilitating long-term clinical management of KD patients with persistent CAAs.
Collapse
Affiliation(s)
| | - Mathew Mathew
- The Hospital for Sick Children, University of Toronto, Canada
| | | | - Justin S Tran
- Department of Mechanical Engineering, Stanford University, USA
| | - Andrew M Kahn
- Department of Medicine, University of California San Diego School of Medicine, USA
| | - Jane C Burns
- Department of Pediatrics, University of California San Diego School of Medicine, USA
| | - Alison L Marsden
- Departments of Pediatrics, Bioengineering and Institute for Computational and Mathematical Engineering, Stanford University, USA.
| |
Collapse
|
104
|
Brass LF, Tomaiuolo M, Welsh J, Poventud-Fuentes I, Zhu L, Diamond SL, Stalker TJ. Hemostatic Thrombus Formation in Flowing Blood. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00020-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
105
|
Cheng L, Wei GW, Leil T. Review of quantitative systems pharmacological modeling in thrombosis. COMMUNICATIONS IN INFORMATION AND SYSTEMS 2019; 19:219-240. [PMID: 34045928 DOI: 10.4310/cis.2019.v19.n3.a1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hemostasis and thrombosis are often thought as two sides of the same clotting mechanism whereas hemostasis is a natural protective mechanism to prevent bleeding and thrombosis is a blood clot abnormally formulated inside a blood vessel, blocking the normal blood flow. The evidence to date suggests that at least arterial thrombosis results from the same critical pathways of hemostasis. Analysis of these complex processes and pathways using quantitative systems pharmacological model-based approach can facilitate the delineation of the causal pathways that lead to the emergence of thrombosis. In this paper, we provide an overview of the main molecular and physiological mechanisms associated with hemostasis and thrombosis, and review the models and quantitative system pharmacological modeling approaches that are relevant in characterizing the interplay among the multiple factors and pathways of thrombosis. An emphasis is given to computational models for drug development. Future trends are discussed.
Collapse
Affiliation(s)
- Limei Cheng
- Clinical Pharmacology and Pharmacometrics Bristol-Myers Squibb, Princeton, NJ 08540, USA
| | - Guo-Wei Wei
- Department of Mathematics Michigan State University East Lansing, MI 48824 USA
| | - Tarek Leil
- Clinical Pharmacology and Pharmacometrics Bristol-Myers Squibb, Princeton, NJ 08540, USA
| |
Collapse
|
106
|
Lu Y, Lee MY, Zhu S, Sinno T, Diamond SL. Multiscale simulation of thrombus growth and vessel occlusion triggered by collagen/tissue factor using a data-driven model of combinatorial platelet signalling. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2018; 34:523-546. [PMID: 27672182 PMCID: PMC5798174 DOI: 10.1093/imammb/dqw015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/23/2016] [Indexed: 12/23/2022]
Abstract
During clotting under flow, platelets bind and activate on collagen and release autocrinic factors such as ADP and thromboxane, while tissue factor (TF) on the damaged wall leads to localized thrombin generation. Towards patient-specific simulation of thrombosis, a multiscale approach was developed to account for: platelet signalling [neural network (NN) trained by pairwise agonist scanning (PAS), PAS-NN], platelet positions (lattice kinetic Monte Carlo, LKMC), wall-generated thrombin and platelet-released ADP/thromboxane convection–diffusion (partial differential equation, PDE) and flow over a growing clot (lattice Boltzmann). LKMC included shear-driven platelet aggregate restructuring. The PDEs for thrombin, ADP and thromboxane were solved by finite element method using cell activation-driven adaptive triangular meshing. At all times, intracellular calcium was known for each platelet by PAS-NN in response to its unique exposure to local collagen, ADP, thromboxane and thrombin. When compared with microfluidic experiments of human blood clotting on collagen/TF driven by constant pressure drop, the model accurately predicted clot morphology and growth with time. In experiments and simulations at TF at 0.1 and 10 molecule-TF/\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$\mu$\end{document}m\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$^{2}$\end{document} and initial wall shear rate of 200 s\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$^{-1}$\end{document}, the occlusive blockade of flow for a 60-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$\mu$\end{document}m channel occurred relatively abruptly at 600 and 400 s, respectively (with no occlusion at zero TF). Prior to occlusion, intrathrombus concentrations reached 50 nM thrombin, ~ 1 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$\mu$\end{document}M thromboxane and ~ 10 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$\mu$\end{document}M ADP, while the wall shear rate on the rough clot peaked at ~ 1000–2000 s\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$^{-1}$\end{document}. Additionally, clotting on TF/collagen was accurately simulated for modulators of platelet cyclooxygenase-1, P2Y\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{1}$\end{document} and IP-receptor. This multiscale approach facilitates patient-specific simulation of thrombosis under hemodynamic and pharmacological conditions.
Collapse
Affiliation(s)
- Yichen Lu
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Mei Yan Lee
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Shu Zhu
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Talid Sinno
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Scott L Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia PA 19104, USA
| |
Collapse
|
107
|
Preut A, Laughlin M, Jensen H, Hestekin J, Jensen M. Novel method for emboli analog formation towards improved stroke retrieval devices. J Biomech 2018; 80:121-128. [PMID: 30253873 DOI: 10.1016/j.jbiomech.2018.08.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Unsuccessful recanalization attempts in stroke patients have been associated with fibrin-rich thromboemboli linking retrieval mechanism performance and clot composition. To continue development of stroke retrieval mechanisms, the material properties of cerebral thromboemboli must be replicated; however, current methods for emboli analog formation lack quantitative measurements for both material stiffness and composition of cerebral thromboemboli. This study investigates emboli analog (EA) formation to mimic the material stiffness and composition of cerebral thromboemboli to develop new retrieval mechanisms. METHODS To induce static and dynamic environments for clot replication, a 9:1 ratio of porcine whole blood and 2.45% calcium chloride remained stationary or rotated at 34, 50 and 80 RPM. Histology and a custom MATLAB code provided composition analysis results. Likewise, quantitative results from biomechanical testing were obtained for direct comparison of the material stiffness of cerebral thromboemboli. RESULTS Fibrin/platelet content as well as material stiffness increased due to increasing rotational speed. Approximately 11% of the biomechanical testing results exhibited nonlinearity after an initial yield point, of which 60% were from statically formed EAs. Those formed at 50 RPM were most similar in material stiffness to thromboemboli extracted from carotid endarterectomy (CEA) procedures (p = 0.97). CONCLUSIONS The dynamically formed EAs may be altered to obtain a range of fibrin/platelet to erythrocyte ratios. The proposed methodology for EA formation offers a platform for continued development of retrieval mechanism prototypes.
Collapse
Affiliation(s)
- Anne Preut
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Megan Laughlin
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Hanna Jensen
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Jamie Hestekin
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Morten Jensen
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States.
| |
Collapse
|
108
|
Strongly Coupled Morphological Features of Aortic Aneurysms Drive Intraluminal Thrombus. Sci Rep 2018; 8:13273. [PMID: 30185838 PMCID: PMC6125404 DOI: 10.1038/s41598-018-31637-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/15/2018] [Indexed: 01/13/2023] Open
Abstract
Over 75% of abdominal aortic aneurysms harbor an intraluminal thrombus, and increasing evidence suggests that biologically active thrombus contributes to the natural history of these potentially lethal lesions. Thrombus formation depends on the local hemodynamics, which in turn depends on morphological features of the aneurysm and near vasculature. We previously presented a hemodynamically motivated “thrombus formation potential” that predicts where and when thrombus might form. Herein, we combine detailed studies of the three-dimensional hemodynamics with methods of sparse grid collocation and interpolation via kriging to examine roles of five key morphological features of aneurysms on thrombus formation: lesion diameter, axial position, length, curvature, and renal artery position. Computational simulations suggest that maximum diameter is a key determinant of thrombogenicity, but other morphological features modulate this dependence. More distally located lesions tend to have a higher thrombus formation potential and shorter lesions tend to have a higher potential than longer lesions, given the same aneurysmal dilatation. Finally, movement of vortical structures through the infrarenal aorta and lesion can significantly affect thrombogenicity. Formation of intraluminal thrombus within an evolving abdominal aortic aneurysm thus depends on coupled morphological features, not all intuitive, and computational simulations can be useful for predicting thrombogenesis.
Collapse
|
109
|
Rizzi M, Albisetti M. Treatment of arterial thrombosis in children: Methods and mechanisms. Thromb Res 2018; 169:113-119. [DOI: 10.1016/j.thromres.2018.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/05/2018] [Indexed: 12/17/2022]
|
110
|
Zhu S, Herbig BA, Yu X, Chen J, Diamond SL. Contact Pathway Function During Human Whole Blood Clotting on Procoagulant Surfaces. Front Med (Lausanne) 2018; 5:209. [PMID: 30083534 PMCID: PMC6064720 DOI: 10.3389/fmed.2018.00209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/02/2018] [Indexed: 11/13/2022] Open
Abstract
Microfluidic thrombosis assays allow the control of anticoagulation, hemodynamics, pharmacology, and procoagulant surfaces containing collagen ± tissue factor (TF). With corn trypsin inhibitor (CTI) ranging from low (1–4 μg/mL) to high levels (40–60 μg/mL), the function of Factor XIIa (FXIIa) can be modulated in the presence of low or high surface TF. With high CTI and no collagen/TF in the assay, no thrombin is generated during 15-min microfluidic perfusion. At low CTI (no TF), the generation of FXIa leads to fibrin polymerization at ~300 s after the initiation of flow over collagen, an onset time shortened at zero CTI and prolonged at high CTI. The engagement of FXIa was difficult to observe for clotting on high TF surfaces due to the dominance of the extrinsic pathway. Low TF surfaces allowed observable crosstalk between extrinsic pathway generation of thrombin and thrombin-mediated activation of FXIa, a feedback detected at >5 min and attenuated with polyphosphate inhibitor. From thrombin-antithrombin immunoassay of the effluent of blood flowing over collagen/TF, the majority of thrombin was found captured on intrathrombus fibrin. Additionally, extreme shear rates (>10,000 s−1) can generate massive von Willebrand Factor fibers that capture FXIIa and FXIa to drive fibrin generation, an event that facilitates VWF fiber dissolution under fibrinolytic conditions. Finally, we found that occlusive sterile thrombi subjected to pressure drops >70 mm-Hg/mm-clots have interstitial stresses sufficient to drive NETosis. These microfluidic studies highlight the interaction of contact pathway factors with the extrinsic pathway, platelet polyphosphate, VWF fibers, and potentially shear-induced NETs.
Collapse
Affiliation(s)
- Shu Zhu
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Bradley A Herbig
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Xinren Yu
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Jason Chen
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Scott L Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
111
|
Liu W, Yang X, Li N, Xi G, Wang M, Liang B, Feng Y, Chen H, Shi C, Li W. Genipin crosslinked microspheres as an effective hemostatic agent. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4377] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Wen Liu
- Wenzhou Institute of Biomaterials and Engineering; CNITECH, CAS; Wenzhou Zhejiang 325011 China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering; Wenzhou Medical University; Wenzhou Zhejiang 325011 China
| | - Xiao Yang
- Wenzhou Institute of Biomaterials and Engineering; CNITECH, CAS; Wenzhou Zhejiang 325011 China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering; Wenzhou Medical University; Wenzhou Zhejiang 325011 China
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin); Tianjin University; Tianjin 300072 China
| | - Na Li
- Wenzhou Institute of Biomaterials and Engineering; CNITECH, CAS; Wenzhou Zhejiang 325011 China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering; Wenzhou Medical University; Wenzhou Zhejiang 325011 China
| | - Guanghui Xi
- Wenzhou Institute of Biomaterials and Engineering; CNITECH, CAS; Wenzhou Zhejiang 325011 China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering; Wenzhou Medical University; Wenzhou Zhejiang 325011 China
| | - Mingshan Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University; Wenzhou Zhejiang 325000 China
| | - Bin Liang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University; Wenzhou Zhejiang 325000 China
| | - Yakai Feng
- Wenzhou Institute of Biomaterials and Engineering; CNITECH, CAS; Wenzhou Zhejiang 325011 China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering; Wenzhou Medical University; Wenzhou Zhejiang 325011 China
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin); Tianjin University; Tianjin 300072 China
| | - Hao Chen
- Wenzhou Institute of Biomaterials and Engineering; CNITECH, CAS; Wenzhou Zhejiang 325011 China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering; Wenzhou Medical University; Wenzhou Zhejiang 325011 China
| | - Changcan Shi
- Wenzhou Institute of Biomaterials and Engineering; CNITECH, CAS; Wenzhou Zhejiang 325011 China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering; Wenzhou Medical University; Wenzhou Zhejiang 325011 China
| | - Wenzhong Li
- Institut für Chemie und Biochemie; Freie Universität Berlin; Takustrasse 3, 14195 Berlin Germany
| |
Collapse
|
112
|
Xu S, Xu Z, Kim OV, Litvinov RI, Weisel JW, Alber M. Model predictions of deformation, embolization and permeability of partially obstructive blood clots under variable shear flow. J R Soc Interface 2018; 14:rsif.2017.0441. [PMID: 29142014 DOI: 10.1098/rsif.2017.0441] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/19/2017] [Indexed: 01/20/2023] Open
Abstract
Thromboembolism, one of the leading causes of morbidity and mortality worldwide, is characterized by formation of obstructive intravascular clots (thrombi) and their mechanical breakage (embolization). A novel two-dimensional multi-phase computational model is introduced that describes active interactions between the main components of the clot, including platelets and fibrin, to study the impact of various physiologically relevant blood shear flow conditions on deformation and embolization of a partially obstructive clot with variable permeability. Simulations provide new insights into mechanisms underlying clot stability and embolization that cannot be studied experimentally at this time. In particular, model simulations, calibrated using experimental intravital imaging of an established arteriolar clot, show that flow-induced changes in size, shape and internal structure of the clot are largely determined by two shear-dependent mechanisms: reversible attachment of platelets to the exterior of the clot and removal of large clot pieces. Model simulations predict that blood clots with higher permeability are more prone to embolization with enhanced disintegration under increasing shear rate. In contrast, less permeable clots are more resistant to rupture due to shear rate-dependent clot stiffening originating from enhanced platelet adhesion and aggregation. These results can be used in future to predict risk of thromboembolism based on the data about composition, permeability and deformability of a clot under specific local haemodynamic conditions.
Collapse
Affiliation(s)
- Shixin Xu
- Department of Mathematics, Division of Clinical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Zhiliang Xu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Oleg V Kim
- Department of Mathematics, Division of Clinical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA.,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Biochemistry and Biotechnology, Kazan Federal University, Kazan 420008, Russian Federation
| | - John W Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark Alber
- Department of Mathematics, Division of Clinical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA .,Department of Internal Medicine, Division of Clinical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA.,Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
113
|
Herbig BA, Yu X, Diamond SL. Using microfluidic devices to study thrombosis in pathological blood flows. BIOMICROFLUIDICS 2018; 12:042201. [PMID: 29861812 PMCID: PMC5953752 DOI: 10.1063/1.5021769] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/23/2018] [Indexed: 05/17/2023]
Abstract
Extreme flows can exist within pathological vessel geometries or mechanical assist devices which create complex forces and lead to thrombogenic problems associated with disease. Turbulence and boundary layer separation are difficult to obtain in microfluidics due to the low Reynolds number flow in small channels. However, elongational flows, extreme shear rates and stresses, and stagnation point flows are possible using microfluidics and small perfusion volumes. In this review, a series of microfluidic devices used to study pathological blood flows are described. In an extreme stenosis channel pre-coated with fibrillar collagen that rapidly narrows from 500 μm to 15 μm, the plasma von Willebrand Factor (VWF) will elongate and assemble into thick fiber bundles on the collagen. Using a micropost-impingement device, plasma flow impinging on the micropost generates strong elongational and wall shear stresses that trigger the growth of a VWF bundle around the post (no collagen required). Using a stagnation-point device to mimic the zone near flow reattachment, blood can be directly impinged upon a procoagulant surface of collagen and the tissue factor. Clots formed at the stagnation point of flow impingement have a classic core-shell architecture where the core is highly activated (P-selectin positive platelets and fibrin rich). Finally, within occlusive clots that fill a microchannel, the Darcy flow driven by ΔP/L > 70 mm-Hg/mm-clot is sufficient to drive NETosis of entrapped neutrophils, an event not requiring either thrombin or fibrin. Novel microfluidic devices are powerful tools to access physical environments that exist in human disease.
Collapse
Affiliation(s)
| | | | - Scott L. Diamond
- Author to whom correspondence should be addressed: . Tel.: 215-573-5702
| |
Collapse
|
114
|
Lee YK, Porter C, Diamond SL, Crocker JC, Sinno T. Deposition of sticky spheres in channel flow: Modeling of surface coverage evolution requires accurate sphere-sphere collision hydrodynamics. J Colloid Interface Sci 2018; 530:383-393. [PMID: 29982030 DOI: 10.1016/j.jcis.2018.06.097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 11/17/2022]
Abstract
We analyzed the role of hydrodynamic interactions in a microfluidic channel flow containing a dilute suspension of micron-scale colloidal spheres (0.03%, 0.1%, 0.3% volume fraction) engineered to adhere onto a collector patch on the channel wall at wall shear rates of 9.3-930 s-1. Particle-wall adhesion was mediated by single-stranded DNA oligomers grafted onto the spheres and the glass channel wall, producing well-defined interactions via DNA strand base pairing. Particle positions in the flow were evolved using Brownian dynamics simulations in which hydrodynamic interactions between moving particles and the channel walls and/or adhered particles were computed off-line using a series of local simulations that explicitly resolve the fluid flow at the particle scale. By systematically varying the nature of hydrodynamic interactions captured in the Brownian dynamics simulations, we find that the interactions between moving and adhered particles represents the single most important physical element in such models. Once captured sufficiently accurately, the resulting models are able to predict coarse variables such as the overall particle coverage evolution, as well as more subtle characteristics, such as the microstructural distribution of the adhered particles.
Collapse
Affiliation(s)
- Young Ki Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher Porter
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott L Diamond
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John C Crocker
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Talid Sinno
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
115
|
Szydzik C, Brazilek RJ, Khoshmanesh K, Akbaridoust F, Knoerzer M, Thurgood P, Muir I, Marusic I, Nandurkar H, Mitchell A, Nesbitt WS. Elastomeric microvalve geometry affects haemocompatibility. LAB ON A CHIP 2018; 18:1778-1792. [PMID: 29789838 DOI: 10.1039/c7lc01320e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper reports on the parameters that determine the haemocompatibility of elastomeric microvalves for blood handling in microfluidic systems. Using a comprehensive investigation of blood function, we describe a hierarchy of haemocompatibility as a function of microvalve geometry and identify a "normally-closed" v-gate pneumatic microvalve design that minimally affects blood plasma fibrinogen and von Willebrand factor composition, minimises effects on erythrocyte structure and function, and limits effects on platelet activation and aggregation, while facilitating rapid switching control for blood sample delivery. We propose that the haemodynamic profile of valve gate geometries is a significant determinant of platelet-dependent biofouling and haemocompatibility. Overall our findings suggest that modification of microvalve gate geometry and consequently haemodynamic profile can improve haemocompatibility, while minimising the requirement for chemical or protein modification of microfluidic surfaces. This biological insight and approach may be harnessed to inform future haemocompatible microfluidic valve and component design, and is an advance towards lab-on-chip automation for blood based diagnostic systems.
Collapse
Affiliation(s)
- Crispin Szydzik
- School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3000, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Treatment and outcome of thrombosed aneurysms of the middle cerebral artery: institutional experience and a systematic review. Neurosurg Rev 2018; 42:649-661. [DOI: 10.1007/s10143-018-0984-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 12/12/2022]
|
117
|
Laxmi V, Tripathi S, Joshi SS, Agrawal A. Microfluidic Techniques for Platelet Separation and Enrichment. J Indian Inst Sci 2018. [DOI: 10.1007/s41745-018-0072-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
118
|
Zilberman-Rudenko J, McCarty OJT. Utility and development of microfluidic platforms for platelet research. Platelets 2018; 28:425-426. [PMID: 28700317 DOI: 10.1080/09537104.2017.1325187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Owen J T McCarty
- a Biomedical Engineering, School of Medicine, Oregon Health & Science University , Portland , OR , USA.,b Division of Hematology /Medical Oncology , School of Medicine, Oregon Health & Science University , Portland , OR , USA
| |
Collapse
|
119
|
Computational Fluid Dynamics Assessment Associated with Transcatheter Heart Valve Prostheses: A Position Paper of the ISO Working Group. Cardiovasc Eng Technol 2018; 9:289-299. [PMID: 29675697 DOI: 10.1007/s13239-018-0349-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/08/2018] [Indexed: 12/19/2022]
Abstract
The governing international standard for the development of prosthetic heart valves is International Organization for Standardization (ISO) 5840. This standard requires the assessment of the thrombus potential of transcatheter heart valve substitutes using an integrated thrombus evaluation. Besides experimental flow field assessment and ex vivo flow testing, computational fluid dynamics is a critical component of this integrated approach. This position paper is intended to provide and discuss best practices for the setup of a computational model, numerical solving, post-processing, data evaluation and reporting, as it relates to transcatheter heart valve substitutes. This paper is not intended to be a review of current computational technology; instead, it represents the position of the ISO working group consisting of experts from academia and industry with regards to considerations for computational fluid dynamic assessment of transcatheter heart valve substitutes.
Collapse
|
120
|
Computational Model for Hyperfibrinolytic Onset of Acute Traumatic Coagulopathy. Ann Biomed Eng 2018; 46:1173-1182. [PMID: 29675813 DOI: 10.1007/s10439-018-2031-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/16/2018] [Indexed: 12/16/2022]
Abstract
The onset of acute traumatic coagulopathy in trauma patients exacerbates hemorrhaging and dramatically increases mortality. The disease is characterized by increased localized bleeding, and the mechanism for its onset is not yet known. We propose that the fibrinolytic response, specifically the release of tissue-plasminogen activator (t-PA), within vessels of different sizes leads to a variable susceptibility to local coagulopathy through hyperfibrinolysis which can explain many of the clinical observations in the early stages from severely injured coagulopathic patients. We use a partial differential equation model to examine the consequences of vessel geometry and extent of injury on fibrinolysis profiles. In addition, we simulate the efficacy of tranexamic acid treatment on coagulopathy initiated through endothelial t-PA release, and are able to reproduce the time-sensitive nature of the efficacy of this treatment as observed in clinical studies.
Collapse
|
121
|
Tan J, Sinno T, Diamond SL. A parallel fluid-solid coupling model using LAMMPS and Palabos based on the immersed boundary method. JOURNAL OF COMPUTATIONAL SCIENCE 2018; 25:89-100. [PMID: 30220942 PMCID: PMC6136258 DOI: 10.1016/j.jocs.2018.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The study of viscous fluid flow coupled with rigid or deformable solids has many applications in biological and engineering problems, e.g., blood cell transport, drug delivery, and particulate flow. We developed a partitioned approach to solve this coupled Multiphysics problem. The fluid motion was solved by Palabos (Parallel Lattice Boltzmann Solver), while the solid displacement and deformation was simulated by LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). The coupling was achieved through the immersed boundary method (IBM). The code modeled both rigid and deformable solids exposed to flow. The code was validated with the Jeffery orbits of an ellipsoid particle in shear flow, red blood cell stretching test, and effective blood viscosity flowing in tubes. It demonstrated essentially linear scaling from 512 to 8192 cores for both strong and weak scaling cases. The computing time for the coupling increased with the solid fraction. An example of the fluid-solid coupling was given for flexible filaments (drug carriers) transport in a flowing blood cell suspensions, highlighting the advantages and capabilities of the developed code.
Collapse
Affiliation(s)
- Jifu Tan
- Department of Mechanical Engineering, Northern Illinois University, DeKalb, IL 60115, USA
| | - Talid Sinno
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA
19104, USA
| | - Scott L Diamond
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA
19104, USA
| |
Collapse
|
122
|
Tsiklidis E, Sims C, Sinno T, Diamond SL. Multiscale systems biology of trauma-induced coagulopathy. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1418. [PMID: 29485252 DOI: 10.1002/wsbm.1418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/03/2018] [Accepted: 01/09/2018] [Indexed: 01/26/2023]
Abstract
Trauma with hypovolemic shock is an extreme pathological state that challenges the body to maintain blood pressure and oxygenation in the face of hemorrhagic blood loss. In conjunction with surgical actions and transfusion therapy, survival requires the patient's blood to maintain hemostasis to stop bleeding. The physics of the problem are multiscale: (a) the systemic circulation sets the global blood pressure in response to blood loss and resuscitation therapy, (b) local tissue perfusion is altered by localized vasoregulatory mechanisms and bleeding, and (c) altered blood and vessel biology resulting from the trauma as well as local hemodynamics control the assembly of clotting components at the site of injury. Building upon ongoing modeling efforts to simulate arterial or venous thrombosis in a diseased vasculature, computer simulation of trauma-induced coagulopathy is an emerging approach to understand patient risk and predict response. Despite uncertainties in quantifying the patient's dynamic injury burden, multiscale systems biology may help link blood biochemistry at the molecular level to multiorgan responses in the bleeding patient. As an important goal of systems modeling, establishing early metrics of a patient's high-dimensional trajectory may help guide transfusion therapy or warn of subsequent later stage bleeding or thrombotic risks. This article is categorized under: Analytical and Computational Methods > Computational Methods Biological Mechanisms > Regulatory Biology Models of Systems Properties and Processes > Mechanistic Models.
Collapse
Affiliation(s)
- Evan Tsiklidis
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carrie Sims
- Department of Trauma Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Talid Sinno
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott L Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
123
|
Sampath K, Harfi TT, George RT, Katz J. Optimized Time-Resolved Echo Particle Image Velocimetry– Particle Tracking Velocimetry Measurements Elucidate Blood Flow in Patients With Left Ventricular Thrombus. J Biomech Eng 2018; 140:2668583. [DOI: 10.1115/1.4038886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Indexed: 02/04/2023]
Abstract
Contrast ultrasound is a widely used clinical tool to obtain real-time qualitative blood flow assessments in the heart, liver, etc. Echocardiographic particle image velocimetry (echo-PIV) is a technique for obtaining quantitative velocity maps from contrast ultrasound images. However, unlike optical particle image velocimetry (PIV), routine echo images are prone to nonuniform spatiotemporal variations in tracer distribution, making analysis difficult for standard PIV algorithms. This study introduces optimized procedures that integrate image enhancement, PIV, and particle tracking velocimetry (PTV) to obtain reliable time-resolved two-dimensional (2D) velocity distributions. During initial PIV analysis, multiple results are obtained by varying processing parameters. Optimization involving outlier removal and smoothing is used to select the correct vector. These results are used in a multiparameter PTV procedure. To demonstrate their clinical value, the procedures are implemented to obtain velocity and vorticity distributions over multiple cardiac cycles using images acquired from four left ventricular thrombus (LVT) patients. Phase-averaged data elucidate flow structure evolution over the cycle and are used to calculate penetration depth and strength of left ventricular (LV) vortices, as well as apical velocity induced by them. The present data are consistent with previous time-averaged results for the minimum vortex penetration depth associated with LVT occurrence. However, due to decay and fragmentation of LV vortices, as they migrate away from the mitral annulus, in two cases with high penetration, there is still poor washing near the resolved clot throughout the cycle. Hence, direct examination of entire flow evolution may be useful for assessing risk of LVT relapse before prescribing anticoagulants.
Collapse
Affiliation(s)
- Kaushik Sampath
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Latrobe 223, Baltimore, MD 21218 e-mail:
| | - Thura T. Harfi
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287 e-mail:
| | - Richard T. George
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287 e-mail:
| | - Joseph Katz
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Latrobe 122, Baltimore, MD 21218 e-mail:
| |
Collapse
|
124
|
Sarangadharan I, Wang SL, Sukesan R, Chen PC, Dai TY, Pulikkathodi AK, Hsu CP, Chiang HHK, Liu LYM, Wang YL. Single Drop Whole Blood Diagnostics: Portable Biomedical Sensor for Cardiac Troponin I Detection. Anal Chem 2018; 90:2867-2874. [PMID: 29376635 DOI: 10.1021/acs.analchem.7b05018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Detection of disease biomarkers from whole blood is very important in disease prevention and management. However, new generation assays like point-of-care or mobile diagnostics face a myriad of challenges in detecting proteins from whole blood. In this research, we have designed, fabricated, and characterized a portable biomedical sensor for the detection of cardiac troponin I (cTnI) directly from whole blood, without sample pretreatments. The sensing methodology is based on an extended gate electrical double layer (EDL) gated field effect transistor (FET) biosensor that can offer very high sensitivity, a wide dynamic range, and high selectivity to target analyte. The sensing methodology is not impeded by electrostatic screening and can be applied to all types of FET sensors. A portable biomedical system is designed to carry out the diagnostic assay in a very simple and rapid manner, that allows the user to screen for target protein from a single drop of blood, in 5 min. This biomedical sensor can be used in hospitals and homes alike, for early detection of cTnI which is a clinical marker for acute myocardial infarction. This sensing methodology could potentially revolutionize the modern health care industry.
Collapse
Affiliation(s)
- Indu Sarangadharan
- Institute of Nanoengineering and Microsystems, National Tsing Hua University , Hsinchu, 300, Taiwan R.O.C
| | - Shin-Li Wang
- Institute of Nanoengineering and Microsystems, National Tsing Hua University , Hsinchu, 300, Taiwan R.O.C
| | - Revathi Sukesan
- Institute of Nanoengineering and Microsystems, National Tsing Hua University , Hsinchu, 300, Taiwan R.O.C
| | - Pei-Chi Chen
- Institute of Nanoengineering and Microsystems, National Tsing Hua University , Hsinchu, 300, Taiwan R.O.C
| | - Tze-Yu Dai
- Institute of Nanoengineering and Microsystems, National Tsing Hua University , Hsinchu, 300, Taiwan R.O.C
| | - Anil Kumar Pulikkathodi
- Institute of Nanoengineering and Microsystems, National Tsing Hua University , Hsinchu, 300, Taiwan R.O.C
| | - Chen-Pin Hsu
- Institute of Nanoengineering and Microsystems, National Tsing Hua University , Hsinchu, 300, Taiwan R.O.C
| | - Hui-Hua Kenny Chiang
- Department of Biomedical Engineering, National Yang Ming University , Taipei, 112, Taiwan R.O.C
| | - Lawrence Yu-Min Liu
- Division of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital , Hsinchu, 300, Taiwan R.O.C.,Department of Medical Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University , Hsinchu, 300, Taiwan R.O.C
| | - Yu-Lin Wang
- Institute of Nanoengineering and Microsystems, National Tsing Hua University , Hsinchu, 300, Taiwan R.O.C.,Department of Power Mechanical Engineering, National Tsing Hua University , Hsinchu, 300, Taiwan R.O.C
| |
Collapse
|
125
|
Spronk HMH, Padro T, Siland JE, Prochaska JH, Winters J, van der Wal AC, Posthuma JJ, Lowe G, d'Alessandro E, Wenzel P, Coenen DM, Reitsma PH, Ruf W, van Gorp RH, Koenen RR, Vajen T, Alshaikh NA, Wolberg AS, Macrae FL, Asquith N, Heemskerk J, Heinzmann A, Moorlag M, Mackman N, van der Meijden P, Meijers JCM, Heestermans M, Renné T, Dólleman S, Chayouâ W, Ariëns RAS, Baaten CC, Nagy M, Kuliopulos A, Posma JJ, Harrison P, Vries MJ, Crijns HJGM, Dudink EAMP, Buller HR, Henskens YMC, Själander A, Zwaveling S, Erküner O, Eikelboom JW, Gulpen A, Peeters FECM, Douxfils J, Olie RH, Baglin T, Leader A, Schotten U, Scaf B, van Beusekom HMM, Mosnier LO, van der Vorm L, Declerck P, Visser M, Dippel DWJ, Strijbis VJ, Pertiwi K, Ten Cate-Hoek AJ, Ten Cate H. Atherothrombosis and Thromboembolism: Position Paper from the Second Maastricht Consensus Conference on Thrombosis. Thromb Haemost 2018; 118:229-250. [PMID: 29378352 DOI: 10.1160/th17-07-0492] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Atherothrombosis is a leading cause of cardiovascular mortality and long-term morbidity. Platelets and coagulation proteases, interacting with circulating cells and in different vascular beds, modify several complex pathologies including atherosclerosis. In the second Maastricht Consensus Conference on Thrombosis, this theme was addressed by diverse scientists from bench to bedside. All presentations were discussed with audience members and the results of these discussions were incorporated in the final document that presents a state-of-the-art reflection of expert opinions and consensus recommendations regarding the following five topics: 1. Risk factors, biomarkers and plaque instability: In atherothrombosis research, more focus on the contribution of specific risk factors like ectopic fat needs to be considered; definitions of atherothrombosis are important distinguishing different phases of disease, including plaque (in)stability; proteomic and metabolomics data are to be added to genetic information. 2. Circulating cells including platelets and atherothrombosis: Mechanisms of leukocyte and macrophage plasticity, migration, and transformation in murine atherosclerosis need to be considered; disease mechanism-based biomarkers need to be identified; experimental systems are needed that incorporate whole-blood flow to understand how red blood cells influence thrombus formation and stability; knowledge on platelet heterogeneity and priming conditions needs to be translated toward the in vivo situation. 3. Coagulation proteases, fibrin(ogen) and thrombus formation: The role of factor (F) XI in thrombosis including the lower margins of this factor related to safe and effective antithrombotic therapy needs to be established; FXI is a key regulator in linking platelets, thrombin generation, and inflammatory mechanisms in a renin-angiotensin dependent manner; however, the impact on thrombin-dependent PAR signaling needs further study; the fundamental mechanisms in FXIII biology and biochemistry and its impact on thrombus biophysical characteristics need to be explored; the interactions of red cells and fibrin formation and its consequences for thrombus formation and lysis need to be addressed. Platelet-fibrin interactions are pivotal determinants of clot formation and stability with potential therapeutic consequences. 4. Preventive and acute treatment of atherothrombosis and arterial embolism; novel ways and tailoring? The role of protease-activated receptor (PAR)-4 vis à vis PAR-1 as target for antithrombotic therapy merits study; ongoing trials on platelet function test-based antiplatelet therapy adjustment support development of practically feasible tests; risk scores for patients with atrial fibrillation need refinement, taking new biomarkers including coagulation into account; risk scores that consider organ system differences in bleeding may have added value; all forms of oral anticoagulant treatment require better organization, including education and emergency access; laboratory testing still needs rapidly available sensitive tests with short turnaround time. 5. Pleiotropy of coagulation proteases, thrombus resolution and ischaemia-reperfusion: Biobanks specifically for thrombus storage and analysis are needed; further studies on novel modified activated protein C-based agents are required including its cytoprotective properties; new avenues for optimizing treatment of patients with ischaemic stroke are needed, also including novel agents that modify fibrinolytic activity (aimed at plasminogen activator inhibitor-1 and thrombin activatable fibrinolysis inhibitor.
Collapse
Affiliation(s)
- H M H Spronk
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - T Padro
- Cardiovascular Research Center (ICCC), Hospital Sant Pau, Barcelona, Spain
| | - J E Siland
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - J H Prochaska
- Center for Cardiology/Center for Thrombosis and Hemostasis/DZHK, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - J Winters
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - A C van der Wal
- Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - J J Posthuma
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - G Lowe
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland
| | - E d'Alessandro
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.,Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - P Wenzel
- Department of Cardiology, Universitätsmedizin Mainz, Mainz, Germany
| | - D M Coenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - P H Reitsma
- Einthoven Laboratory, Leiden University Medical Center, Leiden, The Netherlands
| | - W Ruf
- Center for Cardiology/Center for Thrombosis and Hemostasis/DZHK, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - R H van Gorp
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - R R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - T Vajen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - N A Alshaikh
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - A S Wolberg
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
| | - F L Macrae
- Thrombosis and Tissue Repair Group, Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - N Asquith
- Thrombosis and Tissue Repair Group, Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - J Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - A Heinzmann
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - M Moorlag
- Synapse, Maastricht, The Netherlands
| | - N Mackman
- Department of Medicine, UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, United States
| | - P van der Meijden
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - J C M Meijers
- Department of Plasma Proteins, Sanquin, Amsterdam, The Netherlands
| | - M Heestermans
- Einthoven Laboratory, Leiden University Medical Center, Leiden, The Netherlands
| | - T Renné
- Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - S Dólleman
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
| | - W Chayouâ
- Synapse, Maastricht, The Netherlands
| | - R A S Ariëns
- Thrombosis and Tissue Repair Group, Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - C C Baaten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - M Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - A Kuliopulos
- Tufts University School of Graduate Biomedical Sciences, Biochemistry/Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts
| | - J J Posma
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - P Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - M J Vries
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - H J G M Crijns
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - E A M P Dudink
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - H R Buller
- Department of Vascular Medicine, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Y M C Henskens
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - A Själander
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - S Zwaveling
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands.,Synapse, Maastricht, The Netherlands
| | - O Erküner
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - J W Eikelboom
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - A Gulpen
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - F E C M Peeters
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - J Douxfils
- Department of Pharmacy, Thrombosis and Hemostasis Center, Faculty of Medicine, Namur University, Namur, Belgium
| | - R H Olie
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - T Baglin
- Department of Haematology, Addenbrookes Hospital Cambridge, Cambridge, United Kingdom
| | - A Leader
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands.,Davidoff Cancer Center, Rabin Medical Center, Institute of Hematology, Sackler Faculty of Medicine, Tel Aviv University, Petah Tikva, Tel Aviv, Israel
| | - U Schotten
- Center for Cardiology/Center for Thrombosis and Hemostasis/DZHK, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - B Scaf
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - H M M van Beusekom
- Department of Experimental Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - L O Mosnier
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, United States
| | | | - P Declerck
- Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | | | - D W J Dippel
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | | | - K Pertiwi
- Department of Cardiovascular Pathology, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - A J Ten Cate-Hoek
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - H Ten Cate
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
126
|
Méndez Rojano R, Mendez S, Nicoud F. Introducing the pro-coagulant contact system in the numerical assessment of device-related thrombosis. Biomech Model Mechanobiol 2018; 17:815-826. [PMID: 29302840 DOI: 10.1007/s10237-017-0994-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/14/2017] [Indexed: 11/28/2022]
Abstract
Thrombosis is a major concern in blood-coated medical devices. Contact activation, which is the initial part of the coagulation cascade in device-related thrombosis, is not considered in current thrombus formation models. In the present study, pro-coagulant reactions including the contact activation system are coupled with a fluid solver in order to evaluate the potential of the contact system to initiate thrombin production. The biochemical/fluid model is applied to a backward-facing step configuration, a flow configuration that frequently appears in medical devices. In contrast to the in vivo thrombosis models in which a specific thrombotic zone (injury region) is set a priori by the user to initiate the coagulation reaction, a reactive surface boundary condition is applied to the whole device wall. Simulation results show large thrombin concentration in regions related to recirculation zones without the need of an a priori knowledge of the thrombus location. The numerical results align well with the regions prone to thrombosis observed in experimental results reported in the literature. This approach could complement thrombus formation models that take into account platelet activity and thrombus growth to optimize a wide range of medical devices.
Collapse
Affiliation(s)
- Rodrigo Méndez Rojano
- Institut Montpelliérain Alexander Grothendieck, CNRS, Univ. Montpellier, 2 Place Eugène Bataillon, 34095, Montpellier Cedex 5, France.
| | - Simon Mendez
- Institut Montpelliérain Alexander Grothendieck, CNRS, Univ. Montpellier, 2 Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Franck Nicoud
- Institut Montpelliérain Alexander Grothendieck, CNRS, Univ. Montpellier, 2 Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| |
Collapse
|
127
|
Chiu T, Tang AY, Cheng SW, Chow K. Analysis of flow patterns on branched endografts for aortic arch aneurysms. INFORMATICS IN MEDICINE UNLOCKED 2018. [DOI: 10.1016/j.imu.2018.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
128
|
Ciciliano JC, Abbaspour R, Woodall J, Wu C, Bakir MS, Lam WA. Probing blood cell mechanics of hematologic processes at the single micron level. LAB ON A CHIP 2017; 17:3804-3816. [PMID: 29052682 DOI: 10.1039/c7lc00720e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Blood cells circulate in a dynamic fluidic environment, and during hematologic processes such as hemostasis, thrombosis, and inflammation, blood cells interact biophysically with a myriad of vascular matrices-blood clots and the subendothelial matrix. While it is known that adherent cells physiologically respond to the mechanical properties of their underlying matrices, how blood cells interact with their mechanical microenvironment of vascular matrices remains poorly understood. To that end, we developed microfluidic systems that achieve high fidelity, high resolution, single-micron PDMS features that mimic the physical geometries of vascular matrices. With these electron beam lithography (EBL)-based microsystems, the physical interactions of individual blood cells with the mechanical properties of the matrices can be directly visualized. We observe that the physical presence of the matrix, in and of itself, mediates hematologic processes of the three major blood cell types: platelets, erythrocytes, and leukocytes. First, we find that the physical presence of single micron micropillars creates a shear microgradient that is sufficient to cause rapid, localized platelet adhesion and aggregation that leads to complete microchannel occlusion; this response is enhanced with the presence of fibrinogen or collagen on the micropillar surface. Second, we begin to describe the heretofore unknown biophysical parameters for the formation of schistocytes, pathologic erythrocyte fragments associated with various thrombotic microangiopathies (poorly understood, yet life-threatening blood disorders associated with microvascular thrombosis). Finally, we observe that the physical interactions with a vascular matrix is sufficient to cause neutrophils to form procoagulant neutrophil extracellular trap (NET)-like structures. By combining electron beam lithography (EBL), photolithography, and soft lithography, we thus create microfluidic devices that provide novel insight into the response of blood cells to the mechanical microenvironment of vascular matrices and have promise as research-enabling and diagnostic platforms.
Collapse
Affiliation(s)
- Jordan C Ciciliano
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | | | | | |
Collapse
|
129
|
Jung SH, Han JH, Park HS, Lee JJ, Yang SY, Kim YH, Heo KS, Myung CS. Inhibition of Collagen-Induced Platelet Aggregation by the Secobutanolide Secolincomolide A from Lindera obtusiloba Blume. Front Pharmacol 2017; 8:560. [PMID: 28878675 PMCID: PMC5572288 DOI: 10.3389/fphar.2017.00560] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/08/2017] [Indexed: 11/13/2022] Open
Abstract
Atherothrombosis is one of the main underlying cause of cardiovascular diseases. In addition to treating atherothrombosis with antithrombotic agents, there is growing interest in the role of natural food products and biologically active ingredients for the prevention and treatment of cardiovascular diseases. This study aimed to investigate the effect of secolincomolide A (3) isolated from Lindera obtusiloba Blume on platelet activity and identify possible signaling pathways. In our study, the antiplatelet activities of 3 were measured by collagen-induced platelet aggregation and serotonin secretion in freshly isolated rabbit platelets. Interestingly, 3 effectively inhibited the collagen-induced platelet aggregation and serotonin secretion via decreased production of diacylglycerol, arachidonic acid, and cyclooxygenase-mediated metabolites such as thromboxane B2 (TXB2), and prostaglandin D2 (PGD2). In accordance with the antiplatelet activities, 3 prolonged bleeding time and attenuated FeCl3-induced thrombus formation in arterial thrombosis model. Notably, 3 abolished the phosphorylation of phospholipase Cγ2 (PLCγ2), spleen tyrosine kinase (Syk), p47, extracellular signal-regulated kinase 1/2 (ERK1/2), protein kinase B (Akt) by inhibiting the activation of the collagen receptor, glycoprotein VI (GPVI). Taken together, our results indicate the therapeutic potential of 3 in antiplatelet action through inhibition of the GPVI-mediated signaling pathway and the COX-1-mediated AA metabolic pathways.
Collapse
Affiliation(s)
- Sang-Hyuk Jung
- Department of Pharmacology, College of Pharmacy, Chungnam National UniversityDaejeon, South Korea
| | - Joo-Hui Han
- Department of Pharmacology, College of Pharmacy, Chungnam National UniversityDaejeon, South Korea
| | - Hyun-Soo Park
- Department of Pharmacology, College of Pharmacy, Chungnam National UniversityDaejeon, South Korea
| | - Jung-Jin Lee
- Korean Medicine Application Center, Korea Institute of Oriental MedicineDaegu, South Korea
| | - Seo Young Yang
- Department of Natural Product Chemistry, College of Pharmacy, Chungnam National UniversityDaejeon, South Korea
| | - Young Ho Kim
- Department of Natural Product Chemistry, College of Pharmacy, Chungnam National UniversityDaejeon, South Korea.,Institute of Drug Research and Development, Chungnam National UniversityDaejeon, South Korea
| | - Kyung-Sun Heo
- Department of Pharmacology, College of Pharmacy, Chungnam National UniversityDaejeon, South Korea
| | - Chang-Seon Myung
- Department of Pharmacology, College of Pharmacy, Chungnam National UniversityDaejeon, South Korea.,Institute of Drug Research and Development, Chungnam National UniversityDaejeon, South Korea
| |
Collapse
|
130
|
Abstract
Red blood cells (RBCs) have historically been considered passive bystanders in thrombosis. However, clinical and epidemiological studies have associated quantitative and qualitative abnormalities in RBCs, including altered hematocrit, sickle cell disease, thalassemia, hemolytic anemias, and malaria, with both arterial and venous thrombosis. A growing body of mechanistic studies suggests that RBCs can promote thrombus formation and enhance thrombus stability. These findings suggest that RBCs may contribute to thrombosis pathophysiology and reveal potential strategies for therapeutically targeting RBCs to reduce thrombosis.
Collapse
|
131
|
Haynes LM, Orfeo T, Mann KG, Everse SJ, Brummel-Ziedins KE. Probing the Dynamics of Clot-Bound Thrombin at Venous Shear Rates. Biophys J 2017; 112:1634-1644. [PMID: 28445754 DOI: 10.1016/j.bpj.2017.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023] Open
Abstract
In closed system models of fibrin formation, exosite-mediated thrombin binding to fibrin contributes to clot stability and is resistant to inhibition by antithrombin/heparin while still susceptible to small, active-site inhibitors. Each molecule of fibrin can bind ∼1.6 thrombin molecules at low-affinity binding sites (Kd = 2.8 μM) and ∼0.3 molecules of thrombin at high-affinity binding sites (Kd = 0.15 μM). The goal of this study is to assess the stability of fibrin-bound thrombin under venous flow conditions and to determine both its accessibility and susceptibility to inhibition. A parallel-plate flow chamber (7 × 50 × 0.25 mm) for studying the stability of thrombin (0-1400 nM) adhered to a fibrin matrix (0.1-0.4 mg/mL fibrinogen, 10 nM thrombin) under a variety of venous flow conditions was developed using the thrombin-specific, fluorogenic substrate SN-59 (100 μM). The flow within this system is laminar (Re < 1) and reaction rates are driven by enzyme kinetics (Pe = 100, Da = 7000). A subpopulation of active thrombin remains stably adhered to a fibrin matrix over a range of venous shear rates (46-184 s-1) for upwards of 30 min, and this population is saturable at loads >500 nM and sensitive to the initial fibrinogen concentration. These observations were also supported by a mathematical model of thrombin adhesion to fibrin, which demonstrates that thrombin initially binds to the low-affinity thrombin binding sites before preferentially equilibrating to higher affinity sites. Antithrombin (2.6 μM) plus heparin (4 U/mL) inhibits 72% of the active clot-bound thrombin after ∼10 min at 92 s-1, while no inhibition is observed in the absence of heparin. Dabigatran (20 and 200 nM) inhibits (50 and 93%) clot-bound thrombin reversibly (87 and 66% recovery). This model illustrates that clot-bound thrombin stability is the result of a constant rearrangement of thrombin molecules within a dense matrix of binding sites.
Collapse
Affiliation(s)
- Laura M Haynes
- Department of Biochemistry, Robert Larner M.D. College of Medicine, University of Vermont, Colchester, Vermont
| | - Thomas Orfeo
- Department of Biochemistry, Robert Larner M.D. College of Medicine, University of Vermont, Colchester, Vermont
| | | | - Stephen J Everse
- Department of Biochemistry, Robert Larner M.D. College of Medicine, University of Vermont, Colchester, Vermont
| | - Kathleen E Brummel-Ziedins
- Department of Biochemistry, Robert Larner M.D. College of Medicine, University of Vermont, Colchester, Vermont.
| |
Collapse
|
132
|
Jain A, Barrile R, van der Meer AD, Mammoto A, Mammoto T, De Ceunynck K, Aisiku O, Otieno MA, Louden CS, Hamilton GA, Flaumenhaft R, Ingber DE. Primary Human Lung Alveolus-on-a-chip Model of Intravascular Thrombosis for Assessment of Therapeutics. Clin Pharmacol Ther 2017; 103:332-340. [PMID: 28516446 DOI: 10.1002/cpt.742] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/26/2017] [Accepted: 05/08/2017] [Indexed: 12/26/2022]
Abstract
Pulmonary thrombosis is a significant cause of patient mortality; however, there are no effective in vitro models of thrombi formation in human lung microvessels that could also assess therapeutics and toxicology of antithrombotic drugs. Here, we show that a microfluidic lung alveolus-on-a-chip lined by human primary alveolar epithelium interfaced with endothelium and cultured under flowing whole blood can be used to perform quantitative analysis of organ-level contributions to inflammation-induced thrombosis. This microfluidic chip recapitulates in vivo responses, including platelet-endothelial dynamics and revealed that lipopolysaccharide (LPS) endotoxin indirectly stimulates intravascular thrombosis by activating the alveolar epithelium, rather than acting directly on endothelium. This model is also used to analyze inhibition of endothelial activation and thrombosis due to a protease activated receptor-1 (PAR-1) antagonist, demonstrating its ability to dissect complex responses and identify antithrombotic therapeutics. Thus, this methodology offers a new approach to study human pathophysiology of pulmonary thrombosis and advance drug development.
Collapse
Affiliation(s)
- A Jain
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA.,Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Department of Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, Texas, USA
| | - R Barrile
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA.,Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - A D van der Meer
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA.,MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - A Mammoto
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - T Mammoto
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - K De Ceunynck
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - O Aisiku
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - M A Otieno
- Janssen Pharmaceutical Research and Development, Pre-Clinical Development and Safety, Spring House, Pennsylvania, USA
| | - C S Louden
- Janssen Pharmaceutical Research and Development, Pre-Clinical Development and Safety, Spring House, Pennsylvania, USA
| | | | - R Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - D E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA.,Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts, USA
| |
Collapse
|
133
|
Tutwiler V, Wang H, Litvinov RI, Weisel JW, Shenoy VB. Interplay of Platelet Contractility and Elasticity of Fibrin/Erythrocytes in Blood Clot Retraction. Biophys J 2017; 112:714-723. [PMID: 28256231 DOI: 10.1016/j.bpj.2017.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/17/2016] [Accepted: 01/06/2017] [Indexed: 12/15/2022] Open
Abstract
Blood clot contraction (retraction) is driven by platelet-generated forces propagated by the fibrin network and results in clot shrinkage and deformation of erythrocytes. To elucidate the mechanical nature of this process, we developed a model that combines an active contractile motor element with passive viscoelastic elements. Despite its importance for thrombosis and wound healing, clot contraction is poorly understood. This model predicts how clot contraction occurs due to active contractile platelets interacting with a viscoelastic material, rather than to the poroelastic nature of fibrin, and explains the observed dynamics of clot size, ultrastructure, and measured forces. Mechanically passive erythrocytes and fibrin are present in series and parallel to active contractile cells. This mechanical interplay induces compressive and tensile resistance, resulting in increased contractile force and a reduced extent of contraction in the presence of erythrocytes. This experimentally validated model provides the fundamental mechanical basis for understanding contraction of blood clots.
Collapse
Affiliation(s)
- Valerie Tutwiler
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; School of Biomedical Engineering, Sciences and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Hailong Wang
- Department of Modern Mechanics, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui, China; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John W Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
134
|
Schoeman RM, Lehmann M, Neeves KB. Flow chamber and microfluidic approaches for measuring thrombus formation in genetic bleeding disorders. Platelets 2017; 28:463-471. [PMID: 28532218 PMCID: PMC6131111 DOI: 10.1080/09537104.2017.1306042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Platelet adhesion and aggregation, coagulation, fibrin formation, and fibrinolysis are regulated by the forces and flows imposed by blood at the site of a vascular injury. Flow chambers designed to observe these events are an indispensable part of doing hemostasis and thrombosis research, especially with human blood. Microfluidic methods have provided the flexibility to design flow chambers with complex geometries and features that more closely mimic the anatomy and physiology of blood vessels. Additionally, microfluidic systems with integrated optics and/or pressure sensors and on-board signal processing could transform what have been primarily research tools into clinical assays. Here, we describe a historical review of how flow-based approaches have informed biophysical mechanisms in genetic bleeding disorders, challenges and potential solutions for developing models of bleeding in vitro, and outstanding issues that need to be addressed prior to their use in clinical settings.
Collapse
Affiliation(s)
- Rogier M. Schoeman
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO, USA
| | - Marcus Lehmann
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO, USA
| | - Keith B. Neeves
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO, USA
- Pediatrics, University of Colorado, Denver, CO, USA
| |
Collapse
|
135
|
A Short Review of Advances in the Modelling of Blood Rheology and Clot Formation. FLUIDS 2017. [DOI: 10.3390/fluids2030035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
136
|
Hosseinzadegan H, Tafti DK. Modeling thrombus formation and growth. Biotechnol Bioeng 2017; 114:2154-2172. [DOI: 10.1002/bit.26343] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/03/2017] [Accepted: 05/16/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Hamid Hosseinzadegan
- Mechanical Engineering DepartmentVirginia Polytechnic Institute and State University, 213E Goodwin Hall ‐ 0238, 635 Prices Fork RoadBlacksburgVirginia24061
| | - Danesh K. Tafti
- Mechanical Engineering DepartmentVirginia Polytechnic Institute and State University, 213E Goodwin Hall ‐ 0238, 635 Prices Fork RoadBlacksburgVirginia24061
| |
Collapse
|
137
|
Affiliation(s)
- Lauren D.C. Casa
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332;,
| | - David N. Ku
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332;,
| |
Collapse
|
138
|
Pompano RR, Chiang AH, Kastrup CJ, Ismagilov RF. Conceptual and Experimental Tools to Understand Spatial Effects and Transport Phenomena in Nonlinear Biochemical Networks Illustrated with Patchy Switching. Annu Rev Biochem 2017; 86:333-356. [PMID: 28654324 PMCID: PMC10852032 DOI: 10.1146/annurev-biochem-060815-014207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many biochemical systems are spatially heterogeneous and exhibit nonlinear behaviors, such as state switching in response to small changes in the local concentration of diffusible molecules. Systems as varied as blood clotting, intracellular calcium signaling, and tissue inflammation are all heavily influenced by the balance of rates of reaction and mass transport phenomena including flow and diffusion. Transport of signaling molecules is also affected by geometry and chemoselective confinement via matrix binding. In this review, we use a phenomenon referred to as patchy switching to illustrate the interplay of nonlinearities, transport phenomena, and spatial effects. Patchy switching describes a change in the state of a network when the local concentration of a diffusible molecule surpasses a critical threshold. Using patchy switching as an example, we describe conceptual tools from nonlinear dynamics and chemical engineering that make testable predictions and provide a unifying description of the myriad possible experimental observations. We describe experimental microfluidic and biochemical tools emerging to test conceptual predictions by controlling transport phenomena and spatial distribution of diffusible signals, and we highlight the unmet need for in vivo tools.
Collapse
Affiliation(s)
- Rebecca R Pompano
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904;
| | - Andrew H Chiang
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637;
| | - Christian J Kastrup
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada;
| | - Rustem F Ismagilov
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125;
| |
Collapse
|
139
|
Proudfoot AG, Davidson SJ, Strueber M. von Willebrand factor disruption and continuous-flow circulatory devices. J Heart Lung Transplant 2017; 36:1155-1163. [PMID: 28756118 DOI: 10.1016/j.healun.2017.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 01/12/2023] Open
Abstract
Bleeding events remain a significant and frequent complication of continuous-flow left ventricular assist devices (VADs). von Willebrand factor (VWF) is critical to hemostasis by acting as a bridging molecule at sites of vascular injury for normal platelet adhesion as well as promoting platelet aggregation under conditions of high shear. Clinical and experimental data support a role for acquired von Willebrand disease in VAD bleeding episodes caused by shear-induced qualitative defects in VWF. Pathologic shear induces VWF unfolding and proteolysis of large multimers into smaller less hemostatic multimers via ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13). This review outlines the pathobiology of VWF disruption in the context of VADs as well as current diagnostic and management strategies of the associated acquired von Willebrand disease.
Collapse
Affiliation(s)
- Alastair G Proudfoot
- Frederick Meijer Heart & Vascular Institute, Spectrum Health, Grand Rapids, Michigan; Department of Perioperative Medicine, St Bartholomew's Hospital, London, United Kingdom
| | | | | |
Collapse
|
140
|
Guckenberger A, Gekle S. Theory and algorithms to compute Helfrich bending forces: a review. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:203001. [PMID: 28240220 DOI: 10.1088/1361-648x/aa6313] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cell membranes are vital to shield a cell's interior from the environment. At the same time they determine to a large extent the cell's mechanical resistance to external forces. In recent years there has been considerable interest in the accurate computational modeling of such membranes, driven mainly by the amazing variety of shapes that red blood cells and model systems such as vesicles can assume in external flows. Given that the typical height of a membrane is only a few nanometers while the surface of the cell extends over many micrometers, physical modeling approaches mostly consider the interface as a two-dimensional elastic continuum. Here we review recent modeling efforts focusing on one of the computationally most intricate components, namely the membrane's bending resistance. We start with a short background on the most widely used bending model due to Helfrich. While the Helfrich bending energy by itself is an extremely simple model equation, the computation of the resulting forces is far from trivial. At the heart of these difficulties lies the fact that the forces involve second order derivatives of the local surface curvature which by itself is the second derivative of the membrane geometry. We systematically derive and compare the different routes to obtain bending forces from the Helfrich energy, namely the variational approach and the thin-shell theory. While both routes lead to mathematically identical expressions, so-called linear bending models are shown to reproduce only the leading order term while higher orders differ. The main part of the review contains a description of various computational strategies which we classify into three categories: the force, the strong and the weak formulation. We finally give some examples for the application of these strategies in actual simulations.
Collapse
Affiliation(s)
- Achim Guckenberger
- Biofluid Simulation and Modeling, Fachbereich Physik, Universität Bayreuth, Germany
| | | |
Collapse
|
141
|
Sylman JL, Mitrugno A, Tormoen GW, Wagner TH, Mallick P, McCarty OJT. Platelet count as a predictor of metastasis and venous thromboembolism in patients with cancer. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017; 3. [PMID: 29081989 DOI: 10.1088/2057-1739/aa6c05] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Platelets are anucleate cells in the blood at concentrations of 150,000 to 400,000 cells/µL and play a key role in hemostasis. Several studies have suggested that platelets contribute to cancer progression and cancer-associated thrombosis. In this review, we provide an overview of the biochemical and biophysical mechanisms by which platelets interact with cancer cells and review the evidence supporting a role for platelet-enhanced metastasis of cancer, and venous thromboembolism (VTE) in patients with cancer. We discuss the potential for and limitations of platelet counts to discriminate cancer disease burden and prognosis. Lastly, we consider more advanced diagnostic approaches to improve studies on the interaction between the hemostatic system and cancer cells.
Collapse
Affiliation(s)
- Joanna L Sylman
- Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR.,VA Palo Alto Health Care System, Palo Alto, CA.,Canary Center at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA
| | - Annachiara Mitrugno
- Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR
| | - Garth W Tormoen
- Department of Radiation Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR
| | - Todd H Wagner
- VA Palo Alto Health Care System, Palo Alto, CA.,Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Parag Mallick
- Canary Center at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA
| | - Owen J T McCarty
- Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR
| |
Collapse
|
142
|
Hosseinzadegan H, Tafti DK. Prediction of Thrombus Growth: Effect of Stenosis and Reynolds Number. Cardiovasc Eng Technol 2017; 8:164-181. [PMID: 28470538 DOI: 10.1007/s13239-017-0304-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/23/2017] [Indexed: 11/26/2022]
Abstract
Shear stresses play a major role in platelet-substrate interactions and thrombus formation and growth in blood flow, where under both pathological and physiological conditions platelet adhesion and accumulation occur. In this study, a shear-dependent continuum model for platelet activation, adhesion and aggregation is presented. The model was first verified under three different shear conditions and at two heparin levels. Three-dimensional simulations were then carried out to evaluate the performance of the model for severely damaged (stripped) aortas with mild and severe stenosis degrees in laminar flow regime. For these cases, linear shear-dependent functions were developed for platelet-surface and platelet-platelet adhesion rates. It was confirmed that the platelet adhesion rate is not only a function of Reynolds number (or wall shear rate) but also the stenosis severity of the vessel. General correlations for adhesion rates of platelets as functions of stenosis and Reynolds number were obtained based on these cases. Finally using the new platelet adhesion rates, the model was applied to different experimental systems and shown to agree well with measured platelet deposition.
Collapse
Affiliation(s)
| | - Danesh K Tafti
- Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
143
|
Abstract
The systems analysis of thrombosis seeks to quantitatively predict blood function in a given vascular wall and hemodynamic context. Relevant to both venous and arterial thrombosis, a Blood Systems Biology approach should provide metrics for rate and molecular mechanisms of clot growth, thrombotic risk, pharmacological response, and utility of new therapeutic targets. As a rapidly created multicellular aggregate with a polymerized fibrin matrix, blood clots result from hundreds of unique reactions within and around platelets propagating in space and time under hemodynamic conditions. Coronary artery thrombosis is dominated by atherosclerotic plaque rupture, complex pulsatile flows through stenotic regions producing high wall shear stresses, and plaque-derived tissue factor driving thrombin production. In contrast, venous thrombosis is dominated by stasis or depressed flows, endothelial inflammation, white blood cell-derived tissue factor, and ample red blood cell incorporation. By imaging vessels, patient-specific assessment using computational fluid dynamics provides an estimate of local hemodynamics and fractional flow reserve. High-dimensional ex vivo phenotyping of platelet and coagulation can now power multiscale computer simulations at the subcellular to cellular to whole vessel scale of heart attacks or strokes. In addition, an integrated systems biology approach can rank safety and efficacy metrics of various pharmacological interventions or clinical trial designs.
Collapse
Affiliation(s)
- Scott L Diamond
- From the Department of Chemical Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia.
| |
Collapse
|
144
|
Chopard B, de Sousa DR, Lätt J, Mountrakis L, Dubois F, Yourassowsky C, Van Antwerpen P, Eker O, Vanhamme L, Perez-Morga D, Courbebaisse G, Lorenz E, Hoekstra AG, Boudjeltia KZ. A physical description of the adhesion and aggregation of platelets. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170219. [PMID: 28484643 PMCID: PMC5414280 DOI: 10.1098/rsos.170219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 06/07/2023]
Abstract
The early stages of clot formation in blood vessels involve platelet adhesion-aggregation. Although these mechanisms have been extensively studied, gaps in their understanding still persist. We have performed detailed in vitro experiments, using the well-known Impact-R device, and developed a numerical model to better describe and understand this phenomenon. Unlike previous studies, we took into account the differential role of pre-activated and non-activated platelets, as well as the three-dimensional nature of the aggregation process. Our investigation reveals that blood albumin is a major parameter limiting platelet aggregate formation in our experiment. Simulations are in very good agreement with observations and provide quantitative estimates of the adhesion and aggregation rates that are hard to measure experimentally. They also provide a value of the effective diffusion of platelets in blood subject to the shear rate produced by the Impact-R.
Collapse
Affiliation(s)
- Bastien Chopard
- Comupter Science Department, University of Geneva, CUI, 7 route de Drize, 1227 Carouge, Switzerland
| | - Daniel Ribeiro de Sousa
- Laboratory of Experimental Medicine (ULB 222 Unit), Université Libre de Bruxelles (ULB), CHU de Charleroi, Belgium
| | - Jonas Lätt
- Comupter Science Department, University of Geneva, CUI, 7 route de Drize, 1227 Carouge, Switzerland
| | - Lampros Mountrakis
- Computational Science Laboratory, University of Amsterdam, Amsterdam, The Netherlands
| | - Frank Dubois
- Microgravity Research Centre, Université Libre de Bruxelles (ULB), Belgium
| | | | - Pierre Van Antwerpen
- Laboratory of Pharmaceutical Chemistry and Analytic Platform of the Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Belgium
| | - Omer Eker
- Department of Interventional Neuroradiology, CHRU de Montpellier, France
| | - Luc Vanhamme
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles (ULB), Belgium
| | - David Perez-Morga
- Department of Interventional Neuroradiology, CHRU de Montpellier, France
| | | | - Eric Lorenz
- Computational Science Laboratory, University of Amsterdam, Amsterdam, The Netherlands
| | - Alfons G. Hoekstra
- Computational Science Laboratory, University of Amsterdam, Amsterdam, The Netherlands
- ITMO University, Saint Petersburg, Russia
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222 Unit), Université Libre de Bruxelles (ULB), CHU de Charleroi, Belgium
| |
Collapse
|
145
|
Zilberman-Rudenko J, Sylman JL, Garland KS, Puy C, Wong AD, Searson PC, McCarty OJT. Utility of microfluidic devices to study the platelet-endothelium interface. Platelets 2017; 28:449-456. [PMID: 28358586 DOI: 10.1080/09537104.2017.1280600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The integration of biomaterials and understanding of vascular biology has led to the development of perfusable endothelialized flow models, which have been used as valuable tools to study the platelet-endothelium interface under shear. In these models, the parameters of geometry, compliance, biorheology, and cellular complexity are varied to recapitulate the physical biology of platelet recruitment and activation under physiologically relevant conditions of blood flow. In this review, we summarize the mechanistic insights learned from perfusable microvessel models and discuss the potential utility as well as challenges of endothelialized microfluidic devices to study platelet function in the bloodstream in vitro.
Collapse
Affiliation(s)
- Jevgenia Zilberman-Rudenko
- a Biomedical Engineering, School of Medicine , Oregon Health and Science University , Portland , OR , USA
| | - Joanna L Sylman
- a Biomedical Engineering, School of Medicine , Oregon Health and Science University , Portland , OR , USA
| | - Kathleen S Garland
- a Biomedical Engineering, School of Medicine , Oregon Health and Science University , Portland , OR , USA.,c Division of Pediatric Hematology/Oncology , Oregon Health and Science University , Portland , OR , USA
| | - Cristina Puy
- a Biomedical Engineering, School of Medicine , Oregon Health and Science University , Portland , OR , USA
| | - Andrew D Wong
- b Institute for Nanobiotechnology (INBT) , Johns Hopkins University , Baltimore , MD , USA.,d Department of Materials Science and Engineering , Johns Hopkins University , Baltimore , MD , USA
| | - Peter C Searson
- b Institute for Nanobiotechnology (INBT) , Johns Hopkins University , Baltimore , MD , USA.,d Department of Materials Science and Engineering , Johns Hopkins University , Baltimore , MD , USA
| | - Owen J T McCarty
- a Biomedical Engineering, School of Medicine , Oregon Health and Science University , Portland , OR , USA.,c Division of Pediatric Hematology/Oncology , Oregon Health and Science University , Portland , OR , USA
| |
Collapse
|
146
|
Elevated hematocrit enhances platelet accumulation following vascular injury. Blood 2017; 129:2537-2546. [PMID: 28251913 DOI: 10.1182/blood-2016-10-746479] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/22/2017] [Indexed: 12/30/2022] Open
Abstract
Red blood cells (RBCs) demonstrate procoagulant properties in vitro, and elevated hematocrit is associated with reduced bleeding and increased thrombosis risk in humans. These observations suggest RBCs contribute to thrombus formation. However, effects of RBCs on thrombosis are difficult to assess because humans and mice with elevated hematocrit typically have coexisting pathologies. Using an experimental model of elevated hematocrit in healthy mice, we measured effects of hematocrit in 2 in vivo clot formation models. We also assessed thrombin generation, platelet-thrombus interactions, and platelet accumulation in thrombi ex vivo, in vitro, and in silico. Compared with controls, mice with elevated hematocrit (RBCHIGH) formed thrombi at a faster rate and had a shortened vessel occlusion time. Thrombi in control and RBCHIGH mice did not differ in size or fibrin content, and there was no difference in levels of circulating thrombin-antithrombin complexes. In vitro, increasing the hematocrit increased thrombin generation in the absence of platelets; however, this effect was reduced in the presence of platelets. In silico, direct numerical simulations of whole blood predicted elevated hematocrit increases the frequency and duration of interactions between platelets and a thrombus. When human whole blood was perfused over collagen at arterial shear rates, elevating the hematocrit increased the rate of platelet deposition and thrombus growth. These data suggest RBCs promote arterial thrombosis by enhancing platelet accumulation at the site of vessel injury. Maintaining a normal hematocrit may reduce arterial thrombosis risk in humans.
Collapse
|
147
|
|
148
|
A Two-phase mixture model of platelet aggregation. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2017; 35:225-256. [DOI: 10.1093/imammb/dqx001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 01/04/2017] [Indexed: 01/07/2023]
|
149
|
Affiliation(s)
- Scott L Diamond
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, 215-573-5702
| |
Collapse
|
150
|
A General Shear-Dependent Model for Thrombus Formation. PLoS Comput Biol 2017; 13:e1005291. [PMID: 28095402 PMCID: PMC5240924 DOI: 10.1371/journal.pcbi.1005291] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/07/2016] [Indexed: 01/03/2023] Open
Abstract
Modeling the transport, activation, and adhesion of platelets is crucial in predicting thrombus formation and growth following a thrombotic event in normal or pathological conditions. We propose a shear-dependent platelet adhesive model based on the Morse potential that is calibrated by existing invivo and invitro experimental data and can be used over a wide range of flow shear rates ( 100<γ˙<28,000s-1). We introduce an Eulerian-Lagrangian model where hemodynamics is solved on a fixed Eulerian grid, while platelets are tracked using a Lagrangian framework. A force coupling method is introduced for bidirectional coupling of platelet motion with blood flow. Further, we couple the calibrated platelet aggregation model with a tissue-factor/contact pathway coagulation cascade, representing the relevant biology of thrombin generation and the subsequent fibrin deposition. The range of shear rates covered by the proposed model encompass venous and arterial thrombosis, ranging from low-shear-rate conditions in abdominal aortic aneurysms and thoracic aortic dissections to thrombosis in stenotic arteries following plaque rupture, where local shear rates are extremely high. Hemostasis (thrombus formation) is the normal physiological response that prevents significant blood loss after vascular injury. The resulting clots can form under different flow conditions in the veins as well as the arteries. The excessive and undesirable formation of clots (i.e., thrombosis) in our circulatory system may lead to significant morbidity and mortality. Some of these pathologies are deep vein thrombosis and pulmonary embolism and atherothrombosis (thrombosis triggered by plaque rupture) in coronary arteries, to name a few. The process of clot formation and growth at a site on a blood vessel wall involves a number of simultaneous processes including: multiple chemical reactions in the coagulation cascade, species transport and platelet adhesion all of which are strongly influenced by the hydrodynamic forces. Numerical models for blood clotting normally focus on one of the processes under a specific flow condition. Here, we propose a general numerical model that encompass a wide range of hemodynamic conditions in the veins and arteries, with individual platelets and their adhesive dynamics included explicitly in the models. Further, we include the biochemistry of coagulation cascade, which is essential to modeling thrombus formation, and couple that to our platelet aggregation model. The simulation results—tested against three different experiments—demonstrate that the proposed model is effective in capturing the invivo and invitro experimental observations.
Collapse
|