101
|
Clemens B, Emri M, Csaba Aranyi S, Fekete I, Fekete K. Resting-state EEG theta activity reflects degree of genetic determination of the major epilepsy syndromes. Clin Neurophysiol 2021; 132:2232-2239. [PMID: 34315064 DOI: 10.1016/j.clinph.2021.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To explore relationship between EEG theta activity and clinical data that imply the degree of genetic determination of epilepsy. METHODS Clinical data of interest were epilepsy diagnosis and positive / negative family history of epilepsy. Study groups were: idiopathic generalized epilepsy (IGE), focal epilepsy (FE); FE of unknown etiology (FEUNK), FE of postnatal-acquired etiology (FEPA); all patients with positive / negative family history of epilepsy (FAPALL, FANALL, respectively), disregarding of the syndrome; FAP patients with 1st degree affected relative (FAP1) and those with 2nd degree epileptic relative only (FAP2). Quantitative EEG analysis assessed amount of theta (3.5-7.0 Hz) activity in 180 seconds of artifact-free waking EEG background activity for each patient and group. Group comparison was carried out by nonparametric statistics. RESULTS Differences of theta activity were: FAPALL > FANALL (p = 0.01); FAP1 > FAP2 (p = 0.2752). IGE > FE (p = 0.02); FEUNK > FEPA (p = 0.07). CONCLUSIONS This was the first attempt to explore and quantitatively ascertain relationship between an EEG variable and clinical data that imply greater or lesser degree of genetic determination in epilepsy. SIGNIFICANCE Theta activity is endophenotype that bridges the gap between epilepsy susceptibility genes and clinical phenotypes. Amount of theta activity is indicative of degree of genetic determination of the epilepsies.
Collapse
Affiliation(s)
- Béla Clemens
- Kenézy Gyula University Hospital, Neurology Division, University of Debrecen, Hungary.
| | - Miklós Emri
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Hungary
| | - Sándor Csaba Aranyi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Hungary
| | - István Fekete
- University of Debrecen, Faculty of Medicine, Department of Neurology, Hungary
| | - Klára Fekete
- University of Debrecen, Faculty of Medicine, Department of Neurology, Hungary
| |
Collapse
|
102
|
Carpenter JC, Lignani G. Gene Editing and Modulation: the Holy Grail for the Genetic Epilepsies? Neurotherapeutics 2021; 18:1515-1523. [PMID: 34235638 PMCID: PMC8608979 DOI: 10.1007/s13311-021-01081-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 02/04/2023] Open
Abstract
Epilepsy is a complex neurological disorder for which there are a large number of monogenic subtypes. Monogenic epilepsies are often severe and disabling, featuring drug-resistant seizures and significant developmental comorbidities. These disorders are potentially amenable to a precision medicine approach, of which genome editing using CRISPR/Cas represents the holy grail. Here we consider mutations in some of the most 'common' rare epilepsy genes and discuss the different CRISPR/Cas approaches that could be taken to cure these disorders. We consider scenarios where CRISPR-mediated gene modulation could serve as an effective therapeutic strategy and discuss whether a single gene corrective approach could hold therapeutic potential in the context of homeostatic compensation in the developing, highly dynamic brain. Despite an incomplete understanding of the mechanisms of the genetic epilepsies and current limitations of gene editing tools, CRISPR-mediated approaches have game-changing potential in the treatment of genetic epilepsy over the next decade.
Collapse
Affiliation(s)
- Jenna C Carpenter
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square House, London, WC1N 3BG, UK
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square House, London, WC1N 3BG, UK.
| |
Collapse
|
103
|
Shcheglovitov A, Peterson RT. Screening Platforms for Genetic Epilepsies-Zebrafish, iPSC-Derived Neurons, and Organoids. Neurotherapeutics 2021; 18:1478-1489. [PMID: 34595731 PMCID: PMC8608971 DOI: 10.1007/s13311-021-01115-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 02/04/2023] Open
Abstract
Recent advances in molecular and cellular engineering, such as human cell reprogramming, genome editing, and patient-specific organoids, have provided unprecedented opportunities for investigating human disorders in both animals and human-based models at an improved pace and precision. This progress will inevitably lead to the development of innovative drug-screening platforms and new patient-specific therapeutics. In this review, we discuss recent advances that have been made using zebrafish and human-induced pluripotent stem cell (iPSC)-derived neurons and organoids for modeling genetic epilepsies. We also provide our prospective on how these models can potentially be combined to build new screening platforms for antiseizure and antiepileptogenic drug discovery that harness the robustness and tractability of zebrafish models as well as the patient-specific genetics and biology of iPSC-derived neurons and organoids.
Collapse
|
104
|
Xiaozhen S, Fan Y, Fang Y, Xiaoping L, Jia J, Wuhen X, Xiaojun T, Jun S, Yucai C, Hong Z, Guang H, Shengnan W. Novel Truncating and Missense Variants in SEMA6B in Patients With Early-Onset Epilepsy. Front Cell Dev Biol 2021; 9:633819. [PMID: 34017830 PMCID: PMC8129541 DOI: 10.3389/fcell.2021.633819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/17/2021] [Indexed: 11/13/2022] Open
Abstract
Progressive myoclonic epilepsy (PME) is a rare neurodegenerative disease, characterized by myoclonic seizures and tonic clonic seizures, with genetical and phenotypical heterogeneity. The semaphorin 6B (SEMA6B) gene has been recently reported a causal gene of PME. Independent studies are warranted to further support these findings. Here we report that one nonsense variant in NM_032108.3 exon17 c.2056C > T (p.Gln686∗) and one missense variant in exon14 c.1483G > T (p.Gly495Trp) of SEMA6B, both occurring de novo, underlie early-onset epilepsy with variable severity and different response to treatment in two patients. In vitro analyses have demonstrated that the nonsense variant, p.Gln686∗, results in a truncated protein with remarkably increased expression compared to that of the wild type. The truncated protein presented more homogeneous and failed to locate in the plasma membrane. The missense variant p.Gly495Trp affects evolutionarily conserved amino acid and is located in the sema domain, a key functional domain of SEMA6B. It was predicted to perturb the SEMA6B function by altering the tertiary structure of mutant protein, although neither change of protein length and expression nor difference of cellular distribution was observed. Co-immunoprecipitation studies have demonstrated that both variants influence protein binding of SEMA6B and PlxnA2 with varying degrees. Our results provide further evidence to support the initial findings of SEMA6B being causal to epilepsy and indicate that mediating Semaphorin/Plexin signaling is the potential mechanism of the SEMA6B-related disease.
Collapse
Affiliation(s)
- Song Xiaozhen
- Laboratory of Molecular Diagnosis, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Fan
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Fang
- Department of Neurology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lan Xiaoping
- Laboratory of Molecular Diagnosis, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Jia
- Fuxiang Gene Engineering Research Institute, Shanghai, China
| | - Xu Wuhen
- Laboratory of Molecular Diagnosis, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Tang Xiaojun
- Laboratory of Molecular Diagnosis, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shen Jun
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Chen Yucai
- Department of Neurology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhang Hong
- Laboratory of Molecular Diagnosis, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - He Guang
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, Shanghai Jiao Tong University, Shanghai, China
| | - Wu Shengnan
- Laboratory of Molecular Diagnosis, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
105
|
Effects of Lacosamide Treatment on Epileptogenesis, Neuronal Damage and Behavioral Comorbidities in a Rat Model of Temporal Lobe Epilepsy. Int J Mol Sci 2021; 22:ijms22094667. [PMID: 33925082 PMCID: PMC8124899 DOI: 10.3390/ijms22094667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/27/2022] Open
Abstract
Clinically, temporal lobe epilepsy (TLE) is the most prevalent type of partial epilepsy and often accompanied by various comorbidities. The present study aimed to evaluate the effects of chronic treatment with the antiepileptic drug (AED) lacosamide (LCM) on spontaneous motor seizures (SMS), behavioral comorbidities, oxidative stress, neuroinflammation, and neuronal damage in a model of TLE. Vehicle/LCM treatment (30 mg/kg, p.o.) was administered 3 h after the pilocarpine-induced status epilepticus (SE) and continued for up to 12 weeks in Wistar rats. Our study showed that LCM attenuated the number of SMS and corrected comorbid to epilepsy impaired motor activity, anxiety, memory, and alleviated depressive-like responses measured in the elevated plus maze, object recognition test, radial arm maze test, and sucrose preference test, respectively. This AED suppressed oxidative stress through increased superoxide dismutase activity and glutathione levels, and alleviated catalase activity and lipid peroxidation in the hippocampus. Lacosamide treatment after SE mitigated the increased levels of IL-1β and TNF-α in the hippocampus and exerted strong neuroprotection both in the dorsal and ventral hippocampus, basolateral amygdala, and partially in the piriform cortex. Our results suggest that the antioxidant, anti-inflammatory, and neuroprotective activity of LCM is an important prerequisite for its anticonvulsant and beneficial effects on SE-induced behavioral comorbidities.
Collapse
|
106
|
Jiang YL, Song C, Wang Y, Zhao J, Yang F, Gao Q, Leng X, Man Y, Jiang W. Clinical Utility of Exome Sequencing and Reinterpreting Genetic Test Results in Children and Adults With Epilepsy. Front Genet 2020; 11:591434. [PMID: 33391346 PMCID: PMC7775549 DOI: 10.3389/fgene.2020.591434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022] Open
Abstract
The clinical utility of genetic testing for epilepsy has been enhanced with the advancement of next-generation sequencing (NGS) technology along with the rapid updating of publicly available databases. The aim of this study was to evaluate the diagnostic yield of NGS and assess the value of reinterpreting genetic test results in children and adults with epilepsy. We performed genetic testing on 200 patients, including 82 children and 118 adults. The results were classified into three categories: positive, inconclusive, or negative. The reinterpretation of inconclusive results was conducted in April 2020. Overall, we identified disease-causing variants in 12% of the patients in the original analysis, and 14.5% at reinterpretation. The diagnostic yield for adults with epilepsy was similar to that for children (11 vs. 19.5%, p = 0.145). After reinterpretation, 9 of the 86 patients who initially had inconclusive results obtained a clinically significant change in diagnosis. Among these nine revised cases, five obtained positive diagnoses, representing a diagnosis rate of 5.8% (5/86). Manual searches for additional evidence of pathogenicity for candidate variants and updated patient clinical information were the main reasons for diagnostic reclassification. This study emphasizes the diagnostic potential of combining NGS and reinterpretation of inconclusive genetic test reports in children and adults with epilepsy.
Collapse
Affiliation(s)
- Yong-Li Jiang
- Department of Neurology, Comprehensive Epilepsy Center, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Changgeng Song
- Department of Neurology, Comprehensive Epilepsy Center, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuanyuan Wang
- Department of Neurology, Comprehensive Epilepsy Center, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingjing Zhao
- Department of Neurology, Comprehensive Epilepsy Center, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fang Yang
- Department of Neurology, Comprehensive Epilepsy Center, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qiong Gao
- Department of Neurology, Comprehensive Epilepsy Center, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiuxiu Leng
- Department of Neurology, Comprehensive Epilepsy Center, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yulin Man
- Department of Neurology, Comprehensive Epilepsy Center, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wen Jiang
- Department of Neurology, Comprehensive Epilepsy Center, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
107
|
Nicotinic Receptors in Sleep-Related Hypermotor Epilepsy: Pathophysiology and Pharmacology. Brain Sci 2020; 10:brainsci10120907. [PMID: 33255633 PMCID: PMC7761363 DOI: 10.3390/brainsci10120907] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sleep-related hypermotor epilepsy (SHE) is characterized by hyperkinetic focal seizures, mainly arising in the neocortex during non-rapid eye movements (NREM) sleep. The familial form is autosomal dominant SHE (ADSHE), which can be caused by mutations in genes encoding subunits of the neuronal nicotinic acetylcholine receptor (nAChR), Na+-gated K+ channels, as well as non-channel signaling proteins, such as components of the gap activity toward rags 1 (GATOR1) macromolecular complex. The causative genes may have different roles in developing and mature brains. Under this respect, nicotinic receptors are paradigmatic, as different pathophysiological roles are exerted by distinct nAChR subunits in adult and developing brains. The widest evidence concerns α4 and β2 subunits. These participate in heteromeric nAChRs that are major modulators of excitability in mature neocortical circuits as well as regulate postnatal synaptogenesis. However, growing evidence implicates mutant α2 subunits in ADSHE, which poses interpretive difficulties as very little is known about the function of α2-containing (α2*) nAChRs in the human brain. Planning rational therapy must consider that pharmacological treatment could have different effects on synaptic maturation and adult excitability. We discuss recent attempts towards precision medicine in the mature brain and possible approaches to target developmental stages. These issues have general relevance in epilepsy treatment, as the pathogenesis of genetic epilepsies is increasingly recognized to involve developmental alterations.
Collapse
|
108
|
Hirose S, Tanaka Y, Shibata M, Kimura Y, Ishikawa M, Higurashi N, Yamamoto T, Ichise E, Chiyonobu T, Ishii A. Application of induced pluripotent stem cells in epilepsy. Mol Cell Neurosci 2020; 108:103535. [DOI: 10.1016/j.mcn.2020.103535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
|
109
|
Abstract
Whether genetic factors contribute to acquired epilepsies has long been controversial. Supporters observe that, among individuals exposed to seemingly the same brain insult, only a minority develops unprovoked seizures. Yet, only in relatively recent years have studies started to build a case for genetic contributions. Here, we appraise this emerging evidence, by providing a critical review of studies published in the field.
Collapse
Affiliation(s)
- Piero Perucca
- Department of Neuroscience, Central Clinical School, 161666Monash University, Melbourne, Victoria, Australia.,Departments of Medicine and Neurology, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Ingrid E Scheffer
- Department of Medicine, 2281Epilepsy Research Centre, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Melbourne, Victoria, Australia.,The Florey Neuroscience and Murdoch Children's Research Institutes, Melbourne, Victoria, Australia
| |
Collapse
|
110
|
Lazo PA, García JL, Gómez-Puertas P, Marcos-Alcalde Í, Arjona C, Villarroel A, González-Sarmiento R, Fons C. Novel Dominant KCNQ2 Exon 7 Partial In-Frame Duplication in a Complex Epileptic and Neurodevelopmental Delay Syndrome. Int J Mol Sci 2020; 21:ijms21124447. [PMID: 32585800 PMCID: PMC7352878 DOI: 10.3390/ijms21124447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/23/2022] Open
Abstract
Complex neurodevelopmental syndromes frequently have an unknown etiology, in which genetic factors play a pathogenic role. This study utilizes whole-exome sequencing (WES) to examine four members of a family with a son presenting, since birth, with epileptic-like crises, combined with cerebral palsy, severe neuromotor and developmental delay, dystonic tetraparexia, axonal motor affectation, and hyper-excitability of unknown origin. The WES study detected within the patient a de novo heterozygous in-frame duplication of thirty-six nucleotides within exon 7 of the human KCNQ2 gene. This insertion duplicates the first twelve amino acids of the calmodulin binding site I. Molecular dynamics simulations of this KCNQ2 peptide duplication, modelled on the 3D structure of the KCNQ2 protein, suggest that the duplication may lead to the dysregulation of calcium inhibition of this protein function.
Collapse
Affiliation(s)
- Pedro A. Lazo
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 30007 Salamanca, Spain; (J.L.G.); (R.G.-S.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 30007 Salamanca, Spain
- Correspondence:
| | - Juan L. García
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 30007 Salamanca, Spain; (J.L.G.); (R.G.-S.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 30007 Salamanca, Spain
| | - Paulino Gómez-Puertas
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain; (P.G.-P.); (Í.M.-A.)
| | - Íñigo Marcos-Alcalde
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain; (P.G.-P.); (Í.M.-A.)
- Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Cesar Arjona
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain; (C.A.); (C.F.)
- Instituto Pediátrico de Enfermedades Raras (IPER), Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Alvaro Villarroel
- Instituto de Biofísica, Consejo Superior de Investigaciones Científicas (CSIC), Universidad del País Vasco, 48940 Bilbao, Spain;
| | - Rogelio González-Sarmiento
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 30007 Salamanca, Spain; (J.L.G.); (R.G.-S.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 30007 Salamanca, Spain
- Unidad de Genética Molecular, Departamento de Medicina, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Carmen Fons
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain; (C.A.); (C.F.)
- Neurology Department, Hospital Sant Joan de Déu, Sant Joan de Déu Research Institute and CIBERER, Instituto de Salud Carlos III, 08950 Barcelona, Spain
| |
Collapse
|