101
|
O'Connell LM, Coffey A, O'Mahony JM. Genomic analysis of seven mycobacteriophages identifies three novel species with differing phenotypic stabilities. Heliyon 2024; 10:e27932. [PMID: 38515691 PMCID: PMC10955285 DOI: 10.1016/j.heliyon.2024.e27932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Recently, case studies have been published regarding the application of mycobacteriophage (MP) therapy (MPT) in patients with multi-antibiotic-resistant infections. A major limitation in the development of MPT is the paucity of therapeutically useful MP. As there are approximately 10,000 MP that have yet to be sequenced, it is possible that characterization of this cohort would increase the repertoire of useful MP. This study aims to contribute to such a strategy, by characterizing a cohort of 7 mycobacteriophages. Sequencing analyses revealed that the MP have unique sequences, and subsequent gene annotation revealed differences in gene organization. Notably, MP LOCARD has the largest genome and operons encoding for glycosyltransferases. Taxonomic analysis executed with VIRIDIC, Gegenees and VICTOR revealed that LOCARD belongs to a different genus than the other phages and is the foundational member of one of three novel species identified in this study. LOCARD, LOCV2, and LOCV5 were selected as representative members of their species and subjected to phenotypic analyses to compare their stability under biologically and industrially relevant conditions. Again LOCARD stood out, as it was unaffected by the typical temperatures (37 °C) and salinity (0.9%) experienced in mammals, while the viability of LOCV2 and LOCV5 was significantly reduced. LOCARD was also tolerant to pH 10, low levels of antiviral detergent and was the least impacted by a single freeze-thaw cycle. When all these results are considered, it indicates that LOCARD in particular, has potential therapeutic and/or diagnostics applications, given its resilience towards physiological and storage conditions.
Collapse
Affiliation(s)
- Laura M. O'Connell
- Munster Technological University, Rossa Avenue, Bishopstown, Cork, T12 P928, Ireland
| | - Aidan Coffey
- Munster Technological University, Rossa Avenue, Bishopstown, Cork, T12 P928, Ireland
| | - Jim M. O'Mahony
- Munster Technological University, Rossa Avenue, Bishopstown, Cork, T12 P928, Ireland
| |
Collapse
|
102
|
Sittiju P, Wudtiwai B, Chongchai A, Hajitou A, Kongtawelert P, Pothacharoen P, Suwan K. Bacteriophage-based particles carrying the TNF-related apoptosis-inducing ligand (TRAIL) gene for targeted delivery in hepatocellular carcinoma. NANOSCALE 2024; 16:6603-6617. [PMID: 38470366 PMCID: PMC10977282 DOI: 10.1039/d3nr05660k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The TRAIL (Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand) is a promising candidate for cancer treatment due to its unique ability to selectively induce programmed cell death, or apoptosis, in cancer cells while sparing healthy ones. This selectivity arises from the preferential binding of the TRAIL to death receptors on cancer cells, triggering a cascade of events that lead to their demise. However, significant limitations in using the TRAIL for cancer treatment are the administration of the TRAIL protein that can potentially lead to tissue toxicity (off-target) and the short half-life of the TRAIL in the body which may necessitate frequent and sustained administration; these can pose logistical challenges for long-term treatment regimens. We have devised a novel approach for surmounting these limitations by introducing the TRAIL gene directly into cancer cells, enabling them to produce the TRAIL locally and subsequently trigger apoptosis. A novel gene delivery system such as a bacteriophage-based particle TPA (transmorphic phage/AAV) was utilized to address these limitations. TPA is a hybrid M13 filamentous bacteriophage particle encapsulating a therapeutic gene cassette with inverted terminal repeats (ITRs) from adeno-associated viruses (AAVs). The particle also showed a tumour targeting ligand, CDCRGDCFC (RGD4C), on its capsid (RGD4C.TPA) to target the particle to cancer cells. RGD4C selectively binds to αvβ3 and αvβ5 integrins overexpressed on the surface of most of the cancer cells but is barely present on normal cells. Hepatocellular carcinoma (HCC) was chosen as a model because it has one of the lowest survival rates among cancers. We demonstrated that human HCC cell lines (Huh-7 and HepG2) express αvβ5 integrin receptors on their surface. These HCC cells also express death receptors and TRAIL-binding receptors. We showed that the targeted TPA particle carrying the transmembrane TRAIL gene (RGD4C.TPA-tmTRAIL) selectively and efficiently delivered the tmTRAIL gene to HCC cells resulting in the production of tmTRAIL from transduced cells and subsequently induced apoptotic death of HCC cells. This tumour-targeted particle can be an excellent candidate for the targeted gene therapy of HCC.
Collapse
Affiliation(s)
- Pattaralawan Sittiju
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Cancer Phage Therapy Group, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Benjawan Wudtiwai
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Aitthiphon Chongchai
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Amin Hajitou
- Cancer Phage Therapy Group, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Prachya Kongtawelert
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Peraphan Pothacharoen
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Keittisak Suwan
- Cancer Phage Therapy Group, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
103
|
Wang J, Zhang M, Pei J, Yi W, Fan L, Wang C, Xiao X. Isolation and identification of a novel phage targeting clinical multidrug-resistant Corynebacterium striatum isolates. Front Cell Infect Microbiol 2024; 14:1361045. [PMID: 38572320 PMCID: PMC10987712 DOI: 10.3389/fcimb.2024.1361045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Over the past decade, Corynebacterium striatum (C. striatum), an emerging multidrug-resistant (MDR) pathogen, has significantly challenged healthcare settings, especially those involving individuals with weakened immune systems. The rise of these superbugs necessitates innovative solutions. Methods This study aimed to isolate and characterize bacteriophages targeting MDR-C. striatum. Utilizing 54 MDR-C. striatum isolates from a local hospital as target strains, samples were collected from restroom puddles for phage screening. Dot Plaque and Double-layer plate Assays were employed for screening. Results A novel temperate bacteriophage, named CSP1, was identified through a series of procedures, including purification, genome extraction, sequencing, and one-step growth curves. CSP1 possesses a 39,752 base pair circular double-stranded DNA genome with HK97-like structural proteins and potential for site-specific recombination. It represents a new species within the unclassified Caudoviricetes class, as supported by transmission electron microscopy, genomic evolutionary analysis, and collinearity studies. Notably, CSP1 infected and lysed 21 clinical MDR-C. striatum isolates, demonstrating a wide host range. The phage remained stable in conditions ranging from -40 to 55°C, pH 4 to 12, and in 0.9% NaCl buffer, showing no cytotoxicity. Discussion The identification of CSP1 as the first phage targeting clinical C. striatum strains opens new possibilities in bacteriophage therapy research, and the development of diagnostic and therapeutic tools against pathogenic bacteria.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Pathogen Biology, School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| | - Meng Zhang
- Department of Pathogen Biology, School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| | - Jiao Pei
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Wei Yi
- Department of Pathogen Biology, School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| | - Li Fan
- Department of Pathogen Biology, School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| | - Chunhua Wang
- Department of Clinical Laboratory, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xiao Xiao
- Department of Pathogen Biology, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
104
|
Needham P, Page RC, Yehl K. Phage-layer interferometry: a companion diagnostic for phage therapy and a bacterial testing platform. Sci Rep 2024; 14:6026. [PMID: 38472239 PMCID: PMC10933294 DOI: 10.1038/s41598-024-55776-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 02/01/2024] [Indexed: 03/14/2024] Open
Abstract
The continuing and rapid emergence of antibiotic resistance (AMR) calls for innovations in antimicrobial therapies. A promising, 're-emerging' approach is the application of bacteriophage viruses to selectively infect and kill pathogenic bacteria, referred to as phage therapy. In practice, phage therapy is personalized and requires companion diagnostics to identify efficacious phages, which are then formulated into a therapeutic cocktail. The predominant means for phage screening involves optical-based assays, but these methods cannot be carried out in complex media, such as colored solutions, inhomogeneous mixtures, or high-viscosity samples, which are often conditions encountered in vivo. Moreover, these assays cannot distinguish phage binding and lysis parameters, which are important for standardizing phage cocktail formulation. To address these challenges, we developed Phage-layer Interferometry (PLI) as a companion diagnostic. Herein, PLI is assessed as a quantitative phage screening method and prototyped as a bacterial detection platform. Importantly, PLI is amenable to automation and is functional in complex, opaque media, such as baby formula. Due to these newfound capabilities, we foresee immediate and broad impact of PLI for combating AMR and protecting against foodborne illnesses.
Collapse
Affiliation(s)
- Patrick Needham
- Department of Chemistry and Biochemistry, Miami University, Oxford, 45056, USA
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, 45056, USA
| | - Kevin Yehl
- Department of Chemistry and Biochemistry, Miami University, Oxford, 45056, USA.
| |
Collapse
|
105
|
Faltus T. The Medicinal Phage-Regulatory Roadmap for Phage Therapy under EU Pharmaceutical Legislation. Viruses 2024; 16:443. [PMID: 38543808 PMCID: PMC10974108 DOI: 10.3390/v16030443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 05/23/2024] Open
Abstract
Bacteriophage therapy is a promising approach to treating bacterial infections. Research and development of bacteriophage therapy is intensifying due to the increase in antibiotic resistance and the faltering development of new antibiotics. Bacteriophage therapy uses bacteriophages (phages), i.e., prokaryotic viruses, to specifically target and kill pathogenic bacteria. The legal handling of this type of therapy raises several questions. These include whether phage therapeutics belong to a specially regulated class of medicinal products, and which legal framework should be followed with regard to the various technical ways in which phage therapeutics can be manufactured and administered. The article shows to which class of medicinal products phage therapeutics from wild type phages and from genetically modified (designer) phages do or do not belong. Furthermore, the article explains which legal framework is relevant for the manufacture and administration of phage therapeutics, which are manufactured in advance in a uniform, patient-independent manner, and for tailor-made patient-specific phage therapeutics. For the systematically coherent, successful translation of phage therapy, the article considers pharmaceutical law and related legal areas, such as genetic engineering law. Finally, the article shows how the planned legislative revisions of Directive 2001/83/EC and Regulation (EC) No 726/2004 may affect the legal future of phage therapy.
Collapse
Affiliation(s)
- Timo Faltus
- Chair of Public Law, Law School, Faculty of Law, Economics and Business, Martin-Luther-University Halle-Wittenberg, 06099 Halle an der Saale, Germany
| |
Collapse
|
106
|
Hong Q, Chang RYK, Assafiri O, Morales S, Chan HK. Optimizing in vitro phage-ciprofloxacin combination formulation for respiratory therapy of multi-drug resistant Pseudomonas aeruginosa infections. Int J Pharm 2024; 652:123853. [PMID: 38280500 DOI: 10.1016/j.ijpharm.2024.123853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Respiratory infection caused by multi-drug resistant (MDR) Pseudomonas aeruginosa is challenging to treat. In this study, we investigate the optimal dose of anti-pseudomonas phage PEV31 (103, 105, and 108 PFU/mL) combined with ciprofloxacin (ranging from 1/8× MIC to 8× MIC) to treat the MDR P. aeruginosa strain FADD1-PA001 using time-kill studies. We determined the impact of phage growth kinetics in the presence of ciprofloxacin through one-step growth analysis. Single treatments with either phage PEV31 or ciprofloxacin (except at 8× MIC) showed limited bactericidal efficiency, with bacterial regrowth observed at 48 h. The most effective treatments were PEV31 at multiplicity of infection (MOI) of 0.1 and 100 combined with ciprofloxacin at concentrations above 1× MIC, resulting in a >4 log10 reduction in bacterial counts. While the burst size of phage PEV31 was decreased with increasing ciprofloxacin concentration, robust antimicrobial effects were still maintained in the combination treatment. Aerosol samples collected from vibrating mesh nebulization of the combination formulation at phage MOI of 100 with 2× MIC effectively inhibited bacterial density. In summary, our combination treatments eradicated in vitro bacterial growth and sustained antimicrobial effects for 48 h. These results indicated the potential application of nebulization-based strategies for the combination treatment against MDR lung infections.
Collapse
Affiliation(s)
- Qixuan Hong
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Omar Assafiri
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
107
|
Bisen M, Kharga K, Mehta S, Jabi N, Kumar L. Bacteriophages in nature: recent advances in research tools and diverse environmental and biotechnological applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22199-22242. [PMID: 38411907 DOI: 10.1007/s11356-024-32535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
Bacteriophages infect and replicate within bacteria and play a key role in the environment, particularly in microbial ecosystems and bacterial population dynamics. The increasing recognition of their significance stems from their wide array of environmental and biotechnological uses, which encompass the mounting issue of antimicrobial resistance (AMR). Beyond their therapeutic potential in combating antibiotic-resistant infections, bacteriophages also find vast applications such as water quality monitoring, bioremediation, and nutrient cycling within environmental sciences. Researchers are actively involved in isolating and characterizing bacteriophages from different natural sources to explore their applications. Gaining insights into key aspects such as the life cycle of bacteriophages, their host range, immune interactions, and physical stability is vital to enhance their application potential. The establishment of diverse phage libraries has become indispensable to facilitate their wide-ranging uses. Consequently, numerous protocols, ranging from traditional to cutting-edge techniques, have been developed for the isolation, detection, purification, and characterization of bacteriophages from diverse environmental sources. This review offers an exploration of tools, delves into the methods of isolation, characterization, and the extensive environmental applications of bacteriophages, particularly in areas like water quality assessment, the food sector, therapeutic interventions, and the phage therapy in various infections and diseases.
Collapse
Affiliation(s)
- Monish Bisen
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Kusum Kharga
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sakshi Mehta
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Nashra Jabi
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
- Cancer Biology Laboratory, Raj Khosla Centre for Cancer Research, Shoolini University, Himachal Pradesh, Solan, 173229, India.
| |
Collapse
|
108
|
Lee S, Lynch S, Lin RCY, Myung H, Iredell JR. Phage Therapy in Korea: A Prescribers' Survey of Attitudes Amongst Korean Infectious Diseases Specialists Towards Phage Therapy. Infect Chemother 2024; 56:57-65. [PMID: 38178710 PMCID: PMC10990887 DOI: 10.3947/ic.2023.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/23/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Concerns about the rise in antimicrobial resistance have led to renewed interest in phage therapy worldwide, but perceptions among relevant medical professionals in Korea remain largely unknown. MATERIALS AND METHODS We conducted a semi-quantitative online survey to evaluate the Korean infectious disease specialists' perception of phage therapy. RESULTS We sent out the link to the questionnaire to 380 subjects and received 91 replies, with 90/91 respondents identifying as Korean infectious diseases specialists or trainees. Ten out of 91 (11.0%) respondents scored themselves as well-informed about phage therapy. The majority (93.4%) of respondents would consider using phage therapy if the safety of the phage formulation is guaranteed, and 80% of respondents would consider participating in clinical trials with phage therapy given adequate support. The biggest concern was uncertainty about safety (73.6%) and efficacy (65.9%). Acinetobacter baumannii was ranked as a high priority for phage therapy research, as were bone and joint infections. CONCLUSION Korean infectious diseases specialists are receptive to phage therapy, but a better understanding of safety, efficacy and clinical trials are warranted to progress phage therapy within the Korean healthcare system.
Collapse
Affiliation(s)
- Shinwon Lee
- Department of Internal Medicine, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, Busan, Korea
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW, Australia.
| | - Stephanie Lynch
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine, The University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Ruby C Y Lin
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine, The University of Sydney, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Heejoon Myung
- Bioscience and Biotechnology, Hankuk University of Foreign Studies, Seoul, Korea
- LyseNTech, Co. Ltd. Seongnam, Korea
| | - Jonathan R Iredell
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine, The University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia.
| |
Collapse
|
109
|
Forni D, Pozzoli U, Cagliani R, Sironi M. Dinucleotide biases in the genomes of prokaryotic and eukaryotic dsDNA viruses and their hosts. Mol Ecol 2024; 33:e17287. [PMID: 38263702 DOI: 10.1111/mec.17287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
The genomes of cellular organisms display CpG and TpA dinucleotide composition biases. Such biases have been poorly investigated in dsDNA viruses. Here, we show that in dsDNA virus, bacterial, and eukaryotic genomes, the representation of TpA and CpG dinucleotides is strongly dependent on genomic G + C content. Thus, the classical observed/expected ratios do not fully capture dinucleotide biases across genomes. Because a larger portion of the variance in TpA frequency was explained by G + C content, we explored which additional factors drive the distribution of CpG dinucleotides. Using the residuals of the linear regressions as a measure of dinucleotide abundance and ancestral state reconstruction across eukaryotic and prokaryotic virus trees, we identified an important role for phylogeny in driving CpG representation. Nonetheless, phylogenetic ANOVA analyses showed that few host associations also account for significant variations. Among eukaryotic viruses, most significant differences were observed between arthropod-infecting viruses and viruses that infect vertebrates or unicellular organisms. However, an effect of viral DNA methylation status (either driven by the host or by viral-encoded methyltransferases) is also likely. Among prokaryotic viruses, cyanobacteria-infecting phages resulted to be significantly CpG-depleted, whereas phages that infect bacteria in the genera Burkolderia and Staphylococcus were CpG-rich. Comparison with bacterial genomes indicated that this effect is largely driven by the general tendency for phages to resemble the host's genomic CpG content. Notably, such tendency is stronger for temperate than for lytic phages. Our data shed light into the processes that shape virus genome composition and inform manipulation strategies for biotechnological applications.
Collapse
Affiliation(s)
- Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Uberto Pozzoli
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| |
Collapse
|
110
|
Westover KM, Atkinson AR, Bowers AG, Brown AL, Ferebee JC, Keisler CA, Lee KL, Payton AO, Peralta LA, Phu JV, Pollock KA, Scott MG, Vaughan BE, Wilczak KM, Frost VJ. Complete genome sequences of Mycobacterium smegmatis phages Ashballer and Bombitas. Microbiol Resour Announc 2024; 13:e0099023. [PMID: 38231182 PMCID: PMC10868224 DOI: 10.1128/mra.00990-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024] Open
Abstract
We report the discovery of two mycobacteriophages isolated from soil in Rock Hill, South Carolina. Ashballer has a genome sequence length of 52,231 bp, while Bombitas is relatively larger at 110,129 bp. Both have siphovirus morphologies and have temperate lifecycles.
Collapse
Affiliation(s)
- Kristi M. Westover
- Department of Biology, Winthrop University, Rock Hill, South Carolina, USA
| | - Alexis R. Atkinson
- Department of Biology, Winthrop University, Rock Hill, South Carolina, USA
| | - Abby G. Bowers
- Department of Biology, Winthrop University, Rock Hill, South Carolina, USA
| | - Amaya L. Brown
- Department of Biology, Winthrop University, Rock Hill, South Carolina, USA
| | - James C. Ferebee
- Department of Biology, Winthrop University, Rock Hill, South Carolina, USA
| | - Chase A. Keisler
- Department of Biology, Winthrop University, Rock Hill, South Carolina, USA
| | - Kaylyn L. Lee
- Department of Biology, Winthrop University, Rock Hill, South Carolina, USA
| | - Amaya O. Payton
- Department of Biology, Winthrop University, Rock Hill, South Carolina, USA
| | - Lidia A. Peralta
- Department of Biology, Winthrop University, Rock Hill, South Carolina, USA
| | - Julianne V. Phu
- Department of Biology, Winthrop University, Rock Hill, South Carolina, USA
| | - Khamryn A. Pollock
- Department of Biology, Winthrop University, Rock Hill, South Carolina, USA
| | - Maya G. Scott
- Department of Biology, Winthrop University, Rock Hill, South Carolina, USA
| | - Bryson E. Vaughan
- Department of Biology, Winthrop University, Rock Hill, South Carolina, USA
| | - Karissa M. Wilczak
- Department of Biology, Winthrop University, Rock Hill, South Carolina, USA
| | - Victoria J. Frost
- Department of Biology, Winthrop University, Rock Hill, South Carolina, USA
| |
Collapse
|
111
|
Zamora PF, Reidy TG, Armbruster CR, Sun M, Van Tyne D, Turner PE, Koff JL, Bomberger JM. Lytic bacteriophages interact with respiratory epithelial cells and induce the secretion of antiviral and proinflammatory cytokines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579115. [PMID: 38370761 PMCID: PMC10871231 DOI: 10.1101/2024.02.06.579115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Phage therapy is a therapeutic approach to treat multidrug resistant infections that employs lytic bacteriophages (phages) to eliminate bacteria. Despite the abundant evidence for its success as an antimicrobial in Eastern Europe, there is scarce data regarding its effects on the human host. Here, we aimed to understand how lytic phages interact with cells of the airway epithelium, the tissue site that is colonized by bacterial biofilms in numerous chronic respiratory disorders. We determined that interactions between phages and epithelial cells depend on specific phage properties as well as physiochemical features of the microenvironment. Although poor at internalizing phages, the airway epithelium responds to phage exposure by changing its transcriptional profile and secreting antiviral and proinflammatory cytokines that correlate with specific phage families. Overall, our findings indicate that mammalian responses to phages are heterogenous and could potentially alter the way that respiratory local defenses aid in bacterial clearance during phage therapy. Thus, besides phage receptor specificity in a particular bacterial isolate, the criteria to select lytic phages for therapy should be expanded to include mammalian cell responses.
Collapse
Affiliation(s)
- Paula F. Zamora
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH
| | - Thomas G. Reidy
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Catherine R. Armbruster
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| | - Ming Sun
- Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA
| | - Daria Van Tyne
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Paul E. Turner
- Center for Phage Biology and Therapy, Yale University, New Haven, CT
| | - Jonathan L. Koff
- Center for Phage Biology and Therapy, Yale University, New Haven, CT
| | - Jennifer M. Bomberger
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH
| |
Collapse
|
112
|
Liu Y, Zhen N, Liao D, Niu J, Liu R, Li Z, Lei Z, Yang Z. Application of bacteriophage φPaP11-13 attenuates rat Cutibacterium acnes infection lesions by promoting keratinocytes apoptosis via inhibiting PI3K/Akt pathway. Microbiol Spectr 2024; 12:e0283823. [PMID: 38197658 PMCID: PMC10845971 DOI: 10.1128/spectrum.02838-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
Acne vulgaris caused by antibiotic-resistant Cutibacterium acnes (C. acnes) infection is difficult to treat conventionally. Phages have been suggested as a potential solution, but research on the mechanism of phage treatment is inadequate. This research investigates the underlying molecular mechanisms of phage φPaP11-13 attenuating C. acnes-induced inflammation in rat models. We found that rats infected with C. acnes had higher average ear thickness, greater enrichment of inflammatory cells as shown by hematoxylin-eosin (HE) staining, and fewer TUNEL (TdT-mediated dUTP Nick-End Labeling)-positive keratinocytes visualized by IF staining. Moreover, an increase of IGF-1 and IGF-1 receptor (IGF-1r) was detected using the immunohistochemical (IHC) staining method, Western blot (WB), and quantitative real-time PCR (qRT-PCR) when infected with C. acnes, which was decreased after the application of phage φPaP11-13. By applying the IGF-1 antibody, it was demonstrated that the severity of C. acnes-induced inflammation was relevant to the expression of IGF-1. Through WB and qRT-PCR, activation of the PI3K/Akt pathway and a down-regulation of the BAD-mediated apoptosis pathway were discovered after C. acnes infection. Subsequently, it was shown that the activation of the PI3K/Akt pathway against BAD-mediated apoptosis pathway was alleviated after applying phage φPaP11-13. Furthermore, applying the IGF-1r inhibitor, Pan-PI3K inhibitor, and Akt inhibitor reversed the changing trends of BAD induced by C. acnes and phage φPaP11-13. This study demonstrates that one of the critical mechanisms underlying the attenuation of acne vulgaris by phage φPaP11-13 is lysing C. acnes and regulating keratinocyte apoptosis via the PI3K/Akt signaling pathway.IMPORTANCECutibacterium acnes infection-induced acne vulgaris may cause severe physical and psychological prognosis. However, the overuse of antibiotics develops drug resistance, bringing challenges in treating Cutibacterium acnes. Bacteriophages are currently proven effective in MDR (multiple drug-resistant) Cutibacterium acnes, but there is a significant lack of understanding of phage therapy. This study demonstrated a novel way of curing acne vulgaris by using phages through promoting cell death of excessive keratinocytes in acne lesions by lysing Cutibacterium acnes. However, the regulation of this cell cycle has not been proven to be directly mediated by phages. The hint of ternary relation among "phage-bacteria-host" inspires huge interest in future phage therapy studies.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University (the Third Military Medical University), Chongqing, China
- Cadet Brigade 4, College of Basic Medicine, Army Medical University (the Third Military Medical University), Chongqing, China
| | - Ni Zhen
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital Third Military Medical University, Chongqing, China
| | - Danxi Liao
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University (the Third Military Medical University), Chongqing, China
| | - Jiahui Niu
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University (the Third Military Medical University), Chongqing, China
- Cadet Brigade 4, College of Basic Medicine, Army Medical University (the Third Military Medical University), Chongqing, China
| | - Ruolan Liu
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University (the Third Military Medical University), Chongqing, China
| | - Zijiao Li
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University (the Third Military Medical University), Chongqing, China
- Cadet Brigade 4, College of Basic Medicine, Army Medical University (the Third Military Medical University), Chongqing, China
| | - Zeyuan Lei
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University (the Third Military Medical University), Chongqing, China
| | - Zichen Yang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University (the Third Military Medical University), Chongqing, China
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital Third Military Medical University, Chongqing, China
| |
Collapse
|
113
|
Würstle S, Lee A, Kortright KE, Winzig F, An W, Stanley GL, Rajagopalan G, Harris Z, Sun Y, Hu B, Blazanin M, Hajfathalian M, Bollyky PL, Turner PE, Koff JL, Chan BK. Optimized preparation pipeline for emergency phage therapy against Pseudomonas aeruginosa at Yale University. Sci Rep 2024; 14:2657. [PMID: 38302552 PMCID: PMC10834462 DOI: 10.1038/s41598-024-52192-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Bacteriophage therapy is one potential strategy to treat antimicrobial resistant or persistent bacterial infections, and the year 2021 marked the centennial of Felix d'Hérelle's first publication on the clinical applications of phages. At the Center for Phage Biology & Therapy at Yale University, a preparatory modular approach has been established to offer safe and potent phages for single-patient investigational new drug applications while recognizing the time constraints imposed by infection(s). This study provides a practical walkthrough of the pipeline with an Autographiviridae phage targeting Pseudomonas aeruginosa (phage vB_PaeA_SB, abbreviated to ΦSB). Notably, a thorough phage characterization and the evolutionary selection pressure exerted on bacteria by phages, analogous to antibiotics, are incorporated into the pipeline.
Collapse
Affiliation(s)
- Silvia Würstle
- Yale Center for Phage Biology and Therapy, Yale University, 165 Prospect Street, New Haven, CT, 06520, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, 06519, USA
- Technical University of Munich, 81675, Munich, Germany
| | - Alina Lee
- Yale Center for Phage Biology and Therapy, Yale University, 165 Prospect Street, New Haven, CT, 06520, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Kaitlyn E Kortright
- Yale Center for Phage Biology and Therapy, Yale University, 165 Prospect Street, New Haven, CT, 06520, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Franziska Winzig
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
- Technical University of Munich, 81675, Munich, Germany
| | - William An
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Gail L Stanley
- Yale Center for Phage Biology and Therapy, Yale University, 165 Prospect Street, New Haven, CT, 06520, USA
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Govindarajan Rajagopalan
- Yale Center for Phage Biology and Therapy, Yale University, 165 Prospect Street, New Haven, CT, 06520, USA
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Zach Harris
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Ying Sun
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Buqu Hu
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Michael Blazanin
- Yale Center for Phage Biology and Therapy, Yale University, 165 Prospect Street, New Haven, CT, 06520, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Maryam Hajfathalian
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Paul E Turner
- Yale Center for Phage Biology and Therapy, Yale University, 165 Prospect Street, New Haven, CT, 06520, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, 06519, USA
- Program in Microbiology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Jonathan L Koff
- Yale Center for Phage Biology and Therapy, Yale University, 165 Prospect Street, New Haven, CT, 06520, USA.
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, 06519, USA.
| | - Benjamin K Chan
- Yale Center for Phage Biology and Therapy, Yale University, 165 Prospect Street, New Haven, CT, 06520, USA.
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
114
|
Oliveira A, Dias C, Oliveira R, Almeida C, Fuciños P, Sillankorva S, Oliveira H. Paving the way forward: Escherichia coli bacteriophages in a One Health approach. Crit Rev Microbiol 2024; 50:87-104. [PMID: 36608263 DOI: 10.1080/1040841x.2022.2161869] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023]
Abstract
Escherichia coli is one of the most notorious pathogens for its ability to adapt, colonize, and proliferate in different habitats through a multitude of acquired virulence factors. Its presence affects the food-processing industry and causes food poisoning, being also a major economic burden for the food, agriculture, and health sectors. Bacteriophages are emerging as an appealing strategy to mitigate bacterial pathogens, including specific E. coli pathovars, without exerting a deleterious effect on humans and animals. This review globally analyzes the applied research on E. coli phages for veterinary, food, and human use. It starts by describing the pathogenic E. coli pathotypes and their relevance in human and animal context. The idea that phages can be used as a One Health approach to control and interrupt the transmission routes of pathogenic E. coli is sustained through an exhaustive revision of the recent literature. The emerging phage formulations, genetic engineering and encapsulation technologies are also discussed as a means of improving phage-based control strategies, with a particular focus on E. coli pathogens.
Collapse
Affiliation(s)
- Ana Oliveira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Carla Dias
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Ricardo Oliveira
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - Carina Almeida
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - Pablo Fuciños
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - Sanna Sillankorva
- INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga, Portugal
| | - Hugo Oliveira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
115
|
Liu K, Wang C, Zhou X, Guo X, Yang Y, Liu W, Zhao R, Song H. Bacteriophage therapy for drug-resistant Staphylococcus aureus infections. Front Cell Infect Microbiol 2024; 14:1336821. [PMID: 38357445 PMCID: PMC10864608 DOI: 10.3389/fcimb.2024.1336821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Drug-resistant Staphylococcus aureus stands as a prominent pathogen in nosocomial and community-acquired infections, capable of inciting various infections at different sites in patients. This includes Staphylococcus aureus bacteremia (SaB), which exhibits a severe infection frequently associated with significant mortality rate of approximately 25%. In the absence of better alternative therapies, antibiotics is still the main approach for treating infections. However, excessive use of antibiotics has, in turn, led to an increase in antimicrobial resistance. Hence, it is imperative that new strategies are developed to control drug-resistant S. aureus infections. Bacteriophages are viruses with the ability to infect bacteria. Bacteriophages, were used to treat bacterial infections before the advent of antibiotics, but were subsequently replaced by antibiotics due to limited theoretical understanding and inefficient preparation processes at the time. Recently, phages have attracted the attention of many researchers again because of the serious problem of antibiotic resistance. This article provides a comprehensive overview of phage biology, animal models, diverse clinical case treatments, and clinical trials in the context of drug-resistant S. aureus phage therapy. It also assesses the strengths and limitations of phage therapy and outlines the future prospects and research directions. This review is expected to offer valuable insights for researchers engaged in phage-based treatments for drug-resistant S. aureus infections.
Collapse
Affiliation(s)
- Kaixin Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Chao Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xudong Zhou
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
- College of Public Health, China Medical University, Shenyang, China
| | - Xudong Guo
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yi Yang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Wanying Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Rongtao Zhao
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hongbin Song
- College of Public Health, Zhengzhou University, Zhengzhou, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
- College of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
116
|
Adeosun WB, Loots DT. Medicinal Plants against Viral Infections: A Review of Metabolomics Evidence for the Antiviral Properties and Potentials in Plant Sources. Viruses 2024; 16:218. [PMID: 38399995 PMCID: PMC10892737 DOI: 10.3390/v16020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Most plants have developed unique mechanisms to cope with harsh environmental conditions to compensate for their lack of mobility. A key part of their coping mechanisms is the synthesis of secondary metabolites. In addition to their role in plants' defense against pathogens, they also possess therapeutic properties against diseases, and their use by humans predates written history. Viruses are a unique class of submicroscopic agents, incapable of independent existence outside a living host. Pathogenic viruses continue to pose a significant threat to global health, leading to innumerable fatalities on a yearly basis. The use of medicinal plants as a natural source of antiviral agents has been widely reported in literature in the past decades. Metabolomics is a powerful research tool for the identification of plant metabolites with antiviral potentials. It can be used to isolate compounds with antiviral capacities in plants and study the biosynthetic pathways involved in viral disease progression. This review discusses the use of medicinal plants as antiviral agents, with a special focus on the metabolomics evidence supporting their efficacy. Suggestions are made for the optimization of various metabolomics methods of characterizing the bioactive compounds in plants and subsequently understanding the mechanisms of their operation.
Collapse
Affiliation(s)
- Wilson Bamise Adeosun
- Human Metabolomics, North-West University, Private Bag X6001, Box 269, Potchefstroom 2531, South Africa;
| | | |
Collapse
|
117
|
Zhang J, He X, Tang BZ. Aggregation-Induced Emission-Armored Living Bacteriophage-DNA Nanobioconjugates for Targeting, Imaging, and Efficient Elimination of Intracellular Bacterial Infection. ACS NANO 2024; 18:3199-3213. [PMID: 38227824 DOI: 10.1021/acsnano.3c09695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Intracellular bacterial infections bring a considerable risk to human life and health due to their capability to elude immune defenses and exhibit significant drug resistance. As a result, confronting and managing these infections present substantial challenges. In this study, we developed a multifunctional living phage nanoconjugate by integrating aggregation-induced emission luminogen (AIEgen) photosensitizers and nucleic acids onto a bacteriophage framework (forming MS2-DNA-AIEgen bioconjugates). These nanoconjugates can rapidly penetrate mammalian cells and specifically identify intracellular bacteria while concurrently producing a detectable fluorescent signal. By harnessing the photodynamic property of AIEgen photosensitizer and the bacteriophage's inherent targeting and lysis capability, the intracellular bacteria can be effectively eliminated and the activity of the infected cells can be restored. Moreover, our engineered phage nanoconjugates were able to expedite the healing process in bacterially infected wounds observed in diabetic mice models while simultaneously enhancing immune activity within infected cells and in vivo, without displaying noticeable toxicity. We envision that these multifunctional phage nanoconjugates, which utilize AIEgen photosensitizers and spherical nucleic acids, may present a groundbreaking strategy for combating intracellular bacteria and offer powerful avenues for theranostic applications in intracellular bacterial infection-associated diseases.
Collapse
Affiliation(s)
- Jing Zhang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Xuewen He
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| |
Collapse
|
118
|
Fletcher J, Manley R, Fitch C, Bugert C, Moore K, Farbos A, Michelsen M, Alathari S, Senior N, Mills A, Whitehead N, Soothill J, Michell S, Temperton B. The Citizen Phage Library: Rapid Isolation of Phages for the Treatment of Antibiotic Resistant Infections in the UK. Microorganisms 2024; 12:253. [PMID: 38399657 PMCID: PMC10893117 DOI: 10.3390/microorganisms12020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Antimicrobial resistance poses one of the greatest threats to global health and there is an urgent need for new therapeutic options. Phages are viruses that infect and kill bacteria and phage therapy could provide a valuable tool for the treatment of multidrug-resistant infections. In this study, water samples collected by citizen scientists as part of the Citizen Phage Library (CPL) project, and wastewater samples from the Environment Agency yielded phages with activity against clinical strains Klebsiella pneumoniae BPRG1484 and Enterobacter cloacae BPRG1482. A total of 169 and 163 phages were found for K. pneumoniae and E. cloacae, respectively, within four days of receiving the strains. A third strain (Escherichia coli BPRG1486) demonstrated cross-reactivity with 42 E. coli phages already held in the CPL collection. Seed lots were prepared for four K. pneumoniae phages and a cocktail combining these phages was found to reduce melanisation in a Galleria mellonella infection model. The resources and protocols utilised by the Citizen Phage Library enabled the rapid isolation and characterisation of phages targeted against multiple strains. In the future, within a clearly defined regulatory framework, phage therapy could be made available on a named-patient basis within the UK.
Collapse
Affiliation(s)
- Julie Fletcher
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Robyn Manley
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Christian Fitch
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Christina Bugert
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Karen Moore
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Audrey Farbos
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Michelle Michelsen
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Shayma Alathari
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Nicola Senior
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Alice Mills
- Exeter Science Centre, Kaleider Studios, 45 Preston Street, Exeter EX1 1DF, UK
| | - Natalie Whitehead
- Exeter Science Centre, Kaleider Studios, 45 Preston Street, Exeter EX1 1DF, UK
| | - James Soothill
- Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Trust, Great Ormond Street, London WC1N 3JH, UK
| | - Stephen Michell
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| | - Ben Temperton
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK (B.T.)
| |
Collapse
|
119
|
Liu S, Li H, Zhu Z, Wu M, Jin M, Wang X, Hou J, Li D, Wang R. A bacteriophage against Citrobacter braakii and its synergistic effect with antibiotics. Arch Microbiol 2024; 206:74. [PMID: 38253939 DOI: 10.1007/s00203-023-03803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/06/2023] [Accepted: 12/17/2023] [Indexed: 01/24/2024]
Abstract
A bacteriophage BD49 specific for Citrobacter braakii was screened out and purified by double-layer plate method. It consists of a polyhedral head of 93.1 ± 1.2 nm long and 72.9 ± 4.2 nm wide, tail fibers, collar, sheath and baseplate. The bacteriophage was identified by morphology observed with transmission electron microscope (TEM), whole genome sequencing carried out by Illumina next generation sequencing (NGS) technique, and gene annotation based on Clusters of Orthologous Groups of proteins (COG) database. It was identified primarily as a member of Caudovirales by morphology and further determined as Caudovirales, Myoviridae, and Citrobacter bacteriophage by alignment of its whole genome sequence with the NCBI database and establishment of phylogenetic tree. The bacteriophage showed good environmental suitability with optimal multiplicity of infection (MOI) of 0.01, proliferation time of 80 min, optimum living temperature of 30-40 °C, and living pH of 5-10. In addition, it exhibited synergistic effect with ciprofloxacin against C. braakii in antibacterial tests.
Collapse
Affiliation(s)
- Siqi Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Liangxiang University Town, Yangguang South Street, Fangshan District, Beijing, 102488, China
| | - Hanyi Li
- School of Life Sciences, Beijing University of Chinese Medicine, Liangxiang University Town, Yangguang South Street, Fangshan District, Beijing, 102488, China
| | - Zhihao Zhu
- School of Life Sciences, Beijing University of Chinese Medicine, Liangxiang University Town, Yangguang South Street, Fangshan District, Beijing, 102488, China
| | - Mengjiao Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Liangxiang University Town, Yangguang South Street, Fangshan District, Beijing, 102488, China
| | - Mingxuan Jin
- School of Life Sciences, Beijing University of Chinese Medicine, Liangxiang University Town, Yangguang South Street, Fangshan District, Beijing, 102488, China
| | - Xiangxiang Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Liangxiang University Town, Yangguang South Street, Fangshan District, Beijing, 102488, China
| | - Jincai Hou
- Hebei Shineway Pharmaceutical Co., Ltd, Yingbin Street, Langfang, 065201, Hebei, China.
| | - Dan Li
- Hebei Shineway Pharmaceutical Co., Ltd, Yingbin Street, Langfang, 065201, Hebei, China.
| | - Rufeng Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Liangxiang University Town, Yangguang South Street, Fangshan District, Beijing, 102488, China.
| |
Collapse
|
120
|
Stamm J, Merkle JA, Abernathy A, Ackerman E, Brown J, Harris A, Hoffman K, Hoskins A, Jahn A, Jones N, Kitch A, Mathavan N, Rose N, Taylor J. Complete genome sequences of Streptomyces griseus phages Spelly and Phredrick. Microbiol Resour Announc 2024; 13:e0104923. [PMID: 38112473 PMCID: PMC10793280 DOI: 10.1128/mra.01049-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
We present the complete genome sequences of two viruses with siphovirus morphology, isolated from soils collected in Southwestern Indiana using the host Streptomyces griseus. Spelly is a BE2 cluster phage with a 131,347-bp genome. Phredrick is a BK1 cluster phage with a 128,873-bp genome.
Collapse
Affiliation(s)
- Joyce Stamm
- Department of Biology, University of Evansville, Evansville, Indiana, USA
| | - Julie A. Merkle
- Department of Biology, University of Evansville, Evansville, Indiana, USA
| | - Ava Abernathy
- Department of Biology, University of Evansville, Evansville, Indiana, USA
| | - Elizabeth Ackerman
- Department of Biology, University of Evansville, Evansville, Indiana, USA
| | - John Brown
- Department of Biology, University of Evansville, Evansville, Indiana, USA
| | - Abbey Harris
- Department of Biology, University of Evansville, Evansville, Indiana, USA
| | - Kayli Hoffman
- Department of Biology, University of Evansville, Evansville, Indiana, USA
| | - Ashleigh Hoskins
- Department of Biology, University of Evansville, Evansville, Indiana, USA
| | - Abbie Jahn
- Department of Biology, University of Evansville, Evansville, Indiana, USA
| | - Nathan Jones
- Department of Biology, University of Evansville, Evansville, Indiana, USA
| | - Ashley Kitch
- Department of Biology, University of Evansville, Evansville, Indiana, USA
| | - Nandini Mathavan
- Department of Biology, University of Evansville, Evansville, Indiana, USA
| | - Nat Rose
- Department of Biology, University of Evansville, Evansville, Indiana, USA
| | - Joey Taylor
- Department of Biology, University of Evansville, Evansville, Indiana, USA
| |
Collapse
|
121
|
Carline KBR, Fleeharty MS, Fang L, Shijo M, Doherty MK, Riddick ZA, Royster MO, Stukes AR, Tchadi BV, Thomas AN, Williamson KE, Saha MS. Sequence analysis of Discoknowium, an A5 mycobacteriophage. Microbiol Resour Announc 2024; 13:e0092023. [PMID: 38047653 PMCID: PMC10793274 DOI: 10.1128/mra.00920-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Discoknowium is a temperate A5 bacteriophage that infects the bacterial host Mycobacterium smegmatis. Isolated from a rat fecal sample, Discoknowium's genome is 50,222 bp in length, contains 84 genes and 1 tRNA, and shares 82%-98% nucleotide identity with other A5 subcluster phages.
Collapse
Affiliation(s)
| | | | - Lin Fang
- Department of Biology, William & Mary, Williamsburg, Virginia, USA
| | - Mahima Shijo
- Department of Biology, William & Mary, Williamsburg, Virginia, USA
| | | | - Zoe A. Riddick
- Department of Biology, William & Mary, Williamsburg, Virginia, USA
| | | | - Amiyah R. Stukes
- Department of Biology, William & Mary, Williamsburg, Virginia, USA
| | | | - Alana N. Thomas
- Department of Biology, William & Mary, Williamsburg, Virginia, USA
| | | | - Margaret S. Saha
- Department of Biology, William & Mary, Williamsburg, Virginia, USA
| |
Collapse
|
122
|
Baliraine FW, Mathews KE, Livingston EG, Martinez CA, Donnelly OL, Pledger TM, Feroz T, Harbison ZJ, Schlimme SG, Andrade C, Salazar KN, Berryhill EC, DeLosSantos MM, Foree HL, Gicheru W, Jett AM, Mendez SN, Odebiyi TM, Pitman JI, Tan MJ, McLoud JD, Baliraine FN. Complete genome sequences and characteristics of mycobacteriophages Diminimus, Dulcita, Glaske16, and Koreni. Microbiol Resour Announc 2024; 13:e0101023. [PMID: 38063427 DOI: 10.1128/mra.01010-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 01/18/2024] Open
Abstract
Complete genome sequences of four novel mycobacteriophages, Diminimus, Dulcita, Glaske16, and Koreni, isolated from soil are presented. All these bacteriophages belong to subcluster M1, except Koreni that belongs to subcluster A4. Moreover, all have siphovirus morphologies, with genome sizes ranging from 51,055 to 81,156 bp.
Collapse
Affiliation(s)
- Faith W Baliraine
- Department of Biology and Kinesiology, LeTourneau University , Longview, Texas, USA
| | - Kaitlyn E Mathews
- Department of Biology and Kinesiology, LeTourneau University , Longview, Texas, USA
| | - Emma G Livingston
- Department of Biology and Kinesiology, LeTourneau University , Longview, Texas, USA
| | - Clarissa A Martinez
- Department of Biology and Kinesiology, LeTourneau University , Longview, Texas, USA
| | - Olivia L Donnelly
- Department of Biology and Kinesiology, LeTourneau University , Longview, Texas, USA
| | - Taryn M Pledger
- Department of Biology and Kinesiology, LeTourneau University , Longview, Texas, USA
| | - Tadeen Feroz
- Department of Biology and Kinesiology, LeTourneau University , Longview, Texas, USA
| | - Zoe J Harbison
- Department of Biology and Kinesiology, LeTourneau University , Longview, Texas, USA
| | - Sarah G Schlimme
- Department of Electrical, Computer, and Biomedical Engineering, LeTourneau University , Longview, Texas, USA
| | - Camila Andrade
- Department of Biology and Kinesiology, LeTourneau University , Longview, Texas, USA
| | - Keren N Salazar
- Department of Biology and Kinesiology, LeTourneau University , Longview, Texas, USA
| | - Elise C Berryhill
- Department of Biology and Kinesiology, LeTourneau University , Longview, Texas, USA
| | | | - Hannah L Foree
- Department of Biology and Kinesiology, LeTourneau University , Longview, Texas, USA
| | - Wanjiru Gicheru
- Department of Biology and Kinesiology, LeTourneau University , Longview, Texas, USA
| | - Adrienne M Jett
- Department of Biology and Kinesiology, LeTourneau University , Longview, Texas, USA
| | - Sofia N Mendez
- Department of Biology and Kinesiology, LeTourneau University , Longview, Texas, USA
| | - Toluwalope M Odebiyi
- Department of Biology and Kinesiology, LeTourneau University , Longview, Texas, USA
| | - Jacob I Pitman
- Department of Biology and Kinesiology, LeTourneau University , Longview, Texas, USA
| | - Michael J Tan
- Department of Biology and Kinesiology, LeTourneau University , Longview, Texas, USA
| | - Josh D McLoud
- Department of Biology and Kinesiology, LeTourneau University , Longview, Texas, USA
| | | |
Collapse
|
123
|
Dojs M, Fleischacker C, Ackerman S, Boyle B, Feiring S, Fleischacker T, Frank J, Jackson S, Schaefbauer A, Vigness C, Webb R. Genome sequences of bacteriophage Shambre1 and Renna12, isolated from Arthrobacter globiformis. Microbiol Resour Announc 2024; 13:e0085823. [PMID: 38088575 DOI: 10.1128/mra.00858-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/18/2023] [Indexed: 01/18/2024] Open
Abstract
Bacteriophages Shambre1 and Renna12 were isolated from soil in Bismarck, ND, using Arthrobacter globiformis. Genomic characterization and analyses allowed Renna12 to be assigned to phage cluster AS3, while Shambre1, which is not closely related to any phage, is a singleton.
Collapse
Affiliation(s)
- Madeline Dojs
- Department of Biology, University of Mary , Bismarck, North Dakota, USA
| | | | - Skylar Ackerman
- Department of Biology, University of Mary , Bismarck, North Dakota, USA
| | - Blaise Boyle
- Department of Biology, University of Mary , Bismarck, North Dakota, USA
| | - Shambre Feiring
- Department of Biology, University of Mary , Bismarck, North Dakota, USA
| | | | - Jaycee Frank
- Department of Biology, University of Mary , Bismarck, North Dakota, USA
| | - Sarah Jackson
- Department of Biology, University of Mary , Bismarck, North Dakota, USA
| | | | - Corinna Vigness
- Department of Biology, University of Mary , Bismarck, North Dakota, USA
| | - Rylie Webb
- Department of Biology, University of Mary , Bismarck, North Dakota, USA
| |
Collapse
|
124
|
Cao Y, Xia H, Tan X, Shi C, Ma Y, Meng D, Zhou M, Lv Z, Wang S, Jin Y. Intratumoural microbiota: a new frontier in cancer development and therapy. Signal Transduct Target Ther 2024; 9:15. [PMID: 38195689 PMCID: PMC10776793 DOI: 10.1038/s41392-023-01693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/20/2023] [Accepted: 10/24/2023] [Indexed: 01/11/2024] Open
Abstract
Human microorganisms, including bacteria, fungi, and viruses, play key roles in several physiological and pathological processes. Some studies discovered that tumour tissues once considered sterile actually host a variety of microorganisms, which have been confirmed to be closely related to oncogenesis. The concept of intratumoural microbiota was subsequently proposed. Microbiota could colonise tumour tissues through mucosal destruction, adjacent tissue migration, and hematogenic invasion and affect the biological behaviour of tumours as an important part of the tumour microenvironment. Mechanistic studies have demonstrated that intratumoural microbiota potentially promote the initiation and progression of tumours by inducing genomic instability and mutations, affecting epigenetic modifications, promoting inflammation response, avoiding immune destruction, regulating metabolism, and activating invasion and metastasis. Since more comprehensive and profound insights about intratumoral microbiota are continuously emerging, new methods for the early diagnosis and prognostic assessment of cancer patients have been under examination. In addition, interventions based on intratumoural microbiota show great potential to open a new chapter in antitumour therapy, especially immunotherapy, although there are some inevitable challenges. Here, we aim to provide an extensive review of the concept, development history, potential sources, heterogeneity, and carcinogenic mechanisms of intratumoural microorganisms, explore the potential role of microorganisms in tumour prognosis, and discuss current antitumour treatment regimens that target intratumoural microorganisms and the research prospects and limitations in this field.
Collapse
Affiliation(s)
- Yaqi Cao
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Hui Xia
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xueyun Tan
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Chunwei Shi
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yanling Ma
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Daquan Meng
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Mengmeng Zhou
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhilei Lv
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Sufei Wang
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
125
|
Marchianò V, Duarte AC, Agún S, Luque S, Marcet I, Fernández L, Matos M, Blanco MDC, García P, Gutiérrez G. Phage Lytic Protein CHAPSH3b Encapsulated in Niosomes and Gelatine Films. Microorganisms 2024; 12:119. [PMID: 38257944 PMCID: PMC10819965 DOI: 10.3390/microorganisms12010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Antimicrobial resistance (AMR) has emerged as a global health challenge, sparking worldwide interest in exploring the antimicrobial potential of natural compounds as an alternative to conventional antibiotics. In recent years, one area of focus has been the utilization of bacteriophages and their derivative proteins. Specifically, phage lytic proteins, or endolysins, are specialized enzymes that induce bacterial cell lysis and can be efficiently produced and purified following overexpression in bacteria. Nonetheless, a significant limitation of these proteins is their vulnerability to certain environmental conditions, which may impair their effectiveness. Encapsulating endolysins in vesicles could mitigate this issue by providing added protection to the proteins, enabling controlled release, and enhancing their stability, particularly at temperatures around 4 °C. In this work, the chimeric lytic protein CHAPSH3b was encapsulated within non-ionic surfactant-based vesicles (niosomes) created using the thin film hydrating method (TFH). These protein-loaded niosomes were then characterized, revealing sizes in the range of 30-80 nm, zeta potentials between 30 and 50 mV, and an encapsulation efficiency (EE) of 50-60%. Additionally, with the objective of exploring their potential application in the food industry, these endolysin-loaded niosomes were incorporated into gelatine films. This was carried out to evaluate their stability and antimicrobial efficacy against Staphylococcus aureus.
Collapse
Affiliation(s)
- Verdiana Marchianò
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain (M.d.C.B.)
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (S.L.); (I.M.); (M.M.)
| | - Ana Catarina Duarte
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n., 33300 Villaviciosa, Spain; (A.C.D.); (S.A.); (L.F.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Seila Agún
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n., 33300 Villaviciosa, Spain; (A.C.D.); (S.A.); (L.F.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Susana Luque
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (S.L.); (I.M.); (M.M.)
| | - Ismael Marcet
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (S.L.); (I.M.); (M.M.)
| | - Lucía Fernández
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n., 33300 Villaviciosa, Spain; (A.C.D.); (S.A.); (L.F.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - María Matos
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (S.L.); (I.M.); (M.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Mª del Carmen Blanco
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain (M.d.C.B.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
| | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n., 33300 Villaviciosa, Spain; (A.C.D.); (S.A.); (L.F.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Gemma Gutiérrez
- Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; (S.L.); (I.M.); (M.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
126
|
Yakoup AY, Kamel AG, Elbermawy Y, Abdelsattar AS, El-Shibiny A. Characterization, antibacterial, and cytotoxic activities of silver nanoparticles using the whole biofilm layer as a macromolecule in biosynthesis. Sci Rep 2024; 14:364. [PMID: 38172225 PMCID: PMC10764356 DOI: 10.1038/s41598-023-50548-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Recently, multi-drug resistant (MDR) bacteria are responsible for a large number of infectious diseases that can be life-threatening. Globally, new approaches are targeted to solve this essential issue. This study aims to discover novel antibiotic alternatives by using the whole components of the biofilm layer as a macromolecule to synthesize silver nanoparticles (AgNPs) as a promising agent against MDR. In particular, the biosynthesized biofilm-AgNPs were characterized using UV-Vis spectroscopy, electron microscopes, Energy Dispersive X-ray (EDX), zeta sizer and potential while their effect on bacterial strains and normal cell lines was identified. Accordingly, biofilm-AgNPs have a lavender-colored solution, spherical shape, with a size range of 20-60 nm. Notably, they have inhibitory effects when used on various bacterial strains with concentrations ranging between 12.5 and 25 µg/mL. In addition, they have an effective synergistic effect when combined with phage ZCSE9 to inhibit and kill Salmonella enterica with a concentration of 3.1 µg/mL. In conclusion, this work presents a novel biosynthesis preparation of AgNPs using biofilm for antibacterial purposes to reduce the possible toxicity by reducing the MICs using phage ZCSE9.
Collapse
Affiliation(s)
- Aghapy Yermans Yakoup
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Azza G Kamel
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Yasmin Elbermawy
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt.
- Faculty of Environmental Agricultural Sciences, Arish University, Arish, 45511, Egypt.
| |
Collapse
|
127
|
Maffei E, Woischnig AK, Burkolter MR, Heyer Y, Humolli D, Thürkauf N, Bock T, Schmidt A, Manfredi P, Egli A, Khanna N, Jenal U, Harms A. Phage Paride can kill dormant, antibiotic-tolerant cells of Pseudomonas aeruginosa by direct lytic replication. Nat Commun 2024; 15:175. [PMID: 38168031 PMCID: PMC10761892 DOI: 10.1038/s41467-023-44157-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Bacteriophages are ubiquitous viral predators that have primarily been studied using fast-growing laboratory cultures of their bacterial hosts. However, microbial life in nature is mostly in a slow- or non-growing, dormant state. Here, we show that diverse phages can infect deep-dormant bacteria and suspend their replication until the host resuscitates ("hibernation"). However, a newly isolated Pseudomonas aeruginosa phage, named Paride, can directly replicate and induce the lysis of deep-dormant hosts. While non-growing bacteria are notoriously tolerant to antibiotic drugs, the combination with Paride enables the carbapenem meropenem to eradicate deep-dormant cultures in vitro and to reduce a resilient bacterial infection of a tissue cage implant in mice. Our work might inspire new treatments for persistent bacterial infections and, more broadly, highlights two viral strategies to infect dormant bacteria (hibernation and direct replication) that will guide future studies on phage-host interactions.
Collapse
Affiliation(s)
- Enea Maffei
- Biozentrum, University of Basel, Basel, Switzerland
- Institute of Food, Nutrition and Health, D-HEST, ETH Zurich, Zurich, Switzerland
| | - Anne-Kathrin Woischnig
- Laboratory of Infection Biology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Marco R Burkolter
- Biozentrum, University of Basel, Basel, Switzerland
- Institute of Food, Nutrition and Health, D-HEST, ETH Zurich, Zurich, Switzerland
| | - Yannik Heyer
- Biozentrum, University of Basel, Basel, Switzerland
| | - Dorentina Humolli
- Institute of Food, Nutrition and Health, D-HEST, ETH Zurich, Zurich, Switzerland
| | | | - Thomas Bock
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Adrian Egli
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University and University Hospital of Basel, Basel, Switzerland
| | - Nina Khanna
- Institute of Food, Nutrition and Health, D-HEST, ETH Zurich, Zurich, Switzerland
- Laboratory of Infection Biology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Urs Jenal
- Biozentrum, University of Basel, Basel, Switzerland
| | - Alexander Harms
- Biozentrum, University of Basel, Basel, Switzerland.
- Institute of Food, Nutrition and Health, D-HEST, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
128
|
Aljabali AAA, Aljbaly MBM, Obeid MA, Shahcheraghi SH, Tambuwala MM. The Next Generation of Drug Delivery: Harnessing the Power of Bacteriophages. Methods Mol Biol 2024; 2738:279-315. [PMID: 37966606 DOI: 10.1007/978-1-0716-3549-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The use of biomaterials, such as bacteriophages, as drug delivery vehicles (DDVs) has gained increasing interest in recent years due to their potential to address the limitations of conventional drug delivery systems. Bacteriophages offer several advantages as drug carriers, such as high specificity for targeting bacterial cells, low toxicity, and the ability to be engineered to express specific proteins or peptides for enhanced targeting and drug delivery. In addition, bacteriophages have been shown to reduce the development of antibiotic resistance, which is a major concern in the field of antimicrobial therapy. Many initiatives have been taken to take up various payloads selectively and precisely by surface functionalization of the outside or interior of self-assembling viral protein capsids. Bacteriophages have emerged as a promising platform for the targeted delivery of therapeutic agents, including drugs, genes, and imaging agents. They possess several properties that make them attractive as drug delivery vehicles, including their ability to specifically target bacterial cells, their structural diversity, their ease of genetic manipulation, and their biocompatibility. Despite the potential advantages of using bacteriophages as drug carriers, several challenges and limitations need to be addressed. One of the main challenges is the limited host range of bacteriophages, which restricts their use to specific bacterial strains. However, this can also be considered as an advantage, as it allows for precise and targeted drug delivery to the desired bacterial cells. The use of biomaterials, including bacteriophages, as drug delivery vehicles has shown promising potential to address the limitations of conventional drug delivery systems. Further research is needed to fully understand the potential of these biomaterials and address the challenges and limitations associated with their use.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan.
| | | | - Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Seyed Hossein Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Murtaza M Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln, UK.
| |
Collapse
|
129
|
Zhuang Z, Cheng YY, Deng J, Cai Z, Zhong L, Qu JX, Wang K, Yang L. Genomic insights into the phage-defense systems of Stenotrophomonas maltophilia clinical isolates. Microbiol Res 2024; 278:127528. [PMID: 37918082 DOI: 10.1016/j.micres.2023.127528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 11/04/2023]
Abstract
Stenotrophomonas maltophilia is a rapidly evolving multidrug-resistant opportunistic pathogen that can cause serious infections in immunocompromised patients. Although phage therapy is one of promising strategies for dealing with MDR bacteria, the main challenges of phage therapeutics include accumulation of phage resistant mutations and acquisition of the phage defense systems. To systematically evaluate the impact of (pro)phages in shaping genetic and evolutionary diversity of S. maltophilia, we collected 166 S. maltophilia isolates from three hospitals in southern China to analyze its pangenome, virulence factors, prophage regions, and anit-viral immune systems. Pangenome analysis indicated that there are 1328 saturated core genes and 26961 unsaturated accessory genes in the pangenome, suggesting existence of highly variable parts of S. maltophilia genome. The presence of genes in relation to T3SS and T6SS mechanisms suggests the great potential to secrete toxins by the S. maltophilia population, which is contrary to the conventional notion of low-virulence of S. maltophilia. Additionally, we characterized the pan-immune system maps of these clinical isolates against phage infections and revealed the co-harboring of CBASS and anti-CBASS in some strains, suggesting a never-ending arms race and the co-evolutionary dynamic between bacteria and phages. Furthermore, our study predicted 310 prophage regions in S. maltophilia with high genetic diversity. Six viral defense systems were found to be located at specific position of the S. maltophilia prophage genomes, indicating potential evolution of certain site/region similar to bacterial 'defense islands' in prophage. Our study provides novel insights into the S. maltophilia pangenome in relation to phage-defense mechanisms, which extends our understanding of bacterial-phage interactions and might guide the application of phage therapy in combating S. maltophilia infections.
Collapse
Affiliation(s)
- Zilin Zhuang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China
| | - Ying-Ying Cheng
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, PR China; BGI Forensic, Shenzhen 518083, PR China; The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, PR China
| | - Jie Deng
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China; Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China
| | - Zhao Cai
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China; Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China
| | - Lin Zhong
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, PR China
| | - Jiu-Xin Qu
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, PR China
| | - Ke Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China.
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China; Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, PR China; Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, Guangdong, PR China.
| |
Collapse
|
130
|
Mateu MG, Valbuena A. Engineering and Bio/Nanotechnological Applications of Virus Particles. Subcell Biochem 2024; 105:823-878. [PMID: 39738964 DOI: 10.1007/978-3-031-65187-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Virus particles (VPs) are naturally evolved nanomachines. Their outstanding molecular structures, physical and chemical properties, and biological activities make them potentially useful for many biomedical or technological applications. Natural VPs such as virions or capsids must, however, be modified by genetic and/or chemical engineering in order to become adequate for many specific uses. We present first a general overview of the methods used for obtaining virions and viral capsids, and of genetic and chemical engineering approaches to suitably modify VPs. In the second part of the chapter, we present an updated overview on current or developing applications of engineered VPs as tools, materials, reagents, or nanodevices in biomedicine, biotechnology, or nanotechnology.
Collapse
Affiliation(s)
- Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), and Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Alejandro Valbuena
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), and Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
131
|
Luong T, Sue AD, Roach DR. Rapid Bench to Bedside Therapeutic Bacteriophage Production. Methods Mol Biol 2024; 2734:67-88. [PMID: 38066363 DOI: 10.1007/978-1-0716-3523-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
It has been over 100 years since bacteriophages (phages) were used as a human therapeutic. Since then, phage production has dramatically evolved. Current phage preparations have fewer adverse effects due to their low bacterial toxin content. As a result, therapeutic phages have become a predominant class of new antimicrobials and are being widely used for compassionate treatment of multidrug-resistant (MDR) infections. We describe herein a protocol for the production and ultrapurification of phages. By this technique, it is possible for a lab experienced with the process to produce >109 plaque-forming units (PFU) per mL of Gram-negative phages that meet FDA endotoxins limits for intravenous infusions in as little as 48 hours. We provide illustrations of the process and tips on how to safely remove bacterial toxins from phage lysates. Although dependent on the phage strain, the approach described can rapidly generate and purify phages for a variety of applications.
Collapse
Affiliation(s)
- Tiffany Luong
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Andrew D Sue
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Dwayne R Roach
- Department of Biology, San Diego State University, San Diego, CA, USA.
| |
Collapse
|
132
|
Howell AA, Versoza CJ, Pfeifer SP. Computational host range prediction-The good, the bad, and the ugly. Virus Evol 2023; 10:vead083. [PMID: 38361822 PMCID: PMC10868548 DOI: 10.1093/ve/vead083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 02/17/2024] Open
Abstract
The rapid emergence and spread of antimicrobial resistance across the globe have prompted the usage of bacteriophages (i.e. viruses that infect bacteria) in a variety of applications ranging from agriculture to biotechnology and medicine. In order to effectively guide the application of bacteriophages in these multifaceted areas, information about their host ranges-that is the bacterial strains or species that a bacteriophage can successfully infect and kill-is essential. Utilizing sixteen broad-spectrum (polyvalent) bacteriophages with experimentally validated host ranges, we here benchmark the performance of eleven recently developed computational host range prediction tools that provide a promising and highly scalable supplement to traditional, but laborious, experimental procedures. We show that machine- and deep-learning approaches offer the highest levels of accuracy and precision-however, their predominant predictions at the species- or genus-level render them ill-suited for applications outside of an ecosystems metagenomics framework. In contrast, only moderate sensitivity (<80 per cent) could be reached at the strain-level, albeit at low levels of precision (<40 per cent). Taken together, these limitations demonstrate that there remains room for improvement in the active scientific field of in silico host prediction to combat the challenge of guiding experimental designs to identify the most promising bacteriophage candidates for any given application.
Collapse
Affiliation(s)
| | - Cyril J Versoza
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Susanne P Pfeifer
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
133
|
Liu J, Jaffe AL, Chen L, Bor B, Banfield JF. Host translation machinery is not a barrier to phages that interact with both CPR and non-CPR bacteria. mBio 2023; 14:e0176623. [PMID: 38009957 PMCID: PMC10746230 DOI: 10.1128/mbio.01766-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Here, we profiled putative phages of Saccharibacteria, which are of particular importance as Saccharibacteria influence some human oral diseases. We additionally profiled putative phages of Gracilibacteria and Absconditabacteria, two Candidate Phyla Radiation (CPR) lineages of interest given their use of an alternative genetic code. Among the phages identified in this study, some are targeted by spacers from both CPR and non-CPR bacteria and others by both bacteria that use the standard genetic code as well as bacteria that use an alternative genetic code. These findings represent new insights into possible phage replication strategies and have relevance for phage therapies that seek to manipulate microbiomes containing CPR bacteria.
Collapse
Affiliation(s)
- Jett Liu
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
- Department of Microbiology, Forsyth Institute, Cambridge, Massachusetts, USA
| | - Alexander L. Jaffe
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - LinXing Chen
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Department of Earth and Planetary Science, University of California, Berkeley, California, USA
| | - Batbileg Bor
- Department of Microbiology, Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Jillian F. Banfield
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Department of Earth and Planetary Science, University of California, Berkeley, California, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| |
Collapse
|
134
|
Akturk E, Melo LD, Oliveira H, Crabbé A, Coenye T, Azeredo J. Combining phages and antibiotic to enhance antibiofilm efficacy against an in vitro dual species wound biofilm. Biofilm 2023; 6:100147. [PMID: 37662851 PMCID: PMC10474582 DOI: 10.1016/j.bioflm.2023.100147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Chronic wound management is extremely challenging because of the persistence of biofilm-forming pathogens, such as Pseudomonas aeruginosa and Staphylococcus aureus, which are the prevailing bacterial species that co-infect chronic wounds. Phage therapy has gained an increased interest to treat biofilm-associated infections, namely when combined with antibiotics. Here, we tested the effect of gentamicin as a co-adjuvant of phages in a dual species-biofilm wound model formed on artificial dermis. The biofilm-killing capacity of the tested treatments was significantly increased when phages were combined with gentamicin and applied multiple times as multiple dose (three doses, every 8 h). Our results suggest that gentamycin is an effective adjuvant of phage therapy particularly when applied simultaneously with phages and in three consecutive doses. The multiple and simultaneous dose treatment seems to be essential to avoid bacterial resistance development to each of the antimicrobial agents.
Collapse
Affiliation(s)
- Ergun Akturk
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
| | - Luís D.R. Melo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
- ESCMID Study Group for Biofilms (ESGB), Switzerland
| | - Hugo Oliveira
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
- ESCMID Study Group for Biofilms (ESGB), Switzerland
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology (LPM), Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology (LPM), Ghent University, Ghent, Belgium
- ESCMID Study Group for Biofilms (ESGB), Switzerland
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
- ESCMID Study Group for Biofilms (ESGB), Switzerland
| |
Collapse
|
135
|
Abebe AA, Birhanu AG. Methicillin Resistant Staphylococcus aureus: Molecular Mechanisms Underlying Drug Resistance Development and Novel Strategies to Combat. Infect Drug Resist 2023; 16:7641-7662. [PMID: 38111667 PMCID: PMC10726795 DOI: 10.2147/idr.s428103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023] Open
Abstract
Antimicrobial resistance (AMR) represents a major threat to global health. Infection caused by Methicillin-resistant Staphylococcus aureus (MRSA) is one of the well-recognized global public health problem globally. In some regions, as many as 90% of S. aureus infections are reported to be MRSA, which cannot be treated with standard antibiotics. WHO reports indicated that MRSA is circulating in every province worldwide, significantly increasing the risk of death by 64% compared to drug-sensitive forms of the infection which is attributed to its antibiotic resistance. The emergence and spread of antibiotic-resistant MRSA strains have contributed to its increased prevalence in both healthcare and community settings. The resistance of S. aureus to methicillin is due to expression of penicillin-binding protein 2a (PBP2a), which renders it impervious to the action of β-lactam antibiotics including methicillin. The other is through the production of beta-lactamases. Although the treatment options for MRSA are limited, there are promising alternatives to antibiotics to combat the infections. Innovative therapeutic strategies with wide range of activity and modes of action are yet to be explored. The review highlights the global challenges posed by MRSA, elucidates the mechanisms underlying its resistance development, and explores mitigation strategies. Furthermore, it focuses on alternative therapies such as bacteriophages, immunotherapy, nanobiotics, and antimicrobial peptides, emphasizing their synergistic effects and efficacy against MRSA. By examining these alternative approaches, this review provides insights into the potential strategies for tackling MRSA infections and combatting the escalating threat of AMR. Ultimately, a multifaceted approach encompassing both conventional and novel interventions is imperative to mitigate the impact of MRSA and ensure a sustainable future for global healthcare.
Collapse
Affiliation(s)
- Assefa Asnakew Abebe
- Department of Molecular Biology, Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical laboratory Sciences, Institute of Health, Bule Hora University, Bule Hora, Ethiopia
| | - Alemayehu Godana Birhanu
- Department of Molecular Biology, Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
136
|
Yan M, Man S, Sun B, Ma L, Guo L, Huang L, Gao W. Gut liver brain axis in diseases: the implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:443. [PMID: 38057297 PMCID: PMC10700720 DOI: 10.1038/s41392-023-01673-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 12/08/2023] Open
Abstract
Gut-liver-brain axis is a three-way highway of information interaction system among the gastrointestinal tract, liver, and nervous systems. In the past few decades, breakthrough progress has been made in the gut liver brain axis, mainly through understanding its formation mechanism and increasing treatment strategies. In this review, we discuss various complex networks including barrier permeability, gut hormones, gut microbial metabolites, vagus nerve, neurotransmitters, immunity, brain toxic metabolites, β-amyloid (Aβ) metabolism, and epigenetic regulation in the gut-liver-brain axis. Some therapies containing antibiotics, probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), polyphenols, low FODMAP diet and nanotechnology application regulate the gut liver brain axis. Besides, some special treatments targeting gut-liver axis include farnesoid X receptor (FXR) agonists, takeda G protein-coupled receptor 5 (TGR5) agonists, glucagon-like peptide-1 (GLP-1) receptor antagonists and fibroblast growth factor 19 (FGF19) analogs. Targeting gut-brain axis embraces cognitive behavioral therapy (CBT), antidepressants and tryptophan metabolism-related therapies. Targeting liver-brain axis contains epigenetic regulation and Aβ metabolism-related therapies. In the future, a better understanding of gut-liver-brain axis interactions will promote the development of novel preventative strategies and the discovery of precise therapeutic targets in multiple diseases.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Benyue Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, 300072, Tianjin, China.
| |
Collapse
|
137
|
Vitale M. Antibiotic Resistance: Do We Need Only Cutting-Edge Methods, or Can New Visions Such as One Health Be More Useful for Learning from Nature? Antibiotics (Basel) 2023; 12:1694. [PMID: 38136728 PMCID: PMC10740918 DOI: 10.3390/antibiotics12121694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Antibiotic resistance is an increasing global problem for public health, and focusing on biofilms has provided further insights into resistance evolution in bacteria. Resistance is innate in many bacterial species, and many antibiotics are derived from natural molecules of soil microorganisms. Is it possible that nature can help control AMR diffusion? In this review, an analysis of resistance mechanisms is summarized, and an excursus of the different approaches to challenging resistance spread based on natural processes is presented as "lessons from Nature". On the "host side", immunotherapy strategies for bacterial infections have a long history before antibiotics, but continuous new inputs through biotechnology advances are enlarging their applications, efficacy, and safety. Antimicrobial peptides and monoclonal antibodies are considered for controlling antibiotic resistance. Understanding the biology of natural predators is providing new, effective, and safe ways to combat resistant bacteria. As natural enemies, bacteriophages were used to treat severe infections before the discovery of antibiotics, marginalized during the antibiotic era, and revitalized upon the diffusion of multi-resistance. Finally, sociopolitical aspects such as education, global action, and climate change are also considered as important tools for tackling antibiotic resistance from the One Health perspective.
Collapse
Affiliation(s)
- Maria Vitale
- Genetics of Microorganisms Laboratory, Molecular Biology Department, Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", 90129 Palermo, Italy
| |
Collapse
|
138
|
Li J, Yan B, He B, Li L, Zhou X, Wu N, Wang Q, Guo X, Zhu T, Qin J. Development of phage resistance in multidrug-resistant Klebsiella pneumoniae is associated with reduced virulence: a case report of a personalised phage therapy. Clin Microbiol Infect 2023; 29:1601.e1-1601.e7. [PMID: 37652124 DOI: 10.1016/j.cmi.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
OBJECTIVES Phage-resistant bacteria often emerge rapidly when performing phage therapy. However, the relationship between the emergence of phage-resistant bacteria and improvements in clinical symptoms is still poorly understood. METHODS An inpatient developed a pulmonary infection caused by multidrug-resistant Klebsiella pneumoniae. He received a first course of treatment with a single nebulized phage (ΦKp_GWPB35) targeted at his bacterial isolate of Kp7450. After 14 days, he received a second course of treatment with a phage cocktail (ΦKp_GWPB35+ΦKp_GWPA139). Antibiotic treatment was continued throughout the course of phage therapy. Whole-genome analysis was used to identify mutations in phage-resistant strains. Mutated genes associated with resistance were further analysed by generating knockouts of Kp7450 and by measuring phage adsorption rates of bacteria treated with proteinase K and periodate. Bacterial virulence was evaluated in mouse and zebrafish infection models. RESULTS Phage-resistant Klebsiella pneumoniae strains emerged after the second phage treatment. Comparative genomic analyses revealed that fabF was deleted in phage-resistant strains. The fabF knockout strain (Kp7450ΔfabF) resulted in an altered structure of lipopolysaccharide (LPS), which was identified as the host receptor for the therapeutic phages. Virulence evaluations in mice and zebrafish models showed that LPS was the main determinant of virulence in Kp7450 and alteration of LPS structure in Kp7450ΔfabF, and the bacteriophage-resistant strains reduced their virulence at cost. DISCUSSION This study may shed light on the mechanism by which some patients experience clinical improvement in their symptoms post phage therapy, despite the incomplete elimination of pathogenic bacteria.
Collapse
Affiliation(s)
- Jianhui Li
- Shanghai Institute of Phage, Shanghai Public Health Clinical Centre, Fudan University, Shanghai, China
| | - Bo Yan
- Centre for Tuberculosis Research, Shanghai Public Health Clinical Centre, Fudan University, Shanghai, China
| | - Bin He
- Department of Neurology, Shanghai Public Health Clinical Centre, Fudan University, Shanghai, China
| | - Lisha Li
- Department of Obstetrics and Gynecology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Xin Zhou
- CreatiPhage Biotechnology Co., Ltd, Shanghai, China
| | - Nannan Wu
- Shanghai Institute of Phage, Shanghai Public Health Clinical Centre, Fudan University, Shanghai, China; CreatiPhage Biotechnology Co., Ltd, Shanghai, China
| | - Qingming Wang
- Department of Neurology, Shanghai Public Health Clinical Centre, Fudan University, Shanghai, China
| | - Xiaokui Guo
- Shanghai Institute of Phage, Shanghai Public Health Clinical Centre, Fudan University, Shanghai, China
| | - Tongyu Zhu
- Shanghai Institute of Phage, Shanghai Public Health Clinical Centre, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.
| | - Jinhong Qin
- Shanghai Institute of Phage, Shanghai Public Health Clinical Centre, Fudan University, Shanghai, China; Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
139
|
Li C, Zhang Y, Xia Q, Hao B, Hong Y, Yue L, Zheng T, Li M, Fan L. Multi-omics analysis revealed the mitochondrial-targeted drug combination to suppress the development of lung cancer. J Cancer Res Clin Oncol 2023; 149:17159-17174. [PMID: 37783930 DOI: 10.1007/s00432-023-05376-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/29/2023] [Indexed: 10/04/2023]
Abstract
PURPOSE The incidence and mortality of lung cancer are continuously rising in recent years. Mitochondrial energy metabolism malfunction is found to be crucial in cancer proliferation and bioenergetic reprogramming, especially for lung cancer. In this study, we attempted to use mitochondrial-targeted drug therapy to change the energy metabolism pattern of cancer cells to inhibit the development of lung cancer, and investigated its mechanism of action and key targets through multi-omics studies. METHODS In this study, we established the in vivo tumor mouse mode, treated mice with multiple mitochondrial-targeted drug combinations and DDP, severally. Then, we investigated the differences between the 7-drug group with the control group and the DDP treatment group by transcriptomics, proteomics and metabolomics to find the therapeutic targets. RESULTS We found that mitochondria-targeting drug cocktail therapy, especially the 7-drug regimen, effectively improved mitochondrial metabolism, changed energy supply patterns in lung cancer cells, significantly increased NK cells in tumor tissues, and decreased tumor markers in plasma. Multi-omics analysis informed that the combination of 7-drug could up-regulate mitochondrial oxidative phosphorylation, ATP synthesis and autophagy related genes, and down-regulate proliferation and immune-related genes compared with the control group. By further mapping the protein interaction network, we identified a key target for 7-drug therapy to reverse tumor metabolic reprogramming and validated it in metabolomics. CONCLUSIONS Mitochondrial-targeted drug cocktail therapy can effectively inhibit the occurrence and development of tumors, through the reprogramming of energy metabolism and the increase in immune cells in tumor tissues. Thus, we provide a novel approach for the treatment of lung cancer and present evidence-based clues for the combined use of targeted mitochondrial drugs.
Collapse
Affiliation(s)
- Chaoqun Li
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yanfei Zhang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qing Xia
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Bingjie Hao
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yifan Hong
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Liduo Yue
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Tiansheng Zheng
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Ming Li
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Lihong Fan
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
140
|
McSweeney T, Chang MH, Patel P, Nori P. Antimicrobial Stewardship and Pandemic Preparedness: Harnessing Lessons Learned to Advance Our Mission. Infect Dis Clin North Am 2023; 37:669-681. [PMID: 37607841 DOI: 10.1016/j.idc.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Antimicrobial stewardship programs (ASPs) demonstrated poise and resilience in assisting with COVID-19 efforts across the globe, harnessing expertise in diagnostic stewardship, therapeutics, protocol development, and use of technology to rapidly expand their scope through strategic collaborations, dissemination of content expertise, and numerous contributions to the body of knowledge on COVID-19. Lessons learned from pandemic response should be used to advance the mission of ASPs and secure a "seat at the table" as health systems continue to expand and adapt to future public health crises.
Collapse
Affiliation(s)
| | - Mei H Chang
- Department of Pharmacy, Montefiore Health System, Bronx, NY, USA
| | - Payal Patel
- Division of Infectious Diseases and Clinical Epidemiology, Intermountain Healthcare, Murray, UT, USA; Infectious Diseases Clinic, Intermountain Medical Center, 5171 Cottonwood Street Suite 350, Murray, UT 84107, USA
| | - Priya Nori
- Division of Infectious Diseases, Department of Medicine, Montefiore Health System, Albert Einstein College of Medicine, 3411 Wayne Avenue #4H, Bronx, NY 10467, USA
| |
Collapse
|
141
|
Adefisoye MA, Olaniran AO. Antimicrobial resistance expansion in pathogens: a review of current mitigation strategies and advances towards innovative therapy. JAC Antimicrob Resist 2023; 5:dlad127. [PMID: 38089461 PMCID: PMC10712721 DOI: 10.1093/jacamr/dlad127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
The escalating problem of antimicrobial resistance (AMR) proliferation in clinically important pathogens has become one of the biggest threats to human health and the global economy. Previous studies have estimated AMR-associated deaths and disability-adjusted life-years (DALYs) in many countries with a view to presenting a clearer picture of the global burden of AMR-related diseases. Recently, several novel strategies have been advanced to combat resistance spread. These include efflux activity inhibition, closing of mutant selection window (MSW), biofilm disruption, lytic bacteriophage particles, nanoantibiotics, engineered antimicrobial peptides, and the CRISPR-Cas9 gene-editing technique. The single or integrated deployment of these strategies has shown potentialities towards mitigating resistance and contributing to valuable therapeutic outcomes. Correspondingly, the new paradigm of personalized medicine demands innovative interventions such as improved and accurate point-of-care diagnosis and treatment to curtail AMR. The CRISPR-Cas system is a novel and highly promising nucleic acid detection and manipulating technology with the potential for application in the control of AMR. This review thus considers the specifics of some of the AMR-mitigating strategies, while noting their drawbacks, and discusses the advances in the CRISPR-based technology as an important point-of-care tool for tracking and curbing AMR in our fight against a looming 'post-antibiotic' era.
Collapse
Affiliation(s)
- Martins A Adefisoye
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
- Department of Microbiology, School of Science and Technology, Babcock University, Ilishan-Remo, Nigeria
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
142
|
de Nies L, Kobras CM, Stracy M. Antibiotic-induced collateral damage to the microbiota and associated infections. Nat Rev Microbiol 2023; 21:789-804. [PMID: 37542123 DOI: 10.1038/s41579-023-00936-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/06/2023]
Abstract
Antibiotics have transformed medicine, saving millions of lives since they were first used to treat a bacterial infection. However, antibiotics administered to target a specific pathogen can also cause collateral damage to the patient's resident microbial population. These drugs can suppress the growth of commensal species which provide protection against colonization by foreign pathogens, leading to an increased risk of subsequent infection. At the same time, a patient's microbiota can harbour potential pathogens and, hence, be a source of infection. Antibiotic-induced selection pressure can cause overgrowth of resistant pathogens pre-existing in the patient's microbiota, leading to hard-to-treat superinfections. In this Review, we explore our current understanding of how antibiotic therapy can facilitate subsequent infections due to both loss of colonization resistance and overgrowth of resistant microorganisms, and how these processes are often interlinked. We discuss both well-known and currently overlooked examples of antibiotic-associated infections at various body sites from various pathogens. Finally, we describe ongoing and new strategies to overcome the collateral damage caused by antibiotics and to limit the risk of antibiotic-associated infections.
Collapse
Affiliation(s)
- Laura de Nies
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Carolin M Kobras
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Mathew Stracy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
143
|
Yao G, Le T, Korn AM, Peterson HN, Liu M, Gonzalez CF, Gill JJ. Phage Milagro: a platform for engineering a broad host range virulent phage for Burkholderia. J Virol 2023; 97:e0085023. [PMID: 37943040 PMCID: PMC10688314 DOI: 10.1128/jvi.00850-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/21/2023] [Indexed: 11/10/2023] Open
Abstract
IMPORTANCE Burkholderia infections are a significant concern in people with CF and other immunocompromising disorders, and are difficult to treat with conventional antibiotics due to their inherent drug resistance. Bacteriophages, or bacterial viruses, are now seen as a potential alternative therapy for these infections, but most of the naturally occurring phages are temperate and have narrow host ranges, which limit their utility as therapeutics. Here we describe the temperate Burkholderia phage Milagro and our efforts to engineer this phage into a potential therapeutic by expanding the phage host range and selecting for phage mutants that are strictly virulent. This approach may be used to generate new therapeutic agents for treating intractable infections in CF patients.
Collapse
Affiliation(s)
- Guichun Yao
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Tram Le
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Abby M. Korn
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Hannah N. Peterson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Mei Liu
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Carlos F. Gonzalez
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Jason J. Gill
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
144
|
Woudstra C, Sørensen AN, Brøndsted L. Engineering of Salmonella Phages into Novel Antimicrobial Tailocins. Cells 2023; 12:2637. [PMID: 37998371 PMCID: PMC10670071 DOI: 10.3390/cells12222637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Due to the extensive use of antibiotics, the increase of infections caused by antibiotic-resistant bacteria is now a global health concern. Phages have proven useful for treating bacterial infections and represent a promising alternative or complement to antibiotic treatment. Yet, other alternatives exist, such as bacteria-produced non-replicative protein complexes that can kill their targeted bacteria by puncturing their membrane (Tailocins). To expand the repertoire of Tailocins available, we suggest a new approach that transforms phages into Tailocins. Here, we genetically engineered the virulent Ackermannviridae phage S117, as well as temperate phages Fels-1, -2 and Gifsy-1 and -2, targeting the food pathogen Salmonella, by deleting the portal vertex or major capsid gene using CRISPR-Cas9. We report the production of Tailocin particles from engineered virulent and temperate phages able to kill their native host. Our work represents a steppingstone that taps into the huge diversity of phages and transforms them into versatile puncturing new antimicrobials.
Collapse
Affiliation(s)
| | | | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (C.W.); (A.N.S.)
| |
Collapse
|
145
|
Smith NM, Nguyen TD, Chin WH, Sanborn JT, de Souza H, Ho BM, Luong T, Roach DR. A mechanism-based pathway toward administering highly active N-phage cocktails. Front Microbiol 2023; 14:1292618. [PMID: 38045026 PMCID: PMC10690594 DOI: 10.3389/fmicb.2023.1292618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/24/2023] [Indexed: 12/05/2023] Open
Abstract
Bacteriophage (phage) therapy is being explored as a possible response to the antimicrobial resistance public health emergency. Administering a mixture of different phage types as a cocktail is one proposed strategy for therapeutic applications, but the optimal method for formulating phage cocktails remains a major challenge. Each phage strain has complex pharmacokinetic/pharmacodynamic (PK/PD) properties which depend on the nano-scale size, target-mediated, self-dosing nature of each phage strain, and rapid selection of resistant subpopulations. The objective of this study was to explore the pharmacodynamics (PD) of three unique and clinically relevant anti-Pseudomonas phages after simulation of dynamic dosing strategies. The Hollow Fiber Infection Model (HFIM) is an in vitro system that mimics in vivo pharmacokinetics (PK) with high fidelity, providing an opportunity to quantify phage and bacteria concentration profiles over clinical time scales with rich sampling. Exogenous monotherapy-bolus (producing max concentrations of Cmax = 7 log10 PFU/mL) regimens of phages LUZ19, PYO2, and E215 produced Pseudomonas aeruginosa nadirs of 0, 2.14, or 2.99 log10 CFU/mL after 6 h of treatment, respectively. Exogenous combination therapy bolus regimens (LUZ19 + PYO2 or LUZ19 + E215) resulted in bacterial reduction to <2 log10 CFU/mL. In contrast, monotherapy as a continuous infusion (producing a steady-state concentration of Css,avg = 2 log10PFU/mL) was less effective at reducing bacterial densities. Specifically, PYO2 failed to reduce bacterial density. Next, a mechanism-based mathematical model was developed to describe phage pharmacodynamics, phage-phage competition, and phage-dependent adaptive phage resistance. Monte Carlo simulations supported bolus dose regimens, predicting lower bacterial counts with bolus dosing as compared to prolonged phage infusions. Together, in vitro and in silico evaluation of the time course of phage pharmacodynamics will better guide optimal patterns of administration of individual phages as a cocktail.
Collapse
Affiliation(s)
- Nicholas M. Smith
- Division of Clinical and Translational Therapeutics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, NY, United States
| | - Thomas D. Nguyen
- Division of Clinical and Translational Therapeutics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, NY, United States
| | - Wai Hoe Chin
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Jacob T. Sanborn
- Division of Clinical and Translational Therapeutics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, NY, United States
| | - Harriet de Souza
- Division of Clinical and Translational Therapeutics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, NY, United States
| | - Brian M. Ho
- Division of Clinical and Translational Therapeutics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, NY, United States
| | - Tiffany Luong
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Dwayne R. Roach
- Department of Biology, San Diego State University, San Diego, CA, United States
| |
Collapse
|
146
|
Bergkessel M, Forte B, Gilbert IH. Small-Molecule Antibiotic Drug Development: Need and Challenges. ACS Infect Dis 2023; 9:2062-2071. [PMID: 37819866 PMCID: PMC10644355 DOI: 10.1021/acsinfecdis.3c00189] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Indexed: 10/13/2023]
Abstract
The need for new antibiotics is urgent. Antimicrobial resistance is rising, although currently, many more people die from drug-sensitive bacterial infections. The continued evolution of drug resistance is inevitable, fueled by pathogen population size and exposure to antibiotics. Additionally, opportunistic pathogens will always pose a threat to vulnerable patients whose immune systems cannot efficiently fight them even if they are sensitive to available antibiotics, according to clinical microbiology tests. These problems are intertwined and will worsen as human populations age, increase in density, and experience disruptions such as war, extreme weather events, or declines in standard of living. The development of appropriate drugs to treat all the world's bacterial infections should be a priority, and future success will likely require combinations of multiple approaches. However, the highest burden of bacterial infection is in Low- and Middle-Income Countries, where limited medical infrastructure is a major challenge. For effectively managing infections in these contexts, small-molecule-based treatments offer significant advantages. Unfortunately, support for ongoing small-molecule antibiotic discovery has recently suffered from significant challenges related both to the scientific difficulties in treating bacterial infections and to market barriers. Nevertheless, small-molecule antibiotics remain essential and irreplaceable tools for fighting infections, and efforts to develop novel and improved versions deserve ongoing investment. Here, we first describe the global historical context of antibiotic treatment and then highlight some of the challenges surrounding small-molecule development and potential solutions. Many of these challenges are likely to be common to all modalities of antibacterial treatment and should be addressed directly.
Collapse
Affiliation(s)
- Megan Bergkessel
- Division
of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Barbara Forte
- Drug
Discovery Unit and Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, U.K.
| | - Ian H. Gilbert
- Drug
Discovery Unit and Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, U.K.
| |
Collapse
|
147
|
Egido JE, Dekker SO, Toner-Bartelds C, Lood C, Rooijakkers SHM, Bardoel BW, Haas PJ. Human Complement Inhibits Myophages against Pseudomonas aeruginosa. Viruses 2023; 15:2211. [PMID: 38005888 PMCID: PMC10674969 DOI: 10.3390/v15112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Therapeutic bacteriophages (phages) are primarily chosen based on their in vitro bacteriolytic activity. Although anti-phage antibodies are known to inhibit phage infection, the influence of other immune system components is less well known. An important anti-bacterial and anti-viral innate immune system that may interact with phages is the complement system, a cascade of proteases that recognizes and targets invading microorganisms. In this research, we aimed to study the effects of serum components such as complement on the infectivity of different phages targeting Pseudomonas aeruginosa. We used a fluorescence-based assay to monitor the killing of P. aeruginosa by phages of different morphotypes in the presence of human serum. Our results reveal that several myophages are inhibited by serum in a concentration-dependent way, while the activity of four podophages and one siphophage tested in this study is not affected by serum. By using specific nanobodies blocking different components of the complement cascade, we showed that activation of the classical complement pathway is a driver of phage inhibition. To determine the mechanism of inhibition, we produced bioorthogonally labeled fluorescent phages to study their binding by means of microscopy and flow cytometry. We show that phage adsorption is hampered in the presence of active complement. Our results indicate that interactions with complement may affect the in vivo activity of therapeutically administered phages. A better understanding of this phenomenon is essential to optimize the design and application of therapeutic phage cocktails.
Collapse
Affiliation(s)
- Julia E. Egido
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Simon O. Dekker
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Catherine Toner-Bartelds
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Cédric Lood
- Laboratory of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
- Centre of Microbial and Plants Genetics, Department of Microbial and Molecular Systems, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Suzan H. M. Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Bart W. Bardoel
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Pieter-Jan Haas
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
148
|
Abstract
Patients with chronic lung disease and lung transplantation have high rates of colonization and infection from multidrug-resistant (MDR) organisms. This article summarizes the current state of knowledge regarding phage therapy in the setting of lung transplantation. Phage therapy has been used in several lung transplant candidates and recipients on a compassionate use basis targeting mostly MDR gram-negative infections and atypical mycobacterial infections with demonstrated clinical safety. Phage biodistribution given intravenously or via nebulization has not been extensively studied, though preliminary data are presented. Phage interacts with both the innate and adaptive immune system; current literature demonstrates the development of serum neutralization in some cases of phage therapy, although the clinical impact seems variable. A summary of current clinical trials involving patients with chronic lung disease is presented, though none are specifically targeting lung transplant candidates or recipients. In addition to treatment of active infections, a variety of clinical scenarios may benefit from phage therapy, and well-designed clinical trials involving this vulnerable patient population are needed: pre- or peritransplantation use of phage in the setting of MDR organism colonization may lead to waitlisting of candidates currently declined by many centers, along with potential reduction of waitlist mortality rates and posttransplant infections; phage may be used for biofilm-related bronchial stent infections; and, finally, there is a possibility that phage use can affect allograft function and chronic rejection.
Collapse
Affiliation(s)
- Saima Aslam
- Center for Innovative Phage Applications and Therapeutics, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
149
|
Yerushalmy O, Braunstein R, Alkalay-Oren S, Rimon A, Coppenhagn-Glazer S, Onallah H, Nir-Paz R, Hazan R. Towards Standardization of Phage Susceptibility Testing: The Israeli Phage Therapy Center "Clinical Phage Microbiology"-A Pipeline Proposal. Clin Infect Dis 2023; 77:S337-S351. [PMID: 37932122 DOI: 10.1093/cid/ciad514] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Using phages as salvage therapy for nonhealing infections is gaining recognition as a viable solution for patients with such infections. The escalating issue of antibiotic resistance further emphasizes the significance of using phages in treating bacterial infections, encompassing compassionate-use scenarios and clinical trials. Given the high specificity of phages, selecting the suitable phage(s) targeting the causative bacteria becomes critical for achieving treatment success. However, in contrast to conventional antibiotics, where susceptibility-testing procedures were well established for phage therapy, there is a lack of standard frameworks for matching phages from a panel to target bacterial strains and assessing their interactions with antibiotics or other agents. This review discusses and compares published methods for clinical phage microbiology, also known as phage susceptibility testing, and proposes guidelines for establishing a standard pipeline based on our findings over the past 5 years of phage therapy at the Israeli Phage Therapy Center.
Collapse
Affiliation(s)
- Ortal Yerushalmy
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ron Braunstein
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sivan Alkalay-Oren
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem, Israel
- The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amit Rimon
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shunit Coppenhagn-Glazer
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hadil Onallah
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ran Nir-Paz
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ronen Hazan
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
150
|
Li YG, Kishida K, Ogawa-Kishida N, Christie PJ. Ligand-displaying Escherichia coli cells and minicells for programmable delivery of toxic payloads via type IV secretion systems. mBio 2023; 14:e0214323. [PMID: 37772866 PMCID: PMC10653926 DOI: 10.1128/mbio.02143-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE The rapid emergence of drug-resistant bacteria and current low rate of antibiotic discovery emphasize the urgent need for alternative antibacterial strategies. We engineered Escherichia coli to conjugatively transfer plasmids to specific E. coli and Pseudomonas aeruginosa recipient cells through the surface display of cognate nanobody/antigen (Nb/Ag) pairs. We further engineered mobilizable plasmids to carry CRISPR/Cas9 systems (pCrispr) for the selective killing of recipient cells harboring CRISPR/Cas9 target sequences. In the assembled programmed delivery system (PDS), Nb-displaying E. coli donors with different conjugation systems and mobilizable pCrispr plasmids suppressed the growth of Ag-displaying recipient cells to significantly greater extents than unpaired recipients. We also showed that anucleate minicells armed with conjugation machines and pCrispr plasmids were highly effective in killing E. coli recipients. Together, our findings suggest that bacteria or minicells armed with PDSs may prove highly effective as an adjunct or alternative to antibiotics for antimicrobial intervention.
Collapse
Affiliation(s)
- Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern School of Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Kouhei Kishida
- Department of Microbiology and Molecular Genetics, McGovern School of Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Natsumi Ogawa-Kishida
- Department of Microbiology and Molecular Genetics, McGovern School of Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, McGovern School of Medicine, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|