101
|
Sexton JP, Hangartner SB, Hoffmann AA. GENETIC ISOLATION BY ENVIRONMENT OR DISTANCE: WHICH PATTERN OF GENE FLOW IS MOST COMMON? Evolution 2013; 68:1-15. [DOI: 10.1111/evo.12258] [Citation(s) in RCA: 467] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 08/19/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Jason P. Sexton
- Bio21 Molecular Science Institute; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Sandra B. Hangartner
- Bio21 Molecular Science Institute; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Ary A. Hoffmann
- Bio21 Molecular Science Institute; The University of Melbourne; Parkville Victoria 3010 Australia
| |
Collapse
|
102
|
Andrew NR, Hart RA, Jung MP, Hemmings Z, Terblanche JS. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:870-880. [PMID: 23806604 DOI: 10.1016/j.jinsphys.2013.06.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 06/02/2023]
Abstract
Insects in temperate regions are predicted to be at low risk of climate change relative to tropical species. However, these assumptions have generally been poorly examined in all regions, and such forecasting fails to account for microclimatic variation and behavioural optimisation. Here, we test how a population of the dominant ant species, Iridomyrmex purpureus, from temperate Australia responds to thermal stress. We show that ants regularly forage for short periods (minutes) at soil temperatures well above their upper thermal limits (upper lethal temperature = 45.8 ± 1.3°C; CT(max) = 46.1°C) determined over slightly longer periods (hours) and do not show any signs of a classic thermal performance curve in voluntary locomotion across soil surface temperatures of 18.6-57°C (equating to a body temperature of 24.5-43.1°C). Although ants were present all year round, and dynamically altered several aspects of their thermal biology to cope with low temperatures and seasonal variation, temperature-dependence of running speed remained invariant and ants were unable to elevate high temperature tolerance using plastic responses. Measurements of microclimate temperature were higher than ant body temperatures during the hottest part of the day, but exhibited a stronger relationship with each other than air temperatures from the closest weather station. Generally close associations of ant activity and performance with microclimatic conditions, possibly to maximise foraging times, suggest I. purpureus displays highly opportunistic thermal responses and readily adjusts behaviour to cope with high trail temperatures. Increasing frequency or duration of high temperatures is therefore likely to result in an immediate reduction in foraging efficiency. In summary, these results suggest that (1) soil-dwelling temperate insect populations may be at higher risks of thermal stress with increased frequency or duration of high temperatures resulting from climate change than previously thought, however, behavioural cues may be able to compensate to some extent; and (2) indices of climate change-related thermal stress, warming tolerance and thermal safety margin, are strongly influenced by the scale of climate metrics employed.
Collapse
Affiliation(s)
- Nigel R Andrew
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia.
| | | | | | | | | |
Collapse
|
103
|
Hut RA, Paolucci S, Dor R, Kyriacou CP, Daan S. Latitudinal clines: an evolutionary view on biological rhythms. Proc Biol Sci 2013; 280:20130433. [PMID: 23825204 PMCID: PMC3712436 DOI: 10.1098/rspb.2013.0433] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/03/2013] [Indexed: 11/12/2022] Open
Abstract
Properties of the circadian and annual timing systems are expected to vary systematically with latitude on the basis of different annual light and temperature patterns at higher latitudes, creating specific selection pressures. We review literature with respect to latitudinal clines in circadian phenotypes as well as in polymorphisms of circadian clock genes and their possible association with annual timing. The use of latitudinal (and altitudinal) clines in identifying selective forces acting on biological rhythms is discussed, and we evaluate how these studies can reveal novel molecular and physiological components of these rhythms.
Collapse
Affiliation(s)
- Roelof A Hut
- Chronobiology unit, Centre for Behaviour and Neuroscience, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
104
|
Sim C, Denlinger DL. Insulin signaling and the regulation of insect diapause. Front Physiol 2013; 4:189. [PMID: 23885240 PMCID: PMC3717507 DOI: 10.3389/fphys.2013.00189] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/30/2013] [Indexed: 01/22/2023] Open
Abstract
A rich chapter in the history of insect endocrinology has focused on hormonal control of diapause, especially the major roles played by juvenile hormones (JHs), ecdysteroids, and the neuropeptides that govern JH and ecdysteroid synthesis. More recently, experiments with adult diapause in Drosophila melanogaster and the mosquito Culex pipiens, and pupal diapause in the flesh fly Sarcophaga crassipalpis provide strong evidence that insulin signaling is also an important component of the regulatory pathway leading to the diapause phenotype. Insects produce many different insulin-like peptides (ILPs), and not all are involved in the diapause response; ILP-1 appears to be the one most closely linked to diapause in C. pipiens. Many steps in the pathway leading from perception of daylength (the primary environmental cue used to program diapause) to generation of the diapause phenotype remain unknown, but the role for insulin signaling in mosquito diapause appears to be upstream of JH, as evidenced by the fact that application of exogenous JH can rescue the effects of knocking down expression of ILP-1 or the Insulin Receptor. Fat accumulation, enhancement of stress tolerance, and other features of the diapause phenotype are likely linked to the insulin pathway through the action of a key transcription factor, FOXO. This review highlights many parallels for the role of insulin signaling as a regulator in insect diapause and dauer formation in the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- Cheolho Sim
- Department of Biology, Baylor University Waco, TX, USA
| | | |
Collapse
|
105
|
Helm B, Ben-Shlomo R, Sheriff MJ, Hut RA, Foster R, Barnes BM, Dominoni D. Annual rhythms that underlie phenology: biological time-keeping meets environmental change. Proc Biol Sci 2013; 280:20130016. [PMID: 23825201 DOI: 10.1098/rspb.2013.0016] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Seasonal recurrence of biological processes (phenology) and its relationship to environmental change is recognized as being of key scientific and public concern, but its current study largely overlooks the extent to which phenology is based on biological time-keeping mechanisms. We highlight the relevance of physiological and neurobiological regulation for organisms' responsiveness to environmental conditions. Focusing on avian and mammalian examples, we describe circannual rhythmicity of reproduction, migration and hibernation, and address responses of animals to photic and thermal conditions. Climate change and urbanization are used as urgent examples of anthropogenic influences that put biological timing systems under pressure. We furthermore propose that consideration of Homo sapiens as principally a 'seasonal animal' can inspire new perspectives for understanding medical and psychological problems.
Collapse
Affiliation(s)
- Barbara Helm
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | | | | | | | | | |
Collapse
|
106
|
Dixit AS, Singh NS. Environmental control of seasonal reproduction in the wild and captive Eurasian Tree Sparrow (Passer montanus) with respect to variations in gonadal mass, histology, and sex steroids. CAN J ZOOL 2013. [DOI: 10.1139/cjz-2012-0190] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was undertaken on both sexes of the subtropical Eurasian Tree Sparrow (Passer montanus (L., 1758)) to investigate seasonal cycles of gonadal mass, histology, and hormones in relation to various environmental factors at Shillong, India. Attempts were also made to examine whether seasonal responses differ under wild and captivity and also between the sexes. Finally, reproductive seasonality of the sparrow under subtropical conditions was compared with the patterns found elsewhere in its distribution. Both sexes of the Tree Sparrow possess annual cycles of gonadal mass, histology, and steroids that follow the annual solar cycle. Increasing day length during spring stimulates gonadal growth with a corresponding increase in gonadal steroids followed by spontaneous gonadal regression leading to steroidal decline and photorefractoriness. Histomorphometric analyses of gonads revealed seasonal variations in the thickness of germinative epithelium and testicular wall, diameters of seminiferous tubules, and area of intertubular space in the males, and in the thickness of follicle wall and ratio of various follicles in the females. Although males responded in a similar fashion under wild and captivity, the responses of females deferred significantly. Thus, the Tree Sparrow exhibited sexual responses almost similar to their conspecifics at other latitudes.
Collapse
Affiliation(s)
- Anand S. Dixit
- Department of Zoology, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Namram S. Singh
- Department of Zoology, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| |
Collapse
|
107
|
Buckley LB, Miller EF, Kingsolver JG. Ectotherm Thermal Stress and Specialization Across Altitude and Latitude. Integr Comp Biol 2013; 53:571-81. [DOI: 10.1093/icb/ict026] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
108
|
Gaston KJ, Bennie J, Davies TW, Hopkins J. The ecological impacts of nighttime light pollution: a mechanistic appraisal. Biol Rev Camb Philos Soc 2013; 88:912-27. [PMID: 23565807 DOI: 10.1111/brv.12036] [Citation(s) in RCA: 444] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 02/16/2013] [Accepted: 02/27/2013] [Indexed: 11/28/2022]
Abstract
The ecological impacts of nighttime light pollution have been a longstanding source of concern, accentuated by realized and projected growth in electrical lighting. As human communities and lighting technologies develop, artificial light increasingly modifies natural light regimes by encroaching on dark refuges in space, in time, and across wavelengths. A wide variety of ecological implications of artificial light have been identified. However, the primary research to date is largely focused on the disruptive influence of nighttime light on higher vertebrates, and while comprehensive reviews have been compiled along taxonomic lines and within specific research domains, the subject is in need of synthesis within a common mechanistic framework. Here we propose such a framework that focuses on the cross-factoring of the ways in which artificial lighting alters natural light regimes (spatially, temporally, and spectrally), and the ways in which light influences biological systems, particularly the distinction between light as a resource and light as an information source. We review the evidence for each of the combinations of this cross-factoring. As artificial lighting alters natural patterns of light in space, time and across wavelengths, natural patterns of resource use and information flows may be disrupted, with downstream effects to the structure and function of ecosystems. This review highlights: (i) the potential influence of nighttime lighting at all levels of biological organisation (from cell to ecosystem); (ii) the significant impact that even low levels of nighttime light pollution can have; and (iii) the existence of major research gaps, particularly in terms of the impacts of light at population and ecosystem levels, identification of intensity thresholds, and the spatial extent of impacts in the vicinity of artificial lights.
Collapse
Affiliation(s)
- Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9EZ, U.K
| | | | | | | |
Collapse
|
109
|
Buckley LB, Kingsolver JG. Functional and Phylogenetic Approaches to Forecasting Species' Responses to Climate Change. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2012. [DOI: 10.1146/annurev-ecolsys-110411-160516] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Shifts in phenology and distribution in response to both recent and paleontological climate changes vary markedly in both direction and extent among species. These individualistic shifts are inconsistent with common forecasting techniques based on environmental rather than biological niches. What biological details could enhance forecasts? Organismal characteristics such as thermal and hydric limits, seasonal timing and duration of the life cycle, ecological breadth and dispersal capacity, and fitness and evolutionary potential are expected to influence climate change impacts. We review statistical and mechanistic approaches for incorporating traits in predictive models as well as the potential to use phylogeny as a proxy for traits. Traits generally account for a significant but modest fraction of the variation in phenological and range shifts. Further assembly of phenotypic and phylogenetic data coupled with the development of mechanistic approaches is essential to improved forecasts of the ecological consequences of climate change.
Collapse
Affiliation(s)
| | - Joel G. Kingsolver
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599;,
| |
Collapse
|
110
|
Sinclair BJ, Williams CM, Terblanche JS. Variation in Thermal Performance among Insect Populations. Physiol Biochem Zool 2012; 85:594-606. [DOI: 10.1086/665388] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
111
|
Cahill AE, Aiello-Lammens ME, Fisher-Reid MC, Hua X, Karanewsky CJ, Ryu HY, Sbeglia GC, Spagnolo F, Waldron JB, Warsi O, Wiens JJ. How does climate change cause extinction? Proc Biol Sci 2012; 280:20121890. [PMID: 23075836 DOI: 10.1098/rspb.2012.1890] [Citation(s) in RCA: 374] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Anthropogenic climate change is predicted to be a major cause of species extinctions in the next 100 years. But what will actually cause these extinctions? For example, will it be limited physiological tolerance to high temperatures, changing biotic interactions or other factors? Here, we systematically review the proximate causes of climate-change related extinctions and their empirical support. We find 136 case studies of climatic impacts that are potentially relevant to this topic. However, only seven identified proximate causes of demonstrated local extinctions due to anthropogenic climate change. Among these seven studies, the proximate causes vary widely. Surprisingly, none show a straightforward relationship between local extinction and limited tolerances to high temperature. Instead, many studies implicate species interactions as an important proximate cause, especially decreases in food availability. We find very similar patterns in studies showing decreases in abundance associated with climate change, and in those studies showing impacts of climatic oscillations. Collectively, these results highlight our disturbingly limited knowledge of this crucial issue but also support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change. Finally, we briefly outline general research strategies for identifying these proximate causes in future studies.
Collapse
Affiliation(s)
- Abigail E Cahill
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Abstract
The rapid rate of current global climate change is having strong effects on many species and, at least in some cases, is driving evolution, particularly when changes in conditions alter patterns of selection. Climate change thus provides an opportunity for the study of the genetic basis of adaptation. Such studies include a variety of observational and experimental approaches, such as sampling across clines, artificial evolution experiments, and resurrection studies. These approaches can be combined with a number of techniques in genetics and genomics, including association and mapping analyses, genome scans, and transcription profiling. Recent research has revealed a number of candidate genes potentially involved in climate change adaptation and has also illustrated that genetic regulatory networks and epigenetic effects may be particularly relevant for evolution driven by climate change. Although genetic and genomic data are rapidly accumulating, we still have much to learn about the genetic architecture of climate change adaptation.
Collapse
Affiliation(s)
- Steven J Franks
- Department of Biological Sciences, Fordham University, Bronx, New York 10458, USA.
| | | |
Collapse
|
113
|
Lee PF, Ko CY, Root TL, Lin SH, Schneider SH. Global Change Projections for Taiwan Island Birds: Linking Current and Future Distributions. NATURE CONSERVATION 2012. [DOI: 10.3897/natureconservation.2.2351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
114
|
O'Brien CS, Bourdo R, Bradshaw WE, Holzapfel CM, Cresko WA. Conservation of the photoperiodic neuroendocrine axis among vertebrates: evidence from the teleost fish, Gasterosteus aculeatus. Gen Comp Endocrinol 2012; 178:19-27. [PMID: 22504272 PMCID: PMC3389224 DOI: 10.1016/j.ygcen.2012.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 01/11/2023]
Abstract
Photoperiod, or length of day, has a predictable annual cycle, making it an important cue for the timing of seasonal behavior and development in many organisms. Photoperiod is widely used among temperate and polar animals to regulate the timing of sexual maturation. The proper sensing and interpretation of photoperiod can be tightly tied to an organism's overall fitness. In photoperiodic mammals and birds the thyroid hormone pathway initiates sexual maturation, but the degree to which this pathway is conserved across other vertebrates is not well known. We use the threespine stickleback Gasterosteus aculeatus, as a representative teleost to quantify the photoperiodic response of key genes in the thyroid hormone pathway under controlled laboratory conditions. We find that the photoperiodic responses of the hormones are largely consistent amongst multiple populations, although differences suggest physiological adaptation to various climates. We conclude that the thyroid hormone pathway initiates sexual maturation in response to photoperiod in G. aculeatus, and our results show that more components of this pathway are conserved among mammals, birds, and teleost fish than was previously known. However, additional endocrinology, cell biology and molecular research will be required to define precisely which aspects of the pathway are conserved across vertebrates.
Collapse
Affiliation(s)
- Conor S O'Brien
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA.
| | | | | | | | | |
Collapse
|
115
|
Clark ME, Reed WL. Seasonal interactions between photoperiod and maternal effects determine offspring phenotype in Franklin's gull. Funct Ecol 2012. [DOI: 10.1111/j.1365-2435.2012.02010.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Mark E. Clark
- Department of Biological Sciences; North Dakota State University; P.O. Box 6050; Dept. 2715; Fargo; North Dakota; 58108-6050; USA
| | - Wendy L. Reed
- Department of Biological Sciences; North Dakota State University; P.O. Box 6050; Dept. 2715; Fargo; North Dakota; 58108-6050; USA
| |
Collapse
|
116
|
Pautasso M. Observed impacts of climate change on terrestrial birds in Europe: an overview. ACTA ACUST UNITED AC 2012. [DOI: 10.1080/11250003.2011.627381] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
117
|
Xiao HJ, Wu SH, He HM, Chen C, Xue FS. Role of natural day-length and temperature in determination of summer and winter diapause in Pieris melete (Lepidoptera: Pieridae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2012; 102:267-273. [PMID: 22030333 DOI: 10.1017/s0007485311000587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Under field conditions, the cabbage butterfly, Pieris melete, displays a pupal summer diapause in response to relatively low daily temperatures and gradually increasing day-length during spring and a pupal winter diapause in response to the progressively shorter day-length. To determine whether photoperiod is 'more' important than temperature in the determination of summer and winter diapause, or vice versa, the effects of naturally changing day-length and temperature on the initiation of summer and winter diapause were systematically investigated under field conditions for five successive years. Field results showed that the incidence of summer diapause significantly declined with the naturally increasing temperature in spring and summer generations. Path coefficient analysis showed that the effect of temperature was much greater than photoperiod in the determination of summer diapause. In autumn, the incidence of diapause was extremely low when larvae developed under gradually shortening day-length and high temperatures. The incidence of winter diapause increased to 60-90% or higher with gradually shortening day-length combined with temperatures between 20.0°C and 22.0°C. Decreasing day-length played a more important role in the determination of winter diapause induction than temperature. The eco-adaptive significance of changing day-length and temperature in the determination of summer and winter diapause was discussed.
Collapse
Affiliation(s)
- H J Xiao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Province, China
| | | | | | | | | |
Collapse
|
118
|
Davies TW, Bennie J, Gaston KJ. Street lighting changes the composition of invertebrate communities. Biol Lett 2012; 8:764-7. [PMID: 22628095 DOI: 10.1098/rsbl.2012.0216] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Artificial lighting has been used to illuminate the nocturnal environment for centuries and continues to expand with urbanization and economic development. Yet, the potential ecological impact of the resultant light pollution has only recently emerged as a major cause for concern. While investigations have demonstrated that artificial lighting can influence organism behaviour, reproductive success and survivorship, none have addressed whether it is altering the composition of communities. We show, for the first time, that invertebrate community composition is affected by proximity to street lighting independently of the time of day. Five major invertebrate groups contributed to compositional differences, resulting in an increase in the number of predatory and scavenging individuals in brightly lit communities. Our results indicate that street lighting changes the environment at higher levels of biological organization than previously recognized, raising the potential that it can alter the structure and function of ecosystems.
Collapse
Affiliation(s)
- Thomas W Davies
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9EZ, UK.
| | | | | |
Collapse
|
119
|
Heat tolerance, temperature acclimation, acute oxidative damage and canalization of haemoglobin expression in Daphnia. Evol Ecol 2011. [DOI: 10.1007/s10682-011-9506-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
120
|
Hut RA, Beersma DGM. Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod. Philos Trans R Soc Lond B Biol Sci 2011; 366:2141-54. [PMID: 21690131 PMCID: PMC3130368 DOI: 10.1098/rstb.2010.0409] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Virtually all species have developed cellular oscillations and mechanisms that synchronize these cellular oscillations to environmental cycles. Such environmental cycles in biotic (e.g. food availability and predation risk) or abiotic (e.g. temperature and light) factors may occur on a daily, annual or tidal time scale. Internal timing mechanisms may facilitate behavioural or physiological adaptation to such changes in environmental conditions. These timing mechanisms commonly involve an internal molecular oscillator (a 'clock') that is synchronized ('entrained') to the environmental cycle by receptor mechanisms responding to relevant environmental signals ('Zeitgeber', i.e. German for time-giver). To understand the evolution of such timing mechanisms, we have to understand the mechanisms leading to selective advantage. Although major advances have been made in our understanding of the physiological and molecular mechanisms driving internal cycles (proximate questions), studies identifying mechanisms of natural selection on clock systems (ultimate questions) are rather limited. Here, we discuss the selective advantage of a circadian system and how its adaptation to day length variation may have a functional role in optimizing seasonal timing. We discuss various cases where selective advantages of circadian timing mechanisms have been shown and cases where temporarily loss of circadian timing may cause selective advantage. We suggest an explanation for why a circadian timing system has emerged in primitive life forms like cyanobacteria and we evaluate a possible molecular mechanism that enabled these bacteria to adapt to seasonal variation in day length. We further discuss how the role of the circadian system in photoperiodic time measurement may explain differential selection pressures on circadian period when species are exposed to changing climatic conditions (e.g. global warming) or when they expand their geographical range to different latitudes or altitudes.
Collapse
Affiliation(s)
- R A Hut
- University of Groningen, Chronobiology Research Unit, Life Science building, Nijenborgh 7, 9747AG Groningen, The Netherlands.
| | | |
Collapse
|
121
|
Abstract
Seasonal changes in day length are used by plants and animals to synchronize annual rhythms in reproduction, physiology, and behavior to the environment. Increasing day length during spring causes sudden changes in the mammalian reproductive system once the critical photoperiod is reached. The molecular mechanism behind this switch is now quickly being elucidated.
Collapse
|
122
|
Stauffer TW, Hatle JD, Whitman DW. Divergent egg physiologies in two closely related grasshopper species: Taeniopoda eques versus Romalea microptera (Orthoptera: Romaleidae). ENVIRONMENTAL ENTOMOLOGY 2011; 40:157-166. [PMID: 22182625 PMCID: PMC3755351 DOI: 10.1603/en10200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We compared egg survivorship and egg development time at different soil moistures for two closely related grasshopper species from divergent habitats: marsh-inhabiting Romalea microptera (Beauvois) versus desert-inhabiting Taeniopoda eques (Burmeister). These two species can interbreed and produce viable offspring. In nature, both species have a similar 8-9 mo subterranean egg stage, but their soil environments differ dramatically in water content. We predicted that the eggs of the two species would exhibit differential survivorship and development times under different moisture levels. Our laboratory results show that the eggs of both species survived a wide range of soil moistures (≈ 0.5 to 90%), maintained for 3 mo. However, the eggs of the marsh grasshopper, R. microptera, better tolerated the highest soil moistures (95 and 100%), whereas the eggs of the desert species, T. eques, better tolerated the lowest soil moistures (0.0 and 0.1%). Sixty-five percent of marsh-inhabiting R. microptera eggs, but no desert T. eques eggs, survived 3 mo submersion under water. In contrast, 49% of desert T. eques eggs, but only 3.5% of R. microptera eggs, survived after being laid into oven-dried sand and then maintained with no additional water until hatch. In the laboratory at 26 °C, the two species differed significantly in the mean length of the oviposition-to-hatch interval: 176 d for R. microptera versus 237 d for T. eques. These divergent traits presumably benefit these insects in their divergent habitats. Our results suggest the evolution of physiological divergence that is consistent with adaptations to local environments.
Collapse
Affiliation(s)
- Timothy W Stauffer
- Biology Department, Bradley University, 1501 West Bradley Avenue, Peoria, IL 61625, USA.
| | | | | |
Collapse
|
123
|
Hofmann GE, Barry JP, Edmunds PJ, Gates RD, Hutchins DA, Klinger T, Sewell MA. The Effect of Ocean Acidification on Calcifying Organisms in Marine Ecosystems: An Organism-to-Ecosystem Perspective. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2010. [DOI: 10.1146/annurev.ecolsys.110308.120227] [Citation(s) in RCA: 369] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ocean acidification (OA), a consequence of anthropogenic carbon dioxide emissions, poses a serious threat to marine organisms in tropical, open-ocean, coastal, deep-sea, and high-latitude sea ecosystems. The diversity of taxonomic groups that precipitate calcium carbonate from seawater are at particularly high risk. Here we review the rapidly expanding literature concerning the biological and ecological impacts of OA on calcification, using a cross-scale, process-oriented approach. In comparison to calcification, we find that areas such as fertilization, early life-history stages, and interaction with synergistic stressors are understudied. Although understanding the long-term consequences of OA are critical, available studies are largely short-term experiments that do not allow for tests of long-term acclimatization or adaptation. Future research on the phenotypic plasticity of contemporary organisms and interpretations of performance in the context of current environmental heterogeneity of pCO2 will greatly aid in our understanding of how organisms will respond to OA in the future.
Collapse
Affiliation(s)
- Gretchen E. Hofmann
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California 93106-9620
| | - James P. Barry
- Monterey Bay Aquarium Research Institute, Moss Landing, California 95039
| | - Peter J. Edmunds
- Department of Biology, California State University, Northridge, California 91330-8303
| | - Ruth D. Gates
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii 96744
| | - David A. Hutchins
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-0371
| | - Terrie Klinger
- School of Marine Affairs, University of Washington, Seattle, Washington 98105-6715
| | - Mary A. Sewell
- School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
124
|
Valtonen A, Ayres MP, Roininen H, Pöyry J, Leinonen R. Environmental controls on the phenology of moths: predicting plasticity and constraint under climate change. Oecologia 2010; 165:237-48. [PMID: 20882390 DOI: 10.1007/s00442-010-1789-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 08/25/2010] [Indexed: 11/28/2022]
Abstract
Ecological systems have naturally high interannual variance in phenology. Component species have presumably evolved to maintain appropriate phenologies under historical climates, but cases of inappropriate phenology can be expected with climate change. Understanding controls on phenology permits predictions of ecological responses to climate change. We studied phenological control systems in Lepidoptera by analyzing flight times recorded at a network of sites in Finland. We evaluated the strength and form of controls from temperature and photoperiod, and tested for geographic variation within species. Temperature controls on phenology were evident in 51% of 112 study species and for a third of those thermal controls appear to be modified by photoperiodic cues. For 24% of the total, photoperiod by itself emerged as the most likely control system. Species with thermal control alone should be most immediately responsive in phenology to climate warming, but variably so depending upon the minimum temperature at which appreciable development occurs and the thermal responsiveness of development rate. Photoperiodic modification of thermal controls constrains phenotypic responses in phenologies to climate change, but can evolve to permit local adaptation. Our results suggest that climate change will alter the phenological structure of the Finnish Lepidoptera community in ways that are predictable with knowledge of the proximate physiological controls. Understanding how phenological controls in Lepidoptera compare to that of their host plants and enemies could permit general inferences regarding climatic effects on mid- to high-latitude ecosystems.
Collapse
Affiliation(s)
- Anu Valtonen
- Department of Biology, University of Eastern Finland, Joensuu, Finland.
| | | | | | | | | |
Collapse
|
125
|
Feder ME, Garland T, Marden JH, Zera AJ. Locomotion in response to shifting climate zones: not so fast. Annu Rev Physiol 2010; 72:167-90. [PMID: 20148672 DOI: 10.1146/annurev-physiol-021909-135804] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although a species' locomotor capacity is suggestive of its ability to escape global climate change, such a suggestion is not necessarily straightforward. Species vary substantially in locomotor capacity, both ontogenetically and within/among populations, and much of this variation has a genetic basis. Accordingly, locomotor capacity can and does evolve rapidly, as selection experiments demonstrate. Importantly, even though this evolution of locomotor capacity may be rapid enough to escape changing climate, genetic correlations among traits (often due to pleiotropy) are such that successful or rapid dispersers are often limited in colonization or reproductive ability, which may be viewed as a trade-off. The nuanced assessment of this variation and evolution is reviewed for well-studied models: salmon, flying versus flightless insects, rodents undergoing experimental evolution, and metapopulations of butterflies. This work reveals how integration of physiology with population biology and functional genomics can be especially informative.
Collapse
Affiliation(s)
- Martin E Feder
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
126
|
Affiliation(s)
- Martin E Feder
- Department of Organismal Biology & Anatomy, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
127
|
Emerson KJ, Bradshaw WE, Holzapfel CM. Microarrays reveal early transcriptional events during the termination of larval diapause in natural populations of the mosquito, Wyeomyia smithii. PLoS One 2010; 5:e9574. [PMID: 20221437 PMCID: PMC2832704 DOI: 10.1371/journal.pone.0009574] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Accepted: 02/14/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The mosquito Wyeomyia smithii overwinters in a larval diapause that is initiated, maintained and terminated by day length (photoperiod). We use a forward genetic approach to investigate transcriptional events involved in the termination of diapause following exposure to long-days. METHODS/PRINCIPAL FINDINGS We incorporate a novel approach that compares two populations that differentially respond to a single day length. We identify 30 transcripts associated with differential response to day length. Most genes with a previously annotated function are consistent with their playing a role in the termination of diapause, in downstream developmental events, or in the transition from potentially oxygen-poor to oxygen-rich environments. One gene emerges from three separate forward genetic screens as a leading candidate for a gene contributing to the photoperiodic timing mechanism itself (photoperiodic switch). We name this gene photoperiodic response gene 1 (ppdrg1). WsPpdrg1 is up-regulated under long-day response conditions, is located under a QTL for critical photoperiod and is associated with critical photoperiod after 25 generations of recombination from a cross between extreme phenotypes. CONCLUSIONS Three independent forward genetic approaches identify WsPpdrg1 as a gene either involved in the photoperiodic switch mechanism or very tightly linked to a gene that is. We conclude that continued forward genetic approaches will be central to understanding not only the molecular basis of photoperiodism and diapause, but also the evolutionary potential of temperate and polar animal populations when confronted with rapid climate change.
Collapse
Affiliation(s)
- Kevin J Emerson
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon, United States of America.
| | | | | |
Collapse
|