101
|
Garita‐Cambronero J, Palacio‐Bielsa A, Cubero J. Xanthomonas arboricola pv. pruni, causal agent of bacterial spot of stone fruits and almond: its genomic and phenotypic characteristics in the X. arboricola species context. MOLECULAR PLANT PATHOLOGY 2018; 19:2053-2065. [PMID: 29575564 PMCID: PMC6638108 DOI: 10.1111/mpp.12679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/13/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Xanthomonas arboricola pv. pruni (Xap) causes bacterial spot of stone fruits and almond, an important disease that may reduce the yield and vigour of the trees, as well as the marketability of affected fruits. Xap lies within the Xanthomonas genus, which has been intensively studied because of its strain specialization and host range complexity. Here, we summarize the recent advances in our understanding of the complexities of Xap, including studies of the molecular features that result after comparative phenotypic and genomic analyses, in order to obtain a clearer overview of the bacterial behaviour and infection mechanism in the context of the X. arboricola species. TAXONOMIC STATUS Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Xanthomonadales; Family Xanthomonadaceae; Genus Xanthomonas; Species X. arboricola; Pathovar pruni. HOST RANGE AND SYMPTOMS Xap infects most Prunus species, including apricot, peach, nectarine, plum and almond, and occasionally cherry. Symptoms are found on leaves, fruits, twigs and branches or trunks. In severe infections, defoliation and fruit dropping may occur. DISTRIBUTION Bacterial spot of stone fruits and almond is worldwide in distribution, with Xap being isolated in Africa, North and South America, Asia, Europe and Oceania. It is a common disease in geographical areas in which stone fruits and almonds are grown. Xap is listed as a quarantine organism in several areas of the world. GENOME The genomes of six isolates from Xap have been publicly released. The genome consists of a single chromosome of around 5 000 000 bp with 65 mol% GC content and an extrachromosomal plasmid element of around 41 000 bp with 62 mol% GC content. Genomic comparative studies in X. arboricola have allowed the identification of putative virulence components associated with the infection process of bacterial spot of stone fruits and almond. DISEASE CONTROL Management of bacterial spot of stone fruits and almond is based on an integrated approach that comprises essential measures to avoid Xap introduction in a production zone, as well as the use of tolerant or resistant plant material and chemical treatments, mainly based on copper compounds. Management programmes also include the use of appropriate cultivation practices when the disease is already established. Finally, for the effective control of the disease, appropriate detection and characterization methods are needed for use in symptomatic or asymptomatic samples as a first approach for pathogen exclusion. USEFUL WEBSITES: https://gd.eppo.int/taxon/XANTPR; http://www.cost.eu/COST_Actions/ca/CA16107; http://www.xanthomonas.org.
Collapse
Affiliation(s)
- Jerson Garita‐Cambronero
- Departamento de Protección VegetalInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Madrid 28040Spain
- Centro de Investigación de Biocombustibles y Bioproductos, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Villarejo de Órbigo 24358LeónSpain
| | - Ana Palacio‐Bielsa
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón‐IA2 ‐ (CITA ‐ Universidad de Zaragoza)Zaragoza 50059Spain
| | - Jaime Cubero
- Departamento de Protección VegetalInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Madrid 28040Spain
| |
Collapse
|
102
|
Chen NWG, Serres-Giardi L, Ruh M, Briand M, Bonneau S, Darrasse A, Barbe V, Gagnevin L, Koebnik R, Jacques MA. Horizontal gene transfer plays a major role in the pathological convergence of Xanthomonas lineages on common bean. BMC Genomics 2018; 19:606. [PMID: 30103675 PMCID: PMC6090828 DOI: 10.1186/s12864-018-4975-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Host specialization is a hallmark of numerous plant pathogens including bacteria, fungi, oomycetes and viruses. Yet, the molecular and evolutionary bases of host specificity are poorly understood. In some cases, pathological convergence is observed for individuals belonging to distant phylogenetic clades. This is the case for Xanthomonas strains responsible for common bacterial blight of bean, spread across four genetic lineages. All the strains from these four lineages converged for pathogenicity on common bean, implying possible gene convergences and/or sharing of a common arsenal of genes conferring the ability to infect common bean. RESULTS To search for genes involved in common bean specificity, we used a combination of whole-genome analyses without a priori, including a genome scan based on k-mer search. Analysis of 72 genomes from a collection of Xanthomonas pathovars unveiled 115 genes bearing DNA sequences specific to strains responsible for common bacterial blight, including 20 genes located on a plasmid. Of these 115 genes, 88 were involved in successive events of horizontal gene transfers among the four genetic lineages, and 44 contained nonsynonymous polymorphisms unique to the causal agents of common bacterial blight. CONCLUSIONS Our study revealed that host specificity of common bacterial blight agents is associated with a combination of horizontal transfers of genes, and highlights the role of plasmids in these horizontal transfers.
Collapse
Affiliation(s)
- Nicolas W. G. Chen
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071 Beaucouzé, France
| | - Laurana Serres-Giardi
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071 Beaucouzé, France
| | - Mylène Ruh
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071 Beaucouzé, France
| | - Martial Briand
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071 Beaucouzé, France
| | - Sophie Bonneau
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071 Beaucouzé, France
| | - Armelle Darrasse
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071 Beaucouzé, France
| | - Valérie Barbe
- CEA/DSV/IG/Genoscope, 2 rue Gaston Crémieux, BP5706, 91057 Evry, France
| | - Lionel Gagnevin
- CIRAD, UMR PVBMT, F-97410 Saint-Pierre, La Réunion France
- IRD, CIRAD, Université de Montpellier, IPME, Montpellier, France
| | - Ralf Koebnik
- IRD, CIRAD, Université de Montpellier, IPME, Montpellier, France
| | - Marie-Agnès Jacques
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071 Beaucouzé, France
| |
Collapse
|
103
|
Denancé N, Szurek B, Doyle EL, Lauber E, Fontaine-Bodin L, Carrère S, Guy E, Hajri A, Cerutti A, Boureau T, Poussier S, Arlat M, Bogdanove AJ, Noël LD. Two ancestral genes shaped the Xanthomonas campestris TAL effector gene repertoire. THE NEW PHYTOLOGIST 2018; 219:391-407. [PMID: 29677397 DOI: 10.1111/nph.15148] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Xanthomonas transcription activator-like effectors (TALEs) are injected inside plant cells to promote host susceptibility by enhancing transcription of host susceptibility genes. TALE-encoding (tal) genes were thought to be absent from Brassicaceae-infecting Xanthomonas campestris (Xc) genomes based on four reference genomic sequences. We discovered tal genes in 26 of 49 Xc strains isolated worldwide and used a combination of single molecule real time (SMRT) and tal amplicon sequencing to yield a near-complete description of the TALEs found in Xc (Xc TALome). The 53 sequenced tal genes encode 21 distinct DNA binding domains that sort into seven major DNA binding specificities. In silico analysis of the Brassica rapa promoterome identified a repertoire of predicted TALE targets, five of which were experimentally validated using quantitative reverse transcription polymerase chain reaction. The Xc TALome shows multiple signs of DNA rearrangements that probably drove its evolution from two ancestral tal genes. We discovered that Tal12a and Tal15a of Xcc strain Xca5 contribute together in the development of disease symptoms on susceptible B. oleracea var. botrytis cv Clovis. This large and polymorphic repertoire of TALEs opens novel perspectives for elucidating TALE-mediated susceptibility of Brassicaceae to black rot disease and for understanding the molecular processes underlying TALE evolution.
Collapse
Affiliation(s)
- Nicolas Denancé
- LIPM, Université de Toulouse, INRA, CNRS, UPS, F-31326, Castanet-Tolosan Cedex, France
| | - Boris Szurek
- IRD, Cirad, Univ. Montpellier, IPME, Montpellier, France
| | - Erin L Doyle
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
- Department of Biology, Doane University, Crete, NE, 68333, USA
| | - Emmanuelle Lauber
- LIPM, Université de Toulouse, INRA, CNRS, UPS, F-31326, Castanet-Tolosan Cedex, France
| | | | - Sébastien Carrère
- LIPM, Université de Toulouse, INRA, CNRS, UPS, F-31326, Castanet-Tolosan Cedex, France
| | - Endrick Guy
- LIPM, Université de Toulouse, INRA, CNRS, UPS, F-31326, Castanet-Tolosan Cedex, France
| | - Ahmed Hajri
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 49071, Beaucouzé Cedex, France
| | - Aude Cerutti
- LIPM, Université de Toulouse, INRA, CNRS, UPS, F-31326, Castanet-Tolosan Cedex, France
| | - Tristan Boureau
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 49071, Beaucouzé Cedex, France
| | - Stéphane Poussier
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 49071, Beaucouzé Cedex, France
| | - Matthieu Arlat
- LIPM, Université de Toulouse, INRA, CNRS, UPS, F-31326, Castanet-Tolosan Cedex, France
| | - Adam J Bogdanove
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Laurent D Noël
- LIPM, Université de Toulouse, INRA, CNRS, UPS, F-31326, Castanet-Tolosan Cedex, France
| |
Collapse
|
104
|
Functional analysis of African Xanthomonas oryzae pv. oryzae TALomes reveals a new susceptibility gene in bacterial leaf blight of rice. PLoS Pathog 2018; 14:e1007092. [PMID: 29864161 PMCID: PMC6037387 DOI: 10.1371/journal.ppat.1007092] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 07/09/2018] [Accepted: 05/12/2018] [Indexed: 11/19/2022] Open
Abstract
Most Xanthomonas species translocate Transcription Activator-Like (TAL) effectors into plant cells where they function like plant transcription factors via a programmable DNA-binding domain. Characterized strains of rice pathogenic X. oryzae pv. oryzae harbor 9–16 different tal effector genes, but the function of only a few of them has been decoded. Using sequencing of entire genomes, we first performed comparative analyses of the complete repertoires of TAL effectors, herein referred to as TALomes, in three Xoo strains forming an African genetic lineage different from Asian Xoo. A phylogenetic analysis of the three TALomes combined with in silico predictions of TAL effector targets showed that African Xoo TALomes are highly conserved, genetically distant from Asian ones, and closely related to TAL effectors from the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc). Nine clusters of TAL effectors could be identified among the three TALomes, including three showing higher levels of variation in their repeat variable diresidues (RVDs). Detailed analyses of these groups revealed recombination events as a possible source of variation among TAL effector genes. Next, to address contribution to virulence, nine TAL effector genes from the Malian Xoo strain MAI1 and four allelic variants from the Burkinabe Xoo strain BAI3, thus representing most of the TAL effector diversity in African Xoo strains, were expressed in the TAL effector-deficient X. oryzae strain X11-5A for gain-of-function assays. Inoculation of the susceptible rice variety Azucena lead to the discovery of three TAL effectors promoting virulence, including two TAL effectors previously reported to target the susceptibility (S) gene OsSWEET14 and a novel major virulence contributor, TalB. RNA profiling experiments in rice and in silico prediction of EBEs were carried out to identify candidate targets of TalB, revealing OsTFX1, a bZIP transcription factor previously identified as a bacterial blight S gene, and OsERF#123, which encodes a subgroup IXc AP2/ERF transcription factor. Use of designer TAL effectors demonstrated that induction of either gene resulted in greater susceptibility to strain X11-5A. The induction of OsERF#123 by BAI3Δ1, a talB knockout derivative of BAI3, carrying these designer TAL effectors increased virulence of BAI3Δ1, validating OsERF#123 as a new, bacterial blight S gene. The ability of most Xanthomonas plant pathogenic bacteria to infect their hosts relies on the action of a specific family of proteins called TAL effectors, which are transcriptional activators injected into the plant by the bacteria. TAL effectors enter the plant cell nucleus and bind to the promoters of specific plant genes. Genes that when induced can benefit pathogen multiplication or disease development are called susceptibility (S) genes. Here, we perform a comparative analysis of the TAL effector repertoires of three strains of X. oryzae pv. oryzae, which causes bacterial leaf blight of rice, a major yield constraint in this staple crop. Using sequencing of entire genomes, we compared the large repertoires of TAL effectors in three African Xoo strains which form a genetic lineage distinct from Asian strains. We assessed the individual contribution to pathogen virulence of 13 TAL effector variants represented in the three strains, and identified one that makes a major contribution. By combining host transcriptome profiling and TAL effector binding sites prediction, we identified two targets of this TAL effector that function as S genes, one previously identified, and one, new S gene. We validated the new S gene by functional characterization using designer TAL effectors. Both S genes encode transcription factors and can therefore be considered as susceptibility hubs for pathogen manipulation of the host transcriptome. Our results provide new insights into the diversified strategies underlying the roles of TAL effectors in promoting plant disease.
Collapse
|
105
|
Wang H, McTavish C, Turechek WW. Colonization and Movement of Xanthomonas fragariae in Strawberry Tissues. PHYTOPATHOLOGY 2018; 108:681-690. [PMID: 29298111 DOI: 10.1094/phyto-10-17-0356-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Xanthomonas fragariae causes angular leaf spot of strawberry, an important disease in strawberry growing regions worldwide. To better understand how X. fragariae multiplies and moves in strawberry plants, a green fluorescent protein (GFP)-labeled strain was constructed and used to monitor the pathogen's presence in leaf, petiole, and crown tissue with fluorescence microscopy following natural and wound inoculation in three strawberry cultivars. Taqman PCR was used to quantify bacterial densities in these same tissues regardless of the presence of GFP signal. Results showed X. fragariae colonized leaf mesophyll, the top 1 cm portion of the petiole adjacent to the leaf blade, and was occasionally found colonizing xylem vessels down to the middle of the petioles. The colonization of vascular bundles and the limited systemic movement that was observed appeared to be a passive process, of which the frequency increased with wounding and direct infiltration of bacteria into leaf veins. X. fragariae was able to directly enter petioles and colonize the space under the epidermis. Systemic movement of the bacteria into crown and other uninoculated tissues was not detected visually by GFP. However, X. fragariae was occasionally detected in these tissues by qPCR, but at quantities very near the qPCR detection limit. Petiole tissue harboring bacteria introduced either by direct entry through natural openings or wounds, or by systemic movement from infected foliar tissue, likely serves as a main source of initial inoculum in field plantings.
Collapse
Affiliation(s)
- Hehe Wang
- First author: Department of Plant and Environmental Sciences, Clemson University, Blackville, SC; second author: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Physiology and Pathology of Tree Fruits Research, Wenatchee, WA; and third author: USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, FL
| | - Christine McTavish
- First author: Department of Plant and Environmental Sciences, Clemson University, Blackville, SC; second author: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Physiology and Pathology of Tree Fruits Research, Wenatchee, WA; and third author: USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, FL
| | - William W Turechek
- First author: Department of Plant and Environmental Sciences, Clemson University, Blackville, SC; second author: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Physiology and Pathology of Tree Fruits Research, Wenatchee, WA; and third author: USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, FL
| |
Collapse
|
106
|
Schandry N, Jacobs JM, Szurek B, Perez‐Quintero AL. A cautionary TALE: how plant breeding may have favoured expanded TALE repertoires in Xanthomonas. MOLECULAR PLANT PATHOLOGY 2018; 19:1297-1301. [PMID: 29723447 PMCID: PMC6638153 DOI: 10.1111/mpp.12670] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 05/19/2023]
Affiliation(s)
- Niklas Schandry
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC)Vienna 1030Austria
| | - Jonathan M. Jacobs
- Department of Bioagricultural Sciences and Pest ManagementColorado State UniversityFort CollinsCO 80523USA
- Applied Microbiology ‐ PhytopathologyEarth and Life Institute, Université Catholique de LouvainLouvain‐la‐Neuve, 1348Belgium
| | - Boris Szurek
- IRD, Cirad, University of Montpellier, IPMEMontpellier 34000France
| | - Alvaro L. Perez‐Quintero
- IRD, Cirad, University of Montpellier, IPMEMontpellier 34000France
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research UniversityParis 75005France
| |
Collapse
|
107
|
López MM, Lopez-Soriano P, Garita-Cambronero J, Beltrán C, Taghouti G, Portier P, Cubero J, Fischer-Le Saux M, Marco-Noales E. Xanthomonas prunicola sp. nov., a novel pathogen that affects nectarine (Prunus persica var. nectarina) trees. Int J Syst Evol Microbiol 2018; 68:1857-1866. [PMID: 29741474 DOI: 10.1099/ijsem.0.002743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Three isolates obtained from symptomatic nectarine trees (Prunus persica var. nectarina) cultivated in Murcia, Spain, which showed yellow and mucoid colonies similar to Xanthomonas arboricola pv. pruni, were negative after serological and real-time PCR analyses for this pathogen. For that reason, these isolates were characterized following a polyphasic approach that included both phenotypic and genomic methods. By sequence analysis of the 16S rRNA gene, these novel strains were identified as members of the genus Xanthomonas, and by multilocus sequence analysis (MLSA) they were clustered together in a distinct group that showed similarity values below 95 % with the rest of the species of this genus. Whole-genome comparisons of the average nucleotide identity (ANI) of genomes of the strains showed less than 91 % average nucleotide identity with all other species of the genus Xanthomonas. Additionally, phenotypic characterization based on API 20 NE, API 50 CH and BIOLOG tests differentiated the strains from the species of the genus Xanthomonas described previously. Moreover, the three strains were confirmed to be pathogenic on peach (Prunus persica), causing necrotic lesions on leaves. On the basis of these results, the novel strains represent a novel species of the genus Xanthomonas, for which the name Xanthomonas prunicola is proposed. The type strain is CFBP 8353 (=CECT 9404=IVIA 3287.1).
Collapse
Affiliation(s)
- María M López
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315 Km 10,7, 46113 Moncada, Valencia, Spain
| | - Pablo Lopez-Soriano
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315 Km 10,7, 46113 Moncada, Valencia, Spain
| | - Jerson Garita-Cambronero
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña Km 7,5, 28040 Madrid, Spain.,Centro de Investigación de Biocombustibles y Bioproductos, Instituto Tecnológico Agrario de Castilla y León, 24358 Villarejo de Orbigo, León, Spain
| | - Carmen Beltrán
- Consejería de Agricultura y Agua. Comunidad Autónoma Región de Murcia, Calle Mayor s/n, 30150 La Alberca, Murcia, Spain
| | - Geraldine Taghouti
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, CIRM-CFBP, 42 rue Georges Morel, 49071 Beaucouzé cedex, France
| | - Perrine Portier
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, CIRM-CFBP, 42 rue Georges Morel, 49071 Beaucouzé cedex, France
| | - Jaime Cubero
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña Km 7,5, 28040 Madrid, Spain
| | - Marion Fischer-Le Saux
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, CIRM-CFBP, 42 rue Georges Morel, 49071 Beaucouzé cedex, France
| | - Ester Marco-Noales
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315 Km 10,7, 46113 Moncada, Valencia, Spain
| |
Collapse
|
108
|
Where are we going with genomics in plant pathogenic bacteria? Genomics 2018; 111:729-736. [PMID: 29678682 DOI: 10.1016/j.ygeno.2018.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022]
Abstract
Genome sequencing is commonly used in research laboratories right now thanks to the rise of high-throughput sequencing with higher speed and output-to-cost ratios. Here, we summarized the application of genomics in different aspects of plant bacterial pathosystems. Genomics has been used in studying the mechanisms of plant-bacteria interactions, and host specificity. It also helps with taxonomy, study of non-cultured bacteria, identification of causal agent, single cell sequencing, population genetics, and meta-transcriptomic. Overall, genomics has significantly improved our understanding of plant-microbe interaction.
Collapse
|
109
|
Nakato V, Mahuku G, Coutinho T. Xanthomonas campestris pv. musacearum: a major constraint to banana, plantain and enset production in central and east Africa over the past decade. MOLECULAR PLANT PATHOLOGY 2018; 19:525-536. [PMID: 28677256 PMCID: PMC6638165 DOI: 10.1111/mpp.12578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/27/2017] [Accepted: 06/30/2017] [Indexed: 05/10/2023]
Abstract
TAXONOMY Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Xanthomonadales; Family Xanthomonadaceae; Genus Xanthomonas; currently classified as X. campestris pv. musacearum (Xcm). However, fatty acid methyl ester analysis and genetic and genomic evidence suggest that this pathogen is X. vasicola and resides in a separate pathovar. ISOLATION AND DETECTION Xcm can be isolated on yeast extract peptone glucose agar (YPGA), cellobiose cephalexin agar and yeast extract tryptone sucrose agar (YTSA) complemented with 5-fluorouracil, cephalexin and cycloheximide to confer semi-selectivity. Xcm can also be identified using direct antigen coating enzyme-linked immunosorbent assay (DAC-ELISA), species-specific polymerase chain reaction (PCR) using GspDm primers and lateral flow devices that detect latent infections. HOST RANGE Causes Xanthomonas wilt on plants belonging to the Musaceae, primarily banana (Musa acuminata), plantain (M. acuminata × balbisiana) and enset (Ensete ventricosum). DIVERSITY There is a high level of genetic homogeneity within Xcm, although genome sequencing has revealed two major sublineages. SYMPTOMS Yellowing and wilting of leaves, premature fruit ripening and dry rot, bacterial exudate from cut stems. DISTRIBUTION Xcm has only been found in African countries, namely Burundi, Ethiopia, Democratic Republic of the Congo, Kenya, Rwanda, Tanzania and Uganda. ECOLOGY AND EPIDEMIOLOGY Xcm is transmitted by insects, bats, birds and farming implements. Long-distance dispersal of the pathogen is by the transportation of latently infected plants into new areas. MANAGEMENT The management of Xcm has relied on cultural practices that keep the pathogen population at tolerable levels. Biotechnology programmes have been successful in producing resistant banana plants. However, the deployment of such genetic material has not as yet been achieved in farmers' fields, and the sustainability of transgenic resistance remains to be addressed.
Collapse
Affiliation(s)
- Valentine Nakato
- Plant PathologyInternational Institute of Tropical AgricultureKampala 7878Uganda
- Department of Microbiology and Plant Pathology, Centre for Microbial Ecology and Genomics (CMEG), Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoria 0002South Africa
| | - George Mahuku
- Plant PathologyInternational Institute of Tropical AgricultureKampala 7878Uganda
| | - Teresa Coutinho
- Department of Microbiology and Plant Pathology, Centre for Microbial Ecology and Genomics (CMEG), Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoria 0002South Africa
| |
Collapse
|
110
|
Lang JM, DuCharme E, Ibarra Caballero J, Luna E, Hartman T, Ortiz-Castro M, Korus K, Rascoe J, Jackson-Ziems TA, Broders K, Leach JE. Detection and Characterization of Xanthomonas vasicola pv. vasculorum (Cobb 1894) comb. nov. Causing Bacterial Leaf Streak of Corn in the United States. PHYTOPATHOLOGY 2017; 107:1312-1321. [PMID: 28677478 DOI: 10.1094/phyto-05-17-0168-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bacterial leaf streak of corn (Zea mays) recently reached epidemic levels in three corn-growing states, and has been detected in another six states in the central United States. Xanthomonas vasicola was identified as the causal agent of this disease. A multilocus sequence alignment of six housekeeping genes and comparison of average nucleotide identity from draft genome sequence were used to confirm phylogenetic relationships and classification of this bacteria relative to other X. vasicola strains. X. vasicola isolates from Nebraska and South Africa were highly virulent on corn and sugarcane and less virulent on sorghum but caused water-soaking symptoms that are typical of X. vasicola infection on the leaves of all three hosts. Based on host range and phylogenetic comparison, we propose the taxonomic designation of this organism to X. vasicola pv. vasculorum ( Cobb 1894 ) comb. nov. Polymerase chain reaction-based diagnostic assays were developed that distinguish X. vasicola pv. vasculorum and X. vasicola pv. holcicola from each other and from other Xanthomonas spp.
Collapse
Affiliation(s)
- J M Lang
- First, second, third, fourth, sixth, tenth, and eleventh authors: Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, 80523-1177; fifth, seventh, and ninth authors: University of Nebraska-Lincoln, Lincoln 68583; seventh author: Alachua County Extension, University of Florida, Gainesville 32609; and eighth author: United States Department of Agriculture-Animal Plant Health Inspection Service-Plant Protection and Quarantine-CPHST, Beltsville, MD 20705
| | - E DuCharme
- First, second, third, fourth, sixth, tenth, and eleventh authors: Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, 80523-1177; fifth, seventh, and ninth authors: University of Nebraska-Lincoln, Lincoln 68583; seventh author: Alachua County Extension, University of Florida, Gainesville 32609; and eighth author: United States Department of Agriculture-Animal Plant Health Inspection Service-Plant Protection and Quarantine-CPHST, Beltsville, MD 20705
| | - J Ibarra Caballero
- First, second, third, fourth, sixth, tenth, and eleventh authors: Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, 80523-1177; fifth, seventh, and ninth authors: University of Nebraska-Lincoln, Lincoln 68583; seventh author: Alachua County Extension, University of Florida, Gainesville 32609; and eighth author: United States Department of Agriculture-Animal Plant Health Inspection Service-Plant Protection and Quarantine-CPHST, Beltsville, MD 20705
| | - E Luna
- First, second, third, fourth, sixth, tenth, and eleventh authors: Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, 80523-1177; fifth, seventh, and ninth authors: University of Nebraska-Lincoln, Lincoln 68583; seventh author: Alachua County Extension, University of Florida, Gainesville 32609; and eighth author: United States Department of Agriculture-Animal Plant Health Inspection Service-Plant Protection and Quarantine-CPHST, Beltsville, MD 20705
| | - T Hartman
- First, second, third, fourth, sixth, tenth, and eleventh authors: Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, 80523-1177; fifth, seventh, and ninth authors: University of Nebraska-Lincoln, Lincoln 68583; seventh author: Alachua County Extension, University of Florida, Gainesville 32609; and eighth author: United States Department of Agriculture-Animal Plant Health Inspection Service-Plant Protection and Quarantine-CPHST, Beltsville, MD 20705
| | - M Ortiz-Castro
- First, second, third, fourth, sixth, tenth, and eleventh authors: Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, 80523-1177; fifth, seventh, and ninth authors: University of Nebraska-Lincoln, Lincoln 68583; seventh author: Alachua County Extension, University of Florida, Gainesville 32609; and eighth author: United States Department of Agriculture-Animal Plant Health Inspection Service-Plant Protection and Quarantine-CPHST, Beltsville, MD 20705
| | - K Korus
- First, second, third, fourth, sixth, tenth, and eleventh authors: Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, 80523-1177; fifth, seventh, and ninth authors: University of Nebraska-Lincoln, Lincoln 68583; seventh author: Alachua County Extension, University of Florida, Gainesville 32609; and eighth author: United States Department of Agriculture-Animal Plant Health Inspection Service-Plant Protection and Quarantine-CPHST, Beltsville, MD 20705
| | - J Rascoe
- First, second, third, fourth, sixth, tenth, and eleventh authors: Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, 80523-1177; fifth, seventh, and ninth authors: University of Nebraska-Lincoln, Lincoln 68583; seventh author: Alachua County Extension, University of Florida, Gainesville 32609; and eighth author: United States Department of Agriculture-Animal Plant Health Inspection Service-Plant Protection and Quarantine-CPHST, Beltsville, MD 20705
| | - T A Jackson-Ziems
- First, second, third, fourth, sixth, tenth, and eleventh authors: Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, 80523-1177; fifth, seventh, and ninth authors: University of Nebraska-Lincoln, Lincoln 68583; seventh author: Alachua County Extension, University of Florida, Gainesville 32609; and eighth author: United States Department of Agriculture-Animal Plant Health Inspection Service-Plant Protection and Quarantine-CPHST, Beltsville, MD 20705
| | - K Broders
- First, second, third, fourth, sixth, tenth, and eleventh authors: Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, 80523-1177; fifth, seventh, and ninth authors: University of Nebraska-Lincoln, Lincoln 68583; seventh author: Alachua County Extension, University of Florida, Gainesville 32609; and eighth author: United States Department of Agriculture-Animal Plant Health Inspection Service-Plant Protection and Quarantine-CPHST, Beltsville, MD 20705
| | - J E Leach
- First, second, third, fourth, sixth, tenth, and eleventh authors: Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, 80523-1177; fifth, seventh, and ninth authors: University of Nebraska-Lincoln, Lincoln 68583; seventh author: Alachua County Extension, University of Florida, Gainesville 32609; and eighth author: United States Department of Agriculture-Animal Plant Health Inspection Service-Plant Protection and Quarantine-CPHST, Beltsville, MD 20705
| |
Collapse
|
111
|
Pearce DS, Hoover BA, Jennings S, Nevitt GA, Docherty KM. Morphological and genetic factors shape the microbiome of a seabird species (Oceanodroma leucorhoa) more than environmental and social factors. MICROBIOME 2017; 5:146. [PMID: 29084611 PMCID: PMC5663041 DOI: 10.1186/s40168-017-0365-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 10/26/2017] [Indexed: 05/10/2023]
Abstract
BACKGROUND The microbiome provides multiple benefits to animal hosts that can profoundly impact health and behavior. Microbiomes are well-characterized in humans and other animals in controlled settings, yet assessments of wild bird microbial communities remain vastly understudied. This is particularly true for pelagic seabirds with unique life histories that differ from terrestrial bird species. This study was designed to examine how morphological, genetic, environmental, and social factors affect the microbiome of a burrow-nesting seabird species, Leach's storm petrel (Oceanodroma leucorhoa). These seabirds are highly olfactory and may rely on microbiome-mediated odor cues during mate selection. Composition and structure of bacterial communities associated with the uropygial gland and brood patch were assessed using 16S rRNA amplicon-based Illumina Mi-Seq analysis and compared to burrow-associated bacterial communities. This is the first study to examine microbial diversity associated with multiple body sites on a seabird species. RESULTS Results indicate that sex and skin site contribute most to bacterial community variation in Leach's storm petrels and that major histocompatibility complex (MHC) genotype may impact the composition of bacterial assemblages in males. In contrast to terrestrial birds and other animals, environmental and social interactions do not significantly influence storm petrel-associated bacterial assemblages. Thus, individual morphological and genetic influences outweighed environmental and social factors on microbiome composition. CONCLUSIONS Contrary to observations of terrestrial birds, microbiomes of Leach's storm petrels vary most by the sex of the bird and by the body site sampled, rather than environmental surroundings or social behavior.
Collapse
Affiliation(s)
- Douglas S. Pearce
- Department of Biological Sciences, Western Michigan University, 1903 W Michigan Ave, Kalamazoo, MI 49008 USA
| | - Brian A. Hoover
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, One Shields Avenue, University of California, Davis, CA 95616 USA
| | - Sarah Jennings
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, One Shields Avenue, University of California, Davis, CA 95616 USA
| | - Gabrielle A. Nevitt
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, One Shields Avenue, University of California, Davis, CA 95616 USA
| | - Kathryn M. Docherty
- Department of Biological Sciences, Western Michigan University, 1903 W Michigan Ave, Kalamazoo, MI 49008 USA
| |
Collapse
|
112
|
De Maayer P, Aliyu H, Vikram S, Blom J, Duffy B, Cowan DA, Smits THM, Venter SN, Coutinho TA. Phylogenomic, Pan-genomic, Pathogenomic and Evolutionary Genomic Insights into the Agronomically Relevant Enterobacteria Pantoea ananatis and Pantoea stewartii. Front Microbiol 2017; 8:1755. [PMID: 28959245 PMCID: PMC5603701 DOI: 10.3389/fmicb.2017.01755] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022] Open
Abstract
Pantoea ananatis is ubiquitously found in the environment and causes disease on a wide range of plant hosts. By contrast, its sister species, Pantoea stewartii subsp. stewartii is the host-specific causative agent of the devastating maize disease Stewart's wilt. This pathogen has a restricted lifecycle, overwintering in an insect vector before being introduced into susceptible maize cultivars, causing disease and returning to overwinter in its vector. The other subspecies of P. stewartii subsp. indologenes, has been isolated from different plant hosts and is predicted to proliferate in different environmental niches. Here we have, by the use of comparative genomics and a comprehensive suite of bioinformatic tools, analyzed the genomes of ten P. stewartii and nineteen P. ananatis strains. Our phylogenomic analyses have revealed that there are two distinct clades within P. ananatis while far less phylogenetic diversity was observed among the P. stewartii subspecies. Pan-genome analyses revealed a large core genome comprising of 3,571 protein coding sequences is shared among the twenty-nine compared strains. Furthermore, we showed that an extensive accessory genome made up largely by a mobilome of plasmids, integrated prophages, integrative and conjugative elements and insertion elements has resulted in extensive diversification of P. stewartii and P. ananatis. While these organisms share many pathogenicity determinants, our comparative genomic analyses show that they differ in terms of the secretion systems they encode. The genomic differences identified in this study have allowed us to postulate on the divergent evolutionary histories of the analyzed P. ananatis and P. stewartii strains and on the molecular basis underlying their ecological success and host range.
Collapse
Affiliation(s)
- Pieter De Maayer
- School of Molecular and Cell Biology, University of the WitwatersrandJohannesburg, South Africa
| | - Habibu Aliyu
- Centre for Microbial Ecology and Genomics, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Surendra Vikram
- Centre for Microbial Ecology and Genomics, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Jochen Blom
- Department of Bioinformatics and Systems Biology, Justus-Liebig-University GiessenGiessen, Germany
| | - Brion Duffy
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resource Sciences, Zurich University of Applied SciencesWinterthur, Switzerland
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Theo H. M. Smits
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resource Sciences, Zurich University of Applied SciencesWinterthur, Switzerland
| | - Stephanus N. Venter
- Department of Microbiology, Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
| | - Teresa A. Coutinho
- Department of Microbiology, Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
| |
Collapse
|
113
|
Phillips AZ, Berry JC, Wilson MC, Vijayaraghavan A, Burke J, Bunn JI, Allen TW, Wheeler T, Bart RS. Genomics-enabled analysis of the emergent disease cotton bacterial blight. PLoS Genet 2017; 13:e1007003. [PMID: 28910288 PMCID: PMC5614658 DOI: 10.1371/journal.pgen.1007003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/26/2017] [Accepted: 08/31/2017] [Indexed: 01/09/2023] Open
Abstract
Cotton bacterial blight (CBB), an important disease of (Gossypium hirsutum) in the early 20th century, had been controlled by resistant germplasm for over half a century. Recently, CBB re-emerged as an agronomic problem in the United States. Here, we report analysis of cotton variety planting statistics that indicate a steady increase in the percentage of susceptible cotton varieties grown each year since 2009. Phylogenetic analysis revealed that strains from the current outbreak cluster with race 18 Xanthomonas citri pv. malvacearum (Xcm) strains. Illumina based draft genomes were generated for thirteen Xcm isolates and analyzed along with 4 previously published Xcm genomes. These genomes encode 24 conserved and nine variable type three effectors. Strains in the race 18 clade contain 3 to 5 more effectors than other Xcm strains. SMRT sequencing of two geographically and temporally diverse strains of Xcm yielded circular chromosomes and accompanying plasmids. These genomes encode eight and thirteen distinct transcription activator-like effector genes. RNA-sequencing revealed 52 genes induced within two cotton cultivars by both tested Xcm strains. This gene list includes a homeologous pair of genes, with homology to the known susceptibility gene, MLO. In contrast, the two strains of Xcm induce different clade III SWEET sugar transporters. Subsequent genome wide analysis revealed patterns in the overall expression of homeologous gene pairs in cotton after inoculation by Xcm. These data reveal important insights into the Xcm-G. hirsutum disease complex and strategies for future development of resistant cultivars. Cotton bacterial blight (CBB), caused by Xanthomonas citri pv. malvacearum (Xcm), significantly limited cotton yields in the early 20th century but has been controlled by classical resistance genes for more than 50 years. In 2011, the pathogen re-emerged with a vengeance. In this study, we compare diverse pathogen isolates and cotton varieties to further understand the virulence mechanisms employed by Xcm and to identify promising resistance strategies. We generate fully contiguous genome assemblies for two diverse Xcm strains and identify pathogen proteins used to modulate host transcription and promote susceptibility. RNA-Sequencing of infected cotton reveals novel putative gene targets for the development of durable Xcm resistance. Together, the data presented reveal contributing factors for CBB re-emergence in the U.S. and highlight several promising routes towards the development of durable resistance including classical resistance genes and potential manipulation of susceptibility targets.
Collapse
Affiliation(s)
- Anne Z. Phillips
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, United States of America
| | - Jeffrey C. Berry
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
| | - Mark C. Wilson
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
| | | | - Jillian Burke
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
| | - J. Imani Bunn
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
| | - Tom W. Allen
- Delta Research and Extension Center, Mississippi State University, Stoneville, MS, United States of America
| | - Terry Wheeler
- Texas AgriLife Research, Texas AgriLife Extension Service, Lubbock, TX, United States of America
| | - Rebecca S. Bart
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
114
|
Ruh M, Briand M, Bonneau S, Jacques MA, Chen NWG. Xanthomonas adaptation to common bean is associated with horizontal transfers of genes encoding TAL effectors. BMC Genomics 2017; 18:670. [PMID: 28854875 PMCID: PMC5577687 DOI: 10.1186/s12864-017-4087-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/24/2017] [Indexed: 12/25/2022] Open
Abstract
Background Common bacterial blight is a devastating bacterial disease of common bean (Phaseolus vulgaris) caused by Xanthomonas citri pv. fuscans and Xanthomonas phaseoli pv. phaseoli. These phylogenetically distant strains are able to cause similar symptoms on common bean, suggesting that they have acquired common genetic determinants of adaptation to common bean. Transcription Activator-Like (TAL) effectors are bacterial type III effectors that are able to induce the expression of host genes to promote infection or resistance. Their capacity to bind to a specific host DNA sequence suggests that they are potential candidates for host adaption. Results To study the diversity of tal genes from Xanthomonas strains responsible for common bacterial blight of bean, whole genome sequences of 17 strains representing the diversity of X. citri pv. fuscans and X. phaseoli pv. phaseoli were obtained by single molecule real time sequencing. Analysis of these genomes revealed the existence of four tal genes named tal23A, tal20F, tal18G and tal18H, respectively. While tal20F and tal18G were chromosomic, tal23A and tal18H were carried on plasmids and shared between phylogenetically distant strains, therefore suggesting recent horizontal transfers of these genes between X. citri pv. fuscans and X. phaseoli pv. phaseoli strains. Strikingly, tal23A was present in all strains studied, suggesting that it played an important role in adaptation to common bean. In silico predictions of TAL effectors targets in the common bean genome suggested that TAL effectors shared by X. citri pv. fuscans and X. phaseoli pv. phaseoli strains target the promoters of genes of similar functions. This could be a trace of convergent evolution among TAL effectors from different phylogenetic groups, and comforts the hypothesis that TAL effectors have been implied in the adaptation to common bean. Conclusions Altogether, our results favour a model where plasmidic TAL effectors are able to contribute to host adaptation by being horizontally transferred between distant lineages. Electronic supplementary material The online version of this article (10.1186/s12864-017-4087-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mylène Ruh
- IRHS, INRA, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071, Beaucouzé, France
| | - Martial Briand
- IRHS, INRA, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071, Beaucouzé, France
| | - Sophie Bonneau
- IRHS, INRA, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071, Beaucouzé, France
| | - Marie-Agnès Jacques
- IRHS, INRA, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071, Beaucouzé, France
| | - Nicolas W G Chen
- IRHS, INRA, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071, Beaucouzé, France.
| |
Collapse
|
115
|
Vicente JG, Rothwell S, Holub EB, Studholme DJ. Pathogenic, phenotypic and molecular characterisation of Xanthomonas nasturtii sp. nov. and Xanthomonas floridensis sp. nov., new species of Xanthomonas associated with watercress production in Florida. Int J Syst Evol Microbiol 2017; 67:3645-3654. [PMID: 28840805 DOI: 10.1099/ijsem.0.002189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe two new species of the genus Xanthomonas, represented by yellow mucoid bacterial strains isolated from diseased leaves of watercress (Nasturtium officinale) produced in Florida, USA. One strain was pathogenic on watercress, but not in other species including a range of brassicas; other strains were not pathogenic in any of the tested plants. Data from Biolog carbon source utilization tests and nucleotide sequence data from 16S and gyrB loci suggested that both pathogenic and non-pathogenic strains were related to, yet distinct from, previously described Xanthomonas species. Multilocus sequence analysis and whole genome-wide comparisons of the average nucleotide identity (ANI) of genomes of two strains from watercress showed that these are distinct and share less than 95 % ANI with all other known species; the non-pathogenic strain WHRI 8848 is close to Xanthomonascassavae (ANI of 93.72 %) whilst the pathogenic strain WHRI 8853 is close to a large clade of species that includes Xanthomonasvesicatoria (ANI ≤90.25 %). Based on these results, we propose that both strains represent new Xanthomonas species named Xanthomonas floridensis sp. nov. (type strain WHRI 8848=ATCC TSD-60=ICMP 21312=LMG 29665=NCPPB 4601) and Xanthomonas nasturtii sp. nov. (type strain WHRI 8853=ATCC TSD-61=ICMP 21313=LMG 29666=NCPPB 4600), respectively. The presence of non-pathogenic Xanthomonas strains in watercress and their interaction with pathogenic strains needs to be further investigated. Although the importance of the new pathogenic species is yet to be determined, the bacterial disease that it causes constitutes a threat to watercress production and its distribution should be monitored.
Collapse
Affiliation(s)
- Joana G Vicente
- School of Life Sciences, The University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| | - Steve Rothwell
- Vitacress Ltd, Lower Link Farm, St. Mary Bourne, Andover, Hampshire SP11 6DB, UK
| | - Eric B Holub
- School of Life Sciences, The University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| | | |
Collapse
|
116
|
Falahi Charkhabi N, Booher NJ, Peng Z, Wang L, Rahimian H, Shams-Bakhsh M, Liu Z, Liu S, White FF, Bogdanove AJ. Complete Genome Sequencing and Targeted Mutagenesis Reveal Virulence Contributions of Tal2 and Tal4b of Xanthomonas translucens pv. undulosa ICMP11055 in Bacterial Leaf Streak of Wheat. Front Microbiol 2017; 8:1488. [PMID: 28848509 PMCID: PMC5554336 DOI: 10.3389/fmicb.2017.01488] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/24/2017] [Indexed: 12/31/2022] Open
Abstract
Bacterial leaf streak caused by Xanthomonas translucens pv. undulosa (Xtu) is an important disease of wheat (Triticum aestivum) and barley (Hordeum vulgare) worldwide. Transcription activator-like effectors (TALEs) play determinative roles in many of the plant diseases caused by the different species and pathovars of Xanthomonas, but their role in this disease has not been characterized. ICMP11055 is a highly virulent Xtu strain from Iran. The aim of this study was to better understand genetic diversity of Xtu and to assess the role of TALEs in bacterial leaf streak of wheat by comparing the genome of this strain to the recently completely sequenced genome of a U.S. Xtu strain, and to several other draft X. translucens genomes, and by carrying out mutational analyses of the TALE (tal) genes the Iranian strain might harbor. The ICMP11055 genome, including its repeat-rich tal genes, was completely sequenced using single molecule, real-time technology (Pacific Biosciences). It consists of a single circular chromosome of 4,561,583 bp, containing 3,953 genes. Whole genome alignment with the genome of the United States Xtu strain XT4699 showed two major re-arrangements, nine genomic regions unique to ICMP11055, and one region unique to XT4699. ICMP110055 harbors 26 non-TALE type III effector genes and seven tal genes, compared to 25 and eight for XT4699. The tal genes occur singly or in pairs across five scattered loci. Four are identical to tal genes in XT4699. In addition to common repeat-variable diresidues (RVDs), the tal genes of ICMP11055, like those of XT4699, encode several RVDs rarely observed in Xanthomonas, including KG, NF, Y∗, YD, and YK. Insertion and deletion mutagenesis of ICMP11055 tal genes followed by genetic complementation analysis in wheat cv. Chinese Spring revealed that Tal2 and Tal4b of ICMP11055 each contribute individually to the extent of disease caused by this strain. A largely conserved ortholog of tal2 is present in XT4699, but for tal4b, only a gene with partial, fragmented RVD sequence similarity can be found. Our results lay the foundation for identification of important host genes activated by Xtu TALEs as targets for the development of disease resistant varieties.
Collapse
Affiliation(s)
- Nargues Falahi Charkhabi
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, IthacaNY, United States.,Department of Plant Pathology, Tarbiat Modares UniversityTehran, Iran
| | - Nicholas J Booher
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, IthacaNY, United States
| | - Zhao Peng
- Department of Plant Pathology, Kansas State University, ManhattanKS, United States.,Department of Plant Pathology, University of Florida, GainesvilleFL, United States
| | - Li Wang
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, IthacaNY, United States
| | - Heshmat Rahimian
- Department of Plant Protection, Sari Agricultural Science and Natural Resources UniversitySari, Iran
| | | | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, FargoND, United States
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, ManhattanKS, United States
| | - Frank F White
- Department of Plant Pathology, Kansas State University, ManhattanKS, United States.,Department of Plant Pathology, University of Florida, GainesvilleFL, United States
| | - Adam J Bogdanove
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, IthacaNY, United States
| |
Collapse
|
117
|
Oliva R, Quibod IL. Immunity and starvation: new opportunities to elevate disease resistance in crops. CURRENT OPINION IN PLANT BIOLOGY 2017; 38:84-91. [PMID: 28505583 DOI: 10.1016/j.pbi.2017.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/27/2017] [Accepted: 04/30/2017] [Indexed: 05/18/2023]
Abstract
Plants use multiple mechanisms to defend themselves against invading microbes. Besides using their immune system to surveil and eliminate pathogens, plants actively block the pathogens' access to nutrients as an alternative way to prevent colonization. In this review, we focus on immunity and starvation as major obstacles for pathogens' adaptation. We summarize the key mechanisms employed by pathogens to modulate host immunity and to guarantee sugar uptake. In contrast to genes that deal with the immune system and show high levels of plasticity, pathogen genes involved in sugar acquisition are highly conserved, and may not have adapted to co-evolving interactions with the host. We propose a model to assess the durability of different control strategies based on the ability of pathogens to deal with host immunity or starvation. This analysis opens new opportunities to elevate disease resistance in crops by reducing the likelihood of pathogen adaptation.
Collapse
Affiliation(s)
- Ricardo Oliva
- Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, Philippines.
| | - Ian Lorenzo Quibod
- Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, Philippines
| |
Collapse
|
118
|
Garita-Cambronero J, Palacio-Bielsa A, López MM, Cubero J. Pan-Genomic Analysis Permits Differentiation of Virulent and Non-virulent Strains of Xanthomonas arboricola That Cohabit Prunus spp. and Elucidate Bacterial Virulence Factors. Front Microbiol 2017; 8:573. [PMID: 28450852 PMCID: PMC5389983 DOI: 10.3389/fmicb.2017.00573] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/20/2017] [Indexed: 01/17/2023] Open
Abstract
Xanthomonas arboricola is a plant-associated bacterial species that causes diseases on several plant hosts. One of the most virulent pathovars within this species is X. arboricola pv. pruni (Xap), the causal agent of bacterial spot disease of stone fruit trees and almond. Recently, a non-virulent Xap-look-a-like strain isolated from Prunus was characterized and its genome compared to pathogenic strains of Xap, revealing differences in the profile of virulence factors, such as the genes related to the type III secretion system (T3SS) and type III effectors (T3Es). The existence of this atypical strain arouses several questions associated with the abundance, the pathogenicity, and the evolutionary context of X. arboricola on Prunus hosts. After an initial characterization of a collection of Xanthomonas strains isolated from Prunus bacterial spot outbreaks in Spain during the past decade, six Xap-look-a-like strains, that did not clustered with the pathogenic strains of Xap according to a multi locus sequence analysis, were identified. Pathogenicity of these strains was analyzed and the genome sequences of two Xap-look-a-like strains, CITA 14 and CITA 124, non-virulent to Prunus spp., were obtained and compared to those available genomes of X. arboricola associated with this host plant. Differences were found among the genomes of the virulent and the Prunus non-virulent strains in several characters related to the pathogenesis process. Additionally, a pan-genomic analysis that included the available genomes of X. arboricola, revealed that the atypical strains associated with Prunus were related to a group of non-virulent or low virulent strains isolated from a wide host range. The repertoire of the genes related to T3SS and T3Es varied among the strains of this cluster and those strains related to the most virulent pathovars of the species, corylina, juglandis, and pruni. This variability provides information about the potential evolutionary process associated to the acquisition of pathogenicity and host specificity in X. arboricola. Finally, based in the genomic differences observed between the virulent and the non-virulent strains isolated from Prunus, a sensitive and specific real-time PCR protocol was designed to detect and identify Xap strains. This method avoids miss-identifications due to atypical strains of X. arboricola that can cohabit Prunus.
Collapse
Affiliation(s)
- Jerson Garita-Cambronero
- Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Ana Palacio-Bielsa
- Unidad de Sanidad Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón, Universidad de ZaragozaZaragoza, Spain
| | - María M. López
- Departamento de Bacteriología, Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones AgrariasValencia, Spain
| | - Jaime Cubero
- Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| |
Collapse
|
119
|
Garita-Cambronero J, Palacio-Bielsa A, López MM, Cubero J. Pan-Genomic Analysis Permits Differentiation of Virulent and Non-virulent Strains of Xanthomonas arboricola That Cohabit Prunus spp. and Elucidate Bacterial Virulence Factors. Front Microbiol 2017; 8:573. [PMID: 28450852 DOI: 10.3389/fmicb.2017.00573.ecollection2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/20/2017] [Indexed: 05/24/2023] Open
Abstract
Xanthomonas arboricola is a plant-associated bacterial species that causes diseases on several plant hosts. One of the most virulent pathovars within this species is X. arboricola pv. pruni (Xap), the causal agent of bacterial spot disease of stone fruit trees and almond. Recently, a non-virulent Xap-look-a-like strain isolated from Prunus was characterized and its genome compared to pathogenic strains of Xap, revealing differences in the profile of virulence factors, such as the genes related to the type III secretion system (T3SS) and type III effectors (T3Es). The existence of this atypical strain arouses several questions associated with the abundance, the pathogenicity, and the evolutionary context of X. arboricola on Prunus hosts. After an initial characterization of a collection of Xanthomonas strains isolated from Prunus bacterial spot outbreaks in Spain during the past decade, six Xap-look-a-like strains, that did not clustered with the pathogenic strains of Xap according to a multi locus sequence analysis, were identified. Pathogenicity of these strains was analyzed and the genome sequences of two Xap-look-a-like strains, CITA 14 and CITA 124, non-virulent to Prunus spp., were obtained and compared to those available genomes of X. arboricola associated with this host plant. Differences were found among the genomes of the virulent and the Prunus non-virulent strains in several characters related to the pathogenesis process. Additionally, a pan-genomic analysis that included the available genomes of X. arboricola, revealed that the atypical strains associated with Prunus were related to a group of non-virulent or low virulent strains isolated from a wide host range. The repertoire of the genes related to T3SS and T3Es varied among the strains of this cluster and those strains related to the most virulent pathovars of the species, corylina, juglandis, and pruni. This variability provides information about the potential evolutionary process associated to the acquisition of pathogenicity and host specificity in X. arboricola. Finally, based in the genomic differences observed between the virulent and the non-virulent strains isolated from Prunus, a sensitive and specific real-time PCR protocol was designed to detect and identify Xap strains. This method avoids miss-identifications due to atypical strains of X. arboricola that can cohabit Prunus.
Collapse
Affiliation(s)
- Jerson Garita-Cambronero
- Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Ana Palacio-Bielsa
- Unidad de Sanidad Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón, Universidad de ZaragozaZaragoza, Spain
| | - María M López
- Departamento de Bacteriología, Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones AgrariasValencia, Spain
| | - Jaime Cubero
- Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| |
Collapse
|
120
|
Complete Genome Sequence of a Copper-Resistant Bacterium from the Citrus Phyllosphere,
Stenotrophomonas
sp. Strain LM091, Obtained Using Long-Read Technology. GENOME ANNOUNCEMENTS 2016; 4:4/6/e01327-16. [PMID: 27979933 PMCID: PMC5159566 DOI: 10.1128/genomea.01327-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Stenotrophomonas genus shows great adaptive potential including resistance to multiple antimicrobials, opportunistic pathogenicity, and production of numerous secondary metabolites. Using long-read technology, we report the sequence of a plant-associated Stenotrophomonas strain originating from the citrus phyllosphere that displays a copper resistance phenotype.
Collapse
|
121
|
Barak JD, Vancheva T, Lefeuvre P, Jones JB, Timilsina S, Minsavage GV, Vallad GE, Koebnik R. Whole-Genome Sequences of Xanthomonas euvesicatoria Strains Clarify Taxonomy and Reveal a Stepwise Erosion of Type 3 Effectors. FRONTIERS IN PLANT SCIENCE 2016; 7:1805. [PMID: 28018370 PMCID: PMC5146329 DOI: 10.3389/fpls.2016.01805] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/15/2016] [Indexed: 05/11/2023]
Abstract
Multiple species of Xanthomonas cause bacterial spot of tomato (BST) and pepper. We sequenced five Xanthomonas euvesicatoria strains isolated from three continents (Africa, Asia, and South America) to provide a set of representative genomes with temporal and geographic diversity. LMG strains 667, 905, 909, and 933 were pathogenic on tomato and pepper, except LMG 918 elicited a hypersensitive reaction (HR) on tomato. Furthermore, LMG 667, 909, and 918 elicited a HR on Early Cal Wonder 30R containing Bs3. We examined pectolytic activity and starch hydrolysis, two tests which are useful in differentiating X. euvesicatoria from X. perforans, both causal agents of BST. LMG strains 905, 909, 918, and 933 were nonpectolytic while only LMG 918 was amylolytic. These results suggest that LMG 918 is atypical of X. euvesicatoria. Sequence analysis of all the publicly available X. euvesicatoria and X. perforans strains comparing seven housekeeping genes identified seven haplotypes with few polymorphisms. Whole genome comparison by average nucleotide identity (ANI) resulted in values of >99% among the LMG strains 667, 905, 909, 918, and 933 and X. euvesicatoria strains and >99.6% among the LMG strains and a subset of X. perforans strains. These results suggest that X. euvesicatoria and X. perforans should be considered a single species. ANI values between strains of X. euvesicatoria, X. perforans, X. allii, X. alfalfa subsp. citrumelonis, X. dieffenbachiae, and a recently described pathogen of rose were >97.8% suggesting these pathogens should be a single species and recognized as X. euvesicatoria. Analysis of the newly sequenced X. euvesicatoria strains revealed interesting findings among the type 3 (T3) effectors, relatively ancient stepwise erosion of some T3 effectors, additional X. euvesicatoria-specific T3 effectors among the causal agents of BST, orthologs of avrBs3 and avrBs4, and T3 effectors shared among xanthomonads pathogenic against various hosts. The results from this study supports the finding that T3 effector repertoire and host range are fundamental for the study of host-microbe interaction but of little relevance to bacterial speciation.
Collapse
Affiliation(s)
- Jeri D. Barak
- UMR Interactions – Plantes – Microorganismes – Environnement, IRD-Cirad-Université MontpellierMontpellier, France
- Department of Plant Pathology, University of WisconsinMadison, WI, USA
| | - Taca Vancheva
- UMR Interactions – Plantes – Microorganismes – Environnement, IRD-Cirad-Université MontpellierMontpellier, France
- Faculty of Biology, Sofia University St. Kliment OhridskiSofia, Bulgaria
| | - Pierre Lefeuvre
- Pôle de Protection des Plantes, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Cirad-Université de la RéunionSaint-Pierre, Ile de la Réunion, France
| | - Jeffrey B. Jones
- Department of Plant Pathology, University of FloridaGainsville, FL, USA
| | - Sujan Timilsina
- Department of Plant Pathology, University of FloridaGainsville, FL, USA
| | | | - Gary E. Vallad
- Gulf Coast Research and Education Center, University of FloridaWimauma, FL, USA
| | - Ralf Koebnik
- UMR Interactions – Plantes – Microorganismes – Environnement, IRD-Cirad-Université MontpellierMontpellier, France
| |
Collapse
|
122
|
Boulanger A, Noël LD. Xanthomonas Whole Genome Sequencing: Phylogenetics, Host Specificity and Beyond. Front Microbiol 2016; 7:1100. [PMID: 27470197 PMCID: PMC4945629 DOI: 10.3389/fmicb.2016.01100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/30/2016] [Indexed: 12/23/2022] Open
Affiliation(s)
- Alice Boulanger
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Université de Toulouse, Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS), Université de Paul Sabatier (UPS) Castanet-Tolosan, France
| | - Laurent D Noël
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Université de Toulouse, Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS), Université de Paul Sabatier (UPS) Castanet-Tolosan, France
| |
Collapse
|